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a b s t r a c t 

Predicting the diffusion of information in social networks is a key problem for applications like Opinion 

Leader Detection, Buzz Detection or Viral Marketing. Many diffusion models are direct extensions of the 

Cascade and Threshold models, initially proposed for epidemiology and social studies. In such models, the 

diffusion process is based on the dynamics of interactions between neighbor nodes in the network (the 

social pressure), and largely ignores important dimensions as the content diffused and the active/passive 

role users tend to have in social networks. We propose here a new family of models that aims at predict- 

ing how a content diffuses in a network by making use of additional dimensions: the content diffused, 

user’s profile and willingness to diffuse. In particular, we show how to integrate these dimensions into 

simple feature functions, and propose a probabilistic modeling to account for the diffusion process. These 

models are then illustrated and compared with other approaches on two blog datasets. The experimental 

results obtained on these datasets show that taking into account the content diffused is important to 

accurately model the diffusion process. Lastly, we study the influence maximization problem with these 

models and prove that it is NP-hard, prior to propose an adaptation of the greedy algorithm to approxi- 

mate the optimal solution. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Propagation models in content networks, i.e. social networks in

hich content are shared and diffused among users, aim at repro-

ucing the diffusion of information between users. Being able to

ccurately model this diffusion has several practical applications,

s the identification of influence hubs, the choice of initial diffusers

or a maximal diffusion, or the identification of links one has to re-

ove in order to limit the diffusion (e.g. for stopping rumors). 

Most of the models proposed in the domain of information

iffusion are extensions of the Independent Cascade model (IC)

1] and the Linear Threshold model (LT) [2] . The IC model is based

n the following simple principle: as soon as a user (i.e. a node

n the social network) n j is infected, she has a unique chance to

nfect each of her direct neighbors n i with a probability P ji that

epends on both n j and n i . The LT model considers that a node

 i of the social network (i.e. a user) is contaminated if the sum of

he weights on its incoming edges are above a threshold θ i specific
∗ Corresponding author at: Skopai, France. 
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o n i , this threshold being chosen randomly in many instances of

he model [3] . They nevertheless fail to take into account for two

mportant elements: 

• They ignore the content of the information diffused even

though, in a given social network, two different pieces of in-

formation will not propagate in the same way; 

• They tend to ignore users characteristics even though the in-

terest of a particular user plays a major role in the diffusion

process. 

Ignoring the content being diffused entails that, in these mod-

ls, different contents issued from the same user will diffuse in

he same manner. In other words, in content-agnostic models, the

iffusion cascades 1 originating from a given user are the same, re-

ardless of the content being diffused. 

However, this does not correspond to what is happening in real

ocial networks. To illustrate that, we compared diffusion cascades
1 A cascade corresponds to the production of a content by one user of the net- 

ork, as well as the ensuing re-diffusions of this content by other users. It is thus 

haracterized by the set of users involved in the diffusion of a content. A cascade 

f size n involves the initial diffuser and n − 1 re-diffusers. 
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Fig. 1. Importance of content in diffusion: histograms of the different values (discretized with bins of size 0.1) taken by the Jaccard coefficient on pairs of cascades issued 

from the same user and involving re-diffusion (left), and relation between content similarity (computed with the cosine) and the Jaccard coefficient on cascade pairs. 
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issued by the same users in the ICWSM blog dataset 2 The com-

parison is based on the Jaccard coefficient, that measures here the

proportion of users involved in two different cascades. Let A and

B be two sets, the Jaccard coefficient between those two sets is

defined by: 

J(A, B ) = 

| A ∩ B | 
| A ∪ B | 

where | X | denotes the cardinal of set X . Thus, for any pair of diffu-

sion cascades issued from the same user, one obtains a score be-

tween 0 and 1 indicating whether the users involved in the cas-

cade are the same or not. If the score is close to 0, then the users

involved in the two cascades are different; if the score is 1, then

the same users are involved in the two cascades. The scores ob-

tained can then be binned into fixed-size intervals so as to better

visualize their behavior. 

Fig. 1 (a) displays such an histogram for the ICWSM blog dataset

using only cascades of size 2 or more ( i.e. involving the initial dif-
2 This dataset is fully described in Section 5 . 

t  

t  
user and at least one re-diffuser) , where the bins considered are

f size 0.1, starting from 0 to 1. As one can note, this coefficient

akes on very different values. If many cascade pairs get a score

lose to 1 (last bin on Fig. 1 (a)), the majority of cascade pairs

74.5%) get a score strictly lower than 0.8. This shows that cascade

airs do not diffuse in the same way. This finding is similar to the

ne reported in [4] for the diffusion of hashtags related to differ-

nt topics in Twitter. It has to be noted that, on average, the longer

he cascades are, the smaller the Jaccard coefficient between two

ascades is. This is illustrated in Fig. 1 (c) that corresponds to the

ame experiment as before but using only cascades of size 5 or

ore. One can see that there are even less cascades with a high

accard coefficient here. 

Having established that cascade pairs do not diffuse in the same

ay, we now consider the question whether or not the diffusion

rocess is influenced by the content being diffused. Purely prob-

bilistic models, as IC or LT, can generate cascade pairs that be-

ave as in Fig. 1 (a) and (c). They are however agnostic to con-

ent and would fail to accurately model cascades if they depend on

he content being diffused. In order to study the relation between
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he content diffused and the diffusion cascades, we measured the

imilarity between two contents being diffused by the same user

nd checked whether similar contents are more likely to be dif-

used in a similar manner than dissimilar contents. We rely here

n the standard bag-of-words representation and cosine similarity

o measure how similar two contents are [5] . Fig. 1 (b) and (d) plot

he average similarity value between two contents issued from the

ame user and the Jaccard coefficient computed on the two sets

f users having re-diffused the two contents (to get reliable esti-

ates, only values of the Jaccard coefficient corresponding to more

han 20 cascade pairs are kept). As one can note, the points are

ispersed around the first diagonal with an overall increase along

his diagonal. This indicates that the more similar (resp. the more

issimilar) two contents are, the more similar (resp. the more dis-

imilar) their diffusion cascades are. Furthermore, the Spearman’s

orrelation coefficient, that measures to which extent two sets of

alues are correlated, amounts to 0.67 for cascade pairs of size 2 or

ore and to 0.54 for cascade pairs of size 5 or more, indicating a

ositive, non-negligible correlation between content and diffusion.

his shows that content plays an important role in the diffusion

rocess: A model of content diffusion in social media has to take into

ccount the content being diffused . 

Another problem associated with IC or LT-based models is the

act that they rely on many parameters. Indeed, these models typ-

cally use as many parameters as there are edges in the social

etwork. In many cases, however, the diffusion of a piece of in-

ormation only involves a few users, which entails that the ma-

ority of links between users are only rarely observed. For exam-

le, most posts in blogs are only cited by authors, as illustrated in

ection 5 and [6] . Relying on a lot of parameters in such cases is

roblematic as it is often impossible to accurately estimate these

arameters. 

We present here a family of models in which we integrate some

f these elements. In particular, these models include: 

(a) the social pressure measured using the number of neighbors

who already shared the information, 

(b) the interest of a user in the information diffused, measured

using the similarity between the content and the profile of

the user, 

(c) the role played by the user, defined by her tendency to share

the information she sees. 

In content networks, one can observe two main types of dif-

usion: a user willing to share some piece of information either

roadcasts it to all of her neighbors, or explicitly targets a subset of

hem. The first case is typical of social networks like blogs, confer-

nces or Facebook and Twitter in their main usage, while the sec-

nd one is more representative of e-mails and phone calls. In this

ork, we focus on the broadcast type of diffusion, but the mod-

ls we are going to introduce can be easily adapted to the other

ype. We furthermore focus here on blogs as they provide enough

ontext to fully capture the content being diffused (this is in con-

rast with social networks as Twitter in which the content being

iffused is sometimes difficult to characterize). 

