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a b s t r a c t 

Since decades, genetic algorithms have been used as an effective heuristic to solve optimization problems. 

However, in order to be applied, genetic algorithms may require a string-based genetic encoding of in- 

formation, which severely limited their applicability when dealing with online accounts. Remarkably, a 

behavioral modeling technique inspired by biological DNA has been recently proposed – and success- 

fully applied – for monitoring and detecting spambots in Online Social Networks. In this so-called digital 

DNA representation, the behavioral lifetime of an account is encoded as a sequence of characters, namely 

a digital DNA sequence. In a previous work, the authors proposed to create synthetic digital DNA se- 

quences that resemble the characteristics of the digital DNA sequences of real accounts. The combination 

of (i) the capability to model the accounts’ behaviors as digital DNA sequences, (ii) the possibility to cre- 

ate synthetic digital DNA sequences, and (iii) the evolutionary simulations allowed by genetic algorithms, 

open up the unprecedented opportunity to study – and even anticipate – the evolutionary patterns of 

modern social spambots. In this paper, we experiment with a novel ad-hoc genetic algorithm that allows 

to obtain behaviorally evolved spambots. By varying the different parameters of the genetic algorithm, 

we are able to evaluate the capability of the evolved spambots to escape a state-of-art behavior-based 

detection technique. Notably, despite such detection technique achieved excellent performances in the 

recent past, a number of our spambot evolutions manage to escape detection. Our analysis, if carried out 

at large-scale, would allow to proactively identify possible spambot evolutions capable of evading current 

detection techniques. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

As part of today’s ongoing socio-technical convergence, Online

ocial Networks (OSNs) have a profound impact on our everyday

ife. We increasingly rely on OSNs content in order to form our

pinions, to plan activities, and to establish social relationships.

ne of the most striking examples of the influence that OSNs have

n our societies could be witnessed during all the latest politi-

al elections. Indeed, during the 2014 Italian mayoral elections, the

016 US presidential elections, the 2016 UK Brexit referendum, and

he 2017 French presidential elections, social media played a dom-
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nant role in the electoral campaigns, often contributing to invert

he foreseen electoral outcome 1 . 

It is not surprising that OSNs have also been exploited for ma-

iciously influencing the public opinion [1,2] . One common way to

chieve this goal is to employ large groups of automated (bot) ac-

ounts (henceforth spambots ) that repeatedly spam polarized con-

ent. Worryingly, this malicious practice is pervasive: it has been

itnessed in online discussions on important societal topics (e.g.,

olitics, finance, terrorism, immigration) [3,4] , as well as in debates

bout seemingly less relevant topics, such as products on sale on

-commerce platforms and mobile applications [5] . 

Among the peculiar characteristics of spambots is that they

volve over time, by changing their behavior – and, in general – by

dopting techniques in order to evade existing detection systems

6] . As spambots became clever in escaping detection, scholars
1 http://www.newsweek.com/full- list- russian- twitter- bots- banned- election- 

eddling-probe-700703 
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Fig. 1. The story so far and the way ahead: reactive vs. proactive spambot detection schemas. 
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and OSNs administrators tried to keep pace (i.e., reacted ) and pro-

posed more complex detection techniques. Most notably, spambot

evolution still goes on: recent investigations highlight that new

waves of social spambots are rising and that a paradigm-shift is

taking place in spambot design [5,7] . Social spambots are now

mimicking legitimate behaviors and interaction patterns in OSNs

better than ever before. Being almost indistinguishable from legit-

imate accounts, social spambots are capable of sharing (credible)

fake news, inflating the popularity of OSN users, and “reshaping

political debates. They can defraud businesses and ruin reputa-

tions”2 . We are still unable to effectively deal with these issues. 

Spambot detection in OSNs is thus a never-ending clash, involv-

ing the design of techniques capable of efficiently identifying ever-

evolving spammers. Until now, spambot detection has always fol-

lowed a reactive schema [8] . As shown in Fig. 1 (a), this schema

starts with an observation of suspicious behaviors in OSNs, which

leads to a study of malicious activities. Such study is exploited to

design new detection techniques. As soon as the new detection

techniques are deployed, spambot developers tweak the charac-

teristics of their accounts, thus evading detection. This evolution

therefore requires new observations to grasp the characteristics of

the evolved spambots. As a consequence of this reactive schema,

scholars and OSN administrators are constantly one step behind.

In turn, this means that spambots are largely left free to tamper

with our online environments until a new detection technique is

designed and deployed. 

In this work, we propose a new proactive approach, schemati-

cally shown in Fig. 1 (b). The idea is to break the traditional reactive

cycle and move towards a new paradigm. In the most general def-

inition of this paradigm, the approach begins by defining a model

for OSN accounts. The malicious accounts under investigation are

thus represented/encoded via the specified model. Their represen-

tation is the input of the simulation step. The high-level goal of

the simulation step is to find variants of the input representations

(i.e., variants of the malicious accounts) that satisfy a given cri-

terion. Within our context, the criterion could be that of resem-

bling the original representations, or of resembling real legitimate

accounts. In other words, the simulation could produce represen-

tations of malicious accounts that do not currently exist, but that

would appear as similar to existing ones. Then, every modified rep-

resentation that comes out of the simulation is evaluated in the

namesake step. The evaluation aims at verifying whether the mod-

ified representations of the accounts are capable of evading detec-

tion. Those representations that evade detection are considered as

possible threats, and could be taken into account during the design

and development of novel detection techniques. 

In the following, we instantiate the general proactive approach

previously described, to the specific Twitter scenario considered in

this study. Our model for OSN accounts encodes the online behav-
2 https://www.nytimes.com/interactive/2018/01/27/technology/social- media- bots. 
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ors of a group of Twitter accounts, and is based on the technique

iscussed in [9] . The simulation step, implemented by an ad-hoc

enetic algorithm, generates several different groups of synthetic

witter accounts according to different sets of parameters settings.

he synthesis of such groups of accounts is carried out in an

terative process where, at each stage, part of the synthetic ac-

ounts is discarded in favor of other synthetic accounts that are

roven to be more similar to real legitimate accounts. With the

oal of analyzing possible spambot evolutions, and thus having a

ean to also anticipate their detection, the synthetic accounts gen-

rated during the simulation phase are evaluated against a state-

f-the-art detection technique [10] . Those accounts that are capa-

le of going undetected by the detection technique, represent a

ossible threat. Closing the loop, with the proposed approach one

ould ultimately be able to foresee possible future evolutions of

pambots, and to counteract by revising and/or designing novel de-

ection techniques, effective even before the actual evolution takes

lace. 

.1. Goals and implementation choices 

The goal of this work is to test whether, and to what extent,

t is possible to implement the proactive scheme for the Twit-

er scenario. In particular, the study will focus on the first four

hases, model, simulation, evaluation , and threat . A behavioral mod-

ling technique inspired by biological DNA will constitute the bases

or modeling the behavior of online accounts [9] . Then, in or-

er to study possible future evolutions of spambots, we will in-

roduce a simulation technique based on a popular optimization

eta-heuristic, namely, genetic algorithms [11] . We consider differ-

nt values for the parameters of the adopted genetic algorithm: in

articular, we vary (1) the behavior of the accounts given in input

o the algorithm; (2) the cost function that the algorithm aims to

inimize; and (3) the probability of occurrence of functions that

re commonly used by genetic algorithms, namely mutations and

rossover. We then evaluate the generated accounts against a state-

f-the-art detection technique [10] and we identify possible future

hreats, i.e., spambots which are currently not detectable by that

echnique. 

