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a b s t r a c t 

Nowadays, social networks have become an important part of our daily lives. Hence, several researchers 

have been interested in the study and analysis of the interactions between the entities composing this 

type of networks. By modeling a social network, we can assign attributes to nodes and links based on 

network and community structure. These attributes which may be uncertain, imprecise or even noisy, 

involve obtaining a non-coherent network. In order to remedy this problem, we propose, in this paper, a 

method that corrects the noise in the network using the theory of belief functions. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nowadays, the use of computer technology and Internet has be-

come essential. As a result, social networks became an important

part of our daily lives. Therefore, it is interesting to study and an-

alyze the types of relationships that exist in these networks. To do

so, the study of the community structure as well as the nodes and

links attributes represent main characteristics that must be taken

into account to analyze these networks. 

In social network analysis [1,2] , the observed attributes of so-

cial actors are understood in terms of patterns or structures of ties

among the units. These ties may be any existing relationship be-

tween units; for example friendship, material transactions, etc. 

Currently, if we observe any social network, we will soon realize

that the entities composing this network are grouped, for example,

according to a center of interest, a category of age, a preference,

etc. 

In his work, Santo Fortunato [3] explained that communities,

also called clusters or modules, represent groups of vertices which

probably share common properties and/or play similar roles within

the graph. He argues also that the word community itself refers

to a social context. In fact, people naturally tend to form groups,

within their work environment, family or friends. 
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In a social network, we can deal with missing or modified in-

ormation. In addition, the information exchanged can be often im-

erfect, due to the heterogeneous nature of the sources. Therefore,

t would be interesting to use a vector of values which represent

he nodes and links attributes. 

In the same context, many studies focus on modeling the un-

ertain social network. In fact, they represent an uncertain network

y weighting the nodes or links with values in [0,1] to model un-

ertainties. Hence, it will be easier to monitor the behavior of the

ocial network [4,5] . In addition, as shown in [6] , the use of evi-

ential attributes, from the theory of belief functions, gives better

esults compared to the probabilistic ones. 

The theory of belief functions offers a mathematical framework

or modeling uncertain and imprecise information [7] . It has been

mployed in different fields, such as data classification [8,9] and

ocial network analysis [10] . 

Furthermore, the theory of belief functions provides a flexible

ay of combining information collected from different sources. In

he majority of cases, this combination is followed by decision-

aking. It also allows conflict management. 

The aim of this paper is to show that even with noise in the

etwork, our algorithm is able to classify the nodes in their initial

lusters. In the case of a large noise, the algorithm guarantees the

oherence of the information of any network even when it is a net-

ork whose nodes and links attributes have been strongly modi-

ed. 

In this paper, we focused on the use of a limited number of

ommunities. In terms of scaling up, there are several strategies

https://doi.org/10.1016/j.osnem.2018.07.002
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hat can reduce complexity like the one presented in [11] . This will

e the subject of future work. 

This paper is structured as follows. In section 2 , we remind

ome basic concepts of the theory of belief functions and review

ome community detection methods as well as some other related

orks. Section 3 is dedicated to our contribution. Section 4 is de-

oted to the experimentations and finally section 5 concludes the

aper. 

. Background 

In this section, we start by recalling some basis of the theory

f belief functions, we use it in this paper in order to model un-

ertainties. Then we present some community detection methods

hat use both the structure and the attributes of the network. 

.1. Theory of belief functions 

The theory of belief functions allows explicitly to consider the

ncertainty of knowledge using mathematical tools [7,12] . It is a

seful and effective way in many fields such as classification, de-

ision making, representation of uncertain and inaccurate informa-

ion, etc. 

In fact, it is a suitable theory for the representation and man-

gement of imperfect knowledge. It allows to handle the uncer-

ainty and imprecision of the data sets, to combine mass functions

nd make decisions. 

The principle of the theory of belief functions consists on the

anipulation of functions defined on subsets. However, it does

ot represent uncertainty using sets of probability measures. These

unctions are called mass functions and range from 0 to 1. 

Let � be a finite and exhaustive set whose elements are mutu-

lly exclusive, � is called a frame of discernment. A mass function

s a mapping 

 : 2 

� → [0 , 1] 

uch that ∑ 

∈ 2 �
m 

�(X ) = 1 and m 

�(∅ ) = 0 (1) 

he mass m 

�( X ) expresses the amount of belief that is allocated to

he subset X . We call X a focal element if m 

�( X ) > 0. 

A categorical mass function is a mass function with an unique

ocal element such that m 

�(A ) = 1 . 

In this work, we used also another interesting concept which is

he distance of Jousselme [13] . This distance represents the degree

f similarity between bodies of evidence. It is defined by: 

 j (m 

�
1 , m 

�
2 ) = 

√ 

1 

2 

(m 

�
1 

− m 

�
2 
) T Jac (m 

�
1 

− m 

�
2 
) (2) 

here the elements Jac ( A , B ) of Jaccards weighting matrix Jac are

efined as 

ac(A, B ) = 

⎧ ⎨ 

⎩ 

1 if A = B = ∅ 
| A ∩ B | 
| A ∪ B | , A, B ∈ 2 

� \ ∅ (3) 

We also consider the normalized conjunctive rule called the

empster rule [14] , given for two mass functions m 

�
1 and m 

�
2 for

ll X ∈ 2 �, X � = ∅ by 

 �(X ) = 

1 

1 − k 

∑ 

A ∩ B = X 
m 

�
1 ( A ) m 

�
2 ( B ) (4) 

here k = 

∑ 

A ∩ B = ∅ 
m 

�
1 (A ) m 

�
2 (B ) is the global conflict of the combina-

ion. The Dempster combination rule reinforces the mass values of
he elements on which the sources are agree. This rule is adapted

hen the combined mass functions are cognitively independent. In

he case of dependent mass functions, one can use the mean rule

iven for two mass functions m 

�
1 

and m 

�
2 

for all X ∈ 2 �, X � = ∅ by 

 

�(X ) = 

1 

2 

(m 

�
1 (X ) + m 

�
2 (X )) (5) 

In order to make decision, we use the pignistic probability in-

roduced by Smets in [15] for normal mass functions by 

etP (X ) = 

∑ 

Y ∈ 2 �,Y � = ∅ 

| X ∩ Y | 
| Y | m 

�(Y ) (6) 

.2. Some community detection methods with graphs structure and 

ttributes 

In this section, we introduce some community detection meth-

ds based on graph structure and attributes. 

According to [16] , an attributed graph G a = (V a , E a ) can be de-

ned as a set of attributed vertices V a = { v 1 , . . . , v p , . . . , v q , . . . , v n }
nd a set of attributed edges E a = { . . . , e pq , . . . } . The edge e pq con-

ects vertices v p and v q with an attributed relation. 

The presented model in [17] uses both information. In fact,

n unified neighborhood random walk distance measure allows to

easure the closeness of vertex on an attributed augmented graph.

hen, the authors use a k -Medoids clustering method to partition

he network into k clusters. 

A second method presented in [18] consists on a model ded-

cated to detect circles that combine network structure and user

rofile. The authors learn for each circle, its members and the

ircle-specific user profile similarity metric. They model the mem-

ership of a node to multiple circles in order to detect overlapping

nd hierarchically nested circles. 