The remainder of this paper is organized as follows: the next

ection describes related work on diffusion in social networks, in

rder to position our approach. We give some notations and for-

ally state the problem we address in Section 3 . Section 4 de-

cribes the user-centered models we introduce in this article. In

ection 5 , we present some experiments to validate our approach

nd compare it with other approaches. Section 6 deals with the

nfluence maximization problem in the context of user-centered

odels. Lastly, Section 7 concludes our study, summarizing our

ain contributions and presenting some perspectives. 
. Related work 

Information diffusion models can be classified into two main

ategories: contagion models and influence models. A third cat-

gory, corresponding to social learning models [7] , is sometimes

onsidered; it relies on the fact that, in some cases, the adoption of

 product by a user depends on the observed utility of this product

n other users [8] . If some studies aim at integrating a utility pa-

ameter in contagion and influence models, they rely on assump-

ions (as the fact that the utility of a product for a user is known)

hat are not met for content diffusion in social network. A compre-

ensive survey on information diffusion models in social networks

an be found in [9] . 

In contagion models, users are contaminated as soon as they

re in contact with a contaminated user. Such models were

riginally proposed in epidemiology to understand how diseases

pread, based on differential equations for the global population

or going from a safe state to a contaminated one, as the SI (Sus-

eptible, Infected) model, or its extensions with additional states,

s the SIR (Susceptible, Infected, Recovered) model. Trottier et al.

10–12] provide a good description of these models; Young et al.

13] or [7] present several variants of these models in various set-

ings. It is possible to adopt the same approach locally, by mak-

ng use of infection rates that are specific to the users in contact.

n this case, the SI model becomes close to the IC (Independent

ascade) model, as shown in [14] . In [15] , SIS-like (Susceptible, In-

ected, Susceptible) diffusion models are used to study the coexis-

ence of two competitive spreadings. These models are also used

o find the source of a diffusion in [16] . 

The IC model [1] is based on the following simple principle: as

oon as a user (i.e. a node in the social network) n j is infected,

he has a unique chance to infect each of her direct neighbors n i 
ith a probability P ji that depends on both n j and n i . That this

nfection succeeds or not, n j will make no further attempt to infect

 i . The parameters P ji can be learned through maximum likelihood

rom observed diffusions [17] . As for the SI model, the IC model is

quivalent to a bond percolation process on the graph of the social

etwork [3,12,14] . 

The IC model has been extended to integrate a time variable

n the diffusion model and to account for the fact that diffu-

ion/contamination can be delayed (the contamination of neigh-

ors does not necessarily happen as soon as a user has been con-

aminated). To do so, the ASIC (Asynchronous IC), introduced in

18] , makes use of an exponential probability distribution to model

he delay between the contamination of a user and its attempt to

ontaminate her neighbors, the contamination probability decreas-

ng with this delay (a similar “latence” phenomenon is used in

19] ). The EM algorithm is then used to estimate the parameters

f this model. 

In a similar way, in [20] , they introduce IC-like models based

here the diffusion probability between two users is defined us-

ng the proportion of actions they both performed. One particular

odel they propose give the credit of the contamination of a user

qually distributed on all her previously contaminated neighbors.

hey also introduce a continuous time model in which the decay

s based on an exponential distribution. 

More recently, Gomez-Rodriguez et al. [21] consider different

robability distributions for the delay in the contamination: expo-

ential, power law and Rayleigh distributions. The family of models

hus defined is called NetRate . The version based on the exponen-

ial distribution is in fact a special case of the ASIC model (ob-

ained when setting the k v, w 

parameter of ASIC to a constant). An

nteresting point with NetRate is that it leads to a maximum like-

ihood optimization problem with positivity constraints in which

he likelihood function is strictly concave and which has a unique

olution that can be determined through standard optimization
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techniques. It thus does not suffer from the local maxima prob-

lem of the ASIC likelihood function. The same property can also be

found in [22] for the Connie model, which aims at inferring the

underlying network from diffusion cascades. The original purpose

of NetRate and Connie is thus link prediction (as such, it can be

seen as an extension of NetInf [23] , described in [21] ); however,

the links predicted are based on diffusions existing in the training

set, and this family of models can directly be used for informa-

tion diffusion purposes, the probability of contamination between

two users being equivalent to the one of predicting a link between

them. Along the same direction, some models have been proposed

to predict the links based on the observed cascades. In [24] or

[25] for example, information diffusion models are used to infer

the underlying structure of the social network. In the same family

of problems, Weng et al. [26] predict link creations using diffusion

cascades; Taxidou and Fischer [27] reconstruct cascades structure

using information diffusion and the Twitter graph. 

Influence models, also called threshold models, consider that a

user is contaminated if the number or the proportion of her in-

coming neighbors already contaminated is above a threshold, spe-

cific to the user. It is thus the “social pressure” that determines

whether a user will be contaminated or not. The first studies on

such models are described in [28] and [2] 3 . They have since been

extended in [29–37] . The prototype of all these models is the LT

model which, in its most used form, considers that a node n i of

the social network (i.e. a user) is contaminated if the sum of the

weights on its incoming edges are above a threshold θ i specific to

n i , this threshold being chosen randomly in many instances of the

model [3] . As for the IC model, one can show kempe-2003) that

the LT model is equivalent to bond percolation on the graph of

the social network, which places this model in the same general

class as the one of contagion models. A slightly different influence

model, LIM (Linear Influence Model), is presented in [38] , aiming

at finding the global influence of infected users on the rest of the

network, and at predicting the volume of the final set of contami-

nated users. 

Lastly, generalized versions of both the IC and LT models have

been proposed [39] . The generalized version of IC allows one to in-

tegrate the “social pressure”: when a node n j is contaminated and

attempts to contaminate one of its neighbors n i , it does so with

a probability P ji ( S ) that takes into account the set of all neighbors

of n i which have already tried to contaminate it and failed. P ji ( S )

is chosen so that it increases with the cardinality of S and is in-

dependent from the order in which elements of S are considered.

The IC model is a specific case of this generalized cascade obtained

by considering that P ji ( S ) does not depend on S . The generaliza-

tion of the LT model amounts to consider a set of functions (and

not only the sum) to collect the contributions of incoming neigh-

bors already contaminated: a node n i is contaminated if f i ( S ) ≥ θ i 

where S is the set of incoming neighbors of n i already contami-

nated and f i is a function strictly increasing with the cardinality

of S . The LT model corresponds to the case where f i is the sum

of the weights of the incoming links between n i and its incoming

neighbors already contaminated. These two generalizations lead to

models that take into account different aspects (direct contagion

and social pressure). They also lead to models that are equivalent:

each generalized cascade model can be reformulated as a general-

ized threshold model, and reciprocally [39] . 

The re-diffusion of a piece of information, in all the above-

mentioned models, solely relies on the “social pressure” (i.e. the

fact that a user is more likely to re-diffuse a piece of informa-

tion if it comes from many different sources) and the willingness

of users to diffuse (which measures the active/passive roles users
3 The LT (Linear Threshold) model is often associated with Granovetter’s model. 

o  

A  

t

end to have in social networks). In IC models, the social pressure

s implicitly captured in the diffusion process through the fact that

ach active neighbor of a user tries to diffuse the information to

hat user: the more active neighbors a user has, the more likely

he will re-diffuse the information. On the other hand, in LT mod-

ls, the social pressure is explicitly modeled through the threshold

i associated to each user. In both models, the willingness to dif-

use is captured through the weights on the outgoing edges of a

articular user. The articulation between these two factors, social

ressure and willingness to diffuse, furthermore varies from one

odel to another: in IC, social pressure arises from repeated trials

ased on the willingness to diffuse and, in LT, re-diffusion takes

lace when the combination of the two factors (captured through

he sum of weights on the edges linking a particular user to her

ctive neighbors) exceeds a certain threshold. The extension of the

SIC model proposed in [40] also takes into account users’ profile,

n order to model the fact that if two users have similar profiles,

hen they are more likely to diffuse a piece of information to each

ther. This said, as the other models, it ignores the content of the

nformation being diffused and the interest of users for this con-

ent. The models we introduce here account for this additional di-

ension and rely on an explicit representation of all the factors

entioned above. 