.2. Broadening the approach 

This paper tests the reactive approach by focusing on the be-

avior of the accounts (i.e., the sequences of actions that accounts

erform). This choice opens up the possibility to leverage for our

xperiments the digital DNA behavioral modeling technique [9] as

ell as the Social Fingerprinting spambot detection technique [10] .

owever, despite our implementation of the proactive approach,

imilar analyses could be carried out by relying on different mod-

ling and spambot detection techniques, such as those based on

etwork/graph analysis and those based on content analysis. 

https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
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.3. Roadmap 

The remainder of this paper is structured as follows. The next

ection offers a background on the behavioral modeling tech-

ique, the spambot detection technique, and the genetic algorithm

dopted for this study. Section 3 introduces the experiments for

he synthesis of new account behaviors. In Section 4 , we apply the

pambot detection technique to the synthetic accounts generated

n the experimental section and we evaluate the results, in terms

f the capability of the new generations to escape detection. Then,

ection 5 presents a critical discussion of our results, highlighting

he capability of some of the evolved bots to perpetrate their ma-

icious activities (e.g., mass retweeting, URL spamming), while re-

aining undetected. Section 6 briefly surveys recent related litera-

ure. Finally, Section 7 concludes the paper and suggests promising

irections of future work. 

. Background 

In this section, we give preparatory notions on the technique

hosen to model the accounts behaviors, the connected spambot

etection technique, and the genetic algorithm adopted to let ac-

ounts evolve. 

.1. Digital DNA modeling technique and social fingerprinting 

etection mechanism 

Inspired by biological DNA, in [9] we proposed modeling online

ser behaviors with strings of characters representing the sequence

f a user’s online actions. Each action type (such as posting new

ontent, or following, or replying to a user) can be encoded with

 different character, just as in DNA sequences, where characters

ncode nucleotide bases. According to this paradigm, online user

ctions would represent the bases of their digital DNA . Different

inds of user behavior can be observed on the Internet [12] , and

igital DNA is a flexible and compact way of modeling such be-

aviors [13] . The flexibility lies in the possibility of choosing which

ctions form the sequence. For example, digital DNA sequences on
ig. 2. The digital DNA behavioral modeling technique. Excerpt of a digital DNA extractio

n chronological order and by assigning the appropriate base to each action, one can obta
acebook could include a different base for each user-to-user inter-

ction type: comments ( C ), likes ( L ), shares ( S ), and mentions ( M ).
hen, interactions can be encoded as strings formed by such char-

cters according to the sequence of user-performed actions. Sim-

larly, user-to-item interactions on an e-commerce platform could

e modeled by using a base for every product category. User pur-

hasing behaviors could be encoded as a sequence of characters

ccording to the category of products they buy. In this regard, dig-

tal DNA shows a major difference from biological DNA, where the

our nucleotide bases are fixed. In digital DNA, both the number

nd the meaning of the bases can change according to the behav-

or or interaction to be modeled. Just like its biological predecessor,

igital DNA is a compact representation of information – for exam-

le, a Twitter user’s timeline could be encoded as a single string of

,200 characters (one character per tweet). 

A digital DNA sequence can be defined as a row-vector of char-

cters (i.e., a string), 

 = (b 1 , b 2 , . . . , b n ) b i ∈ B ∀ i = 1 , . . . , n 

haracters b i in s are drawn from a finite set, called alphabet , 

 = { B 1 , B 2 , . . . , B N } B i � = B j ∀ i, j = 1 , . . . , N i � = j 

he B i characters are also called the (DNA) bases of the alphabet B .

 user’s behavior can be represented with a digital DNA sequence

y encoding each action of the user with an alphabet base. Then,

y scanning the user’s actions in chronological order and by as-

igning the appropriate base to each action, one can obtain the se-

uence of characters that makes up the digital DNA sequence of

he user. For example, Fig. 2 shows the process of extracting the

igital DNA sequence of a Twitter user, by scanning its timeline

ccording to an alphabet defined as follows: 

 

3 
type = 

{ 

A ⇐ tweet , 
C ⇐ reply , 
T ⇐ retweet 

} 

= { A , C , T } 

he B 

3 
type alphabet encodes user behaviors according to their type

f tweets produced, either tweets, retweets , or replies . 
n process for a Twitter user with the B 3 type alphabet. By scanning the user’s actions 

in the sequence of characters that makes up the digital DNA sequence of the user. 
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behaviors. 

3 This was made possible also by the adoption of social engineering techniques, 

such as the photo of a young attractive woman as the profile picture and the occa- 

sional posting of provocative tweets. 
2.1.1. Similarity between digital DNA sequences 

In [10] , the authors proposed a spambot detection technique,

grounded on the digital DNA modeling paradigm. 

In order to analyze groups of users rather than single users, we

studied multiple digital DNA sequences as a whole. A group A of

M = | A | users can be described by the digital DNA sequences of

the M users, 

A = 

⎛ 

⎜ ⎜ ⎝ 

s 1 
s 2 
. . . 

s M 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

(b 1 , 1 , b 1 , 2 , . . . , b 1 ,n ) 
(b 2 , 1 , b 2 , 2 , . . . , b 2 ,m 

) 
. . . 

(b M, 1 , b M, 2 , . . . , b M,p ) 

⎞ 

⎟ ⎟ ⎠ 

The group A is defined as a column-vector of M digital DNA se-

quences of variable length, one sequence for each user of the

group. 

To perform analyses on groups of digital DNA sequences, we

can rely on recent advances in the fields of bio-informatics and

string mining. In fact, many efficient algorithms and techniques for

the analysis of biological strings have been continually proposed

in such fields [14] . One of the possible means to quantify simi-

larities between sequential data representations, such as the digi-

tal DNA sequences, is the longest common substring [15] . Intuitively,

users that share long behavioral patterns are much more likely to

be similar than those that share short behavioral patterns. Given

two strings, s i of length n and s j of length m , their longest com-

mon substring (henceforth LCS) is the longest string that is a sub-

string of both s i and s j . For example, given s i = MASSACHUSETTS and

s j = PARACHUTE , their LCS is the string ACHU and the LCS length

is 4. The extended version of this problem that considers an ar-

bitrary finite number of strings, is called the k-common substring

problem [16] . In this case, given a vector A = (s 1 , . . . , s M 

) of M

strings, the problem is that of finding the LCS that is common

to at least k of these strings, for each 2 ≤ k ≤ M . Notably, both the

longest common substring and the k-common substring problems can

be solved in linear time and space, by resorting to the generalized

suffix tree and by implementing state-of-the-art algorithms, such

as those proposed in [15] . Given that, in the k-common substring

problem, the LCS is computed for each 2 ≤ k ≤ M , it is possible to

plot a LCS curve , showing the relationship between the length of

the LCS and the number k of strings. 

As a direct consequence of the definition of LCS, as the number

k of accounts grows, the length of the LCS common to all of them

shortens. In other words, LCS curves are monotonic non-increasing

functions, such that, 

LCS [ k − 1] ≥ LCS [ k ] ∀ 3 ≤ k ≤ M 

Thus, it is more likely to find a long LCS among a few accounts

rather than among large groups. 

2.1.2. DNA fingerprinting 

In contrast with classification and supervised approaches, we

devise an unsupervised way to detect spambots, by comparing

their behavior with the aim of finding similarities between auto-

mated accounts. We can model the behavior of groups of spambots

via their digital DNA, comparing it to that of a sample of genuine

accounts. The intuition is that, because of their automated nature,

spambots are likely to present higher similarities in their digital

DNA with respect to the more heterogeneous genuine users. 

To exploit at its best the potential of digital DNA, build-

ing on the definitions of digital DNA and LCS curves given in

Section 2.1 and 2.1.1 , here we study the characteristics of the LCS

curves of three different datasets, see Table 1 . 

