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a b s t r a c t 

In this paper, we provide an overview of recent works on dynamics of social networks and distributed 

algorithms for their exploration, contributed by Dr. Roberto Tempo (1956–2017) and his colleagues. These 

works, based on the recent achievements in multi-agent systems theory and distributed randomized al- 

gorithms, contribute in bridging the gap between the two classical sciences of Social Network Analysis 

and Systems and Control. The topics covered by this survey include distributed algorithms for analysis 

of complex social networks and novel dynamic models, describing opinion formation processes in such 

networks. 
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. Introduction 

Originating from studies on sociometry [1] , Social Network Anal-

sis (SNA) has grown into an interdisciplinary theory, being an

ndispensable part of modern Network Science. SNA employs nu-

erous mathematical tools, coming from graph theory, algorithm

heory, probability theory and statistics. Whereas the important

ole of “cybernetical” (system, control and information-theoretic)

ethods in social and behavioral sciences has been foreseen by

iener [2] , the fruitful interaction among SNA and systems theory

as started quite recently with introducing distributed algorithms

or analysis of social networks and novel dynamical models, de-

cribing processes over such networks (e.g. evolution of individual

pinions, attitudes and beliefs under social influence). The rapidly

eveloping subfield of control theory, studying social networks by

ystem-theoretic methods, is very young and still has no name.

ne of the pioneers of this new area, Roberto Tempo was very

assionate about filling the gap between control and societal stud-

es. Among his last works there were tutorial papers [3,4] making

n attempt to systematize the most mature results and achieve-

ents of “social systems theory”, opening this novel area to a

road interdisciplinary research community. In this survey, we fo-
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us on two Tempo’s key achievements, namely, development of

istributed algorithms for network analysis (in particular, computing

entrality measures [5–7] ), works on the Friedkin–Johnsen model of

pinion formation [8–10] and recent important extensions of this

odel [11–14] . 

. Historical notes 

Tempo’s interest in social networks was initially motivated by

is works on distributed randomized algorithms. After being one of

he leading researchers in the area of control systems analysis and

esign, pursuing the so-called robust paradigm (aimed at guaran-

eeing system performance in all uncertain conditions), in the late

ighties Tempo was one of the first to recognize the intrinsic lim-

tations and drawbacks of this approach, and became one of the

rst scholars to propose the new paradigm of probabilistic robust-

ess. This approach introduced a probabilistic description of the

ncertainty, and proposed algorithms for assessing performance in

robability . 

A randomized algorithm is simply “an algorithm where some

teps are based on a random choice”. In the context of uncertain

ystems, this choice corresponds to a random selection of the un-

ertainty. For instance, a system’s performance can be guaranteed

n a probabilistic way by designing a controller which performs in

he desired way for a prescribed number of randomly generated

cenarios. The importance of randomized methods quickly become

vident, and they became a key tool of probabilistic robust control.
ture of social networks from a systems and control viewpoint: A 
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This research is summarized in [15] , which develops and discusses

several randomized algorithms for analysis and design of systems

affected by deterministic and stochastic uncertainty, with particu-

lar emphasis on iterative randomized techniques. 

Then, Tempo’s interests rapidly extended to other fields where

the use of randomization plays a crucial role, in particular those

based on the so-called Las Vegas methods (see [16] ), and on the

implementation of these algorithms in a distributed manner. This

motivated the study of networks, and in particular his works on

PageRank recalled in Section 3 . 

Numerous analogies between distributed algorithms and social

dynamics, together with his encounter with key players in the field

of social networks, were the key drivers of Tempo’s work in this

latter field, which is recalled in Section 4 . 

3. Distributed algorithms for network analysis 

In the last decades, the interest on the study of networks has

constantly grown in various disciplines, including computer sci-

ence, mathematics, physics, engineering science, economics, and

social sciences. The notion of network refers to a structure defined

by entities and connections among them. These entities can repre-

sent people, but may also be groups, organizations, nation states,

web sites, or scholarly publications. Mathematically, the complex

networks arising in these fields can be represented by a graph

G = (V, E ) , consisting of a set of nodes V and a set of connections

E ⊆ V × V that reflect the dependency, influence or similarity rela-

tions. 

In social network analysis, the identification of the most rele-

vant entities in a network is a problem that attracted much at-

tention. The relevance can be defined in several ways according to

the specific context and application, leading to different notions of

centrality (a node’s importance) measure. 

