
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 144 (2018) 140–152

1877-0509 © 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.
10.1016/j.procs.2018.10.514

10.1016/j.procs.2018.10.514

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

1877-0509

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

INNS Conference on Big Data and Deep Learning 2018

Big Data Analytics based on PANFIS MapReduce
Choiru Za’ina, Mahardhika Pratamab, Edwin Lughoferc, Meftahul Ferdausd, Qing Caib,

Mukesh Prasade,f

aLa Trobe University, Melbourne, Australia
bNanyang Technological University, Singapore, Singapore

cJohannes Kepler University, Linz, Australia
dUniversity of New South Wales, Canberra, Australia
eUniversity of Technology Sydney, Sydney, Australia

fCenter for Artificial Intelligence, School of Software, FEIT, University of Technology Sydney, Australia

Abstract

In this paper, a big data analytic framework is introduced for processing high-frequency data stream. This framework architec-
ture is developed by combining an advanced evolving learning algorithm namely Parsimonious Network Fuzzy Inference System
(PANFIS) with MapReduce parallel computation, where PANFIS has the capability of processing data stream in large volume. Big
datasets are learnt chunk by chunk by processors in MapReduce environment and the results are fused by rule merging method,
that reduces the complexity of the rules. The performance measurement has been conducted, and the results are showing that the
MapReduce framework along with PANFIS evolving system helps to reduce the processing time around 22 percent in average in
comparison with the PANFIS algorithm without reducing performance in accuracy.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Keywords: Big data stream analytic, Distributed evolving algorithm, Scalable real-time data mining, Parallel learning, Rule merging strategy

1. Introduction

The rapid growth of data generated through the Internet, which causes big data, attracts great attention from many
stakeholders. This phenomenon takes place in many areas in the real life such as business, management, medical,
government, and society administration. Big data is unique of its 4Vs characteristics: volume, velocity, variety, and
veracity. Volume related to the number of data generated in the storage, which is associated with the scale of data.
Velocity indicates the flow rate of continuous data which is associated with the data streams. Variety of data is char-

∗ Choiru Za’in
E-mail address: C.Zain@latrobe.edu.au

1877-0509 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

INNS Conference on Big Data and Deep Learning 2018

Big Data Analytics based on PANFIS MapReduce
Choiru Za’ina, Mahardhika Pratamab, Edwin Lughoferc, Meftahul Ferdausd, Qing Caib,

Mukesh Prasade,f

aLa Trobe University, Melbourne, Australia
bNanyang Technological University, Singapore, Singapore

cJohannes Kepler University, Linz, Australia
dUniversity of New South Wales, Canberra, Australia
eUniversity of Technology Sydney, Sydney, Australia

fCenter for Artificial Intelligence, School of Software, FEIT, University of Technology Sydney, Australia

Abstract

In this paper, a big data analytic framework is introduced for processing high-frequency data stream. This framework architec-
ture is developed by combining an advanced evolving learning algorithm namely Parsimonious Network Fuzzy Inference System
(PANFIS) with MapReduce parallel computation, where PANFIS has the capability of processing data stream in large volume. Big
datasets are learnt chunk by chunk by processors in MapReduce environment and the results are fused by rule merging method,
that reduces the complexity of the rules. The performance measurement has been conducted, and the results are showing that the
MapReduce framework along with PANFIS evolving system helps to reduce the processing time around 22 percent in average in
comparison with the PANFIS algorithm without reducing performance in accuracy.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Keywords: Big data stream analytic, Distributed evolving algorithm, Scalable real-time data mining, Parallel learning, Rule merging strategy

1. Introduction

The rapid growth of data generated through the Internet, which causes big data, attracts great attention from many
stakeholders. This phenomenon takes place in many areas in the real life such as business, management, medical,
government, and society administration. Big data is unique of its 4Vs characteristics: volume, velocity, variety, and
veracity. Volume related to the number of data generated in the storage, which is associated with the scale of data.
Velocity indicates the flow rate of continuous data which is associated with the data streams. Variety of data is char-

∗ Choiru Za’in
E-mail address: C.Zain@latrobe.edu.au

1877-0509 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

2 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

acterized by the number of different format of the data, whereas veracity shows the uncertainty of data where the data
sources need to be validated (trustees, accuracy, and data quality).

Big data provides enormous opportunities for government/organizations in discovering and extracting valuable
information/knowledge of their system which can be beneficial for them in the decision-making processes. In the
business area for example, Wal-Mart collaborated with Hewlett Packard trace every purchase record belonging to
their customers from their point-of-sales terminals, where their transactions reach around 267 million per day. This
valuable transaction data becomes a key basis for company to improve their benefits by applying pricing strategy
and advertising campaigns [10, 6]. In this case, the decision could be made by applying some techniques such as
data mining, which is extensively used for many decision-making problems in many real-life applications. However,
discovering meaningful insight of big data is challenging due to its 4V’s characteristics, which lie on the difficulties in
data capture, data storage, data analysis and data visualization [37, 6]. Therefore, an advanced data mining techniques
and technologies are highly necessary to process and analyze big data.

Big data is often stored in cloud to support the extensibility and scalability of local storage refers to one charac-
teristic of big data, namely volume. In order to extract valuable information of big data efficiently, there is an urgent
demand to modify existing data mining techniques to be scalable in processing large-scale dataset. This issue led to
a necessity to the development distributed or parallelize scenario in processing big data. In addition, big data are also
generated by the arrival of new instances continuously in either by batches or one by one, known as data stream,
emerging from real-world applications[9, 33]. Therefore, it is necessary for machine learning algorithm to adapt to
rapidly changing non-stationary data streams. Note that stream processing/mining in the web news domain has been
conducted in [39] using eT2Class [31], which is able to handle streaming data[4]. This phenomenon triggers the de-
velopment of evolving learning algorithms, which are able to learn big data continuously [13] by evolving its model
to adjust the shift and drift of the big data pattern.

There are some frameworks have been conducted in big data analytic, exploiting the characteristics of big data,
including large volumes, velocity, and variety of data. Initially, some frameworks have been developed to cope with the
volume of big data by increasing the scalability of machine learning algorithms as discussed in [36, 34, 26, 7]. Lately,
much attentions have been paid to the development of big data analytic by considering the velocity characteristic in
addition to volume due to streaming nature of data. For example, big data stream clustering [16, 1] processed big data
by distributing the data stream to be processed in many processors/nodes to speed up the computational time. Despite
the increase of computational speed, these works still suffer from coping with the data pattern changing, which in
turn, possibly lead to fusion of non-related clusters [14]. It means that the final model generated does not represent
the knowledge of the data, which can lead to the misleading inference in prediction and clustering result.

The development of algorithms and techniques which are scalable for handling large-scale data stream and, in the
same time, able to cope with the changing environment is crucial. This procedure enable data stream to be processed
in parallel mode by distributing them into many processors, where each processor processes/learnes a block of data
stream (data chunk). In addition, it also processes every data chunk in online mode with the capability to change its
data pattern incrementally.

To the best of our knowledge, a few works have addressed an online big data processing and analytic in both dis-
tributed and online mode. Parallel TEDA was introduced in [15], which is based on parallel mode, which processes
every data chunk in single pass mode using evolving algorithm. Its evolving characteristic is inherited from an evolv-
ing algorithm, namely Typicality based Empirical Data Analysis (TEDA) [2], which supports the recursive form of
calculation and is parameter-free. Eventhough, Parallel TEDA has applied a parallel strategy and evolving learning
algorithm to improve the scalability and speed of learning process, its model is still generated using a simple fusion
technique, which can cause a redundancy problem. In addition, it only applies on a simple parallel technique.

In this paper, we propose a novel big data stream analytic based on a newly developed evolving algorithm namely
PANFIS [28] by incorporating a well-known MapReduce framework with it. PANFIS is a seminal evolving neuro
fuzzy systems (ENFS), which inherits all benefits of evolving learning. It starts learning from the first data with an
empty rule base. During its learning, the generated rules adapt incoming data in the single pass mode. The main
characteristic of PANFIS is its capability in generating ellipsoids in arbitrary direction, respecting local correlation
between variables. In addition, a new fusion technique called rule-merging strategy is also proposed to avoid redun-
dancy and increase the diversity of the model. Futhermore, MapReduce is introduced to improve the scalability of
evolving learning algorithm since it is known as one of the most efficient platform for big data analytic due to its

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.10.514&domain=pdf

Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152� 141
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

INNS Conference on Big Data and Deep Learning 2018

Big Data Analytics based on PANFIS MapReduce
Choiru Za’ina, Mahardhika Pratamab, Edwin Lughoferc, Meftahul Ferdausd, Qing Caib,

Mukesh Prasade,f

aLa Trobe University, Melbourne, Australia
bNanyang Technological University, Singapore, Singapore

cJohannes Kepler University, Linz, Australia
dUniversity of New South Wales, Canberra, Australia
eUniversity of Technology Sydney, Sydney, Australia

fCenter for Artificial Intelligence, School of Software, FEIT, University of Technology Sydney, Australia

Abstract

In this paper, a big data analytic framework is introduced for processing high-frequency data stream. This framework architec-
ture is developed by combining an advanced evolving learning algorithm namely Parsimonious Network Fuzzy Inference System
(PANFIS) with MapReduce parallel computation, where PANFIS has the capability of processing data stream in large volume. Big
datasets are learnt chunk by chunk by processors in MapReduce environment and the results are fused by rule merging method,
that reduces the complexity of the rules. The performance measurement has been conducted, and the results are showing that the
MapReduce framework along with PANFIS evolving system helps to reduce the processing time around 22 percent in average in
comparison with the PANFIS algorithm without reducing performance in accuracy.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Keywords: Big data stream analytic, Distributed evolving algorithm, Scalable real-time data mining, Parallel learning, Rule merging strategy

1. Introduction

The rapid growth of data generated through the Internet, which causes big data, attracts great attention from many
stakeholders. This phenomenon takes place in many areas in the real life such as business, management, medical,
government, and society administration. Big data is unique of its 4Vs characteristics: volume, velocity, variety, and
veracity. Volume related to the number of data generated in the storage, which is associated with the scale of data.
Velocity indicates the flow rate of continuous data which is associated with the data streams. Variety of data is char-