The humans dataset is a random sample of genuine (human-

operated) accounts. Following a hybrid crowdsensing approach

[17] , we randomly contacted Twitter users by asking them a sim-

ple question in natural language. All the replies to our questions
ere manually verified and all the 3474 accounts that answered

ere certified as humans. The accounts that did not answer to our

uestion were discarded. 

The Bot1 dataset was created after observing the activities of

 group of social bots that we discovered on Twitter during the

ast Mayoral election in Rome, in 2014. One of the runners-up em-

loyed a social media marketing firm for his electoral campaign,

hich made use of almost 10 0 0 automated accounts on Twitter to

ublicize his policies. Surprisingly, we found such automated ac-

ounts to be similar to genuine ones in every way. Every profile

as accurately filled in with detailed – yet fake – personal in-

ormation such as a (stolen) photo, (fake) short-bio, (fake) loca-

ion, etc. Those accounts also represented credible sources of in-

ormation since they all had thousands of followers and friends,

he majority of which were genuine users 3 . Furthermore, the ac-

ounts showed a tweeting behavior that was apparently similar to

hose of genuine accounts, with a few tweets posted every day,

ainly quotes from popular people, songs, and YouTube videos.

owever, every time the political candidate posted a new tweet

rom his official account, all the automated accounts retweeted it

n a time span of just a few minutes. Thus, the political candidate

as able to reach many more accounts in addition to his direct

ollowers and managed to alter Twitter engagement metrics dur-

ng the electoral campaign. Amazingly, we also found tens of hu-

an accounts who tried to engage in conversation with some of

he spambots. The most common form of such human-to-spambot

nteraction was represented by a human reply to one of the spam-

ot tweets quotes. 

The Bot2 dataset advertise products on sale on Amazon.com .

he deceitful activity was carried out by spamming URLs pointing

o the advertised products. Similarly to the retweeters of the Italian

olitical candidate, also this family of spambots interleaved spam

weets with harmless and genuine ones. 

Remarkably, the spambot datasets captured two of the different

imensions currently exploited by tamperers to perpetrate their il-

icit activities: retweet frauds and URL spamming. It is also very

nteresting that both such types of social spambots are still mostly

ctive, since the large majority of them ( > 95%) has not yet sus-

ended nor deleted by Twitter [18] . 

We evaluate the differences and similarities among those

roups, as seen through the lenses of the digital DNA sequences. 

Fig. 3 shows a comparison between the LCS curves of genuine

human) accounts and those of the Bot1 ( Fig. 3 (a)) and Bot2
 Fig. 3 (b)) groups. As shown, the LCS of both groups of spambots

re rather long even when the number of accounts grows. This is

trikingly evident in Fig. 3 (b) ( Bot2 – spammers of Amazon.com

roducts). For both the spambot groups, we observe a sudden drop

n LCS length when the number of accounts gets close to the group

ize, namely at the end of the x axis. In contrast to the remarkably

igh LCS curves of spambots, genuine accounts show little to no

imilarity – as represented by LCS curves that exponentially decay,

apidly reaching the smallest values of LCS length. 

This preliminary yet considerable differences between the LCS

urves of genuine accounts and spambots suggest that, despite the

dvanced characteristics of these novel spambots, the B 

3 
type digital

NA is able to uncover traces of their automated and synchronized

ctivity. In turn, the automated behaviors of a large group of ac-

ounts results in exceptionally high LCS curves for such accounts.

ndeed, we consider high behavioral similarity as a proxy for au-

omation and, thus, an exceptionally high level of similarity among

 large group of accounts might serve as a red flag for anomalous
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Table 1 

Statistics about three Twitter datasets. 

Relationships 

Dataset Accounts Tweets Followers Friends Total 

Bot1 (retweeters of political candidates) 991 1,610,176 4,031,897 4,022,884 8,054,781 

Bot2 ( Amazon spammers) 464 1,418,626 1,352,370 818,913 2,171,283 

Humans 3474 8,377,522 4,740,286 2,153,107 6,893,393 

Fig. 3. Comparison between LCS curves of spambots and genuine accounts for the B 3 type alphabet. 

Fig. 4. LCS curves for two groups of heterogeneous accounts, modeled via the B 3 type alphabet. 
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.1.3. Unsupervised detection of subgroups of similar users 

In previous sections, we saw that groups with different char-

cteristics lead to qualitatively different LCS curves. Here, we con-

ider LCS curves obtained from sequences of an unknown and het-

rogeneous group of users. We mix together all the spambots of

he Bot1 and Bot2 groups, with an equal number of genuine

ccounts. Henceforth, such heterogeneous groups of accounts are

eferred to as Mixed1 and Mixed2 , respectively. Fig. 4 shows the

CS curves obtained via the B 

3 
type alphabet. 

Such a slow decrease is sometimes interleaved by steeper drops,

uch as those occurring in the region of 500 and 10 0 0 accounts.

nother – and even more evident – steep drop is shown in the

ight hand plot of Fig. 4 , in the region of 400 accounts. LCS curves

n both plots asymptotically reach their minimum value as the
umber of accounts grows. Overall, such LCS curves show a dif-

erent behavior than those related to a single group of similar ac-

ounts, such as the ones shown in Fig. 3 (a) and (b). Indeed, the

lots of Fig. 4 lack a single trend that spans for the whole do-

ain of the LCS curves. Instead, they depict a situation where a

rend seems to be dominant only until reaching a certain thresh-

ld. Then, a steep fall occurs and another – possibly different –

rend kicks in. Notably, such portions of the LCS curves separated

y the steep drops resemble LCS curves of the single groups of

imilar users (i.e., Bot1 , Bot2 , human) used to obtain the sets

f heterogeneous users (i.e., Mixed1 , Mixed2 ). The steep drops

f LCS curves separate areas where the length of the LCS remains

ractically unchanged, even for significantly different numbers of

onsidered accounts. In the left hand plot of Fig. 4 , for instance,
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the LCS remains almost unchanged when considering a number

of accounts between 500 and 1000. The same also applies to the

right hand plot of Fig. 4 , for a number of accounts lower than 400.

Such plateaux in LCS curves are strictly related to homogeneous

groups of highly similar accounts. Note that it is possible to ob-

serve multiple plateaux in a single LCS curve, as in the case of

Fig. 4 (a). This represents a situation where multiple (sub-)groups

exist among the whole set of considered accounts. Furthermore,

the steeper and the more pronounced is a drop in a LCS curve,

the more different are the two subgroups of accounts split by that

drop. 

To summarize, LCS curves of an unknown and heterogeneous

group of users can present one or more plateaux , which are re-

lated to subgroups of homogeneous (i.e., with highly similar be-

haviors) users. Conversely, steep drops represent points marking big

differences between distinct subgroups. Finally, slow and gradual

decreases in LCS curves represent areas of uncertainty, where it

might be difficult to make strong hypotheses about the character-

istics of the underlying accounts. We can than conclude that LCS

curves of an unknown and heterogeneous group of users are ca-

pable of conveying information about relevant and homogeneous

subgroups of highly similar users. 

The previous findings can be leveraged to find subgroups of

users with similar behaviors [10] . We exploit the discrete deriva-

tive of a LCS curve to recognize the points corresponding to the

steep drops. The steep drops of LCS curves appear as sharp peaks

in the derivative plot and represent suitable splitting points to iso-

late different subgroups among the whole set of users. All the

suitable splitting points might be ranked according to their cor-

responding derivative value (i.e., how steep is the corresponding

drop) and then, a hierarchical top-down (i.e., divisive) clustering

approach may be applied, by repeatedly dividing the whole set of

users based on the ranked points, leading to a convenient dendro-

gram structure. For instance, this approach can be exploited in sit-

uations where the LCS curve exhibits multiple plateaux and steep

drops, in order to find the best possible clusters that can be used

to divide the original set of heterogeneous users. 

