
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 144 (2018) 105–117

1877-0509 © 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.
10.1016/j.procs.2018.10.510

10.1016/j.procs.2018.10.510

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2018) 000–000

www.elsevier.com/locate/procedia

1877-0509 © 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

INNS Conference on Big Data and Deep Learning 2018

Context-sensitive normalization of social media text in bahasa 
Indonesia based on neural word embeddings

Renny Pradina Kusumawardani*, Stezar Priansya, Faizal Johan Atletiko
Department of Information Systems, Faculty of Information and Communication Technology, Institut Teknologi Sepuluh Nopember, Surabaya

60111, Indonesia

Abstract

We present our work in the normalization of social media texts in Bahasa Indonesia. To capture the contextual meaning of 
tokens, we create a neural word embeddings using word2vec trained on over a million social media messages representing a mix 
of domains and degrees of linguistic deviations from standard Bahasa Indonesia. For each token to be normalized, the 
embeddings is used for generating candidates from vocabulary words. To select from among these candidates, we use a scoring 
combining their contextual similarity to the token as gauged by their proximity in the embeddings vector space with their 
orthographical similarity measured using the Levenshtein and Jaro-Winkler distances. For normalization of individual words, we
observe that detecting whether a token actually represent an incorrectly spelled word is at least as important as finding the correct 
normalization. However, in the task of normalizing entire messages, the system achieves a highest accuracy of 79.59%,
suggesting that our approach is quite promising and worthy of further exploration. Furthermore, in this paper we also discuss
some observations we made on the use of the neural word embeddings in the processing of informal Bahasa Indonesia texts,
especially in the social media.
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1. Introduction

Texts in the social media offers a rich source of information and insight into current events and people’s 
opinions. However, they are known not to follow conventional rules of languages, due to their brevity, often due to a 
constraint on their length, and the users’ need to convey information and emotion as quickly and expressively as 
possible. The deviations occur not only in the grammatical structure, but notably, also in the way various words are 
spelled. As the variations to the standard language is often dependent on the domain, NLP models used for 
processing social media texts are usually trained for a specific domain and application, and perform poorly outside 
their original purpose. This limits the applicability of language resources developed for social media texts. 
Furthermore, it also limits the incorporation of NLP tools trained on standard language variety.  

One method which allows a more generalized processing is to normalize social media texts into a standard form 
of the language, which is the aim of this paper. Specifically, we attempt to normalize tokens found in social media 
texts in Bahasa Indonesia to a standard word with the same semantic meaning.  Since the understanding of human 
readers are often determined by the context words surrounding the token, we use vector representations resulting 
from neural word embeddings which take words in a proximity of the token into consideration. The embeddings are 
trained on over a million tweets from Indonesian accounts using primarily Bahasa Indonesia, representing a mix of 
different domains and degrees of language deviations. A standard word could only be selected as a substitute if its 
embedding representation has a high similarity to the token. A substitute to the token is then selected from among 
these contextually similar words based on its orthographical similarity to the token. From our experiments, we find 
that embeddings trained against the goal of modeling with CBOW gives better performance for word normalization 
when compared to Skip-Gram. This, in combination to other elements of our method, gives the best accuracy of 
79.56% in the normalization of entire messages. However, in the task of normalizing individual tokens, it is very 
important to first ensure, at least to some degree, that the tokens are actually incorrectly spelled words, instead of 
proper nouns or words of another language.  

This paper is organized as follows. After this introduction, some related works are briefly discussed, followed by 
a short exposition on neural word embeddings. We then discuss the architecture of our normalization system, with 
more in-depth discussion on the data and the learning of word embeddings, the creation of the Indonesian lexicon, 
and the scoring used to select from the normalization candidates. This is followed by a discussion on the 
performance of the system, both in normalizing individual words and in the normalization of entire messages. 
Finally, we discuss some conclusions of this work and suggest some venues for future work. 