Lastly, a certain number of studies have focused on the influ-

nce maximization problem given a diffusion model. This problem

mounts to finding, for a given network, a given content, a given

iffusion model and a given number κ , the κ initial diffusers to

elect so as to maximize the diffusion of the content over the net-

ork. This problem was first studied, to our knowledge, in [41] and

ater in [3] , [14] or [42] . It is known to be NP-hard for the above-

entioned models, and to involve a diffusion function which is

ub-modular, thus allowing the use of the greedy algorithm de-

cribed in [43] . Similar results for the NetRate model can be found

n [44] . [45] introduces an algorithm for influence maximization

ver continuous-time diffusion models that performs better than

he standard greedy-algorithm. The models considered extend the

ndependent cascade model. Lastly, similar problems are consid-

red in [46] and [47] : respectively finding how much a content

ill diffuse using some early stage information, and assessing an

nfluence score independently to a particular diffusion model. 

As we will see, the influence maximization problem is also NP-

ard for the user-centered models we are going to introduce; how-

ver, the diffusion function is no longer sub-modular and some of

he properties of the greedy algorithm are lost. 

A first version of the models we describe here is presented in

48] . The current contribution differs from this previous work in

he following aspects. Firstly, we fully justify the need for models

aking into account the content being diffused through an experi-

ental comparison of how different contents, issued by the same

ser, diffuse in social networks. Secondly, we present a broader

omparison to existing models using multiple measures. Thirdly,

e give new illustrations aiming at providing intuitive explana-

ions on how the models behave. Fourthly, we conduct a theoreti-

al analysis on the relation (in this case non-equivalence) between

ur model and standard information diffusion models. Finally, we

ntroduce a study of the influence maximization problem that is

inked to the diffusion problem. 

. Notations and problem statement 

.1. Notations 

We consider here social directed graphs G = (N , E ) composed

f a set of nodes/users N = { n 1 , ..., n N } and a set of edges/links E .

 user n i is linked to another user n j if (n i , n j ) ∈ E . We will fur-

hermore use the following notations: 
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• B(n i ) will denote the set of all in-neighbors of user n i (users

who have a link to n i ): 

B(n i ) = { n j / (n j , n i ) ∈ E} 
• Every user has a profile based on what she likes or dislikes.

P is the set of all possible user profiles and ∀ i , 1 ≤ i ≤ N, p i will

refer to the profile of user n i . Typically, p i is a vector of features

computed for each user. 

• Q = (q 1 , ..., q K ) is the set of all possible information that will

propagate through the network. A piece of information (or con-

tent) is defined in the same feature space as users profiles. 

• M = (M 

1 , ..., M 

K ) , a set of diffusion matrices for each content

q k , of the form: 

M 

k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

m 

k 
1 , 0 m 

k 
1 , 1 m 

k 
1 , 2 . . . m 

k 
1 ,T k 

m 

k 
2 , 0 m 

k 
2 , 1 m 

k 
2 , 2 . . . m 

k 
2 ,T k 

. . . 
. . . 

. . . 
. . . 

. . . 

m 

k 
N, 0 m 

k 
N, 1 m 

k 
2 , 2 . . . m 

k 
N,T k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

where m 

k 
i,t 

∈ { 0 , 1 } ; m 

k 
i,t 

= 1 indicates that user n i has diffused

content q k before or at time t. T k corresponds to the duration

of the diffusion of content q k , in time steps. M 

k 
.,t will denote

the t th column of M 

k . Lastly, the set M is divided into two dis-

joint subsets: a set of training matrices, {( M 

1 , q 1 ), ..., ( M 

� , q � )},

and a set of test matrices, 
{
(M 

� +1 , q � +1 ) , ..., (M 

K , q K ) 
}

. Training

matrices will be used to learn diffusion models, whereas test

matrices will be used for evaluation. 

• In all our models, we look at users who diffuse an information,

and when it is done we consider them as active (or contam-

inated). A user is considered inactive if she doesn’t have seen

(or diffused) the content. In the processes we consider, a user

who has diffused a content is necessarily active. 

• C k ( t ) the set of all users having been contaminated before or at

time t by content q k . 

For convenience in our discussion, we will also make use of the

et C k ( n i , t ) of incoming neighbors of n i who have already diffused

ontent q k before or at time t . 

.2. Problem statement 

We are interested here in the step-by-step evolution of the dif-

usion process, as well as in its result after a given time. We denote

y F the function that predicts the diffusion of an information at

ime t given the diffusion status of the network at time t − 1 . With

he elements defined above: 

 

k 
i,t = F(n i , G, P, q k , M 

k 
.,t−1 ) (1)

he function F 

(t) predicting the result of the diffusion process af-

er a given time can be constructed from F by “unfolding” it over

ime, where ( t ) denotes the composition of F t times. In previous

tudies, F depends neither on P nor on q k , and we make here the

ssumption that exploiting information from P and q k will result

n a better prediction of how information diffuses. Furthermore,

e also want to rely on few features (and thus parameters) so as

o be able to rely on models robust to several diffusion scenarios,

nvolving either few or many diffusions. The goal of the present

tudy is thus twofold: 

1. Learn “simple” mappings F , from G , P, q k and the training set

(( M 

1 , q 1 ), ..., ( M 

� , q � )), where “simple” means that such map-

pings should rely on few parameters; 

2. Assess whether relying on few parameters and exploiting P and
k 
q lead to better diffusion models.  
. Content diffusion models 

As mentioned before, previously proposed information diffusion

odels merely rely on the “social pressure” (i.e. the number or

roportion of incoming neighbors who have already diffused the

nformation) in order to determine whether a given user is likely

o diffuse the information or not. They thus ignore two aspects

hat may be crucial for information diffusion in content networks,

amely the interest of users in the content being diffused, and the

ctive/passive role each user has in the social network. We show in

his section how these different aspects can be captured through

imple feature functions, prior to present the basis functions de-

ned on top of these features and used to estimate F . 

.1. User-based features 

The thematic interest of each user in the content diffused can be

odeled as a proximity between user profiles (describing their in-

erests) and the content diffused. A general form for this proximity

s: 

(n i , P, q k , θs ) = sim (p i , q k ) − θs 

here θ s is a threshold and sim ( p i , q k ) represents a similarity be-

ween the content diffused and the user profile. Setting θ s to 0

mounts to relying solely on the similarity between the user pro-

le and the content diffused; higher values of θ s allow one to “dis-

ourage” diffusion when the user interest in the content is not suf-

cient. We use in this study the cosine similarity for sim , but other

hoices are possible. 

The activity , or active/passive role, can directly be measured, on

he training set, through the ratio between the number of contents

eceived and diffused by a user and the number of contents re-

eived by that user: 

ct(n i , G, D) = 

∑ l 
k =1 I(| C k (n i , T 

k − 1) | > 0) m 

k 
i,T k ∑ l 

k =1 I(| C k (n i , T k − 1) | > 0) 

here I () denotes the indicator function. This measure can be gen-

ralized by introducing a threshold, through: 

 (n i , G, D, θw 

) = Act(n i , G, D) − θw 

 (n i , G, D, θw 

) represents the willingness of user n i to diffuse in-

ormation, and θw 

plays a role similar to the one of θ s above. 

Lastly, the social pressure on each user, i.e. the fact that many

ifferent neighbors have diffused a given content, is traditionally

easured, either implicitly or explicitly, through the number of in-

oming neighbors having already diffused the information. We de-

ote the associated measure: 

P (n i , G, M 

k , t) 

he way this feature is computed is model dependent and we de-

ail it below, but intuitively it corresponds to the number of incom-

ng neighbors of user n i who have diffused the content q k before

r at time t . 