The discrete derivative of the LCS curve of a set of M users can

be easily computed as 

LCS ′ [ k ] = 

�k LCS 

�k accounts 
= 

LCS [ k ] − LCS [ k − 1] 

1 

for k = 3 , . . . , M. Given that LCS curves are monotonic non-

increasing functions defined over the [2, M ] range, their derivatives

LCS ′ will assume only zero or negative values, with steep drops

in the LCS corresponding to sharp negative peaks in LCS ′ . Sim-

ple peak-detection algorithms can be employed in order to auto-

matically detect the relevant peaks in LCS ′ [19] . Notably, this ap-

proach does not require a training phase and can be employed

pretty much like a clustering algorithm, in an unsupervised fash-

ion. 

To prove the effectiveness of this unsupervised approach, we

applied it to the LCS obtained from the unlabeled Mixed1 and

Mixed2 groups, with the goal of separating spambots from gen-

uine users. Fig. 5 (a) and (b) show stacked plots of the LCS of

the Mixed1 and Mixed2 groups respectively, together with their

discrete derivative LCS ′ , both in linear and logarithmic scale. The

logarithmic scale plots of the derivatives have been computed as

log 10 | LCS ′ | and they have been added for the sake of clarity, since

they highlight the less visible peaks of the linear scale plots. In or-

der to facilitate the detection of peaks in LCS ′ , we smoothed the

original LCS curves before computing their derivatives [20] . This

preprocessing step acts pretty much like a low-pass filter, allowing

to flatten the majority of noisy fluctuations. 

In Fig. 5 , the solid vertical blue lines correspond to the

most pronounced peaks in the LCS ′ of Mixed1 and Mixed2 . As
hown, the proposed methodology accurately identified reasonable

plitting points in order to find two clusters among the whole sets

f unlabeled users. In detail, those users laying on the left of the

ertical splitting line – that is, users sharing long behavioral pat-

erns (i.e., long LCS) – are labeled as spambots. Conversely, the

sers to the right of the vertical splitting line – i.e., users sharing

ittle similarities – are labeled as genuine ones. 

.2. Genetic algorithms 

Genetic Algorithms [11] are a popular meta-heuristic technique,

sed to solve optimization problems inspired by the natural evo-

ution, where only the best candidates survive along several gener-

tions. In this scenario, a possible candidate solution is called in-

ividual and a sample of candidate solutions is called population

f individuals. The idea is to start from an arbitrary, or random,

nitial population and, then, similarly to what happens in nature,

hrough a mechanism of recombination and mutation of those in-

ividuals a new generation of candidates is obtained, which hope-

ully improves the quality of the previous solutions. To establish

he quality of a candidate solution, each individual is associated

ith a measure called fitness score . The cornerstone of most genetic

lgorithms is the fitness function , that outputs the fitness score of

n individual given as the input. During each generation, each indi-

idual is evaluated using the fitness function and then the current

opulation is modified via either a single input function called mu-

ation or a two input function called crossover . The outputs of these

unctions are called offsprings and these are the new candidate so-

utions that will form the new generation along with some of the

ndividuals of the previous generation. In this work, when we refer

o an individual, we refer to a group of users and our population

s composed by a set of groups of users that evolve from a genera-

ion to the next one. We will present a variety of options that can

e used in order to provide a solid simulation technique that can

e usable in this concrete case study. 

.2.1. Encoding 

The first ingredient of a Genetic Algorithm is the encoding . Each

ndividual is encoded into a genome which is commonly either

 binary vector or a string of characters. For the scope of this

tudy, we rely on the DNA-based behavioral modeling presented in

ection 2.1 to encode candidate solutions directly into the genomes

hat will be used during the evolution of the genetic algorithm.

s we mentioned earlier, in this case study a candidate solution is

 group of users, each user is encoded with a string of length n ,

here n is the length of the activities that we consider (i.e., the

umber of the user actions on Twitter). Each group of users will

e formed by m users, therefore, the genome used in the genetic

lgorithm will be a matrix m × n of characters (as each activity will

e labeled with a character). This allows us to reason within a two-

evel environment: the user level and the group level. As we will

etail in the following sections, the mutations and crossovers can

appen at both levels. For the entirety of this work we use exclu-

ively this encoding. 

.2.2. Mutation 

The Mutation Function is a unary operator that takes in input

n individual and returns an offspring. In this work, we develop a

utation function that acts at user level. Each activity of each user

an be subject to mutation, more specifically, the operator switches

he selected activity with another activity. For instance, a tweet can

e switched to a retweet or a mention, a mention can be switched

o a retweet or a tweet and a retweet can be switched to a tweet

r a mention. Not all activities will be influenced by mutations, as

here is a tunable parameter p m 

that helps us to control the rate
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Fig. 5. Discriminating between spambots and genuine users among an unknown set of accounts using the LCS derivative. The curve peaks that represent the best candidate 

points for the split are marked in all graphs with a vertical blue line. Accounts to the left of the splitting points are identified as spambots, while those to the right are 

identified as genuine users. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Standard one-point crossover. 
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f mutations throughout the run of the genetic algorithm. Parame-

er 0 ≤ p m 

≤ 1 denotes the probability of each activity to be subject

o a mutation. Different choices of this parameter lead to differ-

nt results: by setting p m 

= 0 , the mutation operator is completely

urned off, while p m 

= 1 has the effect of switching all the activi-

ies of all the users. If p m 

is close to zero, then the offspring will be

ery similar to the individual in input; if p m 

is close to one, then

he returned offspring will be very different from the individual in

nput. This parameter offers a lot of flexibility on how to explore

he solution space. We will show in Section 4 how the choice of

his parameter impacts the overall output of the algorithm. 

.2.3. Crossover 

In a traditional genetic algorithm, the crossover function is a

inary operator that takes in input two individuals and usually re-

urns two offsprings. The choice of the crossover function is up to

he developer of the algorithm and, as for the mutations, there are

 list of flexible options. There are some popular crossover func-

ions, such as one-point crossover and two-points crossover , that can

e efficiently applied to many problems, but, in general, develop-

rs can design and implement their own crossover function, based

n the demands of the problem they are tackling. For the case

tudy under investigation, we exploit the two-level encoding that

e have chosen and we design two crossover functions that act

t user level and one crossover function that acts at group level.

he main crossover technique we use throughout this work is de-

ived from the standard one-point crossover strategy. This type of

rossover has two parent genomes as the input and two offsprings

s the output. Let the reader assume that the genomes have length

 , one random crossover point r is chosen between 1 and n . The

rst offspring genome generated is the copy of the first parent

rom 1 to the crossover point r and the remaining part from r + 1

o n is the copy of the remaining genome of the second parent.

he second offspring is generated in a similar manner, as shown

n Fig. 6 . In the most common scenarios where genetic algorithms

re used, the genome is one-dimensional. In this work, instead,

ach individual is bound to a two-dimensional matrix and, there-

ore, we can exploit this encoding to develop an efficient two-level
on-standard crossover strategy. Let us recall that each individ-

al represents a group of users and it is encoded in a matrix of

 × n characters where the number of users in each group is m

nd the number of activities per users is n . Because of the fact

hat each individual is a group of users, if we take a traditional

ath, the elementary unit of the genome would be an individ-

al. The Group Level Crossover is designed via a standard one-point

rossover scheme in which the parents are individuals and there-

ore, in this case, the parents and offspring will be groups of users.

iven two groups of m users, a random crossover point r is cho-

en and the two groups are split with respect to point r and, then,

ixed as shown in Fig. 7 . Acting this way, the goal is to provide

ver changing groups of users that evolve by trading subgroups

f users from one group to the other. This technique allows us to

btain groups that are more diversified and more heterogeneous

nd, therefore, intuitively, more human-like. However, by applying

his single crossover function, we would operate by trading users

nly. As of now, in order to diversify the users’ activities, we can

nly rely on the mutation function. Let us dive one level deeper:
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Fig. 7. Grouplevel crossover. 