2. Related Works

The linguistic style adopted by users of social media makes it difficult to process the messages automatically, as 
they are very divergent in the degrees of conformity to the standard variant of the language [1]. Of these variations 
are spelling errors, ad hoc abbreviations, emoticons, ungrammatical structures and substitution of letters with other 
phonetically, or even visually, similar characters. This makes it difficult for general NLP tools to handle these 
messages [2]. Furthermore, these linguistic variations also hinder readers’ understanding of the information 
contained within [3]. Furthermore, text normalization is vital for tasks dependent on string matching or word 
frequency statistic, and in some other cases, model re-training is simply insufficient for the task at hand [4].  

In what it does, which is substituting tokens in the text with their standard counterparts, text normalization is akin 
to spelling correction. This is commonly done using some distance measures between the token and the correction, 
for example the Levenshtein distance (see, for example, Lhoussain, et. al. [5] for usage in combination with bi-gram 
models for Arabic text). There are also applications to social media texts, e.g. by Sorokin and Shavrina [6], 
combining Levenshtein distance with phonetic similarity. Besides these, other methods include substitution by word 
list and string patterns [7], and finite-state transducers [8].  

Other researchers employ context-dependent nature of the meaning of the word to hinge between a token and its 
counterpart word in the standard form of the language. Wang et. al. [4] assume and exploits context collocation 
tokens to derive rule-based and statistical features which are then fed into classifiers. Han, et. al. [9] exploits context 
similarity to build a normalization dictionary, exploring various measures such as the Kullback-Leibler (KL) 
divergence and the Jensen-Shannon (JS) distance, selecting from the normalization candidates based on their 
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orthographical similarity using various edit distance. They also applied their approach to Spanish text [10], and 
elaborate their idea on lexical normalization further in [2]. 

A more recent, and still rarely explored, approach to text normalization is by using the distributed representations 
of words, i.e., word embeddings. The first to do so is Sridhar [11], in which distributed representation of words is 
learned to create a normarlization lexicon, subsequently stored as finite-state machines (FSMs). An approach more 
similar to ours is by Bertaglia and Nunes [3]. As in our approach, Bertaglia and Nunes uses word embeddings 
combined with an orthographical measure of tokens similarity. However, while they use a modified LCSR (Longest 
Common Sequence Ratio), our similarity scoring combines word embedding with the Levenshtein [12] and Jaro-
Winkler [13] [14] distance, which emphasizes similarity at the beginning of two tokens, and is supposed to be better 
at comparing short strings [15] such as the ones employed in social media texts. 

3. Neural Word Embeddings

In text processing, each word is usually represented by its presence or absence in a document, tf-idf, or other
single scalar measure of its property relative to the document and/or a corpus. A different approach is to use a 
distributed representation introduced by Hinton, et. al. [16], in which each word is represented by a continuous 
vector. This approach gained traction by the publication of a paper by Mikolov, et. al. [17], in which they introduced 
techniques to learn word vectors from massively large datasets of the order of billions of words, with vocabulary 
size in the order of millions. Prior to this, distributed word representation has already been shown, for example by 
Collobert and Weston [18], to significantly improve NLP applications.  However, Mikolov, et. al. introduces models 
which preserves linear regularities among words, a test for measuring syntactic and semantic regularities, and 
demonstrate that it is possible to learn such regularities with high accuracy, which is vital to their adoption by the 
NLP community. The vector representations of words learned by the models are often referred to as word 
embeddings. In the last couple of years, word embeddings has become the prevalent approach to word 
representations, especially in the research community where its usage dominates works in major NLP conferences. 

The models, continuous-bag-of-words (CBOW) and continuous Skip-gram, learns as follows. Basically, both are 
a kind of language modelling with architecture similar to that of a feedforward neural network, but without the 
nonlinear hidden layer and where all the words share the projection layer. In CBOW the language modelling task is 
to predict a word from its preceding words without regard to the ordering of these words. Words following the 
predicted words could also be taken into consideration, thus in CBOW, both the history words and the future words 
could be used as the context. Unlike standard bag-of-words, each word in the context is represented by continuous 
vector. Conversely, in the Skip-gram model the current word is used to predict the context words. The architectures 
of CBOW and Skip-gram are shown in Figures 1(a) and 1(b), respectively. 