The simplest definition of centrality is represented by the de-

gree , i.e. the number of neighbors of a node v ∈ V . More precisely,

the out-degree of v ∈ V is defined by 

n v = |{ w ∈ V : (v , w ) ∈ E}| , 
where |X | denotes the cardinality of the set X . In social systems,

the degree can provide a measure of the immediate risk of a node

of catching or spreading some information. However, since this no-

tion of centrality is a local definition that is independent of the rest

of the network, in many cases it is not able to capture the role of

this node in connection to the others. The most significant defini-

tions of centrality that involve the entire network are, to mention

just a few, closeness, betweenness , and eigenvector centrality . 

In a connected network, the closeness centrality of a node v ∈ V
is defined as the inverse sum of the distances from a node to all

other nodes in the graph. More precisely, one can consider 

c v = 

1 ∑ 

w ∈V\{ v } d v w 

where d vw 

is the distance between node v ∈ V and node w ∈ V,

that can be defined as the length of the shortest path between v

and w , but other distances may also be considered [17,18] . Accord-

ing to a closeness centrality, a node is more central if it is closer

to most of the other nodes [19] . In social networks closeness can

be interpreted as a measure of how long it will take to spread in-

formation from v to all other nodes in the network. 

Betweenness, instead, is defined as follows, see e.g. [17,18] 

b v = 

∑ 

j,k ∈V, j � = k � = v 

| S v ( j, k ) | 
| S( j, k ) | 

where S ( j, k ) denotes the set of shortest paths from j to k , and S v ( j,

k ) the set of shortest paths from j to k that contain the node v . In

other terms, node with a high betweenness can be thought as a
Please cite this article as: A.V. Proskurnikov et al., Dynamics and struc
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ridge between two groups of vertices within the network, since

any paths in different groups must pass through this node. 

Eigenvector centrality uses the entries of the leading eigenvec-

or x � of a suitable weighted adjacency matrix, call it A , associated

o the network to assign the relevance of the nodes. We thus have 

x � = Ax � 

here λ is the leading eigenvalue of A . Examples include Bonacich

entrality [20,21] , Katz centrality [22] , and the PageRank centrality,

uggested in [23] to rank websites in the Google search engine re-

ults, and belonging in fact to a broad class of centrality measures,

ntroduced by Friedkin [5,10] . 

PageRank can be considered as a natural extension of the de-

ree centrality, taking into account not only the number of nodes

hat are connected, but, in a certain sense, the quality of these con-

ections. 

The PageRank performs ranking of the nodes following the

dea that connections with high-ranking nodes must contribute

ore to the ranking of the node than those with low-scoring

odes. This is an important feature in the estimation of the so-

ial power in a group, since connections with influential actors

ill make you more central than connections to non-influential

gents. 

In Fig. 1 a–d the values of different centrality measures are

omputed and compared for the Karate Club network [24] ; even

n small-size networks, one notices the evident difference in the

ode ranking. Tempo’s works on centrality measures focused on

ow-complex, robust and distributed algorithms for their com-

utation. For PageRank computation he also outlined the con-

ections with other problems of interest for the systems and

ontrol community, including consensus of multi-agent systems

25] and aggregation-based techniques [26] . Moreover, the con-

ribution in [27] showed the applicability of the PageRank algo-

ithms to ranking control journals, comparing it to the scientomet-

ic journal ratings. We begin by quickly reviewing the basic rudi-

ents on PageRank computation. Afterwards, we will summarize

he main contributions of Tempo on algorithms for its distributed

omputation. 

.1. PageRank computation 

The PageRank, introduced by Brin and Page in [23] , is based on

he definition of a suitable Markov model describing the random

urfing of the world wide web, called teleportation model , and is

ndependent of the semantic content or the view count of web

ages. We briefly summarize the main notation and the mathe-

atical formulation of the problem. 