∗ Choiru Za’in
E-mail address: C.Zain@latrobe.edu.au

1877-0509 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

INNS Conference on Big Data and Deep Learning 2018

Big Data Analytics based on PANFIS MapReduce
Choiru Za’ina, Mahardhika Pratamab, Edwin Lughoferc, Meftahul Ferdausd, Qing Caib,

Mukesh Prasade,f

aLa Trobe University, Melbourne, Australia
bNanyang Technological University, Singapore, Singapore

cJohannes Kepler University, Linz, Australia
dUniversity of New South Wales, Canberra, Australia
eUniversity of Technology Sydney, Sydney, Australia

fCenter for Artificial Intelligence, School of Software, FEIT, University of Technology Sydney, Australia

Abstract

In this paper, a big data analytic framework is introduced for processing high-frequency data stream. This framework architec-
ture is developed by combining an advanced evolving learning algorithm namely Parsimonious Network Fuzzy Inference System
(PANFIS) with MapReduce parallel computation, where PANFIS has the capability of processing data stream in large volume. Big
datasets are learnt chunk by chunk by processors in MapReduce environment and the results are fused by rule merging method,
that reduces the complexity of the rules. The performance measurement has been conducted, and the results are showing that the
MapReduce framework along with PANFIS evolving system helps to reduce the processing time around 22 percent in average in
comparison with the PANFIS algorithm without reducing performance in accuracy.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Keywords: Big data stream analytic, Distributed evolving algorithm, Scalable real-time data mining, Parallel learning, Rule merging strategy

1. Introduction

The rapid growth of data generated through the Internet, which causes big data, attracts great attention from many
stakeholders. This phenomenon takes place in many areas in the real life such as business, management, medical,
government, and society administration. Big data is unique of its 4Vs characteristics: volume, velocity, variety, and
veracity. Volume related to the number of data generated in the storage, which is associated with the scale of data.
Velocity indicates the flow rate of continuous data which is associated with the data streams. Variety of data is char-

∗ Choiru Za’in
E-mail address: C.Zain@latrobe.edu.au

1877-0509 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

2 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

acterized by the number of different format of the data, whereas veracity shows the uncertainty of data where the data
sources need to be validated (trustees, accuracy, and data quality).

Big data provides enormous opportunities for government/organizations in discovering and extracting valuable
information/knowledge of their system which can be beneficial for them in the decision-making processes. In the
business area for example, Wal-Mart collaborated with Hewlett Packard trace every purchase record belonging to
their customers from their point-of-sales terminals, where their transactions reach around 267 million per day. This
valuable transaction data becomes a key basis for company to improve their benefits by applying pricing strategy
and advertising campaigns [10, 6]. In this case, the decision could be made by applying some techniques such as
data mining, which is extensively used for many decision-making problems in many real-life applications. However,
discovering meaningful insight of big data is challenging due to its 4V’s characteristics, which lie on the difficulties in
data capture, data storage, data analysis and data visualization [37, 6]. Therefore, an advanced data mining techniques
and technologies are highly necessary to process and analyze big data.

Big data is often stored in cloud to support the extensibility and scalability of local storage refers to one charac-
teristic of big data, namely volume. In order to extract valuable information of big data efficiently, there is an urgent
demand to modify existing data mining techniques to be scalable in processing large-scale dataset. This issue led to
a necessity to the development distributed or parallelize scenario in processing big data. In addition, big data are also
generated by the arrival of new instances continuously in either by batches or one by one, known as data stream,
emerging from real-world applications[9, 33]. Therefore, it is necessary for machine learning algorithm to adapt to
rapidly changing non-stationary data streams. Note that stream processing/mining in the web news domain has been
conducted in [39] using eT2Class [31], which is able to handle streaming data[4]. This phenomenon triggers the de-
velopment of evolving learning algorithms, which are able to learn big data continuously [13] by evolving its model
to adjust the shift and drift of the big data pattern.

There are some frameworks have been conducted in big data analytic, exploiting the characteristics of big data,
including large volumes, velocity, and variety of data. Initially, some frameworks have been developed to cope with the
volume of big data by increasing the scalability of machine learning algorithms as discussed in [36, 34, 26, 7]. Lately,
much attentions have been paid to the development of big data analytic by considering the velocity characteristic in
addition to volume due to streaming nature of data. For example, big data stream clustering [16, 1] processed big data
by distributing the data stream to be processed in many processors/nodes to speed up the computational time. Despite
the increase of computational speed, these works still suffer from coping with the data pattern changing, which in
turn, possibly lead to fusion of non-related clusters [14]. It means that the final model generated does not represent
the knowledge of the data, which can lead to the misleading inference in prediction and clustering result.

The development of algorithms and techniques which are scalable for handling large-scale data stream and, in the
same time, able to cope with the changing environment is crucial. This procedure enable data stream to be processed
in parallel mode by distributing them into many processors, where each processor processes/learnes a block of data
stream (data chunk). In addition, it also processes every data chunk in online mode with the capability to change its
data pattern incrementally.

To the best of our knowledge, a few works have addressed an online big data processing and analytic in both dis-
tributed and online mode. Parallel TEDA was introduced in [15], which is based on parallel mode, which processes
every data chunk in single pass mode using evolving algorithm. Its evolving characteristic is inherited from an evolv-
ing algorithm, namely Typicality based Empirical Data Analysis (TEDA) [2], which supports the recursive form of
calculation and is parameter-free. Eventhough, Parallel TEDA has applied a parallel strategy and evolving learning
algorithm to improve the scalability and speed of learning process, its model is still generated using a simple fusion
technique, which can cause a redundancy problem. In addition, it only applies on a simple parallel technique.

In this paper, we propose a novel big data stream analytic based on a newly developed evolving algorithm namely
PANFIS [28] by incorporating a well-known MapReduce framework with it. PANFIS is a seminal evolving neuro
fuzzy systems (ENFS), which inherits all benefits of evolving learning. It starts learning from the first data with an
empty rule base. During its learning, the generated rules adapt incoming data in the single pass mode. The main
characteristic of PANFIS is its capability in generating ellipsoids in arbitrary direction, respecting local correlation
between variables. In addition, a new fusion technique called rule-merging strategy is also proposed to avoid redun-
dancy and increase the diversity of the model. Futhermore, MapReduce is introduced to improve the scalability of
evolving learning algorithm since it is known as one of the most efficient platform for big data analytic due to its

142	 Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 3

simplicity, generality, and maturity with regard to the previous works in [5, 27, 35]. Our online distributed big data
stream analytic framework has the following characteristics:

1. It processes the highly rate of big data stream with a scalable distributed online learning.
2. It updates the rules’ structure by merging all the rules and parameters to cope with the changing environment.

The rest of the paper is organized as follows. Section 2 discusses the related researches: MapReduce framework and
PANFIS algorithm. Section 3 describes our proposed approach which specifically explains the data flow in processing
big data including the rule merging policy. Section 4 discusses experimental setup and results in evaluating big data
analytic and section 5 will conclude the paper.

2. PRELIMINARIES

This chapter discusses the underlying techniques of analyzing big data using one of the most widely used parallel
learning called MapReduce with PANFIS evolving learning algorithm.

2.1. MapReduce Framework

The MapReduce framework was introduced in 2008 [11], which aims to perform highly computational real-world
application tasks by dividing large dataset into many chunks. MapReduce has been applied to various domains such
as data mining and machine learning in both multiple cores within a single CPU or multiple CPU. Mapreduce consists
of two main phases: mapping and reducing. Mapping phase performs precursory calculation, which in data mining is
known as a training of data chunks, whereas reducing phase aggregates the result of training phase.

Under MapReduce framework, data mining procedure is initiated by a procedure in the mapping phase which call
data chunks randomly and learn each chunk in a node/processor, after an initial variable pair of key-value mapping
(K1,V1) is assigned to each data chunk. After the learning process, the results are stored in the new variable pair as
an object in the intermediate phase, namely KeyValueStore (K1,V ′1). While the keys K1 in KeyValueStore are identical
with the keys K1 in key-value mapping, the values V ′1 in KeyValueStore are the learning outcome from the values V1
in key-value mapping.

In general, the simple MapReduce framework is defined as follows:

Mapping :(K1,V1)→ (K1,V ′1) (1)

Intermediate(S toring and Grouping) :
(K1,V ′1)→ (K2,V2) (2)

Reducing :(K2,V2)→ (K3,V3) (3)

Intermediate phase is a bridge between mapping phase and reducing phase. The object in the intermediate phase
namely KeyValueStore records all information of the learning result V ′1 such as models and other parameters assosiated
with the data chunk being learnt in the node. In the next step, the learning results V ′1 are grouped based on the unique
key becomes the object called key-value intermediate (K2,V2). This object is then used in the reducing phase by
aggregating or reducing the values in V2 becomes V3. In this case the object final-key-value is generated (K3,V3).
Final key-value comprises keys K3 and the final value V3. The learning results final key-value from the reducing phase
represents the number of rules generated from all data chunks. The rule merging procedure described in subsection 3.1
is then taken place to process final key-value becomes final rules. The complete architecture of MapReduce framework
comprising mapping phase and reducing phase is explained in the section 3.

2.2. PANFIS

PANFIS is a seminal evolving neuro fuzzy systems (ENFS), which extends a hybrid human-like reasoning of fuzzy
system and neural network architecture that is known as neuro fuzzy system (NFS) [21] in evolving manner. ENFS

4 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

is built based on the concept of incremental learning which updates the model components (rules) to handle concept
drift. As other evolving learning algorithms characteristic, ENFS have capabilities to learn data from scratch with no
initial structure. It reorganizes its rules to presence of the untouched data region by adding new rules, and remove or
merge its rules on demand in the single pass learning mode. In addition, an evolving learning algorithm can typically
work with minimum or mostly without manual operator supervision, which is desirable in an online real-time learning
environment.

In PANFIS, fuzzy rules are extracted and removed based on a new incoming training pattern and fuzzy rule con-
tribution to the system output. The correlation between variable in PANFIS is represented by ellipsoidal in arbitrary
position, which connected with a new projection concept to form the antecedent parts in terms of linguistic term
(fuzzy sets). This is the extension of work in [20] which draws all operations in multidimensional level nonaxis par-
allel, which is not interpretable for an expert/user. However, PANFIS still use high dimensional representation for the
inference scheme.