Each user can thus be represented by a vector of three features

volving over time for each content q k , omitting, for readability

easons, the other arguments ( P, G, M 

k 
.,T k −1 

, θs , θw 

): 

 

S(n i , q 
k ) 

W (n i ) 
SP (n i , t) 

) 

Given the three proposed features, one can define basis func-

ions for each user, content and timestamp, that will be used to

uild the prediction functions. We focus in this study on basis

unctions that are simple linear combinations of the above fea-

ures: 

f (n , q k , t) = λ0 + λ1 .S(n , q k ) + λ2 .W (n ) + λ3 .SP (n , t) (2)
λ i i i i 
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Parameters λ0 λ1 , λ2 , λ3 are controlling the influence of each di-

mension of the contamination. The estimation of all parameters,

including θ s and θw 

, is described in Section 4.3 . 

The linear model above has the advantage of being easy to es-

timate and scalable. If it does not account for potential dependen-

cies between the three dimensions considered (thematic interest,

activity and social pressure), it still represents a good basis for in-

tegrating them and capturing the effect that the more important

each dimension is, the more likely the user will re-diffuse. 

4.2. Probabilistic modeling 

Probabilistic models for information diffusion allows one to

model the uncertainty inherent to the diffusion process. In this

case, one does not consider that each user has either diffused a

given content or not, but rather that each user has a certain proba-

bility of having diffused the given content. Two quantities are use-

ful here: 

• P ( n i , q k , t ), the probability that user n i diffuses content q k at

time t ; 

• P ( n i , q k , ≤ t ), the probability that user n i has diffused content

q k before or at time t . 

These two quantities are related through: 

P (n i , q 
k , ≤ t + 1) = P (n i , q 

k , ≤ t) 

+(1 − P (n i , q 
k , ≤ t)) P (n i , q 

k , t + 1) (3)

A user having diffused before or at time t + 1 has either diffused

before time t , or has not and has diffused at time t + 1 . Further-

more, because of the definition of P ( n i , q 
k , ≤ t ): 

F 

(t) (n i , G, P, q k , M 

k 
., 0 ) = P (n i , q 

k , ≤ t) 

When the thematic interest of the user is high, or when her

willingness to diffuse or her social pressure is high, P ( n i , q k , t )

should be high; conversely, when thematic interest, willingness to

diffuse and social pressure are low, P ( n i , q 
k , t ) should be low. Such

a behavior is naturally captured in the logistic function, which acts

as a soft thresholding process and yields valid probability func-

tions. Furthermore, a user cannot diffuse a content if no incom-

ing neighbor has already diffused it. Because of the probabilistic

setting retained here, one does not have a direct access to | C k ( n i ,

t )|, the number of incoming neighbors having already diffused, but

rather to an expectation of it ( E [| C k ( n i , t )|]). Hence: 

SP (n i , G, M 

k , t) = E[ | C k (n i , t) | ] 
and: 

P (n i , q 
k , t + 1) = 

{ 

(1 + e − f λ(n i ,q 
k ,t) ) −1 if E[ | C k (n i , t) | ] > 0 

0 otherwise 

(4)

with ( λ1 , λ2 , λ3 ) positive or null (when a feature has no impact on

the diffusion). 

The expectation E [| C k ( n i , t )|] is defined as: 

E[ | C k (n i , t) | ] = 

∑ |B(n i ) | 
m =0 

m P (| C k (n i , t) | = m ) , where

P (| C k (n i , t) | = m ) is the probability that the number of incoming

neighbors who have diffused the content is m . It is easy to show

that (we skip here the derivation which is purely technical): 

E[ | C k (n i , t) | ] = 

∑ 

n j ∈B(n i ) 

P (n j , q 
k , ≤ t) (5)

The dynamics of the diffusion thus evolves, from one time step

to another, through: 

1. Initialization: P (n i , q 
k , ≤ 0) = 1 for initial diffusers, 0 otherwise;

2. Iteratively compute (from t = 0 ): 

• E [| C k ( n , t )|] using Eq. (5) 
i 
• P (n i , q 
k , t + 1) using Eq. (4) 

• P (n i , q 
k , ≤ t + 1) using Eq. (3) 

The main problem with the above model, however, is that, at

ny timestamp, P (n i , q 
k , t + 1) ≥ P (n i , q 

k , t) . Then if P ( n i , q k , t ) is

trictly positive at some point in time, lim t→ + ∞ 

P (n i , q 
k , ≤ t) = 1 .

his is due to the fact that users are “aware” of the content they

ave already diffused at all time steps, and that their probability

f diffusing will be reinforced by subsequent receptions of a given

ontent (for this reason, we refer to this model as RUC , for Rein-

orced User-Centered ). The following model corrects this drawback. 

.2.1. A time-decaying extension 

The quantity P ( n i , q k , t ) becomes strictly positive as soon as

 [| C k ( n i , t )|] is strictly positive, and one would like, in this latter

easure, that the influence of users having diffused an information

 long time ago be less important than the one of users having dif-

used the information recently. One can thus replace Eq. (5) by the

ollowing equation: 

[ | C k (n i , t) | ] = 

∑ 

n j ∈B(n i ) 

ρ(n j , q 
k , t) (6)

here ρ( n j , q 
k , t ) is a function of the influence n j has on her out-

oing neighbors at time t wrt content q k , penalizing “old” diffu-

ions: 

(n j , q 
k , t + 1) = δ × ρ(n j , q 

k , t) 

+ (1 − P (n j , q 
k , ≤ t)) P (n j , q 

k , t + 1) (7)

y definition, ρ(n j , q 
k , t = 0) = 1 for initial diffusers and 0 other-

ise. δ, 0 ≤ δ ≤ 1 is a decaying parameter controlling the penal-

zation on old diffusions. When δ = 1 , ρ(n j , q 
k , t) = P (n j , q 

k , ≤ t)

nd one recovers the RUC model. The other quantities of the RUC

odel remain unchanged. We will refer to the model with a de-

aying parameter as DRUC , for Decaying Reinforced User-Centered . 

.3. Parameter estimation 

Setting θ s and θw 

: We now turn to the problem of setting the

hresholds θ s and θw 

. A user having a similarity with the query

bove θ s is more likely to diffuse an information; conversely, a

ser with a similarity below θ s is more likely to not diffuse the

nformation. The global similarity function S defined above is pos-

tive in the first case and negative in the second one. θ s thus cor-

esponds to a threshold on the similarity function above which a

ser is more likely to diffuse an information, and can be obtained,

rom the training set, through a line search on the cosine similarity

alues between content diffused and user profiles. This line search

rocess is here initialized at 0, with an increment of 0.05, and is

topped as soon as the number of users (with this specific similar-

ty with a content) re-diffusing a content is greater than the num-

er of users not re-diffusing it. For example, the value of θ s is 0.35

or the MT (dense) dataset. A similar reasoning for the willingness

o diffuse ( W (n i , G, D, θw 

) ) directly leads to θw 

= 0 . 5 . Indeed, if a

ser shares more than 50% of the content she sees, the willingness

hould have a positive effect on the diffusion probability (and a

egative effect if she shares less than 50%). 

The parameters λ0 , λ1 , λ2 and λ3 can be learned through max-

mum likelihood, with positivity constraints using the gradient as-

ent method. 

Let L (λ0 , λ1 , λ2 , λ3 ) denote the likelihood of the training set.

he learning problem we face can be formulated as: 

argmax λ0 ,λ1 ,λ2 ,λ3 
L (λ0 , λ1 , λ2 , λ3 ) 

subject to: λ1 ≥ 0 , λ2 ≥ 0 , λ3 ≥ 0 

here the positivity constraints are dictated by the choice of the

iffusion function at the basis of our models. As these contraints
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(a) Social graph

probability x y
p1 closed closed
p2 closed open
p3 open closed
p4 open open
(b) Probabilities table

Fig. 2. Link percolation example. 
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f  
re “interval” constraints, one can resort to projected gradient ap-

roaches to estimate the parameters, in which each gradient de-

cent/ascent step is followed by a projection of the parameters on

he admissible intervals. Its application here leads to the following

pdate formulas (in between iterations (p + 1) and ( p )), in which

 stands for the log-likelihood function: 

 i ∈ { 0 , 1 , 2 , 3 } : 
{ 

λ(p+1) 
i 

= λ(p) 
i 

+ α
∂L (λ(p) 

0 
,λ(p) 

1 
,λ(p) 

2 
,λ(p) 

3 
) 

∂λi 

If λ(p+1) 
i (i � =0) 

< 0 , then λ(p+1) 
i (i � =0) 

= 0 

here α controls the step of the descent along the gradient of L . 