Fig. 1. Architectures of the (a) CBOW and (b) Skip-gram models [17]. 

A very interesting property of the embedding vectors produced with these models is that they capture the 
semantic similarity between words. For example, performing cosine similarity to the to pre-trained vectors trained 
on the Google News dataset released by the Google Word2Vec project [19] with the query word of ‘france’, results 
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in ‘spain’, ‘belgium’, and ‘netherlands’, as the top three most similar words. These words and their cosine distances 
are shown in Table 1. 

Table 1. Example of the semantic similarity captured in the embedding vectors: top three words with the largest cosine similarity to 'france' [19]. 

Word Cosine distance to ‘france’ 

spain 0.678515 

belgium 0.665923 

netherlands 0.652428 

Table 1 shows that although the embeddings were created without explicit inclusion of any semantic information, 
it is very plausible that the country France should be considered similar to Spain, Belgium, and Netherlands, since 
they are all European countries, members of the European Union, and have similar levels of economic prosperity. 
They are even located near each other. This verisimilitude of understanding of semantic meaning of words contained 
by the embedding vectors is derived solely from words and their contexts in various sentences. Indeed, words shall 
be known by the company they keep [20]. 

Therefore, the main idea of this work is as follows: if word embeddings could capture contextual similarities, 
then since alternate spellings having the same semantic meaning should be surrounded by the same words, we 
should be able to find the proper form of a non-formally spelled word by finding a ‘dictionary’ word which 
embedding vector is the closest to that word. To obtain the word embeddings, we shall train CBOW or Skip-gram 
models with social media text, which is known to contain many variations of word spellings. Specifically, in this 
work we aim to do this word normalization to social media text in Bahasa Indonesia, with texts from social media 
accounts which mainly uses Bahasa Indonesia. 

4. Normalization System Architecture

The steps of by which we perform word normalization is as shown in Figure 1. Input texts are lowercased and
tokenized, and for each token the normalized version is generated based on the condition which matches the token. 
The first one is if the token is already recognized as a correctly spelled word, or if it consists of a single character, 
which in our data very rarely has a meaning. In these cases, the token is returned unchanged. For determining 
whether the token is a legitimate word, we use a combination of several sources to come up with a quite extensive 
dictionary of formal Indonesian words. The process of the creation of this lexicon of formal words is elaborated 
further in 4.2 on Indonesian Lexicon. 

When the token is neither a correct word nor trivially consists of only a character, the next check is whether the 
token is in a lookup table of tokens which appropriate correction word is already known. In this case, the 
corresponding word is returned. Basically, the function of this table is to store the mapping of tokens to words from 
previous correction generation processes to increase the efficiency of finding a correction for a token. Basically, this 
lookup table serves as a sort of memoization. 

If the token does not exist in the list of previously known correction mapping, then we query the word 
embeddings model for candidate words most semantically similar to the token. These candidate words must be 
contained in the Indonesian lexicon prepared in Section 4.2, to ensure that we do not replace a non-formal word 
token with another non-formal word. However, sometimes the model does not generate any such replacement 
candidates for a token. We observe that in almost all cases, this occurs when the token is a proper noun. Obviously, 
in such cases, it is most appropriate to just return the token unchanged. 

When the model does produce several candidates, it will then be necessary to select the best one. As described in 
section 4.1, the word embeddings used in this word normalization is trained on the language modelling task, and as 
an effect, is able to capture contextual similarity between words, which often entails semantic similarity. 

However, since misspellings, both deliberate and intentional, are generally a orthographical variation to the 
correct version of the word, we combine the contextual similarity captured by the word embeddings with two edit-
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based distance measures, the Levenshtein [12] and the Jaro-Winkler [13] [14] distances, to come up with a similarity 
score described in section 4.3. 