In PANFIS, both rule growing and pruning methodology are inspired by SAFIS [32]. For pruning method, an
extended rule significance (ERS) concept is utilized to deal with multivariate Gaussian rule. This is carried out by
integrating hyperplanes consequents and generalizing to ellipsoids in arbitrary position, which allow to prune the
rules in the high-dimensional learning space.

The rules evolution is based on datum significance (DS) criterion, which represents potential of data point being
learned. Initialization of new rules is carried out by considering ε-completeness of the rule base and fuzzy partition
to ensure an adequate input space coverage. Original PANFIS utilizes ESOM to update the rule premise of PANFIS.
The underlying drawback of this method is the need of reinversion which causes instability if the inverse covari-
ance matrix is ill-conditioned (e.g., due to redundant input features). Hence, we adopt the rule adaptation formula of
GENEFIS [30], pClass [29] and GEN-SMART-EFS [25]. The enhanced recursive least square (ERLS), an extension
of conventional recursive least square (RLS), is utilized to adjust the fuzzy consequences. ERLS has been widely used
in the ENFS community and proven to underpin the convergences of the system error and so the weight vector being
updated.

The rule base management of PANFIS comprises some learning modules: 1) Rule growing which utilizes the DS
concept with ε-completeness criterion to determine the antecedent of new fuzzy rule. Rule premise adaptation is also
discussed in this subsection; 2) Rule pruning and merging methodology which allow rules to be pruned and coalesced

2.2.1. Fuzzy rules growing using DS and fuzzy rule premise adaptation
The rules growing is triggered by two conditions: 1) datum evokes a high system error and 2) the model traverses

outside the existing fuzzy rules’ region in the input space. This new growing rule becomes the rule base for the next
datum which falls close to it. In PANFIS, the DS concept is formed based on statistical contribution which represents
the potential of injected datum when the number of observations approaches to infinity. The approximation of the DS
is carried out for both current condition until the end of the training process.

DS criterion algorithm is initialized by the work of [17] and [32] as high-potential datum to cope with the data
streams. However, in order to adapt it to PANFIS algorithm which explores hyperplane consequents and rules in
arbitrary position in the learning space, some adjustment need to be done. This is due to its nature of DS criterion
which is composed in the learning platform of hyperspherical rules and constant output parameters. The mathematical
definition of the DS in adjustment to PANFIS is initiated as follows:

Dn = |en|
�

x

exp(
(X − Xn)Σ−1

i (X − Xn)

(X −Ci)Σ−1
i (X −Ci)

)
1

S (X)
(4)

where Xn represents the latest datum in the u dimension input space Xnε�u, S (X) represents the range of input X. The
system error is denoted as en which represents the degree of accuracy of PANFIS when the nth training observation is
carried out. The system error en can be defined as follows:

|en| = |tn − yn| (5)

Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152� 143
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 3

simplicity, generality, and maturity with regard to the previous works in [5, 27, 35]. Our online distributed big data
stream analytic framework has the following characteristics:

1. It processes the highly rate of big data stream with a scalable distributed online learning.
2. It updates the rules’ structure by merging all the rules and parameters to cope with the changing environment.

The rest of the paper is organized as follows. Section 2 discusses the related researches: MapReduce framework and
PANFIS algorithm. Section 3 describes our proposed approach which specifically explains the data flow in processing
big data including the rule merging policy. Section 4 discusses experimental setup and results in evaluating big data
analytic and section 5 will conclude the paper.

2. PRELIMINARIES

This chapter discusses the underlying techniques of analyzing big data using one of the most widely used parallel
learning called MapReduce with PANFIS evolving learning algorithm.

2.1. MapReduce Framework

The MapReduce framework was introduced in 2008 [11], which aims to perform highly computational real-world
application tasks by dividing large dataset into many chunks. MapReduce has been applied to various domains such
as data mining and machine learning in both multiple cores within a single CPU or multiple CPU. Mapreduce consists
of two main phases: mapping and reducing. Mapping phase performs precursory calculation, which in data mining is
known as a training of data chunks, whereas reducing phase aggregates the result of training phase.

Under MapReduce framework, data mining procedure is initiated by a procedure in the mapping phase which call
data chunks randomly and learn each chunk in a node/processor, after an initial variable pair of key-value mapping
(K1,V1) is assigned to each data chunk. After the learning process, the results are stored in the new variable pair as
an object in the intermediate phase, namely KeyValueStore (K1,V ′1). While the keys K1 in KeyValueStore are identical
with the keys K1 in key-value mapping, the values V ′1 in KeyValueStore are the learning outcome from the values V1
in key-value mapping.

In general, the simple MapReduce framework is defined as follows:

Mapping :(K1,V1)→ (K1,V ′1) (1)

Intermediate(S toring and Grouping) :
(K1,V ′1)→ (K2,V2) (2)

Reducing :(K2,V2)→ (K3,V3) (3)

Intermediate phase is a bridge between mapping phase and reducing phase. The object in the intermediate phase
namely KeyValueStore records all information of the learning result V ′1 such as models and other parameters assosiated
with the data chunk being learnt in the node. In the next step, the learning results V ′1 are grouped based on the unique
key becomes the object called key-value intermediate (K2,V2). This object is then used in the reducing phase by
aggregating or reducing the values in V2 becomes V3. In this case the object final-key-value is generated (K3,V3).
Final key-value comprises keys K3 and the final value V3. The learning results final key-value from the reducing phase
represents the number of rules generated from all data chunks. The rule merging procedure described in subsection 3.1
is then taken place to process final key-value becomes final rules. The complete architecture of MapReduce framework
comprising mapping phase and reducing phase is explained in the section 3.

2.2. PANFIS

PANFIS is a seminal evolving neuro fuzzy systems (ENFS), which extends a hybrid human-like reasoning of fuzzy
system and neural network architecture that is known as neuro fuzzy system (NFS) [21] in evolving manner. ENFS

4 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

is built based on the concept of incremental learning which updates the model components (rules) to handle concept
drift. As other evolving learning algorithms characteristic, ENFS have capabilities to learn data from scratch with no
initial structure. It reorganizes its rules to presence of the untouched data region by adding new rules, and remove or
merge its rules on demand in the single pass learning mode. In addition, an evolving learning algorithm can typically
work with minimum or mostly without manual operator supervision, which is desirable in an online real-time learning
environment.

In PANFIS, fuzzy rules are extracted and removed based on a new incoming training pattern and fuzzy rule con-
tribution to the system output. The correlation between variable in PANFIS is represented by ellipsoidal in arbitrary
position, which connected with a new projection concept to form the antecedent parts in terms of linguistic term
(fuzzy sets). This is the extension of work in [20] which draws all operations in multidimensional level nonaxis par-
allel, which is not interpretable for an expert/user. However, PANFIS still use high dimensional representation for the
inference scheme.

In PANFIS, both rule growing and pruning methodology are inspired by SAFIS [32]. For pruning method, an
extended rule significance (ERS) concept is utilized to deal with multivariate Gaussian rule. This is carried out by
integrating hyperplanes consequents and generalizing to ellipsoids in arbitrary position, which allow to prune the
rules in the high-dimensional learning space.

The rules evolution is based on datum significance (DS) criterion, which represents potential of data point being
learned. Initialization of new rules is carried out by considering ε-completeness of the rule base and fuzzy partition
to ensure an adequate input space coverage. Original PANFIS utilizes ESOM to update the rule premise of PANFIS.
The underlying drawback of this method is the need of reinversion which causes instability if the inverse covari-
ance matrix is ill-conditioned (e.g., due to redundant input features). Hence, we adopt the rule adaptation formula of
GENEFIS [30], pClass [29] and GEN-SMART-EFS [25]. The enhanced recursive least square (ERLS), an extension
of conventional recursive least square (RLS), is utilized to adjust the fuzzy consequences. ERLS has been widely used
in the ENFS community and proven to underpin the convergences of the system error and so the weight vector being
updated.

The rule base management of PANFIS comprises some learning modules: 1) Rule growing which utilizes the DS
concept with ε-completeness criterion to determine the antecedent of new fuzzy rule. Rule premise adaptation is also
discussed in this subsection; 2) Rule pruning and merging methodology which allow rules to be pruned and coalesced

2.2.1. Fuzzy rules growing using DS and fuzzy rule premise adaptation
The rules growing is triggered by two conditions: 1) datum evokes a high system error and 2) the model traverses

outside the existing fuzzy rules’ region in the input space. This new growing rule becomes the rule base for the next
datum which falls close to it. In PANFIS, the DS concept is formed based on statistical contribution which represents
the potential of injected datum when the number of observations approaches to infinity. The approximation of the DS
is carried out for both current condition until the end of the training process.

DS criterion algorithm is initialized by the work of [17] and [32] as high-potential datum to cope with the data
streams. However, in order to adapt it to PANFIS algorithm which explores hyperplane consequents and rules in
arbitrary position in the learning space, some adjustment need to be done. This is due to its nature of DS criterion
which is composed in the learning platform of hyperspherical rules and constant output parameters. The mathematical
definition of the DS in adjustment to PANFIS is initiated as follows:

Dn = |en|
�

x

exp(
(X − Xn)Σ−1

i (X − Xn)

(X −Ci)Σ−1
i (X −Ci)

)
1

S (X)
(4)

where Xn represents the latest datum in the u dimension input space Xnε�u, S (X) represents the range of input X. The
system error is denoted as en which represents the degree of accuracy of PANFIS when the nth training observation is
carried out. The system error en can be defined as follows:

|en| = |tn − yn| (5)

144	 Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 5

where yn and tn are the PANFIS’ output and target value of the nth training observation respectively. By performing
u-fold numerical integration, we may obtain as follows:

Dn = |en|
det(Σwin)u

S (X)
(6)

The new datum’s significance represents its statistical contribution to PANFIS’s output. Therefore, the sampling
data distribution S (X) can be further modified as the total volumes of existing fuzzy rules, which can be written as
follows:

Dn = |en|
det(
∑

win)u

(
∑r+1

i=1 det(
∑

i)u)
(7)

The new datum can be recruited as a new rule if such condition is satisfied: g < Dn, where g is a constant specified
by the user. This condition represents that the datum significance of the nth training observation Dn is measured to
have a high descriptive power and generalization potential. Vice versa, if g ≥ Dn condition is fulfilled, the existing
fuzzy rules are sufficient in covering available training stimuli. In this case, the winning rule’s premise will adapt to
the current datum’s properties.