The likelihood, on the training set, for the RUC and DRUC mod-

ls, takes a simple form as it is directly based on the probability of

ach user to be active at each timestamp: 

 (λ0 , λ1 , λ2 , λ3 ) = 

l ∏ 

k =1 

T k ∏ 

t=1 

[ 
∏ 

n i ∈ C k (t) 

P (n i , q 
k , ≤ t) 

∏ 

n i / ∈ C k (t) 

(1 − P (n i , q 
k , ≤ t))] 

or efficiency reasons, we make use of the recurrence equation ( Eq.

3) ) to compute the partial derivatives, and store, for each user, the

urrent values of P ( n i , q 
k , ≤ t ) and its derivative at each timestamp.

he exact form of these derivatives is given in appendix A. 

.4. Non equivalence with previous models 

Standard models (IC and LT) have been proved equivalent to a

ond percolation process by Kempe et al. [3] ; we show here that

uch an equivalence does not hold for the models defined previ-

usly. 

Bond percolation was originally introduced to model water

owing in networks through the following, simple stochastic pro-

ess: water flows through an edge e with probability p e and does

ot with probability (1 − p e ) . By letting water flows according to

his process, one can determine at the end which edges were used.

uch edges are called open (or occupied ), whereas the other edges

re called closed (or unoccupied ). In the context of information dif-

usion, an open link corresponds to a diffusion of the information

etween the involved users, whereas a closed link corresponds to

o diffusion between them. 

More formally, given a graph G = (N , E ) , let |E | denote the

umber of edges in G, let v be any |E| -dimensional vector taking

alues in { 0 , 1 } |E| , and let V be the set of all possible vectors v .

ach vector v describes a possible open/closed allocation to all the

inks in the graph. A bond percolation process on G is fully deter-

ined by a probability distribution q ( v ) on V . We will now prove

he following theorem. 

heorem 1. The model RUC (and by extension DRUC) defined on

 graph G = (N , E ) is not equivalent to a bond percolation process

n G. 

roof. To prove the above statement, it is sufficient to exhibit a

raph on which an instance of RUC is not equivalent to a bond

ercolation process. Such an example is described on the simple

raph given in Fig. 2 (a). It contains 3 users, connected through 2

dges, and the initial diffuser is A , so that, after 2 time steps, all

he users have a non-null probability to have received the infor-

ation diffused by A. The set V contains 4 vectors, and a bond

ercolation process on this graph is characterized by 3 probabil-

ty values ( p 1 , p 2 , p 3 ), the fourth probability p 4 being defined by:

p 1 + p 2 + p 3 + p 4 = 1 . Fig. 2 (b) gives the associated probability ta-

le. 

Let us assume that the RUC model is equivalent to a bond per-

olation on the graph displayed in Fig. 2 (a). The probabilities that
sers B and C are active after 2 time steps with the RUC model are

hen given by: 

• P (Bob, q k , ≤ 2) = p 3 + p 4 
• P (Carol, q k , ≤ 2) = p 4 

hich leads to: 

p 3 = P (Bob, q k , ≤ 2) − P (Carol, q k , ≤ 2) 

= P (Bob, q k , 1) + (1 − P (Bob, q k , 1)) × P (Bob, q k , 2) 

− P (Carol, q k , 2) 

here the last equality is based on the definitions of P ( Bob, q k ,

2) and P ( Carol, q k , ≤ 2). This value can be negative if, for ex-

mple, user Carol has a profile closer to the content diffused

han user Bob . Setting λ0 = λ2 = λ3 = 0 , λ1 = 1 , Act(Bob, G, D) =
ct(Carol, G, D) = θw 

= 0 , sim (p Bob , q k ) = 0 , sim (p Carol , q k ) = 1 and

s = 0 . 5 , indeed leads to: P ( Bob, q k , ≤ 2) ≈ 0.61, P ( Carol, q k ,

2) ≈ 0.62 and then p 3 < 0, which comes as a contradiction since

 3 should be non-negative. �

Theorem 1 shows that the models introduced here radically dif-

er from the models proposed previously. 

. Experimental validation 

In order to evaluate the user-centered models, we make use of

wo datasets: 

• The ICWSM [49] dataset is composed of blog posts and links

between them. Each user corresponds to a blog and diffusion

of information is observed through links between blogs: if post

p 2 of blog b 2 contains an hyperlink to post p 1 of blog b 1 , then

we consider that b 2 has diffused the content coming from b 1 ; 

• The MemeTracker (MT) [50] dataset is composed of blog posts

and links between them. Contrary to the ICWSM dataset, no

blog url is attached to a post. We thus inferred blogs using post

urls (a post url contains the url of the blog it belongs to). To do

so, we cut post urls at the first “/” character after “http://” and

assume that the string obtained corresponds to the url of the

blog. As for the ICWSM dataset, we consider that information

diffuses from one user (blog) to another if there is a link from

a post of the former to a post of the latter. 

For each dataset, we have extracted two different corpora: 

• Sparse corpora have been built by selecting randomly 10 0,0 0 0

cascades of blog posts. In this case, many of the selected cas-

cades do not diffuse over the network resulting in a case where

the models can only be trained on a few number of diffusions.

These corpora are used to evaluate the models in a context of

low diffusion. 

• Dense corpora have been built by focusing on a subset of the

50 0 0 users that are the most active. We have only kept the cas-

cades over these active users which have been linked at least

one time. These two corpora are used to evaluate the models

in the context of a dense diffusion. 

The number of users, cascades and the mean size of the cas-

ades are given in Table 1 . The length of a cascade is 1 if the in-

ormation diffuses once from an initial user to another one. As one
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Table 1 

Main statistics of datasets for the Sparse and Dense versions. MT denotes MemeTracker. 

Dataset #nodes #links #terms #casc. avge_size max_size 

MT (dense) 50 0 0 4373 24 , 482 2977 1.21 4 

ICWSM (dense) 50 0 0 17 , 746 173 , 014 23 , 738 1.075 11 

MT (sparse) 39 , 427 10 , 816 70 , 602 104 , 973 0.006 10 

ICWSM (sparse) 40 , 268 62 , 657 262 , 290 104 , 980 0.018 33 
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can see, Sparse datasets are composed of low length cascades – i.e.

many cascades do not diffuse – while Dense datasets are composed

of larger cascades. 

For each corpus we performed the following normalization op-

erations: 

• Taking posts during only one month; 

• Filtering out of non-English posts; 

• Removal of empty words using an empty words list; 

• Stemming using Porter stemming; 

• Filtering out of words appearing less than five times. 

The above preprocessing then yields a standard word vector for

each post. The vector for a cascade is then computed by averag-

ing the vectors of all the posts that compose a cascade. The profile

of each user is computed by averaging the vectors of the cascades

diffused by the user on the training set. In order to evaluate the

different models, we use a 5-fold cross validation scheme (4 blocks

for training, one for testing). The 4 first blocks are used to (a) build

the graph between blogs, by considering that two blogs n i and n j 
are connected if a piece of information has diffused between n i 
and n j , and (b) to estimate model parameters. The last block is

used for evaluation purposes. All the results presented below are

averaged over the 5 different splits. 