We then select the highest scoring word as the candidate for replacing the token. However, we found that due to 
the grammatical structure of Bahasa Indonesia, it is very common for two variations of a lemma to be surrounded by 
similar words. For example, consider the sentences: 

(1) Fathimah sayang adiknya – ‘Fathimah loves her brother’ 
(2) Fathimah disayang adiknya – ‘Fathimah is loved by her brother’ 
Note that the first and the second sentences in Bahasa Indonesia are similar but in one word, makan and dimakan. 

This is a very common in Bahasa Indonesia, where an addition of prefix or/and suffix in a single word, usually the 
verb, changes the meaning of the sentence entirely, without the need to modify the word order or any other aspects 
of the sentence. Note also that the modification often simply takes the form of concatenating an affix to its 
appropriate place at the beginning or the end of the word, without much modification to the lemma. These are the 
reasons why a variation of a lemma could have the highest similarity score to another variation. In such cases, in this 
work we opt to use the lemma of the word, since in our data this is often the most appropriate approach. 

Another interesting case is when the candidate word is a noun in the plural form. In Bahasa Indonesia, the only 
thing that needs to change in a sentence with a plural noun, even when the noun acts as the subject of the sentence. 
Thus, it should not be surprising that the plural form of a noun would be suggested as a substitute of the noun, and 
vice versa. In such cases, the singular lemma form would be returned. 

Lastly, when the token does not fit all the above, the highest-scoring candidate word would be returned without 
modification as the replacement of that token. 
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Fig. 2. Steps in the normalization system. 

4.1. Data and learning of word embeddings 

We train the word embeddings used in this work using the messages from 40 social media accounts which post 
mostly in Bahasa Indonesia. Of these 40 accounts, some are Twitter and the others are Facebook accounts. From the 
Facebook accounts, we collect posts dating from August 1, 2015 to March 25, 2017, resulting in 361,494 unique 
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posts. From Twitter, tweets are collected from October 7, 2016 to March 25, 2017, yielding 828,391 unique tweets. 
Thus, our dataset contains a total of 1,189,885 unique social media messages. 

This data is then used to train language models producing word embeddings, commonly referred to as word2vec. 
The specific word2vec implementation we use is Deeplearning4j [21]. In order to produce the best embeddings for 
our word normalization purposes, we vary several parameters: the architecture of the model, the training algorithm, 
the number of epochs and iteration, minimum word frequency, and the size of the context preceding and following 
the word. With the consideration that a good model should be able to retrieve the most appropriate correction within 
a relatively small number of candidates, and that it should be able to do so for the most frequent non-normally 
spelled words, we test the performance of the models on 100 most frequent, non-lexicon tokens, generating ten 
correction candidates for each. The scoring we use for each model is shown in Equation 1. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 1 − 𝑖𝑖
10

100
1 (1) 

where i is the index of the position of the correct replacement word of the token out of the ten most similar words 
returned by the model, having the value in the range of 0 to 9. For example, if the model returns the correct 
normalization as the most similar word, i will have the value of 0, thus the contribution of that token to the model’s 
total score is one. When the model returns the correct word as the tenth most similar word, i will have the value of 9, 
resulting in a contribution of 0.1 to the total score. Table 2 shows the results of experiments on eight combinations 
of parameters, chosen under the heuristic of giving the best results. 

Table 2. Result of experiments on various combination of parameters for word embeddings creation. 

Params Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

Architecture Skip-gram CBOW Skip-gram CBOW Skip-gram CBOW Skip-gram CBOW 

Training 
algorithm 

Negative 
sampling 

Hierarchical 
softmax 

Negative 
sampling 

Hierarchical 
softmax 

Negative 
sampling 

Hierarchical 
softmax 

Negative 
sampling 

Hierarchical 
softmax 

# of epochs 1 1 10 10 1 1 10 10 

# of iters 1 1 10 1 5 5 3 2 

Min. word 
frequency 

5 5 5 10 5 5 5 5 

Context size 5 5 5 5 100 100 10 5 

Score 4.5 17.5 4.5 23.5 5.4 24.9 2.9 25 

From Table 2, it is quite apparent that the CBOW model gives the best result for our word normalization task, 
almost regardless of other factors such as the number of epochs and the size of the context. Therefore, for the 
following experiments CBOW will be used, with values of other parameters in accordance to Model 8 in Table 2, 
since this model produces the highest score, albeit the rather insignificant improvement contributed by these other 
parameter values when compared to the model architecture used. 