Fig. 8. User level crossover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. User level crossover with reverse string. 
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ideally, we would like a crossover function that acts at the level

of the activities of the users rather than of the groups. For this

reason, we opt to design two more crossover functions that act at

the level of each user’s activity. Within each group, each user is

represented with a one dimensional vector of size n , the idea is

to develop a crossover function that can take two users as the in-

put and generate two offsprings that combine the activities of the

parents, thus providing a more diversified set of activities within

each group. We present two one-point crossover functions that

act at user level. The first, namely User Level Crossover is similar

to the standard one-point crossover and it is presented in Fig. 8 .

This is a pretty straightforward implementation of a standard one

point crossover: two users are chosen as parents and the offsprings

are the recombination of the two, in a traditional fashion. For in-

stance, let the reader assume to have a user A = a 1 a 2 a 3 a 4 and a

user B = b 1 b 2 b 3 b 4 ; setting 2 as the crossover point, the two off-

springs are the following users O 1 = a 1 a 2 b 3 b 4 and O 2 = b 1 b 2 a 3 a 4 .

The second, namely User Reverse Level Crossover , it is slightly more

convoluted. The idea is that, in order obtain a more diversified be-

havior of the users, we choose a crossover point and we do the

crossover operation in a similar manner as we did previously, with

the difference that, before attaching the strings of activities to-

gether, we reverse one of the strings. With two users, A = a 1 a 2 a 3 a 4 
and B = b 1 b 2 b 3 b 4 , with 2 as the crossover point, the two offsprings

are the following users O 1 = b 4 b 3 a 3 a 4 and O 2 = b 1 b 2 a 2 a 1 . Proved

by the experimentation described in the next sections, adding the

user reverse level crossover lead to individuals of higher quality. A

visual summary of how this crossover function works is provided

in Fig. 9 . Similarly to what happens with the mutation operator, we

can tune some parameters. Only a subset of individuals and users

is subject to the crossover operations and, therefore, we can de-

fine some parameters to control these subsets. For the group level

crossover, we define N GCO as the number of offsprings to generate.

Choosing N GCO = 0 , we avoid this operator, while, with N GCO = n,

every time that the group level crossover operates, a new pop-

ulation of n offsprings is generated. Similarly, we define M UCO as

the number of offsprings we want to generate with the user level

crossover operation. Once again, if we set M UCO = 0 , this means

that we avoid this operator, while, with M = m, each time we
UCO 
pply this operator we obtain a set of user offsprings that is as big

s the original group of users. We define the parameter that con-

rols the user reverse level crossover, namely M URCO , in the same

anner of M UCO . Armed with these parameters, we can tune how

he search space is explored using the crossover operators. Differ-

nt choices of these parameters lead to different results, as we will

how in Section 3 . 

.2.4. Fitness function 

As mentioned before, the fitness function serves as a tool to

rovide the quality score of each individual. Thus, it comes at no

urprise that it plays an important role in every genetic algorithm,

or two main reasons. First of all, the fitness score is calculated

or every individual of every generation and, therefore, the overall

unning time of a genetic algorithm strongly depends on how fast

he fitness functions can be computed. Secondly, the goal of ev-

ry optimization algorithm is either to minimize or maximize an

bjective function. The quality of a candidate has to be measured

ith respect to the objective function. In some cases, the objective

unction and the fitness function can coincide and therefore an in-

ividual with a good fitness score is a good solution for the orig-

nal problem. This is not always the case, as sometimes comput-

ng the objective function might be too computationally expensive.

n general, there is a trade-off between the time spent to com-

ute the fitness scores and their accuracy. In some cases, such as

he task at hand in this paper, even defining the goal or what the

bjective function should be is not straightforward. Here, the goal

s to generate a group of sequences that resemble the behavior

f a group of genuine accounts. Regarding how to measure such

esemblance, we present a couple of possible fitness functions that

an be used in this setting and we will show that a different choice

f the fitness function provides substantially different outcomes. In

ur scenario, we have a target discrete LCS curve X and we want to

enerate a new discrete LCS curve Y that resembles X as much as

ossible. To evaluate the distance between the two curves, a first

andidate can be the maximum distance between X and Y . 

ax (X, Y ) = max {| X (i ) − Y (i ) | : i ∈ { 1 , ..., | X |}} (1)
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4 https://www.uni-ulm.de/in/theo/research/seqana.html 
y minimizing (1) , the two curves would be very similar to each

ther. Note that, in the extreme case, in which max (X, Y ) = 0 ,

he two curves would coincide. This fitness function seems to be

romising, as it is computable in a very fast manner and it is, in

ome sense, a measure of similarity. We will show in Section 3 that

his is not the case. In order to provide a better solution, a more

ophisticated fitness function is necessary: ideally, a fitness func-

ion that accounts for the entirety of the curve rather than just the

oint of maximum distance is a better and suitable candidate. The

istance between two LCS curves can be computed with any well-

nown metric of distance between functions or statistical distribu-

ions. We rely on the Kullback-Liebler distance ( D KL ), since it has

lready been fruitfully employed in recent similar work. D KL is an

nformation theoretic metric that measures how much information

s lost when a target probability distribution P X ( x ) is approximated

y ˆ P X (x ) . In detail, D KL is the symmetric version of the Kullback-

iebler divergence d KL defined as, 

 KL ( ̂  P X , P X ) = 

∑ 

x 

ln 

(
ˆ P X (x ) 

P X (x ) 

)
ˆ P X (x ) 

hus, 

 KL ( ̂  P X , P X ) = 

d KL (P X , ˆ P X ) + d KL ( ̂  P X , P X ) 

2 

(2)

In this scenario, the target distribution P X ( x ) is obtained from

he LCS curve of legitimate accounts, while the approximating dis-

ribution 

ˆ P X (x ) is obtained from the LCS curve of a group of bots.

he D KL distance is computed by the fitness function that accepts

s input an individual G j and the target LCS curve b of legitimate

ccounts. The output is a scalar that represents the fitness score

f the individual. With a fitness function like D KL we account for

he distance between each point of the curves and, therefore, we

an have a more accurate measure of similarity, if compared with

he maximum distance. As discussed earlier, we will obtain a more

ccurate measure, while however spending more time to compute

he function. 

. Experiments 

In this section, we set up the second phase of the proposed

roactive schema, namely the simulation . In the simulation phase,

e will rely on different parameters, to be able to evaluate as

any evolutions as possible. 

.1. The algorithm 

The genetic algorithm that we use in order to generate new

equences of digital DNA combines the features described in

ections 2.2.1, 2.2.2, 2.2.3 and 2.2.4 . The input of the genetic al-

orithm is a group of genuine sequences that we want to emu-

ate: we will refer to this group as the target group . The objective

f the genetic algorithm is to minimize the distance between the

CS curve of the generated sequences and the LCS curve of the tar-

et group. The parameters that control the mutation and crossover

robabilities will be discussed in Section 3.2 . During each itera-

ion of the algorithm, we apply the mutation and crossover opera-

ors in order to obtain the next generation of individuals, a graph-

cal overview of the work involved in one iteration is presented in

ig. 10 . The output of the algorithm is the population after the last

eneration, i.e., a set of groups of synthesized user sequences. 