The formula of rule premise adaption of the winning fuzzy rule in respect to a current datum is defined as follows:

Cnew
win =

Nold
win

Nold
win + 1

Cold
win +

X −Cold
win

Nold
win + 1

(8)

Σwin(new)−1 =
Σwin(old)−1

1−α + α
1−α(

Σwin (old)−1
(
X −Cnew

win

)) (
Σwin (old)−1

(
X −Cnew

win

))T (9)

Nnew
win = Nold

win + 1 (10)

where α = 1/
(
Nold

win + 1
)
, X represents the focalpoint of the current datum, and Nold

win represents the number of training
samples lie on the winning cluster. This scenario features direct update of the inverse covariance matrix improving
robustness and computation speed of adaptation process.

A) ε-completeness criterion definition for new fuzzy rule’s initialization
The automation of fuzzy rule generation also follows the ε-completeness criterion in selecting the new antecedent

of fuzzy set in order to achieve an adequate coverage to accommodate the universe discourse. The ε-completeness
criterion is proposed by [19], where ε is set to 0.5 as defined in [8]. Therefore, for any input injected at least there
exists one fuzzy rule with match degree greater than ε. For the new recruited datum, PANFIS will set this datum as a
new focal point of the new ellipsoidal rule. The new ellipsoidal region is formed by defining the width of the Gaussian
function in order to assure ε-completeness, thus:

Ci+1 = Xn (11)

diag(
∑
i+1

) =


max(|Ci −Ci−1| , |Ci −Ci+1|)√

ln(1
ε
)

 (12)

2.2.2. Fuzzy rules pruning and merging of inconsequential rules and similar fuzzy sets
This subsection exploring the rule pruning and merging of PANFIS. These methods aim to form the effective

(economical and interpretable) rule base, and also to achieve a good predictive quality.
A) ERS concept to prune inconsequential fuzzy rules
Rule base simplification of PANFIS is inherited from generalized growing and pruning radial basis function

(GGAP-RBF) [17] and SAFIS [32]. However, this method is not suitable for PANFIS as it is only suitable for zero-
order TSK fuzzy system and unidimensional membership function environment. The contribution of ith rule to the

6 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

overall systems output for an input vector Xn has been modified in order to suit PANFIS learning scenario. This con-
tribution is defined alike to the method to determine online input sensitivity analysis and an input selection used in
[18] as follows:

E(i, n) = |δi|
Ri(xn)∑r

i=1 Ri(xn)
= |δi| Ei (13)

where δi =
∑u+1

k=1 a0 + ω1i + ω2i xi + ... + ωkixk + ... + ωu+1,i xu represents the ith fuzzy rule’s output contribution. The
fuzzy rule’s input contribution is represented by Ei. Moreover, it is notable that the rule significance can be seen as the
statistical contribution when the number of observation approaches infinity. To sum up, using simplification process
and u-fold numerical integration as explained in [28], the input contribution Ei can be derived as follows:

Ei ≈
πu/2 det(

∑i)u

S (X)
(14)

In this situation, the size of range X (S (X)) is insignificant and time consuming to be computed. Therefore, for the
sake of flexibility, S (X) can be replaced by the overall fuzzy rule’s contribution, which is determined by the overall
cluster volumes. In this case, the statistical contribution estimation can be computed as the volume of single fuzzy
rule over the total volume of overall fuzzy rules, which is expressed as follows:

Ein f (i) =
det(
∑

i)u
∑r

i=1 det(
∑

i)u (15)

The rule pruning is carried out upon the threshold value of kerr in order to reduce rule base complexity. The fuzzy
rules are considered to be pruned when its contribution vector contains the fuzzy rule contribution below or equal the
kerr threshold.

B) Merging of similar fuzzy sets
Some fuzzy sets could possibly be overlapped if their membership functions are very similar. In this case, the

fuzzy sets can be merged. Furthermore, the multivariate Gaussian rule presents less transparent rule semantic because
the atomic clauses vanishes from the rule representation. The merging procedure is carried out based on similarity
calculation between fuzzy rules membership function. By incorporating a kernel-based metric method in comparing
the widths and centers of two fuzzy sets [24], the similarity of two Gaussian membership functions A and B can be
expressed as follows:

S ker(A, B) = e−|CA−CB |−|σA−σB | (16)

The equation above has the following properties:

S ker(A, B) = 1⇔ |CA −CB| − |σA − σB| = 0
⇔ CA = CB ∧ σA = σB

(17)

S ker(A, B) < ε⇔ |CA −CB| > δ ∨ |σA − σB| > δ (18)

The Eq. (17) shows that two fuzzy sets are identical, which means that the degree of similarity value is 1. On the
other hand, Eq. (18) indicates that the embedded set is not identically match, having different width and focal point.
The condition of both fuzzy sets can be merged, that is, if the similarity degree above the threshold value of S ker ≥ 0.8
based on [24]. The final merging formula is defined as follow:

cnew = (max(U) + min(U))/2 (19)

σnew = (max(U) − min(U))/2 (20)

where U = {cA±σA, cB±σB}, the underlying construct is to reduce the approximate merging of two Gaussian kernels.
In order to do that the α − cut variable is applied to the exact merging, which value is α, where α = e−1/2 ≈ 0.6. The
value of α denotes the membership degree of the inflection points c ± σ of Gaussian kernel. Note that this scenario
is carried out at the last stage when presenting the fuzzy rule to the operators. Moreover, the projection strategy to
craft the fuzzy set representation from the high-dimensional cluster as presented in PANFIS [28] has to be carried out
first before carrying out this procedure. The second method of [28] is used because it offers a fast projection process
well-suited for big data analytics.

Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152� 145
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 5

where yn and tn are the PANFIS’ output and target value of the nth training observation respectively. By performing
u-fold numerical integration, we may obtain as follows:

Dn = |en|
det(Σwin)u

S (X)
(6)

The new datum’s significance represents its statistical contribution to PANFIS’s output. Therefore, the sampling
data distribution S (X) can be further modified as the total volumes of existing fuzzy rules, which can be written as
follows:

Dn = |en|
det(
∑

win)u

(
∑r+1

i=1 det(
∑

i)u)
(7)

The new datum can be recruited as a new rule if such condition is satisfied: g < Dn, where g is a constant specified
by the user. This condition represents that the datum significance of the nth training observation Dn is measured to
have a high descriptive power and generalization potential. Vice versa, if g ≥ Dn condition is fulfilled, the existing
fuzzy rules are sufficient in covering available training stimuli. In this case, the winning rule’s premise will adapt to
the current datum’s properties.

The formula of rule premise adaption of the winning fuzzy rule in respect to a current datum is defined as follows:

Cnew
win =

Nold
win

Nold
win + 1

Cold
win +

X −Cold
win

Nold
win + 1

(8)

Σwin(new)−1 =
Σwin(old)−1

1−α + α
1−α(

Σwin (old)−1
(
X −Cnew

win

)) (
Σwin (old)−1

(
X −Cnew

win

))T (9)

Nnew
win = Nold

win + 1 (10)

where α = 1/
(
Nold

win + 1
)
, X represents the focalpoint of the current datum, and Nold

win represents the number of training
samples lie on the winning cluster. This scenario features direct update of the inverse covariance matrix improving
robustness and computation speed of adaptation process.

A) ε-completeness criterion definition for new fuzzy rule’s initialization
The automation of fuzzy rule generation also follows the ε-completeness criterion in selecting the new antecedent

of fuzzy set in order to achieve an adequate coverage to accommodate the universe discourse. The ε-completeness
criterion is proposed by [19], where ε is set to 0.5 as defined in [8]. Therefore, for any input injected at least there
exists one fuzzy rule with match degree greater than ε. For the new recruited datum, PANFIS will set this datum as a
new focal point of the new ellipsoidal rule. The new ellipsoidal region is formed by defining the width of the Gaussian
function in order to assure ε-completeness, thus:

Ci+1 = Xn (11)

diag(
∑
i+1

) =


max(|Ci −Ci−1| , |Ci −Ci+1|)√

ln(1
ε
)

 (12)

2.2.2. Fuzzy rules pruning and merging of inconsequential rules and similar fuzzy sets
This subsection exploring the rule pruning and merging of PANFIS. These methods aim to form the effective

(economical and interpretable) rule base, and also to achieve a good predictive quality.
A) ERS concept to prune inconsequential fuzzy rules
Rule base simplification of PANFIS is inherited from generalized growing and pruning radial basis function

(GGAP-RBF) [17] and SAFIS [32]. However, this method is not suitable for PANFIS as it is only suitable for zero-
order TSK fuzzy system and unidimensional membership function environment. The contribution of ith rule to the

6 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

overall systems output for an input vector Xn has been modified in order to suit PANFIS learning scenario. This con-
tribution is defined alike to the method to determine online input sensitivity analysis and an input selection used in
[18] as follows:

E(i, n) = |δi|
Ri(xn)∑r

i=1 Ri(xn)
= |δi| Ei (13)

where δi =
∑u+1

k=1 a0 + ω1i + ω2i xi + ... + ωkixk + ... + ωu+1,i xu represents the ith fuzzy rule’s output contribution. The
fuzzy rule’s input contribution is represented by Ei. Moreover, it is notable that the rule significance can be seen as the
statistical contribution when the number of observation approaches infinity. To sum up, using simplification process
and u-fold numerical integration as explained in [28], the input contribution Ei can be derived as follows:

Ei ≈
πu/2 det(

∑i)u

S (X)
(14)

In this situation, the size of range X (S (X)) is insignificant and time consuming to be computed. Therefore, for the
sake of flexibility, S (X) can be replaced by the overall fuzzy rule’s contribution, which is determined by the overall
cluster volumes. In this case, the statistical contribution estimation can be computed as the volume of single fuzzy
rule over the total volume of overall fuzzy rules, which is expressed as follows:

Ein f (i) =
det(
∑

i)u
∑r

i=1 det(
∑

i)u (15)

The rule pruning is carried out upon the threshold value of kerr in order to reduce rule base complexity. The fuzzy
rules are considered to be pruned when its contribution vector contains the fuzzy rule contribution below or equal the
kerr threshold.