A third method presented in [19] consists on dealing with the

ncertainty that occurs in the attribute values within the belief

unction framework in the case of clustering. In this work, the au-

hors present a new version of decision trees with the theory of

elief functions to handle the case of uncertainty present only in

ttribute values for both construction and classification phases. 

Thus, it is important to consider both information structure and

ttributes in order to detect the network communities. In fact, if

ne source of information is missing or noisy, the other can solve

he problem. 

The works cited above [17,18] use only a probabilistic attributes

s well as the structure of the graph to do the clustering. In our

revious work [6] , we show that the use of evidential attributes

ives better results than the probabilistic ones in the clustering. 

The works cited [17–19] are interesting, but they do not assume

hat network information can be noisy or perturbed. In addition,

hey do not consider the use of node and link attributes simulta-

eously to do clustering. 

.3. Other related works: homophilic behaviors in social networks 

In addition of the presented community detection methods

bove, there are works that are related to our research such as the

econstruction of an initial network and the propagation of labels. 

In [20] , the authors present a new method using the theory of

elief functions that aims to detect communities on graphs after

he stabilization of the label propagation process. In fact, SELP per-

its to propagate the labels from the labeled nodes to the unla-

eled ones based on a propagation rule. The proposed algorithm

omputes the dissimilarities between nodes based on the graph

tructure. The main advantage of the proposed algorithm is that

t can effectively use limited supervised information to guide the

rocess of the detection. 
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Fig. 1. Triplet k . 
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Another interesting work presented in [21] aims to identify

missing and spurious interactions (links connecting nodes) and to

reconstruct network whose properties are closer to the ’true’ un-

derlying network. To do so, the authors focus on the family of

stochastic block models. The proposed method can also guide new

discoveries. In fact, if a given interaction between 2 nodes exists

but with a very low reliability for the interaction, that means that

the function of the interaction is very specific. 

The method proposed in [22] aims to address the problem

of reconstructing the original network and set of features given

their randomized counterparts. The technique of data random-

ization consists of removing some of the original edges of the

network in addition of new ones. Furthermore, the features can

be also randomized. In this work, the authors assume that data-

randomization method do not completely destroy the original

dataset. For the case of features, every node is associated with k

binary features. If the node has that feature, it will take 1 other-

wise it will take 0. 

All the works presented are interesting. However, we can not

do a comparison at the experimental level since we do not con-

sider the resolution of the same problem. Indeed, the first work

consider a network with few nodes having labels and aim to prop-

agate them to the unlabled ones. In our case, we consider that all

nodes and links have a prior lables. In the second research [21] , the

authors are interested in predicting links based on observations. In

our work, we do not modify the initial structure of the network.

Regarding the third work [22] , the authors remove links from the

graph and add new ones whereas in our case, we do not modify

the structure of the graph. 

3. An evidential method for correcting noisy information in 

social networks 

In this section, we will introduce our proposed approach. First,

we will present the important notions used in this work. Then, we

will explain the formalization of our method and finally, we will

detail the main steps of the proposed algorithm. 

3.1. Important notions 

In the networks, noisy or imperfect information can transit.

Therefore, if we limit ourselves to the network structure as well as

the nodes and links attributes in the classification, the error rate

may increase and the network information may become inconsis-

tent. 

To solve this problem, we propose a method that allows the

classification of nodes in the case of a noisy network, based on the

community structure as well as the nodes and links attributes. 

In the case of a significant noise introduced, our algorithm cor-

rects inconsistent information. Thus, even if we do not find the ini-

tial network, we get a new coherent network. In this context, we

present two notions used in this work: 

3.1.0.1. Noise . A noisy element ( i.e. a node or a link) is an element

whose attribute has been modified. 

3.1.0.2. Consistency . A network is composed of a set of nodes be-

longing to communities C i and linked together by links. Two nodes

connected by a link represent a triplet. Depending on the commu-

nity structure of the network, a node belongs to a single commu-

nity C i while the link may be of different types. If it is inside the

community C i , then it will be of the type IC i . However, if it con-

nects two nodes belonging to two different communities, then it

will be of type BC . 

We use only one type of link representing the link between two

communities ( BC ) in order to minimize the possible hypotheses,
ince the more the number of communities increases, the more

he types of links connecting two communities increase too. 

In what follows, we will present the general idea of the pro-

osed method. 

.2. Formalization 

In this work, we consider a coherent triplet as a triplet

(V k 1 , L k 12 
, V k 2 ) that satisfies one of the following possibilities: 

• V k 1 ∈ C i , V k 2 ∈ C i , L k 12 
∈ IC i with i = 1 , . . . , N

• V k 1 ∈ C i , V k 2 ∈ C j , L k 12 
∈ BC with ( i � = j ), and i, j = 1 , . . . , N

Fig, 1 shows the notations for a given triplet k . It consists of two

odes (starting node, arrival node and link that connects them)

aving each one a mass function which shows the belonging possi-

ilities of a node to a community C i . Nodes are connected through

 link, that also has a mass function which indicates the possibil-

ties of its label (A link can be of the type IC i if it is inside the

ommunity or BC if it connects two nodes belonging to two differ-

nt communities). 

Thus, the triplet is defined as follow: 

• V k 1 modelized with a mass function m 

�N 

k 1 

• V k 2 modelized with a mass function m 

�N 

k 2 

• L k 12 
modelized with a mass function m 

�L 

k 12 

We remind that a categorical mass function is a mass function

ith an unique focal element such that m 

�(A ) = 1 . The represen-

atives below represent the community centers. We calculate the

istances between the mass functions of the nodes and links and

ategorical mass functions of the representatives in order to be

ble to place these elements in a group. 

• For the nodes: the categorical mass functions are defined by

m 

�N 
ω (ω) = 1 with ω ∈ �N , i.e. m 

�N 
C i 

(C i ) = 1 , with i = 1 , . . . , N. 

• For the links: the categorical mass functions are defined by

m 

�L 
ω (ω) = 1 with ω ∈ �L , i.e. m 

�L 
BC 

(BC) = 1 or m 

�L 
IC i 

(IC i ) = 1 ,

with i = 1 , . . . , N. 

The aim of the proposed approach is to correct the noise added

o a network by considering each triplet independently of the oth-

rs. To do this, our algorithm proceeds by calculating the distances

etween the mass functions of each element of the triplet and the

ass functions of the representatives of the communities. Then, it

alculates the average distances of the 3 elements of the triplet and

ompares them with the average distances of the coherent triplets

efined initially. The algorithm then keeps the minimum average

istance which gives us an idea about the type of the triplet. 

The value of this minimum average distance is considered as a

ass function from the current information of the network and is

ombined thereafter with the initial mass functions. Subsequently,

or each node with several links, we will combine with the mean

ule all the mass functions that are related to it. Finally, we will

se the BetP to make a decision about the membership of a node

o a community and a link to a given type. 

We will detail in the following the different steps of the pro-

osed approach. 
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Table 1 

Coherent triplets for 3 communities. 