A network consisting of n web pages [23] is considered and

escribed by a directed graph G = (V, E ) , where the set of ver-

ices correspond to the web pages and the edges are the links

etween two web pages. More precisely, we draw the edge

(i, j) ∈ E, if page i has an outgoing link to page j . The idea

s that a surfer begins at a random web page and follows a

andom walk, by choosing a hyperlink with equal probability.

he probabilities of jumping between the web pages can be en-

oded in the so-called hyperlink matrix obtained as follows Let

 i = { h ∈ V : (i, h ) ∈ E} be the set of nodes linked by i , and

 i = |N i | , for each node i ∈ V, and A ∈ R 

V×V the matrix such

hat 

 i j = 

{
1 / n j if j ∈ N i 

0 otherwise . 

n order to overcome the problem of dangling nodes , i.e. webpages

ith no outgoing hyperlinks, it is generally assumed that the surfer

umps to some random webpage, chosen at random according to
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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Fig. 1. Different types of centrality measures for the graph of Karate Club. 
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 prescribed dangling node distribution [28] . With this modifica-

ion, the columns of A corresponding to dangling nodes are equal

o some known distribution vector. It should be noticed that with

his modification the entries of matrix A are nonnegative and A is

 stochastic matrix, i.e. its columns sum up to one, 
∑ 

i ∈V A i j = 1 . 

The teleportation model considers the possibility that the ran-

om surfer may randomly jump from the currently visited web-

age to some other webpage, not directly connected to the cur-

ent one, with a uniform probability. Fixed m ∈ (0, 1), the transition

robability matrix is given by 

 := (1 − m ) A + 

m 

n 

1 n 1 
� 
n (1)

btained as the a convex combination of the original hyperlink

atrix A and the matrix 1 /n 1 n 1 
� 
n , where 1 n stands for the n -

imensional column vector containing all ones. In the pioneering

lgorithm devised by Google [23] , the parameter of the convex

ombination was set to m = 0 . 15 . As the surfer proceeds in this

andom walk from node to node, he visits some nodes more often

han others; intuitively, these are nodes with many links coming

n from other frequently visited nodes. The assumption behind the

ageRank computation is that pages that are visited more often in

his random walk are more relevant. 
Please cite this article as: A.V. Proskurnikov et al., Dynamics and struc

survey of Roberto Tempo’s contributions, Online Social Networks and M
Then, the PageRank of graph G is defined as the vector x � pgr such

hat 

x � pgr = x � pgr , 

n ∑ 

i =1 

x � pgr i 
= 1 . 

ince the matrix M is a primitive matrix (see Appendix A for a

ormal definition), the theory of Markov chains ensures that the

ageRank vector can be computed through the recursion 

 (k + 1) = Mx (k ) = (1 − m ) Ax (k ) + 

m 

n 

1 n , (2)

ith the initial condition satisfying 1 � n x (0) = 1 , (i.e., x (0) stochastic

ector). 

It should be noticed that that the teleportation model ensures

hat matrix (1 − m ) A has eigenvalues inside the open unit circle

 z ∈ C : | z| < 1 } (such matrices are also called Schur stable ), and

hus guarantees the convergence of the sequence in (2) to the vec-

or 

 

� 
pgr = (I − (1 − m ) A ) −1 m 

n 

1 n . (3)

Example [PageRank computation] [27] . Let us consider a network

onsisting of six nodes, as depicted in Fig. 2 . 
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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Fig. 2. Example of a network of six nodes. 
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The hyperlink matrix A is given by the following column

stochastic matrix 

A = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 / 2 0 0 0 0 

1 / 2 0 1 / 3 0 0 0 

0 1 / 2 0 1 / 3 0 0 

1 / 2 0 1 / 3 0 0 1 / 2 

0 0 0 1 / 3 0 1 / 2 

0 0 1 / 3 1 / 3 1 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

and the corresponding transition matrix for teleportation model is

obtained from (1) with m = 0 . 15 

M = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 025 0 . 450 0 . 025 0 . 025 0 . 025 0 . 025 

0 . 45 0 . 025 0 . 308 0 . 025 0 . 025 0 . 025 

0 . 025 0 . 45 0 . 025 1 / 3 0 . 025 0 . 025 

0 . 45 0 . 025 0 . 308 0 . 025 0 . 025 0 . 45 

0 . 025 0 . 025 0 . 025 0 . 308 0 . 025 0 . 45 

0 . 025 0 . 025 1 / 3 1 / 3 1 0 . 025 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

The PageRank vector is given by 

x � pgr = 

(
0 . 0614 , 0 . 0857 , 0 . 122 , 0 . 214 , 0 . 214 , 0 . 302 

)� 
. (4)

As discussed, a classical interpretation of the PageRank is that

“a node is important if it is linked by important nodes.” This is

clear by looking at nodes 2 and 5 in Fig. 2 : they both have two

incoming nodes, but the PageRank of node 5 is higher than that of

node 2, since node 2 has an incoming link from a page with high

PageRank (node 6). 