B) Merging of similar fuzzy sets
Some fuzzy sets could possibly be overlapped if their membership functions are very similar. In this case, the

fuzzy sets can be merged. Furthermore, the multivariate Gaussian rule presents less transparent rule semantic because
the atomic clauses vanishes from the rule representation. The merging procedure is carried out based on similarity
calculation between fuzzy rules membership function. By incorporating a kernel-based metric method in comparing
the widths and centers of two fuzzy sets [24], the similarity of two Gaussian membership functions A and B can be
expressed as follows:

S ker(A, B) = e−|CA−CB |−|σA−σB | (16)

The equation above has the following properties:

S ker(A, B) = 1⇔ |CA −CB| − |σA − σB| = 0
⇔ CA = CB ∧ σA = σB

(17)

S ker(A, B) < ε⇔ |CA −CB| > δ ∨ |σA − σB| > δ (18)

The Eq. (17) shows that two fuzzy sets are identical, which means that the degree of similarity value is 1. On the
other hand, Eq. (18) indicates that the embedded set is not identically match, having different width and focal point.
The condition of both fuzzy sets can be merged, that is, if the similarity degree above the threshold value of S ker ≥ 0.8
based on [24]. The final merging formula is defined as follow:

cnew = (max(U) + min(U))/2 (19)

σnew = (max(U) − min(U))/2 (20)

where U = {cA±σA, cB±σB}, the underlying construct is to reduce the approximate merging of two Gaussian kernels.
In order to do that the α − cut variable is applied to the exact merging, which value is α, where α = e−1/2 ≈ 0.6. The
value of α denotes the membership degree of the inflection points c ± σ of Gaussian kernel. Note that this scenario
is carried out at the last stage when presenting the fuzzy rule to the operators. Moreover, the projection strategy to
craft the fuzzy set representation from the high-dimensional cluster as presented in PANFIS [28] has to be carried out
first before carrying out this procedure. The second method of [28] is used because it offers a fast projection process
well-suited for big data analytics.

146	 Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 7

3. The Proposed Approach

This section will explain the details of our proposed approach especially the flow of data streams from the begin-
ning to the end of MapReduce. It also explains merging process which utilizes rule-merging strategy to reduce rules
redundancy which is discussed in the subsection 3.1.

Suppose that the data stream described in the feature space R2 is denoted as {x1, x2, x3, ..., xk, ...}, where k denotes
the number of instance at the current state. The number of processors (nodes) is denoted as i, where i = 1, .., P. A
chunk of data sample entered at the ith node is denoted as {xi

1, x
i
2, . . . , x

i
K−1, x

i
K}, where K denotes the size of chunk.

The number of key is denoted by l where l = {1, 2, ...,M}. In this experiment, the number of nodes i, the number of
key l, and the size of data chunk K is set by user. The number of data stream k and the number of data chunk N are
infinity as data arrives continuosly. As the data arrives contiously, the number of chunk is also continue denoted by o
where o = {1, 2, ...N..}.

This approach processes data chunks in several phases: 1) Mapping phase; 2) Storing phase; 3) Grouping phase; 4)
Reducing phase; 5) Merging phase. From five phases mentioned, the first four phases are conducted inside MapReduce
framework, whereas the last phase is carried out using rule merging scenario as described in more details in subsection
3.1.

The first three phases of this approach is depicted in Fig. 1. The first phase, mapping phase, is a learning phase
which assigns each chunk with its key and value denoted as key-value mapping denoted as < K1,V1 > , where
K1 = {1, ..,M}. In this phase, some data chunks are processed in some processors randomly. Each processor trains
data chunk V1 as described in Fig. 2 using PANFIS evolving algorithm [28] and the results are stored as V ′1. V ′1
contains the models (rules) which are stored in the object called KeyValueStore. The models V ′1 are collected along
with previous key K1 as KeyValueStore < K1,V ′1 >. The grouping phase will group KeyValueStore < K1,V ′1 > by
key in the second block of intermediate phase becomes key-value intermediate< K2,V2 >. Note that storing phase
and grouping phase are part of intermediate phase. Group of key-value intermediate are then passed into reducing
phase. In this work, reducing phase will collect only the main properties of learning result to be processed in the rule
merging phase outside the MapReduce. The illustration of MapReduce process in reducing phase onward is illustrated
in Fig. 3. The collection of key-value pairs in this phase is denoted as key-value final < K3,V3 >. Up to this phase,
MapReduce has successfully generated pairs of key-value final < K3,V3 > which contain a group of models (rules)
generated from learning of data chunks.

K V K VK V

k i

Fig. 1. Mapping phase and intermediate phase

KeylValue0 data

i
K i

i

KeylValue0
KeyValueStorei

K
i
K

ii xxxx

Fig. 2. A data chunk V1 is learnt in the processor and the value V′1is stored in the storing block of intermediate phase

After reducing phase, the last phase which is essential in this this framework is merging phase, which merges V3
(grouped and reduced rules from all data chunks), to from the key-value final < K3,V3 >. There are some steps needed
to be undertaken to merge the values of V3 to obtain the final rules. The first step is selecting the highest statistical
contribution among rules as the winning cluster. The winning cluster is determined by comparing all rules statistical
contribution using Eq. (15). The second step is comparing winning rule with other rules using three criterions which

8 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

i

Fig. 3. Reducing phase

need to be satisfied to execute the rule merging process. Thus, the second step comprises 3 substeps: 1) comparing
winning rule with other rules based on the criterion of Eq. (21); 2) ensuring that two rules merged form a homogeneous
shape and direction using Eq. (23); 3) Ensuring that the merged rule should be smaller or equal of the number of input
dimension p times the total volume of both rules using Eq. (24). These three criterions are summarized in Eq. (25)).
The third step of rule merging process is applying rule merging policy which is described in the subsection 3.1.1.

3.1. Rule Merging of Final Value generated in MapReduce Process

In the world of evolving fuzzy system, rules which represents the cluster are evolving based on the data pattern.
At some points, some rules may become overlapping which reflects the redundancy between the rules [22]. Such
rules could always be coalesced in the extreme cases as the overlapping rules represents the similar local region as
explained in subsection 2.2.2. In this case, merge of overlapping rules is essential to avoid ambiguous rules and to
assure the readability and transparency [23]. We refer to the work explained in [25] to extend the work demonstrated
in the PANFIS rule merging. Therefore, there are three criterions used implemented due this reason. The first criterion
aims to inspect the rules to be merged if the rules are lying nearby, touching or even slightly overlapping. In order to
maintain minimal complexity to resolve non-linearities in the regression problem depicted by multivariate Gaussian
rules of PANFIS, a Bhattacharrya distance [3][12] is employed to calculate the degree of overlapping between clusters
in MapReduce final value, which represents the result of chunks learning. The overlap degree between target cluster
(rule) expressed by win and the other clusters, k = {1, ...,C}\{win} is expressed as follow :

olap(win, k) = 1
8 (cwin − ck)T ∑−1(cwin − ck)

+ 1
2 ln(det

∑−1√
det
∑−1

win det
∑−1

k

) (21)

where Σ−1 = (Σ−1
win + Σ

−1
k)/2. In this work, the target cluster win can be determined by choosing the cluster which has

the highest statistical contribution over other clusters using Eq. (15). The distance of two ellipsoidal cluster is equal
to 0 if the two ellipsoids are touching, >0 for overlapping situation and <0 for disjoint situation. Thus, a threshold
feasible for cluster merging is 0 with at least the clusters are toching each other in respect to the conditions mentioned.

The second similarity criterion of clusters can be merged based on the degree of deviation in the hyper-planes’s
gradient information. This criterion is based on the dihedral angle of the two hyper-planes they span [25]. This criterion
is expressed as follows :

φ = arccos(
aT b
|a||b|) (22)

where a = (wwin;1wwin;2wwin;3 − 1)T and b = (wk;1wk;2wk;3 + 1)T the normal vectors of the two planes corresponding
to rules win and k, showing into the opposite direction with respect to target y (-1 and +1 in the last coordinate). The
two planes are regarded to be in the same trend of approximation curve if the output φ is close to (π). The similarity
criterion of two hyperplanes is defined as:

S cons(wwin,wk) =
φ

π
(23)

The last similarity criterion for clusters to be merged is based homegeneity of adjacent rules. This criterion aims
to ensure that both merged rules should form a homogeneous shape and direction, which reflects the accurate repre-
sentation of the two local data clouds. In order to do this, the blow-up effect is applied to trigger homogenous joint
regions. This condition is expressed as follows:

Vmerged � p(Vwin + Vk) (24)

Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152� 147
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 7

3. The Proposed Approach

This section will explain the details of our proposed approach especially the flow of data streams from the begin-
ning to the end of MapReduce. It also explains merging process which utilizes rule-merging strategy to reduce rules
redundancy which is discussed in the subsection 3.1.

Suppose that the data stream described in the feature space R2 is denoted as {x1, x2, x3, ..., xk, ...}, where k denotes
the number of instance at the current state. The number of processors (nodes) is denoted as i, where i = 1, .., P. A
chunk of data sample entered at the ith node is denoted as {xi

1, x
i
2, . . . , x

i
K−1, x

i
K}, where K denotes the size of chunk.

The number of key is denoted by l where l = {1, 2, ...,M}. In this experiment, the number of nodes i, the number of
key l, and the size of data chunk K is set by user. The number of data stream k and the number of data chunk N are
infinity as data arrives continuosly. As the data arrives contiously, the number of chunk is also continue denoted by o
where o = {1, 2, ...N..}.

This approach processes data chunks in several phases: 1) Mapping phase; 2) Storing phase; 3) Grouping phase; 4)
Reducing phase; 5) Merging phase. From five phases mentioned, the first four phases are conducted inside MapReduce
framework, whereas the last phase is carried out using rule merging scenario as described in more details in subsection
3.1.