5.1. Evaluation measures 

We use the following standard measures to evaluate different

diffusion results: 

• Precision/recall curves (PRC) : for each cascade, users are first

ranked by their probability to be active (as predicted by the

model under evaluation). The precision at each recall point

(corresponding to a user who is really active in the dataset) is

then computed, and averaged over all cascades [51] . As all cas-

cades do not have the same number of recall points, the vari-

ance, computed over all cascades, is higher for the last recall

points; 

• The Mean Average Precision (MAP) is a global measure of quality

over recall points. It is computed as follows: 

MAP = 

1 
K−l 

K ∑ 

k = l+1 

1 

| C k (T k ) | 
∑ 

n i ∈ C k (T k ) 

P recision (R k,i ) 

where R ki is the set of users who have a probability of being

active greater than or equal to the one of user n i (note that

n i ∈ R ki ); 

• Relative Volume Error: The relative volume error, introduced in

[38] , aims at measuring to which extent a model is able to pre-

dict the number of users that will be active at the end of the

diffusion process (or after a given time). It thus represents a

global measure that captures the tendency to diffuse of a model

(regardless of whether the diffusion is correct or not). It is mea-

sured by the difference between the expected number ˆ V k (given

by a model) and the real number of active users V k , averaged

over all cascades: 

RV E = 

√ ∑ K 
k = l+1 (V k (T k ) − ˆ V k (T k )) 2 √ ∑ K V (T k ) 2 
k = l+1 k m  
.2. Models tested 

We compare the models presented above with several baseline

iffusion models used in previous studies. We have retained here

he most widely used models. Some of them have been extended

n different directions, without changing their main characteris-

ics. Relying on the standard versions of these models allows us

o simply assess how much the new dimensions considered in the

ser-centered family of models are useful for content diffusion. The

odels we have retained are the following: 

1. The Independent Cascade Model (IC). Its parameters are learned

through the EM algorithm proposed in [17] ; 

2. The Asynchronous Independent Cascade Model (ASIC) which is

described in [18] and represents an asynchronous version of the

IC model. Its parameters are also learned through an EM algo-

rithm; 

3. The NetRate (NR) model [21] , with the exponential distribution;

4. The RUC and DRUC models presented in Section 4.2 ; In this

study, we have arbitrarily set the parameter δ to 0.9, which

amounts to consider a small decay over time. 

In addition, we will make use of a simplified version of the

ser-centered models, called UC (for User-Centered model ), that will

llow a more direct comparison with the independent cascade

odels. In UC, each user n j active at time t has a unique chance to

ontaminate each of its outgoing neighbors n i at time t + 1 based

n P (n i , q 
k , t + 1) (see Section 4.2 ). If it succeeds, the contamina-

ion value associated to n i at time t + 1 is 1, and 0 otherwise. In

his setting, SP (n i , G, M 

k , t) is equal to the number of active incom-

ng neighbors (| C k ( n i , t )|). This behavior is similar to the one of the

ndependent Cascade model, except that n j , in case of failure, will

till contribute to the contamination of n i through SP (n i , G, M 

k , t)

f another incoming neighbor of n i is contaminated at time τ , τ ≥ t .

he contamination stops once the contamination values of each

ser do not change. 

.3. Results 

The Relative Volume Error for each model is available in

able 2 . We compare baseline models – IC, ASIC and NetRate –

ith proposed models. Except on Dense ICWSM, User-Centered

odels obtain similar results as baseline models. They are all near

, but baseline still tends to be better. On Dense ICWSM, UC ob-

ain really poor results. The particularity of this dataset compared

o the others is that models are trained on more diffusing cas-

ades. Table 3 shows the average diffusion volume predicted by

ach model. For this particular dataset and model, we can see that

C predict a lot more diffusion than the other models and obvi-

usly a lot more than necessary occurring in some error. Looking

t this table, we see that, except on Sparse MemeTracker which is

he dataset with the less diffusing cascades, baseline models dif-

use really few compared to RUC and DRUC. Their relative volume

rror close to 1 is due to a lack of diffusion while RUC and DRUC

end to diffuse too much to wrong users. 

Table 4 shows the Mean Average Precision for all models. Ex-

ept IC model on Dense ICWSM, on all datasets User-Centered

odels out-perform baseline models. To link up with the error,
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Table 2 

Relative volume error for the different methods. MT denotes MemeTracker and NR 

NetRate. 

Dataset 0-diff IC ASIC NR UC RUC DRUC 

MT (dense) 1 0.916 0.954 0.884 1.391 1.412 1.203 

ICWSM (dense) 1 0.756 0.893 0.957 6.259 0.901 0.719 

MT (sparse) 1 1.009 1.005 1.041 1.009 1.043 1.069 

ICWSM (sparse) 1 0.996 1.0 0 0 1.012 1.185 1.071 1.206 

Table 3 

Average diffusion volume for the different methods. MT denotes MemeTracker and NR 

NetRate. 

Dataset 0-diff IC ASIC NR UC RUC DRUC 

MT (dense) 0 0.098 0.050 0.309 0.856 0.575 0.719 

ICWSM (dense) 0 0.435 0.211 0.124 1.810 0.592 0.811 

MT (sparse) 0 0.002 0.001 0.004 0.003 0.003 0.004 

ICWSM (sparse) 0 0.002 0.001 0.002 0.011 0.013 0.020 

Table 4 

Mean Average Precision for the different methods. MT denotes MemeTracker 

and NR NetRate. 

Dataset IC ASIC NR UC RUC DRUC 

MT (dense) 0.283 0.134 0.147 0.608 0.627 0.622 

ICWSM (dense) 0.712 0.313 0.100 0.787 0.817 0.836 

MT (sparse) 0.015 0.020 0.012 0.121 0.574 0.620 

ICWSM (sparse) 0. 088 0.043 0.019 0.191 0.691 0.709 
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Table 5 

Values of the parameters after learning on Dense 

ICWSM . These values illustrate the importance of the 

different f eatures for predicting diffusion. 

Model UC RUC DRUC 

λ0 (bias) −3.13 −6.77 −2.61 

λ1 (thematic interest) 7.06 6.77 10.75 

λ2 (activity) 3.33 5.52 4.27 

λ3 (social pressure) 1.94 3.23 1.55 

Table 6 

Values of the parameters after learning on Dense 

MemeTracker . These values illustrate the importance of 

the different features for predicting diffusion. 

Model UC RUC DRUC 

λ0 (bias) −2.22 −5.47 −3.33 

λ1 (thematic interest) 6.21 7.01 9.49 

λ2 (activity) 2.22 5.92 3.99 

λ3 (social pressure) 1.39 2.78 0.95 
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e  
ser-Centered models tends to diffuse more than baseline mod-

ls but “choose” better the users who diffuse. In other words,

ser-Centered models give a higher probability to correct users

hile they still give a non null probability to some wrong users.

 discussion on the utility of the similarity parameter for the RUC

odel is proposed in appendix B. 

This difference is explained by two points of content-aware

odels: 

(a) They rely on fewer parameters and are thus more robust to

sparsity in the training set; 

(b) They take into account the content of the information dif-

fused and thus can explain why different contents issued

from the same users diffuse in different ways. 

Concerning the first point, Figs. 3 and 4 displays the results for

he PRC on the sparse datasets. As one can note, the difference

etween content-aware diffusion models (UC, RUC and DRUC) and

he other models (IC, ASIC, NetRate) is really important on all re-

all points, while the increase in MAP reaches 60% (in absolute

alue) between the best content-aware model and the best stan-

ard model on both datasets. If taking into account the content

iffused may be beneficial in the context of sparse datasets, it is

lear that all standard models rely on a large number of parame-

ers (they have at least as many parameters as there are edges in

he network) whereas the training sets contain few observations.

ndeed, as displayed in Table 1 , the number of parameters/edges

s greater than the number of observations, that is the number

f observed diffusions, which amounts to the number of cascades

ultiplied by the the average cascade length. This means that few

dges, compared to the number of actual edges, are observed in

he training dataset. Most parameters are thus very poorly esti-

ated in these models, resulting on poor diffusion prediction. In

ontrast, the content-aware models introduced here rely on only 4

arameters that can still be learned from sparse training data. 