.2. Experimental setup 

All the experiments run on a machine with an Intel Xeon E7-

830v4, with a 64-bits architecture at 2 GHz, 112 cores and 500 GB

f RAM. For an efficient, linear-time computation of the LCS curves,
e rely on an adapted version of the GLCR toolkit 4 implementing

he state-of-the-art algorithms described in [15] . The following pa-

ameters are the same for all the experiments: each group consists

f 100 users, each user features 20 0 0 activities and each run fea-

ures 30 individuals. Each run stops after 10 0 0 generations. 

.3. The parameter space 

Here we give an overview of the possible parameters that can

e chosen to tune the algorithm. Each run of the algorithm starts

ith an initial population which can be arbitrary or randomly cho-

en. As a baseline, after a preliminary experimental evaluation, we

se a starting population in which each user has 10 0 0 A , 50 0 C and

00 T . We can explore the effects of starting from a different point

f the search space. One idea is to start with plain activities for

ll users of all groups. For instance, we can start with a group of

sers in which all the activities of all the users are A . Respectively,

e analyze what is the result after initializing all the users’ activi-

ies with C and T . Table 2 presents an overview of the parameters

nd their ranges. 

.4. The experiments 

Here, we present different strategies to implement possible evo-

utionary branches. To evaluate possible evolutions of spambots

tarting from scratch, we design and launch many experiments.

ith different evolutions at disposition, it will be possible to iden-

ify which ones can be a threat and which ones can still be de-

ected by state-of-the-art detection techniques. In the proactive

chema presented in Fig. 1 (b), step 2 (simulation) and step 3 (eval-

ation) are strongly connected, as the evaluation step provides the

eedback on the proposed evolutions generated via the simulation.

n order to illustrate how these two steps interact between each

ther, we show a variety of possible evolutions. These candidate

volutions are generated via the genetic algorithm with different

hoices of the parameters in Table 2 . Each run of the genetic al-

orithm generates 30 different groups of new evolved spambots.

he detection algorithm will be then applied in the next section,

o evaluate whether the evolved spambots can still be detected or

ot. In Table 3 we present a summary of the evolutions that we

ill evaluate. In order to give an experimental validation of the

hoice of D KL as a fitness function, we show a comparison between

 run of the genetic algorithm with the best known choice of pa-

ameters using D KL as a fitness function against a run of the genetic

lgorithm with the same parameters using MAX as the fitness func-

ion. We present an extensive evaluation of the effect of the muta-

ion function: we show the results of 8 different choices of muta-

ion probability. We start with the mutation disabled and we finish

ith mutation probability 1 (i.e., all the activities off all the users

re mutated). We present an evaluation of the extreme values of

he crossover operators: we show what happens when we disable

he user crossover operator and when we apply the crossover op-

rator to all the possible users and groups. 

. Evaluation 

In this section, we discuss the important role covered by the

valuation phase. As mentioned in the previous section, the sim-

lation and evaluation phases constantly interact between each

ther: once we obtain some evolved candidates from the simula-

ion phase, we need to check if they can be a threat for the partic-

lar model we are studying. Thus, we evaluate the candidate evo-

utions against the unsupervised detection technique [10] that has

een presented in Section 2.1.3 . 

https://www.uni-ulm.de/in/theo/research/seqana.html
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Fig. 10. An overview of all the actions taken by the algorithm during a generation. 

Table 2 

Parameters overview. 

Parameter Range Description 

p m [0, 1] Mutation probability 

N GCO {0, …, n } Offsprings generated by the Group Crossover 

M UCO {0, …, m } Offsprings generated by the User Crossover 

M URCO {0, …, m } Offsprings generated by the User Reverse Crossover 

Fitness function { max, D KL } The choice of fitness function presented in Section 2 
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In order to evaluate the evasion ability of the newly generated

candidates, we test them against the detection algorithm. In par-

ticular, for each best individual of a run of the genetic algorithm,

we create two mixed groups of 200 users each. The first group

(the synthes + target group ) is obtained combining the best indi-

vidual (composed by 100 synthesized users) with the 100 users

that were used as the target group by the genetic algorithm (3.1) .

The second group (the synthes + unrelated group ) is composed by

the best individual and a group of 100 real Twitter users, unrelated

to the experiments. The rationale is to verify that the synthesized
equences can evade the unsupervised detection technique even if

hey are injected in a group of humans that was never considered

y the genetic algorithm. 

For each of the candidate evolutions proposed in Section 3.4 ,

e perform an evaluation using the following schema: 

1. We fix the parameters of the genetic algorithm; 

2. We run the genetic algorithm to generate 30 new individuals

(i.e., 30 groups of 100 users); 

3. We take the best individual, according to the fitness score; 
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Fig. 11. Comparison of LCS curves. 

Table 3 

Summary of the candidate evolutions (when not specified, the initial population 

is composed by 10 0 0 A , 500 C , 500 T ). 

Instance code Description 

D KL -StartingA D KL fitness, all the activities in the initial population are A 

D KL -StartingC D KL fitness, all the activities in the initial population are C 

D KL -StartingT D KL fitness, all the activities in the initial population are T 

D KL -noOnePt D KL fitness, the User Crossover is disabled 

D KL -allCx D KL fitness, all the crossovers are set to their max 

D KL -0pct D KL fitness, the mutation is disabled 

D KL -5pct D KL fitness, 5% mutation probability 

D KL -10pct D KL fitness, 10% mutation probability 

D KL -25pct D KL fitness, 25% mutation probability 

D KL -50pct D KL fitness, 50% mutation probability 

D KL -75pct D KL fitness, 75% mutation probability 

D KL -90pct D KL fitness, 90% mutation probability 

D KL -100pct D KL fitness, 100% mutation probability 

D KL -best D KL fitness, best known choice of parameters 

MAX -best MAX fitness, best known choice of parameters 
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4. We create two mixed groups of 200 users each: 

• the synthes + target group, composed by the best individ-

ual mixed with 100 users from the target group of genuine

users; 

• the synthes + unrelated group, composed by the best indi-

vidual mixed with 100 genuine users unrelated to the run

of the genetic algorithm; 

5. We run the unsupervised detection technique on the mixed

groups. 

.1. Detection results of the synthes + target group with the 

erivative heuristic 

The results of the detection against the synthes + target groups

re in Table 4 . For each choice of parameters, we also report the

tness score of the best individual, obtained by the last generation

f the genetic algorithm. Each row is organized in the following

anner: in the first column, there is the instance code based on

he ones presented in Table 3 , for example, the code D KL -StartingA

epresents the best individual generated using all A as a starting

oint and D KL as the fitness function. The second column ( Cut ) is

he cutting point identified by the unsupervised detection tech-

ique for the related instance. This determines the performance of

he detection results, presented in the subsequent columns, that

eport Precision, Recall, Specificity and Accuracy . The second to last

olumn ( F1 ) reports the value of F-measure , a metric that sum-

arizes in one single value the other results. Finally, the last col-

mn presents the fitness score based on the D KL fitness function

f the individual. As a comparison, we also include in the table the
est individual that we ever generated using the genetic algorithm,

epresented by the row D KL -best. Moreover, Fig. 11 shows the LCS

urves of some instances, to have an overview of the synthesized

sers. We report the LCS in both the linear y-axis and in the log

-axis. In the figures, we see that the instance with the best fitness

core ( D KL -best) overlaps the LCS curve of the target group, while

he instances that have a higher (i.e., worse) fitness score do not

esemble the LCS of the target group. Moreover, the best instance

tarts to significantly differ from the target group only when the

umber of accounts is higher than 60: the delta between the two

CS is always lower than 10. Similarly, we observe that the LCS of

he unrelated group and that of the target group are very similar,

ith significant differences only in the very first points and negli-

ible differences when the number of accounts is higher than 50. 