The first three phases of this approach is depicted in Fig. 1. The first phase, mapping phase, is a learning phase
which assigns each chunk with its key and value denoted as key-value mapping denoted as < K1,V1 > , where
K1 = {1, ..,M}. In this phase, some data chunks are processed in some processors randomly. Each processor trains
data chunk V1 as described in Fig. 2 using PANFIS evolving algorithm [28] and the results are stored as V ′1. V ′1
contains the models (rules) which are stored in the object called KeyValueStore. The models V ′1 are collected along
with previous key K1 as KeyValueStore < K1,V ′1 >. The grouping phase will group KeyValueStore < K1,V ′1 > by
key in the second block of intermediate phase becomes key-value intermediate< K2,V2 >. Note that storing phase
and grouping phase are part of intermediate phase. Group of key-value intermediate are then passed into reducing
phase. In this work, reducing phase will collect only the main properties of learning result to be processed in the rule
merging phase outside the MapReduce. The illustration of MapReduce process in reducing phase onward is illustrated
in Fig. 3. The collection of key-value pairs in this phase is denoted as key-value final < K3,V3 >. Up to this phase,
MapReduce has successfully generated pairs of key-value final < K3,V3 > which contain a group of models (rules)
generated from learning of data chunks.

K V K VK V

k i

Fig. 1. Mapping phase and intermediate phase

KeylValue0 data

i
K i

i

KeylValue0
KeyValueStorei

K
i
K

ii xxxx

Fig. 2. A data chunk V1 is learnt in the processor and the value V′1is stored in the storing block of intermediate phase

After reducing phase, the last phase which is essential in this this framework is merging phase, which merges V3
(grouped and reduced rules from all data chunks), to from the key-value final < K3,V3 >. There are some steps needed
to be undertaken to merge the values of V3 to obtain the final rules. The first step is selecting the highest statistical
contribution among rules as the winning cluster. The winning cluster is determined by comparing all rules statistical
contribution using Eq. (15). The second step is comparing winning rule with other rules using three criterions which

8 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

i

Fig. 3. Reducing phase

need to be satisfied to execute the rule merging process. Thus, the second step comprises 3 substeps: 1) comparing
winning rule with other rules based on the criterion of Eq. (21); 2) ensuring that two rules merged form a homogeneous
shape and direction using Eq. (23); 3) Ensuring that the merged rule should be smaller or equal of the number of input
dimension p times the total volume of both rules using Eq. (24). These three criterions are summarized in Eq. (25)).
The third step of rule merging process is applying rule merging policy which is described in the subsection 3.1.1.

3.1. Rule Merging of Final Value generated in MapReduce Process

In the world of evolving fuzzy system, rules which represents the cluster are evolving based on the data pattern.
At some points, some rules may become overlapping which reflects the redundancy between the rules [22]. Such
rules could always be coalesced in the extreme cases as the overlapping rules represents the similar local region as
explained in subsection 2.2.2. In this case, merge of overlapping rules is essential to avoid ambiguous rules and to
assure the readability and transparency [23]. We refer to the work explained in [25] to extend the work demonstrated
in the PANFIS rule merging. Therefore, there are three criterions used implemented due this reason. The first criterion
aims to inspect the rules to be merged if the rules are lying nearby, touching or even slightly overlapping. In order to
maintain minimal complexity to resolve non-linearities in the regression problem depicted by multivariate Gaussian
rules of PANFIS, a Bhattacharrya distance [3][12] is employed to calculate the degree of overlapping between clusters
in MapReduce final value, which represents the result of chunks learning. The overlap degree between target cluster
(rule) expressed by win and the other clusters, k = {1, ...,C}\{win} is expressed as follow :

olap(win, k) = 1
8 (cwin − ck)T ∑−1(cwin − ck)

+ 1
2 ln(det

∑−1√
det
∑−1

win det
∑−1

k

) (21)

where Σ−1 = (Σ−1
win + Σ

−1
k)/2. In this work, the target cluster win can be determined by choosing the cluster which has

the highest statistical contribution over other clusters using Eq. (15). The distance of two ellipsoidal cluster is equal
to 0 if the two ellipsoids are touching, >0 for overlapping situation and <0 for disjoint situation. Thus, a threshold
feasible for cluster merging is 0 with at least the clusters are toching each other in respect to the conditions mentioned.

The second similarity criterion of clusters can be merged based on the degree of deviation in the hyper-planes’s
gradient information. This criterion is based on the dihedral angle of the two hyper-planes they span [25]. This criterion
is expressed as follows :

φ = arccos(
aT b
|a||b|) (22)

where a = (wwin;1wwin;2wwin;3 − 1)T and b = (wk;1wk;2wk;3 + 1)T the normal vectors of the two planes corresponding
to rules win and k, showing into the opposite direction with respect to target y (-1 and +1 in the last coordinate). The
two planes are regarded to be in the same trend of approximation curve if the output φ is close to (π). The similarity
criterion of two hyperplanes is defined as:

S cons(wwin,wk) =
φ

π
(23)

The last similarity criterion for clusters to be merged is based homegeneity of adjacent rules. This criterion aims
to ensure that both merged rules should form a homogeneous shape and direction, which reflects the accurate repre-
sentation of the two local data clouds. In order to do this, the blow-up effect is applied to trigger homogenous joint
regions. This condition is expressed as follows:

Vmerged � p(Vwin + Vk) (24)

148	 Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 9

where p is the dimension of input attribute. Vmerged, Vwin, and Vk represent the volume of merged rules, winning rule,
and compared rule respectively. The volume of rule can be determined using Eq. (15). Finally, the merging condition
can be carried out by below conditions:

(Eq.(21) ≥ thr)|(Eq.(21) ≥ 0 ∧ Eq.(24) ∧ Eq.(23) ≥ 0.5) (25)

where thr is set to 0.8 based on empirical experience in [24].

3.1.1. Rule merging policy in the merging phase
In the merging phase, after the winning rule is selected and three criterions are satisfied, rule merging policy is

carried out based on the work in [25]. The merging policy is summarized as follows:

cnew
j =

cwin
j kwin+ck

jkk

kwin+kk

knew − kwin + kk
∑−1

md =
kwin
∑−1

win +
kwinkk

kwin+kk
diag(1

((cnew−ci)(cnew−ci))
)∗I

kwin+kk

(26)

with (cnew − ci) is a row vector with i = arg min(kwin, kk). The merging of the rule consequent functions, which follows
the idea of Yager’s participatory learning concept [38] and also applied by Lughofer [24]:

wnew = wj + α ·Cons(j, k) · (wk − wj) (27)

where the basic learning rate is defined by α = kk/(k j + kk) and the compatibility measure of two rules Cons(j, k)
within the participatory learning context. Here j represents the index of the more supported rule, i.e. k j > kk.

4. Experimental setup and results

This section describes the environmental setup in which the PANFIS MapReduce framework has been executed.
In order to compare the framework performance, PANFIS MapReduce will be compared with other solely online
algorithm algorithms in processing big data. The datasets used in this experiment are SUSY, HIGGS, HEPMASS
data which has 5, 11.5, and 11 millions row of table respectively. The description of all datasets are explained in the
Table 5. All of the datasets: SUSY, HEPMASS, and HIGGS are generated from Monte Carlo simulations and are used
to predict 2 classes label. SUSY comprises of 8 low-level features which describes the kinematic properties and 10
high-level features. In HIGGS dataset, the first 21 features are the high-level features while the last seven features
are the functions derived from the first 21 features. HEPMASS dateset comprises the first 27 normalized features (22
low-level features then 5 high-level features) and the last 1 feature represents mass feature.

Table 1. The description of datasets.

Name of Dataset #features #row #training data #testing data

SUSY 18 5 millions 4.5 millions 0.5 millions
HEPMASS 28 11 millions 7 millions 3 millions
HIGGS 28 11.5 millions 7 millions 3.5 millions

4.1. Experiments

The experimental framework is carried out under the following computer specifications: Intel (R) Core (TM) i7-
6700 CPU @3.40 GHz, and Memory 16GB x64-based processor. The software used to run the experiment is MAT-
LAB R2017b 64-bit. The MapReduce environmentment is setup using MapReduce framework available in MAT-
LAB 2017b. In this experiment we conduct 4 algorithms: PANFIS in MapReduce environment, PANFIS, eTS, and
Simpl eTS.

10 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

The underlying reason in choosing these algorithms for comparison is as follows:

1. PANFIS is the base evolving algorithm which has capability to learn data in online manner, thus it will provide a
benchmark againts the proposed method (MapReduce PANFIS).

2. eTS and Simp eTS also can be seen as an evolving classifier. Although both of them apply the type-1 classifier
architecture, it still deserve to be a benchmarked algorithm as they work in single pass mode learning.

The classification scenarios will measure the running time and the accuracy to evaluate the performance of the al-
gorithm. A summary of our experiment is described in Table 2, Table 3 and Table 4. Each classification task will
train and test the number of instance described in Table 5. The classifier performance is measured by calculating the
classification rate and running time.

4.2. Results

This subsection details the performance of every classifier in classfying the dataset namely SUSY, HEPMASS, and
HIGGS. The classification performance of running time is depicted in the Table 2 and 3. The accuracy performance
is depicted in the Table 4. The number of rules generated during the learning process for each iteration on SUSY,
HEPMASS, and HIGGS datasets using all methods are shown in Fig. 4, Fig. 5, and Fig. 6 respectively. Furthermore,
Table 5 describes the number of rules generated in PANFIS MapReduce before and after rule merging process.

Table 2. The running time performance using full training data.

Method/Dataset SUSY(second) HEPMASS(second) HIGGS(second)

PANFIS MapReduce 7425 19939 16223
PANFIS 10280 23100 22820

Table 3. The running time performance using partial training data

Datasets #rows Running time for all methods (second)
PANFIS

MapReduce
PANFIS eTS Simpl eTS

SUSY
10k 14.43 15,82 74.10 21.05
20k 30.19 32.02 304.95 104.73
30k 43.55 47.42 2005.74 762.92

HEPMASS
10k 35.06 35.38 117.12 19.03
20k 63.96 71.49 461.89 92.29
30k 96.53 103.43 2931.38 695.43

HIGGS
10k 28.22 34.45 78.81 16.14
20k 51.25 64.4 324.07 78.11
30k 72.63 102.63 78.11 656.65

In terms of running time, Table 2 shows that MapReduce environment speeds up the learning performance of
PANFIS classifier by around 23, 14, and 29 percent respectively for SUSY, HEPMASS, and HIGGS dataset. This
experiment is carried out using full training data: SUSY (4.5 millions), HEPMASS (7 millions), and HIGGS (7
millions). It is shown that MapReduce enviroment can improve the speed around 22 percent. The similar result also
can be seen in Table 3, where MapReduce environment also improves the speed around 15 percent for every scenario
in partial training data. Note that, the time measurement in PANFIS MapReduce is carried out by accumulating the
total time for every processors in processing every data chunk.