Concerning the second point, Figs. 5 and 6 displays the results

or the PRC on the dense datasets. The difference between stan-

ard models (IC, ASIC, NetRate), on the one hand, and the content-
ware ones (UC, RUC and DRUC), on the other hand, is less impor-

ant in this case. The increase in MAP between the best standard

odel and the best content-aware model reaches 10% on ICWSM

nd 35% on MemeTracker. On ICWSM, the number of observed

dges (number of cascades multiplied by average cascade length)

s larger than the number of edges in the network. Standard mod-

ls can, in this case, be correctly learned but still fall behind

ontent-aware models, on all recall points. On the dense dataset

xtracted from MemeTracker, in addition to the content problem,

ne also encounters a sparsity problem as the number of parame-

ers to be learned is still important with respect to the number of

bservations. 

In order to further analyze the importance of content in mod-

ling information diffusion, we provide in Tables 5 and 6 the val-

es of the parameters learned by the three content-aware models

odels (UC RUC and DRUC) for the two dense datasets. In these ta-

les, λ0 is the bias of the model, λ1 is the weight associated with

he thematic interest, λ2 is the weight associated with the activity

nd λ3 is the weight associated with the social pressure . As one can

ote, the value for λ1 is always higher than that of the other pa-

ameters, which confirms the importance of the thematic interest

or information diffusion. 

Within the standard models, IC is the one that performs best

n all datasets. We believe that this is due to the fact that ASIC

nd Netrate introduce a strong decay in the diffusion through an

xponential model. As the number of diffusions in each dataset
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Fig. 3. Precision curves on the Sparse MemeTracker dataset. 

Fig. 4. Precision curves on the Sparse ICWSM dataset. 

 

 

 

 

 

 

 

 

t  

c  

S  

c  

t  

i  

t

is still low, the probability predicted by these models is also low

and dominated by the exponential term (of the form e −P i j (t−t 0 ) ).

The difference between these values is thus small and the mod-

els fail to differentiate between diffusions and non-diffusions. In-

deed, when the number of training data is higher (as for the dense

dataset extracted from MemeTracker), the difference between IC

and ASIC or NetRate becomes less important, the parameters of

these models being better estimated in this case. 
Within the content-aware models, DRUC outperforms RUC on

hree over four datasets. This is particularly true over the large

ascades as DRUC is better for modeling long diffusions - see

ection 4.2 for explanation. Furthermore RUC obtain better results

ompared to UC. These facts show an improvement when using

he reinforcement which allows users to diffuse later and an other

mprovement using the delay parameter, which makes a decay of

he diffusion probability over time. 
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Fig. 5. Precision curves on the Dense MemeTracker dataset. 

Fig. 6. Precision curves on the Dense ICWSM dataset. 
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. Influence maximization (IM) 

The influence maximization problem is an optimization prob-

em defined on a “social-graph” G = (N , E ) and a diffusion model,

he goal of which being to determine the κ most influential users.

e will refer to this problem for the model RUC as IM ( κ , RUC ).

he influence maximization problem is known to NP-hard for the
t

C and LT models [3] , and we show here that this is also the case

or RUC (and by extension DRUC). 

heorem 2. IM ( κ , RUC ) is NP-hard. 

roof. To prove Theorem 2 , we show that the set cover problem,

ne of Karp’s 21 NP-complete problems [52] , can be answered

hrough the IM decision function. 
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Fig. 7. � application used to reduce SC to IM. Nodes {1,2,3,4,5} are element nodes. Nodes set { a, b, c, d } are set nodes. 
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The set cover (SC) decision problem takes as input a collec-

tion of subsets C of a finite set U called the universe, and an in-

teger κ such that κ ≤ |C| . The SC problem answers true if and only

if there exists a family F of subsets in C such that |F| ≤ k and⋃ 

f∈F ( f ) = U ( i.e. the family F covers the universe). Let us now

consider the mapping � that (a) associates a node to each element

of U (we will refer to these nodes as element nodes ) and each sub-

set of C (we will refer to these nodes as set nodes ) and (b) links,

through a directed edge, a set node to all the element nodes it

contains. Fig. 7 shows an example of the mapping � and the graph

G = (N , E ) obtained from the original SC problem. 

Now, let us consider a particular RUC model in which all pa-

rameters are set to 0. That is, for all non initial diffusers: 

P (n i , q 
k , t + 1) = 

{
(1 + exp(0)) −1 = 

1 
2 

if R t (n i ) is true 
0 otherwise 

where R t ( n i ) denotes n i ’s reachability ( R t ( n i ) is true if and only if

at least one of n i ’s incoming neighbors has a non null probabil-

ity to be active before or at time t ). For initial diffusers, P (n i , q 
k , ≤

) = 1 , ∀ t, and, by recurrence over t , one obtains, for non initial

diffusers: 

P (n i , q 
k , ≤ t + 1) = 

{
1 − ( 1 

2 
) (t+1) if R t (n i ) is true 

0 otherwise 

If one selects, for example, the nodes set a and set d in Fig. 7 as

initial diffusers, then the diffusion process will result in defining

nodes {1, 3, 4, 5} as active and node 2 as inactive. 

By choosing initial diffusers among the set nodes and letting

the diffusion process unfolds over a sufficiently long period of

time, the nodes “covered” by the subsets selected have a probabil-

ity of having received the information as close to 1 as desired. Fur-

thermore, all the other element nodes have a probability of having

received the information equal to 0. Selecting subsets in SC or their

corresponding initial diffusers in the IM reduction thus yields the

same coverage. This allows one to define Q , a minimal quantity of

active users ensuring that the IM decision problem answers posi-

tively if and only if every node representing one of U ’s element is

active. This situation, according to our social-graph, corresponds to

the existence of a complete coverage of the universe. One can thus
nswer the SC problem using the IM decision problem through the

apping: 

(U , { set 0 , . . . , set n } , κ) → 

(
G, κ, Q = κ ∗ 1 + |U| ∗

(
1 − ( 

1 

2 

) t 
))

he IM decision problem thus answers the SC problem. �

.1. Greedy hill climbing applied to user centered models 

Because of its NP-hardness, the IM problem is usually addressed

hrough the greedy algorithm defined in [43] and adapted for dif-

usion purposes as displayed in Algorithm 1 . σ ( A, q k , t ) is the in-

Set t to a given value 

Set A = ∅ 
for i = 1 to κ do 

for all n i ∈ N \ A do 

compute d = σ (A ∪ { n i } , q k , t) − σ (A, q k , t) 

if d is maximal then 

n max = n i 
end if 

end for 

A ← A ∪ { n max } 
end for 

Algorithm 1: The greedy algorithm. 

uence function and corresponds to the expected number of users

ho have diffused content q k at time step t if all users of A, A ⊂ N 

re initial diffusers. 

It is known [43] that the greedy algorithm yields a (1 − 1 /e ) -

pproximation of the optimal value if the function σ is a non-

egative, monotone submodular function, which is the case for the

C and LT models [3] . For the user-centered models, we neverthe-

ess have the following property. 

roperty 1. σ RUC is not sub-modular. 

roof. The proof simply amounts to exhibiting a graph on which

he sub-modularity condition can not hold. 
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Fig. 8. Social graph used with 5 users and 2 sets of users ( A and B ) such that A ⊆
B . 
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Fig. 9. Influence maximization illustrations: number of users reached at the end of 

the diffusion depending on the number of initial users. 