V k 1 V k 2 L k 12 

C 1 C 1 IC 1 
C 1 C 2 BC 

C 1 C 3 BC 

C 2 C 2 IC 2 
C 2 C 1 BC 

C 2 C 3 BC 

C 3 C 3 IC 3 
C 3 C 1 BC 

C 3 C 2 BC 
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.3. Main steps of the algorithm 

The proposed approach is applied in 4 steps detailed below. In

rder to simplify the notations, we present in the following the

quations used in one iteration t of the algorithm. 

Step 1: 

For each element of a triplet k , we calculate the distances be-

ween the latter and the corresponding categorical mass functions.

In the theory of belief functions, a distance is used to describe

he difference between two distinct sources of information. We use

he distance of Jousselme which takes into account the quantifi-

ation of the similarity between the focal elements using Jaccard

imilarity coefficients. 

By calculating the distance between the mass function of a

ode or a link and the corresponding categorical mass functions

hat are “ideals”, we have an idea about its belonging to a commu-

ity or a kind of link. In fact, we keep the minimum distance and

he decision corresponds to the categorical mass functions having

he lowest distance with the mass function of the nodes or of the

inks. Hence, for each triplet (V k 1 , L k 12 
, V k 2 ) , with k = 1 , . . . , M, M

he number of triplets (or links) we calculate at iteration t : 

 k 1 = arg min 

ω∈ �N 

d J (m 

�N 

k 1 
, m 

�N 
ω ) (7) 

 k 2 = arg min 

ω∈ �N 

d J (m 

�N 

k 2 
, m 

�N 
ω ) (8) 

 k 12 is determined according to the coherent triplets by: 

 k 12 
= 

{
IC k 1 if C k 1 = C k 2 
BC if C k 1 � = C k 2 

(9) 

Table 1 shows the coherent values of a triplet for the case of

 network containing 3 communities. This process of decision is

iven by [23] . 

Step 2: 

For each triplet k , at the iteration t we calculate the average dis-

ance d k obtained from each possible combination presented pre-

iously. 

Hence, d k represents a minimal distance between the triplet

 and the most possible categorical triplet. This average distance

akes it possible to calculate the dissimilarity between any triplet

nd another coherent one defined initially. It is defined by 

 k = 

d J (m 

�N 

k 1 
, m 

�N 

C k 1 
) + d J (m 

�L 

k 12 
, m 

�L 

L k 12 

) + d J (m 

�N 

k 2 
, m 

�N 

C k 2 
) 

3 

(10) 

Step 3: Knowledge review 

In this step, we will use the obtained value of the average dis-

ance d k to define a mass function, that will be combined with

he initial mass functions of the nodes and links composing each

riplet. Therefore, the average distance d k value is assigned to the

ocal elements that represent the types of the two nodes and the

ink composing the triplet k and the rest will be assigned to the
gnorance. Hence, we have: 
 

m 

�N 

k 1 d 
(C k 1 ) = 1 − d k 

m 

�N 

k 1 d 
(�N ) = d k 

(11) 

 

m 

�L 

k 12 d 
(L k 12 

) = 1 − d k 

m 

�L 

k 12 d 
(�L ) = d k 

(12) 

 

m 

�N 

k 2 d 
(C k 2 ) = 1 − d k 

m 

�N 

k 2 d 
(�N ) = d k 

(13) 

Once the minimum average distance has been found, we know

o which coherent triplet initially defined, the current triplet k is

he closest. Therefore, we know what is the nature of each of its el-

ments. Hence, we know if the link which connects the two nodes

s of type IC i or BC . 

The minimum average distance d k is an information provided

y a network whose initial mass functions can be noisy. Therefore,

his should be taken into account when reviewing knowledge. 

Calculation of final mass functions 

In this step, we update at the iteration t + 1 the mass functions

btained from the previous step with the initial mass functions

iven at the iteration t by the following equations: 

 

t+1 , �N 

k 1 
= m 

t, �N 

k 1 
� m 

t, �N 

k 1 d 
(14) 

 

t+1 , �L 

k 12 
= m 

t, �L 

k 12 
� m 

t, �L 

k 12 d 
(15) 

 

t+1 , �N 

k 2 
= m 

t, �N 

k 2 
� m 

t, �N 

k 2 d 
(16) 

here m 

t, �N 

k 1 d 
, m 

t, �L 

k 12 d 
, m 

t, �N 

k 2 d 
are given respectively by Eqs. (11) –(13) .

The combination of the mass functions derived from the mini-

al average distance calculation and the initial generation by the

empster rule provides a final idea of nodes and links belonging

o their clusters. The Dempster rule affects the generated conflict

o the focal elements and therefore we will not have a mass on the

mpty set. 

Step 4: 

As we treat each triplet independently of the others, we can

ave cases where several links start from the same node and so we

ave several mass functions for the same node. In order to deter-

ine an unique mass function for each node ( e.g. V k 1 ), we combine

y the mean rule (given by Eq. (5) ), all the mass functions obtained

or the given node V k 1 in step 3 ( Eq. (15) ). The choice of the mean

s due to the fact that mass functions are dependent. Hence, for a

iven node V k 1 , with M k 1 
links, we modify the mass functions by

 

�N 

k 1 
= 

1 

| T | 
∑ 

{ k : V k 1 ∈ T } 
m 

�N 

k 
(17) 

here T = { (V k ′ 
1 
, L k 12 

, V k 2 ) } represents the triplets that contain the

ode V k 1 and m 

�N 

k 
is given by Eq. (14) . 

Finally, we use the BetP given by Eq. (6) to make decision about

he belonging of the triplet (V k 1 , L k 12 
, V k 2 ) . We have at the iteration

 + 1 , in the order of the triplet 

 k 1 = arg max 
X∈ �N 

∑ 

Y ∈ 2 �N ,Y � = ∅ 

| X ∩ Y | 
| Y | m 

�N 

k 1 
(Y ) (18) 

 k 12 
= arg max 

X∈ �L 

∑ 

Y ∈ 2 �L ,Y � = ∅ 

| X ∩ Y | 
| Y | m 

�L 

k 12 
(Y ) (19) 
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 k 2 = arg max 
X∈ �N 

∑ 

Y ∈ 2 �N ,Y � = ∅ 

| X ∩ Y | 
| Y | m 

�N 

k 2 
(Y ) (20)

Algorithm 1 shows the outline of the process followed for cor-

Algorithm 1 An Evidential approach for correcting noise. 

Require: Graph G (V, E) , The set of labeled nodes, the set of labeled

links 

Ensure: The corrected graph 

t = 0 

repeat 

1. for each element of a triplet k , compute the distance of

Jousselme between the mass function of the element and the

corresponding categorical mass functions using Eqs (7)–(9) 

2. for each triplet k , compute the minimum average distance

d k by using Eq (10) 

3. Define mass functions from the computed d k using the Eqs

(11)–(13) 

4. Update the mass functions using the Eqs (14)–(16), 

5. Combine the mass functions for the same node in order to

have a unique mass function by using the Eq (17) 

6. Make decision about the belonging of each element of the

triplet k using Eqs (18)–(20) 

7. t = t + 1 

until The results of Eqs (18)–(20) are stable. 

recting noise in social network using evidential attributes. 

The use of the Dempster combination rule makes it possible to

reinforce from one iteration to another the mass values of the ele-

ments on which the sources agree. Indeed, if we have a mass com-

ing from each source on the same focal element, the combination

rule of Dempster allows to increase the belief on the latter. From

the fact that we will have an increase in mass functions values,

there will be no change in the decision. Hence, we can confirm

that the proposed method is still converging to a single element

by the decision process given by Eqs. (18) –(20) . 