4.2. Indonesian Lexicon 

To avoid replacing an incorrectly spelled word with another word of non-standard spelling, or worse, an already 
correctly spelled word with other word, a lexicon of standard words is necessary. The first obvious source for such 
words is the Kamus Besar Bahasa Indonesia (KBBI), the official dictionary of the Indonesian language, a work of 
the Center for Language Development of the Indonesian Ministry of Education and Culture, which records the 
formal version of words. However, it is possible in Bahasa Indonesia to generate other formal words by adding 
prefixes, infixes, and suffixes, according to some rules. In fact, this is one of the most important means by which 



112 Renny Pradina Kusumawardani  et al. / Procedia Computer Science 144 (2018) 105–1178 Renny Pradina Kusumawardania et al. / Procedia Computer Science 00 (2018) 000–000

words in Bahasa Indonesia gain different yet related meanings to the lemma. The KBBI does not record all of these 
variants. 

On the other hand, the addition of affixes of words is not a simple matter of concatenating them to the lemma. 
Therefore, to at least be able to capture common variants of words, we use Kateglo [22], which is an online 
dictionary, thesaurus, and glossarium of Bahasa Indonesia, with the source of the 3rd and 4th edition of the KBBI 
and public contribution. Additionally, we also add entries from the Indonesian Wiktionary [23], primarily to obtain 
derivations of words in common use. Lastly, to get more of those derivations, we programmatically generate word 
derivations by adding affixes. However, these derived words might not be correct, or be used by native speakers of 
Bahasa Indonesia. To check whether these words are at the very least commonly occurring in naturally generated 
texts, we use the “did you mean” feature of Google Translate [24], wherein the suggested variant, instead of the 
automatically generated word derivation, will be added to the lexicon when such suggestion is given by the feature. 
From these sources, the lexicon contains 82,642 words. Additionally, it also has 5,205 mappings of common 
informal words to their formal version. These mappings comes from several websites, such as ebahasaindonesia [25] 
and kbbi.web.id [26]. All these comprise sources for the lexicon, which is then indexed using Apache Solr [27]. 

4.3. Candidates Similarity Scoring 

While the context of a token gives important clues as to what the token means, and word embeddings could be 
exploited to find words that are syntactically and semantically similar even for irregularly spelled words, for the 
actual task of word normalization we need to find the actual word meant by the author of the text. For this purpose, 
the letters in a token is a very important clue to what that correct word is. Therefore, in selecting the candidates 
proposed by the word embeddings model, we employ measures of orthographical similarity. In our work, we use a 
combination of the Levenshtein [12] and the Jaro-Winkler [13] [14] distance. The Levenshtein distance is based on 
the number of edits (insertions, deletions, and substitions) needed to transform one of the strings under comparison 
to the other. Additionally, the Jaro-Winkler distance is included since it is supposedly good for comparison of short 
strings, therefore it is expected to be suitable for handling tokens which are irregular abbreviations of a formal word, 
which we often see in social media texts. Our experiments confirm that the addition of the Jaro-Winkler distance 
indeed increases the correctness of the replacement candidate selection. 

However, since these distances are measures of dissimilarity, we normalize both of this measures to 0 to 1, then 
subtract that from 1 to get similarity scores. This is shown in Equation 2, where the subscript distance denotes either 
the Levenshtein or the Jaro-Winkler distance. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 

We then combine these similarity scores with a score reflecting the similarity of the candidate word to the query 
token calculated using Equation 3. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑊𝑊𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑑𝑑
10 (3) 

Similar to Equation 2, in Equation 3 i is the index of the candidate word out of the 10 words most similar to the 
query token generated by the embeddings model, with 0 denoting the most similar word and 9 the tenth most 
similar. 