 

w  

p  

t  

u  

6  

o  

e  

W  

t  

b  

c

7

 

c  

c  

h  

p

 

 

 

 

 

 

 

 

 

p  

m  

t  

p  

t  

a  
Let us consider the social graph presented in Fig. 8 : If σ RUC is

ubmodular, then ∀ x �∈ B, A ⊆ B : 

σRUC (A ∪ { x } ) − σRUC (A ) ≥σRUC (B ∪ { x } ) − σRUC (B ) 

 

1 

1 + e −λ0 −λ1 ×s −λ2 ×w −λ3 
≥ 1 

1 + e −λ0 −λ1 ×s −λ2 ×w −2 λ3 

− 1 

1 + e −λ0 −λ1 ×s −λ2 ×w −λ3 

 2 × 1 

1 + e −α−λ3 
≥ 1 

1 + e −α−2 λ3 

with α = λ0 − λ1 × s − λ2 × w 

 

1 + e −α−2 λ3 

1 + e −α−λ3 
≥1 

2 

etting λ3 = 2 and α = −4 , the above inequality entails 2 
1+ e 2 < 

1 
2 ,

hich is false. Hence σ RUC is not submodular. �

Despite the fact that one can not theoretically conclude, using

ub-modularity arguments, that the greedy algorithm yields a good

pproximation of the optimal solution for user-centered models, it

an still be used in practice to find an approximate solution to the

M problem. We illustrate its use in the next section and compare

t to naive heuristics. 

.2. Illustration 

In order to further assess the use of the greedy algorithm

ith user-centered models, we compared its results, on the sparse

emeTracker dataset, for the RUC model, with the following stan-

ard heuristics 4 : 

• Higher out-degree: the top κ nodes according to the number

of outgoing edges (out-degree) are selected as the κ initial dif-

fusers; 

• Distance centrality: the distance centrality is the average dis-

tance of that node to all the other nodes in the network; if

there is no path between two nodes, their distance is taken

to be the number of nodes in the graph. As before, the top κ
nodes according to the distance centrality are selected as the κ
initial diffusers; 

• Random100: a set of κ nodes in the graph is randomly chosen

a hundred times; the final number of users reached is the av-
erage of the numbers of users reached at each trial. 

4 Similar heuristics are used in [3] . Note that, because of the size of the social 

raphs considered here, the optimal solution can not be computed. 

s

 

t  

m  
In all our experiments, the diffusion process is run for 30 steps,

hich corresponds to the number of days in the dataset. Fig. 9 dis-

lays the result of the diffusion process using the RUC model and

he different methods for initial users choice. As one can note, and

nsurprisingly, the random choice is the worse method, as around

0 users are reached with 50 initial diffusers. The greedy algorithm

utperforms the other methods over all ranges of κ , the differ-

nce being significant above a certain number of initial diffusers.

hen κ is very small, the greedy algorithm performs similarly to

he higher out-degree and distance centrality heuristics, which can

e explained by the fact it is important in this case to select highly

onnected nodes (hubs), which is done by all three methods. 

. Conclusion 

We have introduced in this paper a new family of models for

ontent diffusion in social networks which takes into account the

ontent diffused through its similarity with user profiles. As we

ave seen, the models proposed differ from the ones previously

roposed in that: 

1. They integrate an additional, content-based dimension; 

2. They explicit the different features used. In particular, both the

social pressure and the willingness to diffuse are features which

can be weighed differently, as opposed to what is done in IC-

based (or LT-based models); 

3. They rely on few parameters, which make them robust to the

arrival of new users in the network, unlike models which re-

quire (at least) as many parameters as there are links in the

network; 

4. They are not equivalent to a bond percolation process on the

social graph, contrary to IC-based, LT-based and SI-based mod-

els. 

We have furthermore compared these models with previously

roposed ones on two blog datasets. The results of these experi-

ents show that taking into account the content of the informa-

ion diffused leads to more precise predictions. Lastly, we have

roven that the influence maximization problem is NP-hard for

hese new models (as is the case for previously proposed ones),

nd illustrated how of the greedy algorithm behaves compared to

tandard heuristics. 

The use made of the content diffused in this study is restricted

o a similarity function with user profiles, and the topical or se-

antic networks underlying this content have been ignored. Such
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Table A.1 

Comparison of RUC and RUC without similarity on 

the Dense-ICWSM dataset. 

Model RUC RUC no sim 

MAP 0.817 0.780 

Relative volume error 0.901 1.842 
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networks can be, at least partly, automatically inferred and could

be of great help to predict the evolution of a content network

and to develop tools to monitor them. In particular, it is very

likely that certain contents are more diffused than others. Quali-

fying such contents, e.g. with respect to the topics covered, could

lead to different models adapted to different types of information.

This would help predict, for example, that pieces of information

of general interest (as the results of presidential elections) tend to

be largely diffused, whereas others are restricted to specific users.

We believe that exploiting all these dimensions simultaneously is a

promising avenue for the study of information diffusion in content

networks. 

Appendix A. Derivatives for estimation of model parameters 

Let us recall the form of the likelihood, on the training set, for

the RUC and DRUC models: 

L (λ0 , λ1 , λ2 , λ3 ) = 

l ∏ 

k =1 

T k ∏ 

t=1 

[ ∏ 

n i ∈ C k (t) 

P (n i , q 
k , ≤ t) 

∏ 

n i / ∈ C k (t) 

(1 − P (n i , q 
k , ≤ t)) 

]

As mentioned before, we make use of the recurrence equation ( Eq.

(3) ) to compute the partial derivatives, and store, for each user,

the current values of P ( n i , q 
k , ≤ t ) and its derivative at each times-

tamp: 

∂P (n i , q 
k , ≤ t + 1) 

∂λi 

= 

∂P (n i , q 
k , ≤ t) 

∂λi 

(1 − P (n i , q 
k , t + 1)) (A.1)

+ 

∂P (n i , q 
k , t + 1) 

∂λi 

(1 − P (n i , q 
k , ≤ t)) (A.1)

The derivatives of the equations for the update of the probabilities

at each step, if SP (n i , G, M 

k , t) > 0 , are: 

∂P (n i , q 
k , t + 1) 

∂λ0 

= 

(
1 + 

∂E[ | C k (n i ,t) | ] 
∂λ0 

)
e −λ0 −λ1 (S(n i ,q 

k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw ) 

(1 + e −λ0 −λ1 (S(n i ,q k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw ) ) 2 
(A.2)

∂P (n i , q 
k , t + 1) 

∂λ1 

= (
S(n i , q 

k ; θs ) + 

∂E[ | C k (n i , t) | ] 
∂λ1 

)
(e −λ0 −λ1 (S(n i ,q 

k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw

(1 + e −λ0 −λ1 (S(n i ,q k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw ) ) 2 

(A.

∂P(n i , q 
k , t + 1) 

∂λ2 

= (
E [ | C k (n i , t) | ] + 

∂E [ | C k (n i , t) | ] 
∂λ2 

)
(e −λ0 −λ1 (S(n i ,q k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw )

(1 + e −λ0 −λ1 (S(n i ,q k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw ) ) 2 

(A.4

∂P(n i , q 
k , t + 1) 

∂λ3 

= 

(
W (n i ; θw ) + 

∂E[ | C k (n i , t) | ] 
∂λ3 

)
(e −λ0 −λ1 (S(n i ,q 

k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw )

(1 + e −λ0 −λ1 (S(n i ,q k ;θs ) −λ2 E[ | C k (n i ,t) | ] −λ3 W (n i ;θw ) ) 2 

(A.5

If SP(n i , G, M 

k , t) = 0 , then ∂P(n i ,q 
k ,t+1) 

∂λ
= 0 . 
i 
ppendix B. Analysis of the similarity parameter 

We present here the results for a version of the RUC model

ithout taking into account the similarity between the content

nd the user profile (where λ1 is set to 0). 

Table A.1 shows the average precision and the relative volume

rror for both RUC and a RUC version without the similarity pa-

ameter. The results of RUC with λ1 learned are better for the aver-

ge precision. The average precision is computed over all the recall

oints. A system can still have a relatively high average precision

f the last recall point is not ranked too low in the list of diffusers.

To assess this last part, one can use the relative volume error.

s we can see, the relative volume error is important when λ1 is

et to 0, showing that this model over diffuses. 
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