4. Experimentations 

We start the experiments by the generation of mass functions

on the nodes and links according to the structure of the network.

Indeed, for each node belonging to C i , we generate two focal el-

ements: one on C i and the second one on �N and we assign the

highest generated value to C i . We do the same for the links: de-

pending on the type of the link, we generate two focal elements. 

In a second step, we noised this network according to three sce-

narios: 

• Noisy nodes only: In this case, we have selected randomly a cer-

tain number of nodes of the initial network and we have mod-

ified their mass functions by randomly generating two focal el-

ements (ignorance and another element except the empty set). 

• Noisy links only: In this case, we selected randomly a certain

number of links of the initial network and we modified their

mass functions by randomly generating two focal elements (ig-

norance and another element except the empty set). 

• Noisy nodes and noisy links: In the latter case, we selected ran-

domly some nodes and links of the networks. Then, we modi-

fied their mass functions. 

After that, for each triplet we calculate the distances between

the attributes of the link and the two nodes and the attributes

of the representatives. As we consider different networks with N

communities, the coherent triplets are defined on the basis of the

community structure of the networks. That is to say, a node can
elong to only one community C i . From this hypothesis, the links

hat we can have will be of type IC i if they are inside the commu-

ity C i , if not the links will be of type BC (if the nodes belong to

wo different communities). 

Then, we calculate the average of the distances of the elements

omposing the triplet based on the possibilities defined initially.

able 1 presents the possible triplets for the case of a network of

 communities. 

Thereafter, we keep the minimum average distance that will be

ombined with the initial mass functions by the Dempster rule.

ere, the initial mass functions represent the mass functions be-

ore the calculation of our model is applied. For each node V k i be-

onging to several triplets, we will combine by the mean rule all

he mass functions obtained at the end of the calculation of the

empster combination. 

The proposed algorithm is iterative since, for several cases of

oisy nodes and/or noisy links, the corrections are made only after

 certain number of iterations. 

The mass functions obtained at the end of each iteration rep-

esent the input of the next iteration. For each iteration, we cal-

ulate the confusion matrix. We remind that a confusion matrix

s a technique for summarizing the performance of a classification

lgorithm. 

In order to know the accuracy value at each iteration for each

ase to be tested, we compared the result of the pignistic probabil-

ty applied at the end of each iteration with the initial information

f the network before introducing the noise. The accuracy repre-

ents the ratio of correct predictions to total predictions made. 

In order to show the efficiency of our method, we will com-

are the obtained results with those of the baseline. All experi-

ents were repeated 10 times. All figures represent the average

f the accuracy calculated for 10 runs. In addition, the evidential

pproach and the probabilistic one are tested under the same con-

itions: The same elements randomly selected and noisy in the ev-

dential case are noisy during the probabilistic approach test. 

In the tables presented in the following, we will present the ac-

uracy averages as well as the confidence intervals obtained from

he evidential approach and the baseline for each type of experi-

ent. 

.1. Possible corrections 

In the presence of noise, the algorithm corrects the information

f the network as a function of the noisy elements and the co-

erent triplets initially defined. In this section, we will present the

ossible corrections for the case of a network containing 3 com-

unities: 

.1.0.3. One noisy node and the link and the other node are corrects.

nitially we have the triplet: V k 1 ∈ C 1 , L k 12 
∈ IC 1 , V k 2 ∈ C 1 . Suppose

hat one of the nodes is modified and belongs now to C 2 or C 3 . The

lgorithm will detect that according to the information given by

he link and the other node, the modified one should be corrected.

herefore, the noisy node will be affected to C 1 . It is the same if

e have a triplet V k 1 ∈ C 2 , V k 2 ∈ C 2 , L k 12 
∈ IC 2 or a triplet V k 1 ∈ C 3 ,

 k 2 
∈ C 3 , L k 12 

∈ IC 3 . The noisy node will be reassigned to its initial

ommunity. 

.1.0.4. Two noisy nodes and the link is correct. In that case, the al-

orithm will change the nature of the link to obtain a coherent

riplet. If the modified nodes belongs to the same community, the

lgorithm will change the link in such a way that it will be internal

o the same community. If the modified nodes belongs to different

ommunities, the algorithm will change the nature of the link to

Between Clusters” ( BC ). 
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.1.0.5. One noisy node, one noisy link and one correct node. Sup-

ose that initially we had, V k 1 ∈ C 1 , L k 12 
∈ IC 1 and V k 2 ∈ C 1 . V k 1 was

odified to belong to C 2 or C 3 , L k 12 
∈ BC and V k 2 ∈ C 1 . In that case,

he algorithm will not change the information of the triplet be-

ause it’s coherent. However, if we had for example V k 1 ∈ C 2 or C 3 ,

 k 12 
∈ I C 2 or I C 3 and V k 2 ∈ C 1 , the algorithm will change the link to

C and if one of the nodes (or both) are connected to other nodes,

o the algorithm will have another information and can change one

f the node based on that. 

.1.0.6. Two noisy nodes and noisy link. In that case, the algorithm

ill compute the minimal distance between the current triplet and

he coherent ones defined initially and then modify the informa-

ion of the current triplet. 

.2. Used networks 

In this work, we performed our experiments on the real data

arate Club network and on networks generated by LFR. 

• Karate Club network: The Zachary Karate Club is a well-known

real social network studied by Zachary [24] . The study was car-

ried out over a period of three years from 1970 to 1972. 

In this network, we find: 

- 34 nodes that represent the members of Karate Club. 

- 78 pairwise links between members who are interacted out-

side the club. 

During the study a conflict arose between the administrator

“John A” and instructor “Mr. Hi”, which led to the split of the

club into two. Half of the members formed a new club around

Mr. Hi, members from the other part found a new instructor or

gave up karate. 

• LFR: The LFR benchmark [25] is an algorithm that generates ar-

tificial networks that simulate real-world networks. The gener-

ated network has a prior known communities and it is used to

compare different community detection methods. 

.3. Convergence 

The previous presented algorithm is iterative which allows to

btain better results of the accuracy from one iteration to another.

he stop criterion used is the stabilization of the value of the ac-

uracy. 

In these experiments we will limit ourselves to 5 iterations

ince beyond this number, the variation of the accuracy becomes

egligible. 

In order to show the convergence of our evidential approach,

e will consider an LFR network composed of 99 nodes, 191 links

nd 3 communities. We will noise 30 nodes and 50 links and eval-

ate the behavior of the proposed algorithm. 

Fig. 2 shows the evolution of the accuracy from an iteration to

nother. We took the case of 30 noisy nodes and 50 noisy links

Evidential Attributes). We can notice that from an iteration to an-

ther, the accuracy value increases which means that the algorithm

ucceeds in correcting the noise. 

.4. Baseline 

In order to show the efficiency of our method, we have per-

ormed an algorithm that uses the same principle in probabilistic

ersion. 