Combining Equations 2 and 3 using Equation 4 produces the final similarity score, as follows. 

𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.5 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑊𝑊𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 0.25 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝐿𝐿𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 0.25 ∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝐽𝐽𝑑𝑑𝐽𝐽𝐽𝐽𝑊𝑊𝑑𝑑𝑑𝑑𝐽𝐽𝐽𝐽𝑑𝑑𝐽𝐽 (4) 

Finally, having calculated this score for each of the 10 top candidates generated by the word embeddings model, 
we select the one with the highest score as the normalization for the query token. 
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5. Performance of the System

We test our word normalization method under two scenarios: first, how well the resulting system performs
normalization on individual tokens not found in our Indonesian lexicon. Second, given complete messages, we 
measure whether it correctly treats each token in the message. Note that for both scenarios, we use the settings of 
Model 8 in Section 4.1. 

5.1. Normalization of individual words 

For the first test, we filter all non-lexicon tokens in the corpus and sort them based on their frequency. Testing is 
then performed on 1000 most occurring tokens by comparing the replacement proposed by the system, with the 
correct normalization manually produced. Table 3 shows examples of the normalization results. 

Table 3. Examples of token normalization by the system. 

Input 
token 

Proposed 
correction 

Correct 
normalization 

English 
meaning 

Correction 
status 

Similarity score 

Embeddings Levenshtein Jaro-Winkler Overall 

karna karena karena because correct 1 0.833 0.961 0.949 
ujan hujan hujan Rain correct 1 0.800 0.933 0.933 
dri dari dari From correct 1 0.75 0.925 0.919 
adlh adalah adalah am/is/are correct 1 0.667 0.911 0.894 
lalin lalim lalu lintas Traffic incorrect 0.9 0.800 0.920 0.880 
one monel one One incorrect 1 0.600 0.867 0.867 

Out ouf the 1000, we found that the system normalizes correctly on 441 tokens and incorrectly on the rest. 
Analyzing the errors, we found several causes. First, many of these errors occur when the tokens normalized are 
actually proper nouns – while they are obviously not in the lexicon of Indonesian words, these should be left as they 
are. It is therefore necessary to integrate a way for distinguishing proper nouns to misspelled words. A simple NER 
which focuses on orthographical features might be useful in this case. We could also hypothesize that when 
modelled at the character level, names have different distributions to words, therefore learning and integrating 
character level embeddings might be useful. 

Second, as shown in Table 3 for the token ‘lalin’, the model currently is unable to handle tokens which are 
abbreviations of two words or more. Where ‘lalin’ is an informal abbreviation for the phrase ‘lalu lintas’ – traffic, it 
is normalized to ‘lalim’ – despotic, a legitimate Indonesian word of a totally unrelated meaning. 

Third, the system also fails when the token is a foreign word, most frequently English, for example the word 
‘one’ in Table 3. To handle such cases, it might be necessary to integrate a way for recognizing foreign words, 
perhaps by incorporating the likelihood that the token is Indonesian or not into the model. It is interesting to 
consider whether the distributional properties of character level embeddings in different languages could be a 
helpful clue in distinguishing tokens of different languages. 

However, we should like to note that there is a strong correlation between the similarity score of a candidate to 
the token, to it being the correct normalization of the token. For example, when sorted according to their overall 
similarity scores, out of the 100 tokens which proposed normalization has the highest similarity score, only four are 
incorrect, corresponding to an accuracy of 96%. We observe that the likelihood of tokens being incorrectly 
normalized increases with the decrease of the similarity score of their highest scoring correction candidate. This 
suggests that in addition to correcting for the three reasons for errors discussed, adding more data into the dataset 
might also be helpful, since this would allow the model to find more appropriate candidates to be considered. 