In the following we give some insights into the results of the

xperiment, looking at Table 4 . 

Looking at the last column of the MAX instance, if we consider

he fitness score using the D KL on the LCS of that instance, we no-

ice that it has a very high fitness value and, in facts, it performs

uch worse when compared to the instances of the other runs.

he poor quality of this individual resides in the fact that most

f the synthesized users do not elude the unsupervised detection

echnique: it is worth reminding that, if the detection is effective,

ur synthesized users are not good bot candidates. 

This first observation suggests that, to have better candidates,

e have to use a better fitness function, leading us to adopt the

 KL . However, a better fitness function is still not enough to have

ood candidates: if we consider the results of the instances ob-

ained starting from naive and simple starting populations (such

s the ones presented in the instances D KL -StartingA, D KL -StartingC

nd D KL -StartingT) we can see that, despite having a better fitness

core, these candidates can not still evade the detection technique

fficiently. 

These results confirm that designing experiments that can elude

nd highlight the weaknesses of a given detection technique is not

 simple task. They also suggest that all the ingredients that we

resented in Section 3.1 are necessary in order to generate effec-

ive candidates. From the table, we can see that the results tend

o get better once we start tuning the crossover and mutation op-

rators, starting from the baseline starting population described in

ection 3.3 . In fact, we can observe that the candidates D KL -allCx

nd D KL -noOnePt, that only perform the crossover, improve their

vasion against the detection technique and, similarly, increasing

he mutation probability (the D KL -XXpct instances) also effectively

ffects the evasion ability of the synthesized accounts. 

At a first glance, we can say that all those instances can be a

otential threat because from the accuracy results and F-measure

f the detection algorithm, most of these generated bots go unde-
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Table 4 

Summary of the detection results vs. synthes + target group. 

Instance code Cut Precision Recall Specificity Accuracy F1 D KL 

MAX -best 66 0.848 0.56 0.90 0.730 0.675 6887 

D KL -StartingA 40 0.900 0.36 0.96 0.660 0.514 3866 

D KL -StartingC 23 0.739 0.17 0.94 0.550 0.276 975 

D KL -StartingT 21 0.667 0.14 0.93 0.535 0.231 709 

D KL -allCx 27 0.296 0.08 0.81 0.445 0.126 661 

D KL -noOnePt 40 0.475 0.19 0.79 0.490 0.271 455 

D KL -0pct 56 0.804 0.45 0.89 0.670 0.577 546 

D KL -5pct 30 0.400 0.12 0.82 0.470 0.185 336 

D KL -10pct 30 0.333 0.10 0.80 0.450 0.154 420 

D KL -25pct 33 0.394 0.13 0.80 0.465 0.195 418 

D KL -50pct 34 0.382 0.13 0.79 0.460 0.194 329 

D KL -75pct 25 0.200 0.05 0.80 0.425 0.080 409 

D KL -90pct 26 0.154 0.04 0.78 0.410 0.063 517 

D KL -100pct 24 0.042 0.01 0.77 0.390 0.016 501 

D KL -best 41 0.512 0.21 0.80 0.505 0.298 33 

Table 5 

Summary of the detection results vs synthes + unrelated group. 

Instance code Cut Precision Recall Specificity Accuracy F1 

MAX -best 43 0.814 0.35 0.92 0.635 0.490 

D KL -StartingA 42 0.881 0.37 0.95 0.660 0.521 

D KL -StartingC 23 0.739 0.17 0.94 0.550 0.276 

D KL -StartingT 21 0.667 0.14 0.93 0.535 0.231 

D KL -allCx 27 0.296 0.08 0.81 0.445 0.126 

D KL -noOnePt 40 0.475 0.19 0.79 0.490 0.271 

D KL -0pct 56 0.804 0.45 0.89 0.670 0.577 

D KL -5pct 30 0.400 0.12 0.82 0.470 0.185 

D KL -10pct 30 0.333 0.10 0.80 0.450 0.154 

D KL -25pct 33 0.394 0.13 0.80 0.465 0.195 

D KL -50pct 34 0.382 0.13 0.79 0.460 0.194 

D KL -75pct 25 0.200 0.05 0.80 0.425 0.080 

D KL -90pct 26 0.154 0.04 0.78 0.410 0.063 

D KL -100pct 24 0.042 0.01 0.77 0.390 0.016 

D KL -best 37 0.514 0.19 0.82 0.505 0.277 
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tected. Now, it is important to stress the fact that the results of

the detection are presented with respect to the choice of a cut-

ting point which is calculated by a heuristic. Therefore, the cutting

point might not be the optimal one. 

This observation lead us to better explore the evasion ability of

the obtained instances, considering all the possible cutting points,

since, looking at the results of Table 4 , it appears that groups that

have a higher fitness score than D KL -best seem to elude the detec-

tion technique better. For instance, if we consider the accuracy of

the algorithm against the best individual ever generated, we can

see that it is 0.505 while, on the other hand, the accuracy of the

detection for the instance D KL -100pct is 0.390. This would mean

that the latter instance can elude the detection algorithm better

than the best solution, although, if we consider the fitness score,

we can see that it is much higher and, therefore, the quality of

that solution is worse. In any case, this implies that we have spot-

ted one potential weakness in the detection algorithm, proving an-

other strength of the proposed proactive schema: the heuristic that

is used to decide in which point to cut is inefficient against groups

of bots synthesized via the genetic algorithms. 

4.2. Detection results of the synthes + unrelated group with the 

derivative heuristic 

The detection results against the synthes + unrelated group are

summarized in Table 5 . This experiment aims at verifying if the

genetic algorithms proposed by the proactive scheme depend on
he choice of the target group. This would mean that we can gen-

rate groups of users that emulate particularly well only the target

roup, but might be unable to evade the detection when mixed

ith other unrelated users. However, this is not the case, as the

esults presented in Table 5 show. First of all, we can notice that

he detection results in Table 5 are very similar to (and some-

imes they are exactly the same of) the results of Table 4 . As in the

revious section, we can observe that MAX as fitness function pro-

uces the worst candidates. Then, we notice that crossover opera-

ions do not suffice to evade the detection and that permutations

nd crossovers are the right combination to have effective bots.

he similarity of results makes us to conclude that the proactive

cheme via genetic algorithms is not bound to the users taken as

arget group for the fitness function, since the detection technique

ails to spot some of the evolved bots when they are mixed to a

roup of genuine accounts that was never observed by the algo-

ithm. 

.3. Detection results for any cutting point 

In this section, we want to dive deeper into the analysis of the

enerated users, trying to address the following questions: if we

magine to have the best detection heuristic possible, how will our

ots perform? Said in another way, what does it happen if we try

ll the possible cutting points? Can we still spot the evolved bots,

f we choose the optimal cutting point? 

To provide an answer to the above questions, we evaluate the

etection results for all the possible cutting points and we report

he results in Fig. 12 –14 . 

In Fig. 12 , we compare the accuracy of different cutting points

n the mixed groups of both synthesized and target accounts and

he synthesized and unrelated accounts. For instance, if we use

10 as the cutting point, we can see from Fig. 12 (a) that the de-

ection algorithm has a 0.5 accuracy against the best generated

roup. At that cutting point, the accuracy is around 0.7 against

he group generated with 100% of mutation, while the other in-

tances perform worse than 0.9. If we do the same analysis us-

ng the unrelated group, in Fig. 12 (b) we can see once again

hat the best instance ( D KL -best) goes undetected, independently

rom the cutting point, while the other instances with worse fit-

ess are not as robust with respect to different choices of cutting

oints. 