Step 1: Generation of probabilities 

In this step, we generate randomly N values in [0,1] for each

ode and N + 1 probabilities for each link then we normalize. We

enerate N + 1 probalities as we have IC i links within communi-

ies and BC links that connect communities to each other. Then,
e associate the maximum probability generated with the class to

hich the node/link belongs. The vector of probabilities will be de-

ned as follow: 

• (p(C 1 ) , p(C 2 ) , . . . , p(C N )) for each node. 

• (p(IC 1 ) , p(IC 2 ) , p(IC 3 ) , . . . , p(IC N ) , p(BC)) for each link. 

Step 2: Calculation of distances 

In this step, we will calculate the Euclidean distances between

he attributes of each node/link composing a triplet with those of

he representatives of each group: 

• For the nodes: certain events are defined by p 
�N 
ω (ω) = 1 with

ω ∈ �N i.e. p 
�N 
C i 

(C i ) = 1 , with i = { 1 , . . . , N} . 
• For the links: certain events are defined by p 

�L 
ω (ω) = 1 with

ω ∈ �L i.e. p 
�L 
BC 

(BC) = 1 or p 
�L 
IC i 

(IC i ) = 1 , with i = { 1 , . . . , N} . 
Depending of the number of communities composing the net-

ork, every representative will have 1 on the attribute of its class

nd 0 on the others. For example, if we consider a representative

f C 1 and we have 3 communities in the network, its probabilities

ector will be R 1 = (1 , 0 , 0) . 

Hence, we have 

 k 1 = arg min 

ω∈ �N 

d E (p �N 

k 1 
, p �N 

ω ) (21) 

 k 2 = arg min 

ω∈ �N 

d E (p �N 

k 2 
, p �N 

ω ) (22) 

 k 12 
is determined according to the coherent triplets by 

 k 12 
= 

{
IC k 1 if C k 1 = C k 2 
BC if C k 1 � = C k 2 

(23) 

Step 3: Calculation of average distances 

In this step, we will calculate the minimal average distance of

ach triplet k defined by: 

 k = 

d E (p �N 

k 1 
, p �N 

C k 1 
) + d E (p �L 

k 12 
, p �L 

L k 12 

) + d E (p �N 

k 2 
, p �N 

C k 2 
) 

3 

(24) 

Step 4: Assignment of probabilities from distances 

In this step, we will assign the probabilities resulting from the

omputation of the distances between triplets. We use the values

f the minimal average distance d k . 

Hence, we have: 
 

 

 

p �N 

k 1 d 
(C k 1 ) = 1 − d k 

p �N 

k 1 d 
( C k 1 ) = 

d k 
N − 1 

(25) 

 

 

 

p �L 

k 12 d 
(L k 12 

) = 1 − d k 

p �L 

k 12 d 
( L k 12 

) = 

d k 
N 

(26) 

 

 

 

p �N 

k 2 d 
(C k 2 ) = 1 − d k 

p �N 

k 2 d 
( C t 

k 2 
) = 

d k 
N − 1 

(27) 

We precise that C k 1 , L k 12 
, C k 2 represent respectively the elements

ontrary to C k 1 , L k 12 
, C k 2 . 

Step 5: Calculation of the average between the new probabil-

ties and the initial ones 

In order to have a single probability distribution for each

ode/link, we will calculate the average between the probabilities

enerated in the first instance and those resulting from the calcu-

ation of the distances. 

p t+1 , �N 

k 1 
= 

p t, �N 

k 1 
+ p t, �N 

k 1 d 
(28) 
2 
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Fig. 2. LFR: corrected nodes and links: case of 30 noisy nodes and 50 noisy links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Improvement rate: case of noisy nodes only. 

Noise Rate of improvement (%) 

30 Nodes 60 

60 Nodes 53 

90 Nodes 42 

99 Nodes 38 

Table 3 

Improvement rate: case of noisy links only. 

Noise Rate of improvement (%) 

50 Links 41 

100 Links 36 . 7 

191 Links 36 

Table 4 

Improvement rate for nodes: case of noisy nodes and noisy links. 

Noise Rate of improvement (%) 

30 Nodes + 50 Links 45 

60 Nodes + 100 Links 32 

90 Nodes + 191 Links 11 

99 Nodes + 191 Links 7 

Table 5 

Improvement rate for links: case of noisy nodes and noisy links. 

Noise Rate of improvement (%) 

30 Nodes + 50 Links 50 

60 Nodes + 100 Links 27 

90 Nodes + 191 Links 6 

99 Nodes + 191 Links 4 

r

 

t  

w  

w

4

 

p  

t  
p t+1 , �L 

k 12 
= 

p t, �L 

k 12 
+ p t, �L 

k 12 d 

2 

(29)

p t+1 , �N 

k 2 
= 

p t, �N 

k 2 
+ p t, �N 

k 2 d 

2 

(30)

where p 
t, �N 

k 1 d 
, p 

t, �L 

k 12 d 
, p 

t, �N 

k 2 d 
are given respectively by Eqs. (25) –(27) . 

In order to determine a unique probabilities vector for each

node ( e.g. V k 1 ), we combine by the mean rule (given by Eq. (5) ), all

the probabilities obtained for the given node V k 1 . Hence, we have

p �N 

k 1 
= 

1 

| T | 
∑ 

{ k : V k 1 ∈ T } 
p �N 

k 
(31)

where T = { (V k ′ 
1 
, L k 12 

, V k 2 ) } and p 
�N 

k 
is given by Eq. (28) . 

Step 6: Making decision 

In this step, we will decide on the membership of each

node/link. To do this, we decide the singleton having the maxi-

mum of probability. 

Algorithm 2 shows the outline of the process followed for cor-

Algorithm 2 A Probabilistic approach for correcting noise. 

Require: Graph G (V, E) , The set of labeled nodes, the set of labeled

links 

Ensure: The corrected graph. 

t = 0 

repeat 

1. for each element of a triplet k , compute the Euclidean dis-

tance between the element and the corresponding categorical

representative using Eqs. (21)–(23) 

2. for each triplet k , compute the minimum average distance

d k by using Eq. (24) 

3. Define probabilities from the computed d k using the Eqs.

(25)–(27) 

4. Update the probabilities using the Eqs. (28)–(30), 

5. Combine the probabilities for the same node in order to

have a unique vector of probabilities by using the Eq. (31) 

6. Make decision about the belonging of each element of the

triplet k 

7. t = t + 1 

until Number of iterations equal to 5. 

1

ecting noise in social network using probabilistic attributes. 

In order to test the effectiveness of the baseline, we will add

he noise as we did with the evidential approach. To do this, we

ill add noise to the same nodes and links selected randomly

hen we tested the evidential approach. 

.5. Improvement rate 

Tables 2 –5 show the rate of improvement of the evidential ap-

roach compared to the baseline at the fifth iteration. We consider

he variation of noise in the LFR network composed of 99 nodes,

91 links and 3 communities. 
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Fig. 3. Karate Club: comparison of probabilistic and evidential accuracy: case of noisy nodes. 