For eTS and Simp eTS, the running time performance can be investigated in Table 4. The reason we separate the
running performance of eTS and Simpl eTS from the result in the Table 2 is due their time consuming in learning the

Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152� 149
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 9

where p is the dimension of input attribute. Vmerged, Vwin, and Vk represent the volume of merged rules, winning rule,
and compared rule respectively. The volume of rule can be determined using Eq. (15). Finally, the merging condition
can be carried out by below conditions:

(Eq.(21) ≥ thr)|(Eq.(21) ≥ 0 ∧ Eq.(24) ∧ Eq.(23) ≥ 0.5) (25)

where thr is set to 0.8 based on empirical experience in [24].

3.1.1. Rule merging policy in the merging phase
In the merging phase, after the winning rule is selected and three criterions are satisfied, rule merging policy is

carried out based on the work in [25]. The merging policy is summarized as follows:

cnew
j =

cwin
j kwin+ck

jkk

kwin+kk

knew − kwin + kk
∑−1

md =
kwin
∑−1

win +
kwinkk

kwin+kk
diag(1

((cnew−ci)(cnew−ci))
)∗I

kwin+kk

(26)

with (cnew − ci) is a row vector with i = arg min(kwin, kk). The merging of the rule consequent functions, which follows
the idea of Yager’s participatory learning concept [38] and also applied by Lughofer [24]:

wnew = wj + α ·Cons(j, k) · (wk − wj) (27)

where the basic learning rate is defined by α = kk/(k j + kk) and the compatibility measure of two rules Cons(j, k)
within the participatory learning context. Here j represents the index of the more supported rule, i.e. k j > kk.

4. Experimental setup and results

This section describes the environmental setup in which the PANFIS MapReduce framework has been executed.
In order to compare the framework performance, PANFIS MapReduce will be compared with other solely online
algorithm algorithms in processing big data. The datasets used in this experiment are SUSY, HIGGS, HEPMASS
data which has 5, 11.5, and 11 millions row of table respectively. The description of all datasets are explained in the
Table 5. All of the datasets: SUSY, HEPMASS, and HIGGS are generated from Monte Carlo simulations and are used
to predict 2 classes label. SUSY comprises of 8 low-level features which describes the kinematic properties and 10
high-level features. In HIGGS dataset, the first 21 features are the high-level features while the last seven features
are the functions derived from the first 21 features. HEPMASS dateset comprises the first 27 normalized features (22
low-level features then 5 high-level features) and the last 1 feature represents mass feature.

Table 1. The description of datasets.

Name of Dataset #features #row #training data #testing data

SUSY 18 5 millions 4.5 millions 0.5 millions
HEPMASS 28 11 millions 7 millions 3 millions
HIGGS 28 11.5 millions 7 millions 3.5 millions

4.1. Experiments

The experimental framework is carried out under the following computer specifications: Intel (R) Core (TM) i7-
6700 CPU @3.40 GHz, and Memory 16GB x64-based processor. The software used to run the experiment is MAT-
LAB R2017b 64-bit. The MapReduce environmentment is setup using MapReduce framework available in MAT-
LAB 2017b. In this experiment we conduct 4 algorithms: PANFIS in MapReduce environment, PANFIS, eTS, and
Simpl eTS.

10 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

The underlying reason in choosing these algorithms for comparison is as follows:

1. PANFIS is the base evolving algorithm which has capability to learn data in online manner, thus it will provide a
benchmark againts the proposed method (MapReduce PANFIS).

2. eTS and Simp eTS also can be seen as an evolving classifier. Although both of them apply the type-1 classifier
architecture, it still deserve to be a benchmarked algorithm as they work in single pass mode learning.

The classification scenarios will measure the running time and the accuracy to evaluate the performance of the al-
gorithm. A summary of our experiment is described in Table 2, Table 3 and Table 4. Each classification task will
train and test the number of instance described in Table 5. The classifier performance is measured by calculating the
classification rate and running time.

4.2. Results

This subsection details the performance of every classifier in classfying the dataset namely SUSY, HEPMASS, and
HIGGS. The classification performance of running time is depicted in the Table 2 and 3. The accuracy performance
is depicted in the Table 4. The number of rules generated during the learning process for each iteration on SUSY,
HEPMASS, and HIGGS datasets using all methods are shown in Fig. 4, Fig. 5, and Fig. 6 respectively. Furthermore,
Table 5 describes the number of rules generated in PANFIS MapReduce before and after rule merging process.

Table 2. The running time performance using full training data.

Method/Dataset SUSY(second) HEPMASS(second) HIGGS(second)

PANFIS MapReduce 7425 19939 16223
PANFIS 10280 23100 22820

Table 3. The running time performance using partial training data

Datasets #rows Running time for all methods (second)
PANFIS

MapReduce
PANFIS eTS Simpl eTS

SUSY
10k 14.43 15,82 74.10 21.05
20k 30.19 32.02 304.95 104.73
30k 43.55 47.42 2005.74 762.92

HEPMASS
10k 35.06 35.38 117.12 19.03
20k 63.96 71.49 461.89 92.29
30k 96.53 103.43 2931.38 695.43

HIGGS
10k 28.22 34.45 78.81 16.14
20k 51.25 64.4 324.07 78.11
30k 72.63 102.63 78.11 656.65

In terms of running time, Table 2 shows that MapReduce environment speeds up the learning performance of
PANFIS classifier by around 23, 14, and 29 percent respectively for SUSY, HEPMASS, and HIGGS dataset. This
experiment is carried out using full training data: SUSY (4.5 millions), HEPMASS (7 millions), and HIGGS (7
millions). It is shown that MapReduce enviroment can improve the speed around 22 percent. The similar result also
can be seen in Table 3, where MapReduce environment also improves the speed around 15 percent for every scenario
in partial training data. Note that, the time measurement in PANFIS MapReduce is carried out by accumulating the
total time for every processors in processing every data chunk.

For eTS and Simp eTS, the running time performance can be investigated in Table 4. The reason we separate the
running performance of eTS and Simpl eTS from the result in the Table 2 is due their time consuming in learning the

150	 Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 11

0 0.5 1 1.5 2 2.5 3

Iteration 104

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
R

u
le

s

eTS

SimpleTS

PANFIS

Fig. 4. Number of rules generated in processing SUSY dataset using all methods for each iteration

0 0.5 1 1.5 2 2.5 3

Iteration 104

0

5

10

15

20

25

N
u

m
b

e
r

o
f

R
u

le
s

eTS

simpleTS

PANFIS

Fig. 5. Number of rules generated in processing HEPMASS dataset using all methods for each iteration

0 0.5 1 1.5 2 2.5 3

104

0

2

4

6

8

10

12

14

16

18

eTS

SimpleTS

PANFIS

Fig. 6. Number of rules generated in processing HIGGS dataset using all methods for each iteration

large dataset. For example in Table 3, the running time for eTS and Simp eTS in running the SUSY dataset increases
significantly from 74.10 second and 21.05 second to 2005.74 second and 762.92 second for 10 thousands and 30
thousands data. It is shown that the increase number of data is not linear with the time required in processing the data
due to the increase of rules generated in their evolving system as shown in Fig. 4, Fig. 5, and Fig. 6. For that reason,
we eliminate the experiment of eTS and Simpl eTS up to 30 thousands of dataset. In contrast, PANFIS algorithm
produces running time performance linear with the increase of data. Note that for the number of rules generated in all
algorithms, we only compare 3 base algorithms PANFIS, eTS, and Simpl eTS as PANFIS MapReduce performs its
learning in chunk by chunk basis so that the number rules generated is resulted from the accummulation of all learning
in every chunks.

In terms of accuracy, PANFIS, eTS, and Simp eTS provide similar results for the SUSY, HEPMASS, and HIGGS
dataset with eTS performs the highest result with 77.05, 82.32, and 64.69 percent. However, PANFIS and Simp eTS

12 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

Table 4. The classification accuracy

Method/DATASET Accuracy
SUSY HEPMASS HIGGS

PANFIS MapReduce 76.80 83.35 63.48
PANFIS 75.42 83.32 63.94

eTS 77.05 82.32 64.69
Simpl eTS 70.93 81.22 60.17

Table 5. The rule evolution of PANFIS MapReduce learning.

#Rules generated SUSY HEPMASS HIGGS

Accumulated rules before merging 179 350 438
After merging 1 1 1

provide comparable result with eTS. From the Table 4, we can see that the effect of MapReduce environment followed
by the merging process does not deteriorate the performance of accuracy.

5. Conclusions

Analyzing big data in online environment is challenging due to its characteristic of 4Vs: volume, velocity, variety,
and veracity. There are many areas to optimize and improve its speed and scalability of big data analytic. In terms
of speed, PANFIS evolving system provides a promising solution for processing big data stream solution due to its
capability to process data in real time environment. In addition, PANFIS evolving system has the ability to reduce the
system complexity by reducing the superfluous rules and merging similar rules. In this work, the learning performance
has improved further by processing them in distributed environment, which increases the scalability of machine learn-
ing algorithm. It can be seen in the subsection 4.2, the speed performance increases around 22 percent in average for
all datasets, where full training data are utilized without reducing the accuracy performance.

6. Acknowledgement

The third author acknowledges the support of the Austrian COMET-K2 programme of the Linz Center of Mecha-
tronics (LCM), funded by the Austrian federal government and the federal state of Upper Austria. This publication
reflects only the authors’ view.

References

[1] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework for clustering evolving data streams. In Proceedings of the
29th international conference on Very large data bases-Volume 29, pages 81–92. VLDB Endowment, 2003.

[2] P Angelov, X Gu, D Kangin, and J Principe. Teda: typicality based empirical data analysis. Submitted to Information Sciences, 2016.
[3] Anil Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta

Math. Soc, 1943.
[4] Albert Bifet and Richard Kirkby. Data stream mining a practical approach. 2011.
[5] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop: Efficient iterative data processing on large clusters. Proceedings

of the VLDB Endowment, 3(1-2):285–296, 2010.
[6] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information

Sciences, 275:314–347, 2014.
[7] Rong Chen, Krishnamoorthy Sivakumar, and Hillol Kargupta. Collective mining of bayesian networks from distributed heterogeneous data.