5.2. Normalization of entire messages 

We measure the normalization accuracy of the system to complete messages to understand its performance more 
comprehensively, since it is as important for the system to recognize which tokens needs normalization and vice 
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versa, and to treat them accordingly. Therefore, we input 1000 random messages and compare the output of each 
token to the manual correction. Additionally, we observe that the word or token returned by the system in some 
cases might vary when different threshold values are used; i.e., when we require that a candidate must have at least 
some minimal similarity score to the input token in order to be considered. Therefore, we also note the influence of 
varying the value of this threshold. The result is summarized in Table 4. 

Table 4. Result on entire message normalization under the influence of various threshold values. 

Category 
Score Threshold 

T_65 T_70 T_75 T_80 T_85 T_90 

Success 15432 15438 15412 15400 15307 15140 
 Token is found in the Indonesian lexicon 14385 14385 14385 14385 14385 14385 
 A mapping of token to a formal word exists in the 

current lookup table
560 560 560 560 560 560 

 The model + similarity weighting finds the token’s
correct normalization

487 493 467 455 362 195 

Failure 3972 3966 3992 4004 4097 4264 
 The model + similarity weighting fails to generate a

normalization
481 1246 2372 3103 3482 3782 

 The generated normalization is a lexicon word, but is 
incorrect

3381 2574 1402 617 281 108 

 The generated normalization is both incorrect and is 
not a lexicon word

110 146 218 284 334 374 

Accuracy 79.53% 79.56% 79.43% 79.37% 78.89% 78.03% 

For all threshold values, the accuracy is about 78 to 79.5%, with the highest of 79.56% achieved at a similarity 
threshold of 70%. As it happens, it appears that most tokens in our test set are already in correct spelling form, thus 
emphasizing the importance of having a comprehensive way of distinguishing between tokens which need 
normalizing and those which are not, in this case by having a thorough lexicon. 

As for threshold values, we see from Table 4 that up until a certain point, lower threshold value corresponds to 
higher accuracy. We observe that lowering the threshold value decreases the chance that the system would fail to 
generate a normalization candidate. However, the quality of the candidates also decreases, shown by the larger 
number of incorrect normalization. For our test data, at a threshold of 65% the benefit of generating more candidates 
has been entirely offset by the loss caused by incorrect normalization. Conversely, increasing the threshold reduces 
the chance of getting incorrect normalization, but making it more difficult to generate candidates, that in some cases 
no normalization candidates might be generated at all. The balance between these counteracting influences in our 
test data is achieved with the threshold value of 70%, at which the system performance is maximal. While the issue 
of having more candidates v.s. candidate quality seems to be inevitable, it will indeed be interesting to observe 
whether increasing the size of the training data would increases the likelihood of the system to find the appropriate 
normalization candidate, thus increasing the overall performance of the system. 

6. Conclusion and Future Work

In this paper, we have described our work in normalizing social media texts in Bahasa Indonesia. We use neural 
word embeddings to contextually understand tokens to generate formal versions of that token, from which the most 
orthographically similar candidate is selected as the normalization. The main idea is despite the irregularity of word 
spelling used in social media texts, the use of word embeddings allows tokens to be mapped to their correctly 
spelled versions by considering the context surrounding them. We found that in comparison to Skip-gram, CBOW 
models performs better in generating normalization candidates, with negligible contribution of other factors such as 
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number of training epoch and iterations, and the size of the context. In selecting from the normalization candidates, 
we combined the similarity score from the word embeddings with normalized scores from the Levenshtein and the 
Jaro-Winkler distances of the candidates to the token, capturing the orthographical similarity between the candidates 
and the token. 