Table 6 

Accuracy average and interval of confidence: case of noisy nodes only in the 

Karate Club. 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

10 Nodes 0.9265 [0.911,0.941] 0.51471 [0.443,0.585] 

20 Nodes 0.86469 [0.807,0.922] 0.50589 [0.422,0.588] 

30 Nodes 0.7647 [0.683,0.845] 0.45882 [0.328,0.589] 

34 Nodes 0.7558 [0.634,0.876] 0.4076 [0.313,0.565] 

 

b  

d  

l

4

 

d

 

n  

s

4

 

e

 

t  

a

 

r  

t  

f

 

t  

e  

K

4

 

a

Table 7 

Accuracy average and interval of confidence: case of noisy links only in the 

Karate Club. 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

20 Links 0.94225 [0.923,0.960] 0.66665 [0.629,0.703] 

40 Links 0.88975 [0.854,0.924] 0.63333 [0.569,0.696] 

60 Links 0.80771 [0.762,0.852] 0.60128 [0.564,0.637] 

78 Links 0.76538 [0.704,0.826] 0.56922 [0.529,0.608] 
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The rate of improvement is calculated by making the difference

etween the average values of the accuracy obtained with the evi-

ential approach at the fifth iteration with that given by the base-

ine. 

.6. Experiments on real data: Karate Club 

As the karate club network has 2 communities, the frames of

iscernment of the nodes and links will be defined by 

• �N = { C 1 , C 2 } 
• �L = { I C 1 , I C 2 , BC} 

In this part, we will show the results obtained in the case of

oisy nodes only, noisy links only and noisy nodes and links at the

ame time. 

.6.1. Noisy nodes only 

In Fig. 3 we present the accuracy average values at the fifth it-

ration when we vary the number of noisy nodes. 

We notice that the more the number of noisy nodes increases,

he more the accuracy average value decreases for both evidential

nd probabilistic methods. 

However, we remark that we obtain a better accuracy average

esults with the belief function theory comparing to the probability

heory. This can be explained by the fact that the theory of belief

unctions manages ignorance as well as conflict. 

Table 6 presents the accuracy averages and the confidence in-

ervals obtained from the evidential approach and the baseline for

ach level of noise added to the nodes only in the case of the

arate Club. 

.6.2. Noisy links only 

We show in Fig. 4 the accuracy average results at the fifth iter-

tion after noising 20, 40, 60 and 78 links of the network. 
According to the curve, the average accuracy values given by

he evidential approach are better than that given by the baseline

n each level of noise. 

We show in Table 7 the obtained accuracy averages and the

onfidence intervals given by the evidential method and the prob-

bilistic approach when we vary the number of noisy links only in

he case of the Karate Club. 

.6.3. Noisy nodes and noisy links 

In this third case, we proceed by noising the nodes and the

inks at the same time. Fig. 5 shows the obtained results of accu-

acy average after noising the attributes at the fifth iteration. The

bscissa represents respectively the level of noise 10 nodes and 20

inks, 20 nodes and 40 links, 30 nodes and 60 links and finally, 34

odes and 78 links. 

We notice that the accuracy average values decreases as the

oise level increases for both evidential and probabilistic ap-

roaches. However, the proposed method gives better results than

he baseline. 

Table 8 shows the obtained accuracy averages and the confi-

ence intervals given by the evidential method and the probabilis-

ic approach in the case of noisy nodes and noisy links in the case

f the Karate Club. 

.7. Experiments on LFR 

In the second part of our experiments, we used different net-

orks generated with LFR [26] . We present in table 9 the parame-

ers used to generate our networks. 

We will perform several experimentations which will be re-

eated 10 times and show the obtained average of the accuracy.

ll the figures present the results given by the evidential approach

nd the baseline. 

We will start by varying the noise of the nodes, links and both

f the LFR network composed of 99 nodes, 191 links and 3 com-

unities. 



38 S.B. Dhaou et al. / Online Social Networks and Media 7 (2018) 30–44 

Fig. 4. Karate Club: comparison of probabilistic and evidential accuracy: case of noisy links. 

Fig. 5. Karate Club: comparison of probabilistic and evidential accuracy: case of noisy nodes and links. 

Table 8 

Accuracy average and interval of confidence: case of noisy nodes and links in the Karate Club. 

Case of nodes 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

10 Nodes + 20 Links 0.90 0 04 [0.871,0.928] 0.63972 [0.581,0.697] 

20 Nodes + 40 Links 0.758228 [0.689,0.827] 0.52949 [0.467,0.591] 

30 Nodes + 60 Links 0.6353 [0.559,0.711] 0.50833 [0.439,0.578] 

34 Nodes + 78 Links 0.56882 [0.449,0.667] 0.50589 [0.395,0.616] 

Case of Links 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

10 Nodes + 20 Links 0.81026 [0.738,0.882] 0.53234 [0.394,0.669] 

20 Nodes + 40 Links 0.61922 [0.534,0.703] 0.50883 [0.445,0.598] 

30 Nodes + 60 Links 0.56882 [0.483,0.638] 0.41538 [0.329,0.5011] 

34 Nodes + 78 Links 0.465614 [0.383,0.528] 0.40641 [0.359,0.453] 

 

 

 

 

 

 

 

m  

s  

t  

m  

o  

t

 

a  

s  
For the rest of the experiments, we will vary each time one of

the parameters of the LFR network such as the number of com-

munities, the size of the network and the mixing parameter μ
and observe their impact on the noise correction rate. For each of

these experiments we will noise 60% of the nodes and 50% of the

links. 

In this work, we used the LFR parameters presented in

Table 9 for the generation of our networks: n represents the num-

ber of nodes, K the average degree, maxK the maximum degree,
u the mixing parameter, t 1 the minus exponent for the degree

equence, t 2 the minus exponent for the community size distribu-

ion, minC the minimum for the community size, maxC the maxi-

um for the community size, on the number of overlapping nodes,

m the number of memberships of the overlapping nodes and C

he average clustering coefficient. 

Since LFR generates the links of the graph in both directions

nd in this work we consider non-directed graphs, we will use a

ingle link to represent the connection between two nodes. As a
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Fig. 6. LFR: comparison of probabilistic and evidential accuracy: case of noisy nodes. 

Table 9 

Parameters of LFR. 

N K maxK mu t1 t2 minC maxC on om C 

99 5 10 0.3 2 1 33 33 0 0 0.55 

200 5 10 0.3 2 1 66 67 0 0 0.55 

200 5 10 0.3 2 1 50 50 0 0 0.55 

200 5 10 0.3 2 1 40 40 0 0 0.55 

200 5 10 0.3 2 1 33 33 0 0 0.55 

300 5 10 0.3 2 1 100 100 0 0 0.55 

400 5 10 0.3 2 1 132 135 0 0 0.55 

50 5 10 0.3 2 1 15 17 0 0 0.55 

200 5 10 0.1 2 1 66 67 0 0 0.55 

200 5 10 0.5 2 1 66 67 0 0 0.55 

200 5 10 0.7 2 1 66 67 0 0 0.55 

200 5 10 0.9 2 1 66 67 0 0 0.55 
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Table 10 

Accuracy average and interval of confidence: case of noisy nodes only in LFR. 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

30 Nodes 0.92526 [0.894,0.955] 0.32522 [0.267,0.383] 

60 Nodes 0.82729 [0.781,0.873] 0.29391 [0.266,0.321] 

90 Nodes 0.70205 [0.622,0.781] 0.2727 [0.258,0.298] 

99 Nodes 0.65054 [0.610,0.690] 0.26866 [0.244,0.292] 

Table 11 

Accuracy average and interval of confidence: case of noisy links only in LFR. 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

50 Links 0.94239 [0.930,0.953] 0.52252 [0.474,0.570] 

100 Links 0.87539 [0.862,0.887] 0.50786 [0.458,0.557] 

191 Links 0.77119 [0.739,0.803] 0.40988 [0.352,0.467] 
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esult, the number of links we present in the experimental part is

alf the number of links initially generated. 