Knowledge and Information Systems, 6(2):164–187, 2004.
[8] Stephen L Chiu. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 2(3):267–278, 1994.

Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152� 151Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 11

0 0.5 1 1.5 2 2.5 3

Iteration 104

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
R

u
le

s

eTS

SimpleTS

PANFIS

Fig. 4. Number of rules generated in processing SUSY dataset using all methods for each iteration

0 0.5 1 1.5 2 2.5 3

Iteration 104

0

5

10

15

20

25

N
u

m
b

e
r

o
f

R
u

le
s

eTS

simpleTS

PANFIS

Fig. 5. Number of rules generated in processing HEPMASS dataset using all methods for each iteration

0 0.5 1 1.5 2 2.5 3

104

0

2

4

6

8

10

12

14

16

18

eTS

SimpleTS

PANFIS

Fig. 6. Number of rules generated in processing HIGGS dataset using all methods for each iteration

large dataset. For example in Table 3, the running time for eTS and Simp eTS in running the SUSY dataset increases
significantly from 74.10 second and 21.05 second to 2005.74 second and 762.92 second for 10 thousands and 30
thousands data. It is shown that the increase number of data is not linear with the time required in processing the data
due to the increase of rules generated in their evolving system as shown in Fig. 4, Fig. 5, and Fig. 6. For that reason,
we eliminate the experiment of eTS and Simpl eTS up to 30 thousands of dataset. In contrast, PANFIS algorithm
produces running time performance linear with the increase of data. Note that for the number of rules generated in all
algorithms, we only compare 3 base algorithms PANFIS, eTS, and Simpl eTS as PANFIS MapReduce performs its
learning in chunk by chunk basis so that the number rules generated is resulted from the accummulation of all learning
in every chunks.

In terms of accuracy, PANFIS, eTS, and Simp eTS provide similar results for the SUSY, HEPMASS, and HIGGS
dataset with eTS performs the highest result with 77.05, 82.32, and 64.69 percent. However, PANFIS and Simp eTS

12 Choiru Za’in / Procedia Computer Science 00 (2018) 000–000

Table 4. The classification accuracy

Method/DATASET Accuracy
SUSY HEPMASS HIGGS

PANFIS MapReduce 76.80 83.35 63.48
PANFIS 75.42 83.32 63.94

eTS 77.05 82.32 64.69
Simpl eTS 70.93 81.22 60.17

Table 5. The rule evolution of PANFIS MapReduce learning.

#Rules generated SUSY HEPMASS HIGGS

Accumulated rules before merging 179 350 438
After merging 1 1 1

provide comparable result with eTS. From the Table 4, we can see that the effect of MapReduce environment followed
by the merging process does not deteriorate the performance of accuracy.

5. Conclusions

Analyzing big data in online environment is challenging due to its characteristic of 4Vs: volume, velocity, variety,
and veracity. There are many areas to optimize and improve its speed and scalability of big data analytic. In terms
of speed, PANFIS evolving system provides a promising solution for processing big data stream solution due to its
capability to process data in real time environment. In addition, PANFIS evolving system has the ability to reduce the
system complexity by reducing the superfluous rules and merging similar rules. In this work, the learning performance
has improved further by processing them in distributed environment, which increases the scalability of machine learn-
ing algorithm. It can be seen in the subsection 4.2, the speed performance increases around 22 percent in average for
all datasets, where full training data are utilized without reducing the accuracy performance.

6. Acknowledgement

The third author acknowledges the support of the Austrian COMET-K2 programme of the Linz Center of Mecha-
tronics (LCM), funded by the Austrian federal government and the federal state of Upper Austria. This publication
reflects only the authors’ view.

References

[1] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework for clustering evolving data streams. In Proceedings of the
29th international conference on Very large data bases-Volume 29, pages 81–92. VLDB Endowment, 2003.

[2] P Angelov, X Gu, D Kangin, and J Principe. Teda: typicality based empirical data analysis. Submitted to Information Sciences, 2016.
[3] Anil Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta

Math. Soc, 1943.
[4] Albert Bifet and Richard Kirkby. Data stream mining a practical approach. 2011.
[5] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop: Efficient iterative data processing on large clusters. Proceedings

of the VLDB Endowment, 3(1-2):285–296, 2010.
[6] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information

Sciences, 275:314–347, 2014.
[7] Rong Chen, Krishnamoorthy Sivakumar, and Hillol Kargupta. Collective mining of bayesian networks from distributed heterogeneous data.

Knowledge and Information Systems, 6(2):164–187, 2004.
[8] Stephen L Chiu. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 2(3):267–278, 1994.

152	 Choiru Za’in et al. / Procedia Computer Science 144 (2018) 140–152
Choiru Za’in / Procedia Computer Science 00 (2018) 000–000 13

[9] Lior Cohen, Gil Avrahami-Bakish, Mark Last, Abraham Kandel, and Oscar Kipersztok. Real-time data mining of non-stationary data streams
from sensor networks. Information Fusion, 9(3):344–353, 2008.

[10] Jared Dean. Big data, data mining, and machine learning: value creation for business leaders and practitioners. John Wiley & Sons, 2014.
[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113,

2008.
[12] Abdelhamid Djouadi, Oe. Snorrason, and FD Garber. The quality of training sample estimates of the bhattacharyya coefficient. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 12(1):92–97, 1990.
[13] João Gama. Knowledge discovery from data streams. CRC Press, 2010.
[14] João Gama, Pedro Pereira Rodrigues, and Raquel Sebastião. Evaluating algorithms that learn from data streams. In Proceedings of the 2009

ACM symposium on Applied Computing, pages 1496–1500. ACM, 2009.
[15] Xiaowei Gu, Plamen P Angelov, German Gutierrez, Jose Antonio Iglesias, and Araceli Sanchis. Parallel computing teda for high frequency

streaming data clustering. In INNS Conference on Big Data, pages 238–253. Springer, 2016.
[16] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering data streams: Theory and practice. IEEE

Transactions on Knowledge and Data Engineering, 15(3):515–528, 2003.
[17] Guang-Bin Huang, Paramasivan Saratchandran, and Narasimhan Sundararajan. A generalized growing and pruning rbf (ggap-rbf) neural

network for function approximation. IEEE Transactions on Neural Networks, 16(1):57–67, 2005.
[18] Nikola K Kasabov and Qun Song. Denfis: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE

Transactions on Fuzzy Systems, 10(2):144–154, 2002.
[19] Chuen-Chien Lee. Fuzzy logic in control systems: fuzzy logic controller. i. IEEE Transactions on Systems, Man, and Cybernetics, 20(2):404–

418, 1990.
[20] Andre Lemos, Walmir Caminhas, and Fernando Gomide. Multivariable gaussian evolving fuzzy modeling system. IEEE Transactions on

Fuzzy Systems, 19(1):91–104, 2011.
[21] Chin-Teng Lin et al. Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. Prentice hall PTR, 1996.
[22] Edwin Lughofer. Evolving fuzzy systems-methodologies, advanced concepts and applications, volume 53. Springer, 2011.
[23] Edwin Lughofer. On-line assurance of interpretability criteria in evolving fuzzy systems–achievements, new concepts and open issues. Infor-

mation Sciences, 251:22–46, 2013.
[24] Edwin Lughofer, Jean-Luc Bouchot, and Ammar Shaker. On-line elimination of local redundancies in evolving fuzzy systems. Evolving

Systems, 2(3):165–187, 2011.
[25] Edwin Lughofer, Carlos Cernuda, Stefan Kindermann, and Mahardhika Pratama. Generalized smart evolving fuzzy systems. Evolving Systems,

6(4):269–292, 2015.
[26] Dijun Luo, Chris Ding, and Heng Huang. Parallelization with multiplicative algorithms for big data mining. In IEEE 12th International

Conference on Data Mining (ICDM), pages 489–498. IEEE, 2012.
[27] Peter Mika. Flink: Semantic web technology for the extraction and analysis of social networks. Web Semantics: Science, Services and Agents

on the World Wide Web, 3(2):211–223, 2005.
[28] Mahardhika Pratama, Sreenatha G Anavatti, Plamen P Angelov, and Edwin Lughofer. Panfis: A novel incremental learning machine. IEEE

Transactions on Neural Networks and Learning Systems, 25(1):55–68, 2014.
[29] Mahardhika Pratama, Sreenatha G Anavatti, Meng Joo, and Edwin David Lughofer. pclass: an effective classifier for streaming examples.

IEEE Transactions on Fuzzy Systems, 23(2):369–386, 2015.
[30] Mahardhika Pratama, Sreenatha G Anavatti, and Edwin Lughofer. Genefis: toward an effective localist network. IEEE Transactions on Fuzzy

Systems, 22(3):547–562, 2014.
[31] Mahardhika Pratama, Jie Lu, and Guangquan Zhang. Evolving type-2 fuzzy classifier. IEEE Transactions on Fuzzy Systems, 24(3):574–589,

2016.
[32] Hai-Jun Rong, N Sundararajan, Guang-Bin Huang, and P Saratchandran. Sequential adaptive fuzzy inference system (safis) for nonlinear

system identification and prediction. Fuzzy Sets and Systems, 157(9):1260–1275, 2006.
[33] Moamar Sayed-Mouchaweh and Edwin Lughofer. Learning in non-stationary environments: methods and applications. Springer Science &

Business Media, 2012.
[34] John Shafer, Rakesh Agrawal, and Manish Mehta. Sprint: A scalable parallel classi er for data mining. In Proceedings of the 22nd International

Conference on Very Large Data Bases, pages 544–555, 1996.
[35] Apache Mahout Team. Apache mahout: Scalable machine-learning and data-mining library, 2011.
[36] Daniel Warneke and Odej Kao. Nephele: efficient parallel data processing in the cloud. In Proceedings of the 2nd workshop on many-task

computing on grids and supercomputers, page 8. ACM, 2009.
[37] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with big data. IEEE transactions on knowledge and data engineering,

26(1):97–107, 2014.
[38] Ronald R Yager. A model of participatory learning. IEEE Transactions on Systems, Man, and Cybernetics, 20(5):1229–1234, 1990.
[39] Choiru Za’in, Mahardhika Pratama, Edwin Lughofer, and Sreenatha G Anavatti. Evolving type-2 web news mining. Applied Soft Computing,

54:200–220, 2017.