In normalizing 1000 most occurring non-lexicon words, the system correctly normalized 441 tokens and 
incorrectly on the remaining 559. However, many of these errors did not occur due to the system’s failure in 
selecting the appropriate correct form of the input token. Instead, in many cases the query token is either a proper 
noun or a foreign word, which should not be normalized at all. Additionally, when the input token is an informal 
abbreviation, the system would erroneously generate a single-word normalization. Indeed, when the input token is 
an informal variant of an Indonesian word, the system successfully assigns the correct normalization as the 
replacement of the word. This underlines the importance of being able to distinguish cases in which normalization is 
the appropriate response to formalize a token which is not in the reference lexicon. We would like to note that the 
weighting combination approach between word embeddings and orthographical features seem to work quite well, in 
that higher scores do correspond to the selection of the appropriate normalization – for example, amongst the top 
100 highest scoring normalizations, only four are incorrect. 

In the task of normalizing entire messages, the system achieved the highest accuracy of 79.56%, under a 
similarity threshold of 70%. We observed that lowering the required similarity threshold of candidates would result 
in higher accuracy, up until a point when the benefit of getting more normalization candidates is surpassed by the 
risk of generating incorrect normalization, which is prevented when higher threshold values are imposed. 

To the best of our knowledge, this work is the first employing word embeddings for normalization of social 
media text in Bahasa Indonesia. The prevailing popular approach in such cases is to use manually created word list 
and string pattern rules [7]. With this work, we seek to provide a more comprehensive solution to normalizing the 
endlessly varying usage of word spellings in the social media, especially in Bahasa Indonesia, and additionally, to 
understand the challenges in doing so. Some that we have discussed and we consider as promising venues for future 
works are as follows. First, we note that CBOW models give superior performance when compared to the Skip-gram 
in our normalization case. Indeed, it might be the case that CBOW is simply more similar how human thinks in 
terms of inferring the meaning of tokens, i.e., from its surrounding contexts, instead of Skip-gram, which predicts 
the context instead of the token itself. However, this also mean that CBOW has a smoothing effect over 
distributional information, which is beneficial for smaller dataset. Thus, we should like to note whether CBOW 
retains its superiority over Skip-gram on a large dataset. 

Having more data could also potentially addresses the issue of candidate generation. We note that the reason of 
why lowering the similarity threshold results in higher accuracy is because a lower threshold allows more candidates 
to be generated. Thus, it might not be an issue of the threshold value itself, but whether the data has more alternative 
words to be considered. It is therefore very reasonable to suppose that more data, which means more words, and 
additionally, more context information, would result in better normalization performance. 

The problem of recognizing proper nouns as one of the cases in which word normalization is not appropriate 
could potentially be solved by using a simple Named-Entity Recognition, probably with a more emphasize on case 
features. Furthermore, it is interesting to see whether incorporating character-level embeddings might be helpful in 
distinguishing proper nouns from other types of tokens, since intuitively, in many languages names are often formed 
from distinctive sequences of characters which are quite different to those forming words. Similarly, character-level 
embeddings may also be useful in recognizing whether a token is more likely to be an Indonesian word or not. Note 
that since we work with social media data, the use of character-level embeddings is particularly appealing, since 
both the grammatical structure and the word spellings often do not adhere to standard language rules, thus thwarting 
the work of systems developed under the assumption of standard language. An example of a work which uses such 
character-level embeddings for language identification is by Jaech, et. al. [28]. 

Lastly, in solving the problem of mapping tokens which are abbreviation of phrases, we could take the approach 
of Srihard [11], in which the training data is modified so that compound words could be treated as a single token; 
e.g., “i love you too” is replaced with “i_love_you_too”. However, as Srihard has pointed out, this approach requires
a list of such phrases. Since unsupervised phrase induction rarely capture phrases from high frequency function 
word, it might be necessary to obtain such list by manual tagging, which is challenging due to the perpetually 
growing and changing nature of phrase abbreviations used in the social media. Alternatively, we could explore the 
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use of embeddings which consist not only of a single word, but of multiple words. However, since doing so might 
potentially increase the size of the vocabulary exponentially, it might be necessary to impose some limits, for 
example the number of the words in the phrase, or a minimal frequency the phrase must appear in the corpus. 
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