The first set of experiments consists of varying the noise in an

FR network composed of 99 nodes, 191 links and 3 communities.

e will proceed by noising the nodes at first, then the links and

nally we will simultaneously noise both. 

The frames of discernment of the nodes and links for this net-

ork are defined as follows: 

• �N = { C 1 , C 2 , C 3 } 
• �L = { I C 1 , I C 2 , I C 3 , BC} with IC i represents the links inside the

community C i and BC represents the links between 3 commu-

nities. 

.7.1. Noisy nodes only 

In this first case of experiments, we will add noise to a number

f nodes randomly selected of the network. The noise consists on

odifying the mass functions of the selected nodes by randomly

enerating two focal elements (ignorance and another element ex-

ept the empty set). We will then compare the obtained results

ith those given by the baseline. Fig. 6 shows the obtained results

f the accuracy for every variation of the noise. We vary the num-

er of noisy nodes from 30 to 99. 

We notice that the more the number of noisy nodes increases

he more the accuracy average decreases. We also note that for

ach level of noise, we obtained better results with the evidential

odel. This is because the theory of belief functions offers a very

ffective way to handle ignorance and conflict. 

Table 10 shows the obtained accuracy averages and the confi-

ence intervals given by the evidential method and the probabilis-
ic approach in the case of noisy nodes only in the case of LFR

etwork. 

.7.2. Noisy links only 

The second part of the experiments consists in keeping the ini-

ial generation of the mass functions of the nodes and adding noise

nly to the mass functions of the links. 

Fig. 7 shows the obtained results of the accuracy average due

o the variation in the number of noisy links. In this figure, we

ompute the accuracy average for 50, 100 and 191 noisy links. We

otice that we obtain better results when we use the evidential

ttributes. These results can be explained by the fact that the ev-

dential approach better manages ignorance than the probabilistic

pproach. 

We present in Table 11 the accuracy averages and the con-

dence intervals obtained from the evidential approach and the

aseline in the case of noisy links only in the case of LFR network.

.7.3. Noisy nodes and noisy links 

In this third part of the experiments, we noised simultaneously

he nodes and the links of the network. 

The aim of simultaneously noising the nodes and the links is to

ake the network totally incoherent and to evaluate the ability of

he algorithms to correct the noise and to find a network compa-

able to the initial one. 

We vary the number of noisy nodes by 30 at each step and then

e add noise on all the nodes of the network. As for the links, we

ary the noisy links by 50, then we add noise on all the links of

he network. 
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Fig. 7. LFR: comparison of probabilistic and evidential accuracy: case of noisy links. 

Fig. 8. LFR: comparison of probabilistic and evidential accuracy: case of noisy nodes and links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

l

 

b  

i  

n  

fi  

w  

fi

4

 

t

 

e  

d  

e  

b  
We chose these values in order to have a better view on the

impact of the noise introduced on the network information. 

We compare the obtained results with those of the baseline. 

Fig. 8 shows the results of the accuracy average for every level

of noise used in these experiments. We compare the obtained re-

sults with those of the baseline after noising 30 nodes and 50

links, 60 nodes and 100 links, 90 nodes and 191 links and finally,

99 nodes and 191 links. 

From this figure, we can notice that the accuracy average results

are better with the evidential attributes. We remark also that when

it is very noisy, it becomes impossible to obtain good results. 

It should be noted that in the case of adding a maximum noise,

the value of the accuracy average is stable from the beginning. This

is due to the fact that when we noise the data, the mass functions

are generated randomly and therefore there are two possibilities: 

• Either the new mass function makes sure to change the class of

the node/link. 

• Either the element always retains its initial membership but

with a different mass function. 

Hence, we will always have elements that are correct even

when it’s the case of maximal noise. These correct attributes help

in the finding of other correct triplets. 

We present in Table 12 a comparison between the accuracy

averages and the confidence intervals given by the evidential
pproach and the baseline in the case of noisy nodes and noisy

inks in the case of LFR network. 

In what follows, we will noise 60% of nodes and 50% of links

y varying each time a parameter of the LFR algorithm. The idea

s to see the impact of each parameter on the correction rate of

oisy information for the same level of noise. To do this, we will

rst vary the number of communities. Then, we will vary the n

hich represents the number of nodes composing the network and

nally, we will vary the mixing parameter. 

.8. LFR: variation of the communities number 

In this part of experiments, we vary the number of communi-

ies. We generate 4 LFR networks: 

• a network with 200 nodes, 402 links and 3 communities. 

• a network with 200 nodes, 472 links and 4 communities. 

• a network with 200 nodes, 477 links and 5 communities. 

• a network with 200 nodes, 501 links and 6 communities. 

Fig. 9 shows the obtained results of the accuracy average for

ach network. We can remark that for all the networks, the evi-

ential model gives better results on links and nodes accuracy av-

rage than the baseline. We notice also that there is not really a

ig difference in the values of the accuracy average when we vary
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Table 12 

Accuracy average and interval of confidence: case of noisy nodes and noisy links in LFR. 

Case of nodes 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

30 Nodes + 50 Links 0.9091 [0.882,0.936] 0.45125 [0.390,0.511] 

60 Nodes + 100 Links 0.71417 [0.664,0.763] 0.3901 [0.311,0.412] 

90 Nodes + 191 Links 0.40602 [0.367,0.4 4 4] 0.29088 [0.245,0.325] 

99 Nodes + 191 Links 0.34643 [0.293,0.399] 0.27016 [0.227,0.312] 

Case of Links 

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

30 Nodes + 50 Links 0.84188 [0.810,0.872] 0.3333 [0.266,0.399] 

60 Nodes + 100 Links 0.59634 [0.558,0.633] 0.3232 [0.262,0.383] 

90 Nodes + 191 Links 0.3434 [0.313,0.398] 0.27436 [0.247,0.305] 

99 Nodes + 191 Links 0.2929 [0.258,0.312] 0.24987 [0.228,0.275] 

Fig. 9. LFR: comparison of probabilistic and evidential accuracy: case of noisy nodes and links. 

Table 13 

Accuracy average and interval of confidence: case of noisy nodes and noisy links- 

communities variation. 

Case of nodes 

Nb-Communities Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

C3 0.73 [0.689,0.774] 0.39 [0.321,0.402] 

C4 0.625 [0.602,0.645] 0.32 [0.281,0.345] 

C5 0.65 [0.63,0.679] 0.41 [0.385,0.445] 

C6 0.6 [0.598,0.621] 0.38 [0.365,0.4] 

Case of Links 

Nb-Communities Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

C3 0.61 [0.563,0.669] 0.30 [0.298,0.325] 

C4 0.553 [0.524,0.573] 0.2247 [0.201,0.251] 

C5 0.6065 [0.575,0.613] 0.3939 [0.371,0.405] 

C6 0.53 [0.508,0.554] 0.33 [0.295,0.353] 
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he number of communities. We can, therefore, conclude that the

roposed approach is stable. 