The PageRank, as well as the most significant definitions of cen-

trality in social networks, are functions of the full network. Conse-

quently, in order to compute it for a given node, information on

all other nodes of the network is necessary, and algorithms require

a large number of synchronous operations at each time step. To

give an order of the computational effort to compute the PageR-

ank, just think that, today, the world wide web has reached over

1 billion of websites, the Facebook network can boast 2.07 billion

monthly active Facebook users with 16 percent increase year over

year, and Twitter has 328 million monthly active users. In contrast

with classical works focused on centralized algorithms based on

the iterations in (2) , Tempo was active in looking for distributed

and iterative randomized algorithms, involving only local informa-

tion and possibly avoiding synchronous updates. 

3.2. Distributed randomized approach 

Distributed randomized methods for PageRank computation

have been studied in several papers (see e.g. [27] and references
Please cite this article as: A.V. Proskurnikov et al., Dynamics and struc

survey of Roberto Tempo’s contributions, Online Social Networks and M
herein) in order to reduce requirements for PageRank computa-

ion and to avoid synchronized updates. 

In this section, we describe a “gossip” algorithm, originally pro-

osed by Tempo and his coauthors in [29] , in which only one edge

s randomly selected at each time. More precisely, each node i ∈ V
olds a pair of states (x i , x i ) . At each time k ∈ N , an edge θ ( k ) is

elected uniformly at random among all possible edges in E . Then,

he algorithm performs the following computations: 

 (k + 1) = (1 − r) A θ (k ) x (k ) + 

r 

n 

1 n , (5)

 i (k + 1) = 

kx i (k ) + x i (k + 1) 

k + 1 

∀ i ∈ V, (6)

here r ∈ (0, 1) is a design parameter that replaces the parame-

er m = 0 . 15 used in the power method, A θ ( k ) is a random matrix

hich depends on the outcome of θ (k ) = (i, j) and is defined as 

 θ (k ) = I + 

1 

n i 

(e j e 
� 
i − e i e 

� 
i ) 

here n i is the number of links outgoing from node i , and e i de-

otes the vector with all zeros and a one in the i -th entry. More

recisely, A θ ( k ) is the distributed hyperlink matrix which is uni-

ormly distributed over the set of matrices { I + 

1 
n i 

(e j e 
� 
i 

− e i e 
� 
i 
) :

(i, j) ∈ E} . It should be noticed that, since the conditional distri-

ution of the future states are independent of the past values, the

equence of estimations { x (k ) } k ∈ N is a Markov process. 

In [29] it is shown that the introduction of the randomization

nduces persistent oscillations in the estimation of the PageRank

omputation and the system in (5) and (6) fails to converge in a

eterministic sense. However, these oscillations are not chaotic, but

n fact appear to be ergodic . 

efinition 1. A random sequence { ξ (k ) } k ∈ N is said to be almost

ure ergodic if there exists a random variable ξ ∗ such that almost

urely 

lim 

 →∞ 

ξ (k ) = E [ ξ ∗] , ξ (k ) = 

1 

k 

k ∑ 

j=1 

ξ ( j) . 

In other words, an ergodic random process converges on average

o some steady value, no matter if the averaging is over random

rgument (expectation) or over the time. 

The ergodicity of the process { x ( k )} has been analytically proved

n [29] . Obviously, the expected dynamics evolves through 

 [ x (k + 1)] = (1 − r) 
((

1 − 1 

|E| 
)

I + 

1 

|E| A 

)
E [ x (k )] + 

r 

n 

1 n , 

s stable, and, when r = m/ ( m − |E| m + |E| ) , converges to the

ageRank vector 

lim 

k →∞ 

E [ x (k )] = x � pgr . 

he ergodicity is implied by the following theorem. [29] 

heorem 1. Let 

 = 

m 

m − |E| m + |E| 
nd consider the dynamics (5) and (6) with x (0) stochastic vector.

hen, the time-averaged sequence { x (k ) } Z + converges to the PageR-

nk vector 

lim 

 →∞ 

x (k ) = x � pgr 

lmost surely and in mean square norm, moreover, 

 

[‖ ̄x (k ) − x � pgr ‖ 

2 
2 

]
≤ C 

k 
, (7)

here the constant C > 0 depends on the graph and on m. 
ture of social networks from a systems and control viewpoint: A 
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Fig. 3. Distributed randomized approach: the sequence of estimations x ( k ) fails to 

converge in a deterministic sense. 
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Fig. 4. Distributed randomized approach: a sample evolution of x̄ (k ) time-averages. 
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The result in (7) points out that the rate of convergence of

ime-averages is only polynomial, in contrast to the exponential

onvergence for the centralized computation (2) . 