The same holds for all the other metrics: precision and recall

n Fig. 13 and F-measure and specificity of Fig. 14 . For example,

f we observe the F-measure, we can see that the individual with

he best fitness score outperforms the others, independently of the
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Fig. 12. Detection results for all the possible cutting points. Accuracy of synthes + target group (on the left) and synthes + unrelated group (on the right). 

Fig. 13. Detection results for all the possible cutting points. Precision and recall of synthes + target group (on the left) and synthes + unrelated group (on the right). 
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hoice of the cutting point. The instances that perform well against

he heuristic cut based on the derivative perform poorly against

ther cutting points. 

Again, if we compare the synthes + target group results

 Fig. 14 (c)) with those of the synthes + unrelated group ( Fig. 14 (d)),

e see that the choice of different cutting points can expose some

f the evolved bots generated by the weaker instances. 

In conclusion, we empirically proved that, in order to gener-

te some possible candidate evolutions, many strategies have to

e evaluated and many parameters have to be tested, before high-

ighting possible weaknesses of the detection algorithm. 
. Discussion 

In this section, we clarify why the adopted genetic algorithm

s capable of generating evolved spambots whose behaviors are

oth malicious and undetectable, thus attractive for spambots

evelopers. 

In the following, we compare some behavioral characteristics of

he spambots in our datasets with those of the evolved bots. We

emind the reader that accounts in Bot1 dataset are retweeters of

 political candidate, while the accounts in Bot2 dataset are URL

pammers. 
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Fig. 14. Detection results for all the possible cutting points. Specificity and F-measure of synthes + target group (on the left) and synthes + unrelated group (on the right). 
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Fig. 15 (a) shows the statistical distribution of the retweet ratio

for the accounts of the Bot1 dataset, before (labeled real bot in

figure) and after (labeled synthetic bot ) the application of the ge-

netic algorithm. For the sake of completeness, we report the same

distribution also for the humans dataset (labeled real legitimate ).

The retweet ratio is computed as the fraction of retweets over all

tweets produced by an account. Each point in the figure represents

a distinct account. We can easily see that despite being retweeters

of a political candidate, the accounts in Bot1 overall retweet only

a minority of the time and thus have a rather low retweet ratio.

The consequence of the application of the genetic algorithm to the

accounts in Bot1 is that the evolved spambots retweet more of-

ten than the original ones. This is because the algorithm aimed to

make the new behavior of the bots more similar to that of the hu-

mans, which indeed feature a median 

# retweets 
# t weet s ratio in the region

of 0.25. Thus, the number of retweets done by the evolved bots is

greater than that done by the original bots. Moreover, whereas the

original bots are detected by the Social Fingerprinting technique

(see Fig. 5 (a), Section 2.1.3 ), their evolution is such that the per-

formances of the technique is very poor ( Tables 4 and 5 ). Indeed,

the evolved retweeters are not detectable anymore, despite seeing

their chances of retweeting increase. To this regard, the evolved

behavior obtained with the application of our genetic algorithm,

made the bots both more effective in their retweeting strategy and

less easily detectable. 

Fig. 15 (b) considers the spambots in Bot2 and measures the

statistical distribution of the URL ratio – that is, the ratio between

the number of tweets containing a URL and the total number of

tweets (i.e., # URL 
# t weet s ). As shown by the plots, it is quite clear that the

real spambots are URLs spammers. Indeed, their URL ratio is in the
 t
egion of 0.45. Such spambots are detected by the Social Finger-

rinting technique (see Fig. 5 (b), Section 2.1.3 ). After the evolution,

heir URL ratio decreases to about 0.23. This is because the algo-

ithm let the original Bot2 evolve to make their behavior more

imilar to that of the legitimate ones. Even if the evolved bots de-

rease their “spammy” behavior, such characteristic is necessary to

vade detection ( Tables 4 and 5, Section 4 ). However it is worth

oting that, on average, the evolved bots are still capable of tweet-

ng 1 tweets with URLs every 4 tweets, all of this while still re-

aining undetectable. Importantly, this URL ratio is much greater

han the one featured by the legitimate accounts in the humans
ataset and thus, the evolved bot are still capable of performing

heir URL spam activity, although at a reduced rate. 

. Related work 

With the widespread adoption of OSNs, search engines, and e-

ommerce platforms, we assisted to the rapid proliferation of many

tudies on modeling and analysis of online behaviors [21] . Model-

ng and analyzing online user behaviors deserves attention for a

ariety of reasons. One is to mine substantial information regard-

ng events of public interest [22] . In addition, linking behaviors to

 ground truth in the past leads to predict what will likely happen

n the future when similar behaviors take place [23] . Furthermore,

nline behavioral analysis helps in detecting fictitious and deceit-

ul accounts that may distribute spam or lead to a bias in the pub-

ic opinion [3,4,6,24,25] . Past research on online behaviors exploits

ifferent techniques, relying, e.g., on social and interaction graphs

26,27] , textual content [22,28] , and other complex data represen-

ations [23] . 
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Fig. 15. Malicious behavior featured before and after GA application. 
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To this regard, the definition of a unifying approach is an open

hallenge. The introduction of the novel notion of digital DNA

equences to characterize online user behaviors on social media

rings a high flexibility and makes this original modeling tech-

ique well suited for different scenarios, with the potential to open

p new directions for research. As an example, in [13] , the authors

tudy online human behaviors from a different perspective, with

he aim at verifying if a general model exists for approximating

hem, regardless of the precise contextual activities the users are

arrying out. The promising results in [13] , also supported by other

ecent literature [29–31] , let us continue to investigate this line of

esearch, shifting however the research challenge towards the pos-

ibility of synthesizing spambots that are able to resemble legiti-

ate behaviors and, thus, that are able to remain undetected from

tate-of-art detection techniques. 

The threatening outcome of this study has however also an-

ther – positive – effect: the possibility to predict future evolutions

f spambots and thus to re-design more efficient detection tech-

iques, following the proactive spambot detection approach [8] . 

. Conclusions 

In this paper, we presented a novel approach to the task of bot

etection. We first discussed a new proactive detection paradigm,

hat allows a quantitative study on future evolutions of social bot

ehaviors. Then, we provided a concrete and extensive experimen-

al campaign on the applicability of this proactive scheme, analyz-

ng groups of evolved social spambots that are, to date, still mostly

ctive (not suspended nor deleted by Twitter). In theory, the pro-

osed proactive framework is general and applicable to a broad

et of accounts and detection techniques. In practice, we presented

he effectiveness of the proactive scheme on a specific behavior-

ased state-of the-art detection system, that proved very effective

n recent evaluation campaigns. Our results are promising, since

e were able to synthesize spambot behaviors that remain unde-

ectable to the detection technique. 

Although unlikely to completely defeat malicious behaviors, the

pplication of the proposed proactive schema would nonetheless

ring groundbreaking benefits. Indeed, the possibility to foresee
ossible evolutions of spambots, and to a priori design and test

etection techniques, would substantially raise the bar for spambot

evelopers. As a final remark, the novel proactive schema has been

ere grounded on genetic algorithms and on the recent advances

n digital DNA behavioral modeling, since they currently represent

ts key enabling factors. However, it is likely that in the near future

he same proactive approach to spambot detection could leverage

ifferent techniques and methodologies, thus widening the appli-

ability of different proactive solutions. In fact, the implementation

f the proposed proactive approach with different models of the

ccounts and different detection techniques (e.g., those based on

etwork characteristics or on the content of posted messages) cur-

ently represents a promising research direction. 
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