Table 13 presents a comparison between the accuracy averages

nd the confidence intervals given by the evidential approach and

he probabilistic one when we vary the number of communities in

he case of LFR networks. 

.9. LFR: Variation of the size of the network 

In this section, we will present the obtained results of the ac-

uracy following the variation of the network size. We consider

 networks whose number of nodes was varied and containing 3

ommunities: 
• a network with 50 nodes and 115 links. 

• a network with 99 nodes and 191 links. 

• a network with 200 nodes and 402 links. 

• a network with 300 nodes and 721 links. 

• a network with 400 nodes and 932 links. 

Fig. 10 presents the obtained accuracy average results. It shows

hat the evidential approach was able to correct more informa-

ion than the baseline whatever the network considered. Moreover,

ig. 10 shows that the evidential method is stable since the val-

es of the precision calculated for each network are close to each

ther. 
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Fig. 10. LFR: comparison of probabilistic and evidential accuracy: case of variation of the size of the network. 

Table 14 

Accuracy average and interval of confidence: case of noisy nodes and noisy links- 

network size variation. 

Case of nodes 

Nb-Nodes Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

50 0.77 [0.705,0.798] 0.44 [0.365,0.463] 

99 0.71417 [0.664,0.763] 0.3901 [0.311,0.412] 

200 0.73 [0.698,0.773] 0.39 [0.321,0.402] 

300 0.69 [0.602,0.725] 0.38 [0.309,0.395] 

400 0.68 [0.598,0.699] 0.37 [0.312,0.385] 

Case of Links 

Nb-Nodes Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

50 0.65 [0.585,0.705] 0.37 [0.303,0.398] 

99 0.59634 [0.558,0.633] 0.3232 [0.315,0.3434] 

200 0.61 [0.563,0.669] 0.30 [0.298,0.325] 

300 0.58 [0.538,0.621] 0.29 [0.205,0.382] 

400 0.57 [0.545,0.611] 0.27 [0.203,0.351] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15 

Accuracy average and interval of confidence: case of noisy nodes and noisy 

links-mixing parameter variation. 

Case of nodes 

μ Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

0.1 0.732 [0.689,0.774] 0.42346 [0.394,0.452] 

0.3 0.73 [0.687,0.773] 0.39 [0.321,0.402] 

0.5 0.6625 [0.626,0.698] 0.325 [0.291,0.358] 

0.7 0.645 [0.604,0.685] 0.19939 [0.181,0.217] 

0.9 0.6315 [0.602,0.658] 0.16455 [0.143,0.185] 

Case of Links 

μ Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob 

0.1 0.60426 [0.564,0.644] 0.3255 [0.273,0.377] 

0.3 0.61 [0.563,0.669] 0.30 [0.298,0.325] 

0.5 0.67687 [0.626,0.698] 0.25868 [0.239,0.277] 

0.7 0.711 [0.690,0.732] 0.3425 [0.320,0.364] 

0.9 0.75238 [0.741,0.763] 0.3545 [0.3283,0.380] 

Table 16 

Comparison of probabilistic and evidential execution time. 

C3 C4 C5 C6 

Probabilistic Execution Time 5.45 8.1 8.95 9.45 

Evidential Execution Time 119.05 652.4 3864.15 19225.4 
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Table 14 shows the obtained accuracy averages and the confi-

dence intervals from the evidential approach and the probabilistic

one when we vary the size of the network in the case of LFR. 

4.10. LFR: Variation of the mixing parameter μ

In this section, we will present the obtained results of the ac-

curacy average following the variation of the mixing parameter μ.

We consider 5 networks whose mixing parameter was varied and

containing 3 communities: 

• a network with 200 nodes, 484 links and μ = 0 . 1 . 

• a network with 200 nodes, and 402 links and μ = 0 . 3 . 

• a network with 200 nodes, and 467 links and μ = 0 . 5 . 

• a network with 200 nodes, and 488 links and μ = 0 . 7 . 

• a network with 200 nodes, and 502 links and μ = 0 . 9 . 

Fig. 11 shows the results obtained by the evidential method and

the baseline after varying the mixing parameter. 

We find that the accuracy average of the nodes is greater than

the accuracy average of the links when μ< 0.5, while the latter

becomes greater than the accuracy average of the nodes when

μ> 0.5. This change is explained by the fact that the more the

mixing parameter approaches 1, the more we get a network with

more links between clusters than within the community. 

We present in Table 15 the obtained accuracy averages and the

confidence intervals given by the evidential approach and the base-

line when we vary the mixing parameter in the case of LFR. 
.11. Comparison of execution time 

In this section, we will compare the execution time put by the

odel’s evidential version as well as the probabilistic one. We will

resent the execution time at the fifth iteration. We will observe

he evolution of the execution time in the case of LFR networks

ith 6, 5, 4 and 3 communities. The execution time will be ex-

ressed in seconds. 

The Table 16 shows that the evidential method takes more time

ompared to the baseline. We notice also that as the number of

ommunities increases, the execution time increases too. 

We remind that in this paper, we focused on the use of a lim-

ted number of communities. In terms of scaling up, there are sev-

ral strategies that can reduce complexity such as representing

nly the focal elements or grouping them together if their values

re negligible. This will be the subject of future work. 
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Fig. 11. LFR: comparison of probabilistic and evidential accuracy: case of variation of the mixing parameter. 
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. Conclusion 

Researches that have focused on clustering using the network

tructure as well as the nodes attributes, ignore the links infor-

ation. In order to remedy this problem, we propose a method

hich allows to classify the nodes in their initial clusters even

hen there is a significant noise added to the network. In the case

f a large noise, the algorithm guarantees the information coher-

nce of any network even when it is a network whose nodes and

inks attributes have been strongly modified. 

Throughout this work, we first recalled some basic notions of

he theory of belief functions as well as some methods for the

ommunities detection based on graph structure as well as the

ttributes and some other related works. Then, we presented our

ethod which consists in first generating attributes on the nodes

nd the links according to the network structure. In a second step,

e added noise on the attributes and then reclassified the nodes

nd/or the links. 

We tested our approach on real data: the Karate Club network.

hen, we varied the noise on a LFR network composed of 3 com-

unities and we presented the obtained results during the nois-

ng of the nodes, links and both. Finally, we studied the behavior

f the proposed method according to the variation of the num-

er of communities, the size of the network as well as the mixing

arameter. All the obtained results were compared with those of

he baseline. Experiments have shown that the more we noisy the

etwork, the farther we get away from the initial network, but we

re sure to have a coherent network. In addition, our proposed ap-

roach is stable when we vary the number of communities and

he size of the network and gives better results in all studied cases

han the baseline. 

As future work, we intend to deal with the case of overlap-

ing communities. Given the fact that a node can belong to several

ommunities, it has become interesting to analyze the evolution of

 social network over time. This study could help to better identify

he types of nodes as well as their exchanges on the network. In

ddition, the theory of belief function offers a very effective way to

nalyze the evolution during the time of evidential networks com-

osed of overlapping communities. 

We also intend to improve the code and the execution time

f the proposed method. In fact, although the proposed approach

ields better results, it takes much longer time than the baseline. 
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