Other choices for gossip distributed hyperlink matrices can be

dopted. For example, in [30] a node θ (k ) = v is sampled from the

niform distribution of V and the A θ ( k ) uses only the column v of

atrix A . Also in that case similar results can be obtained and the

lgorithm needs a time averaging smoothing procedure to guaran-

ee the convergence to the PageRank vector. 

Example . Let us consider now the network consisting of six

odes, shown in Fig. 2 . In Figs. 3 and 4 the evolution of the se-

uences x ( k ) and x (k ) , computed by the randomized algorithm, are

hown as a function of time k , respectively. It can be noticed that

he sequence of estimations x ( k ) does not converge. However, as to

e expected from theory, the time-averages x̄ (k ) converge to the

ageRank vector x � pgr given in (4) . As discussed before, the average-

ased approach discussed above only guarantees a linear rate of

onvergence. Moreover, knowledge of the network size n is re-

uired to implement the algorithm. To overcome these drawbacks,

n [31] a different randomized method for PageRank computation
Please cite this article as: A.V. Proskurnikov et al., Dynamics and struc

survey of Roberto Tempo’s contributions, Online Social Networks and M
as been proposed by Tempo and coworkers. A notable feature of

his algorithm is that it does not require to know n , which is es-

imated at every node, and that it is asyncronous (i.e. clock-free).

oreover, the algorithm is proved to converge almost surely and,

hen the network size is known, with exponential rate. 

In particular, the algorithm in [31] reformulates the PageRank

roblem as the following least-squares problem 

 

� 
pgr = arg min 

x 
‖ Hx − y ‖ 

2 , 

ith H := (I − (1 − m ) A ) and y := 

m 

n 1 n . Clearly, the solution of this

ptimization problem is exactly the PageRank given in (3) . The

roposed randomized iterative algorithm selects at each step k

 random node, indexed as θ ( k ), and incrementally updates the

ageRank estimate x ( k ) via the following fusion algorithm 

 (k + 1) = x (k ) − 1 

n 

H 

� 
θ (k ) (y − H θ (k ) x ) 

2 (8)

here H θ ( k ) is the θ ( k )-th row of matrix H . Note that this algorithm

s distributed by construction, since H θ ( k ) only contains informa-

ion from the neighbors with outgoing links to node θ ( k ), which

s obviously known to node θ ( k ). The key technical feature of the

lgorithm proposed in [31] is the way the random signal θ ( k ) is

esigned. Indeed, a random walk to update is proposed, based on

 mechanism which recalls the random-surfer model. Finally, the

ork also considers the interesting case of time-varying networks. 

.3. A web aggregation approach 

In this section, we briefly illustrate a distributed algorithm for

ageRank computation based on a web aggregation approach pro-

osed by Tempo and coauthors in [32] . The main goal is to de-

ign an algorithm with low complexity and low communication re-

uirements for PageRank computation. The procedure provides an

pproximation of the values of PageRank with a guaranteed error

ound. The algorithm exploits the observation that (a) many links

n the networks are intrahost, i.e. many web pages are connected

ithin the same domains, as it happens for websites of several or-

anizations, universities and companies; (b) the network is sparse,

n the sense that just few links appear between different cluster

ervers. 

We can summarize the procedure in [32] as a clustering step , a

lobal computation step , and a local computation step . In the clus-

ering step the set of nodes in the network are partitioned into

roups in order to obtain an aggregated graph with a reduced

umber of nodes. It is natural to group the web pages within the

ame server or domain in a single one. This operation can be per-

ormed locally and in a decentralized way. We refer the reader to

33,34] for other techniques for the clustering step that are based

n communities detection. 

We now define a measure of the quality of the approximation

f the PageRank value we are going to obtain. Let n out 
v be the num-

er of external outgoing link of node v , i.e. links to pages outside

f its own domain or directory and define δv = n out 
v / n v . Now con-

ider all v ∈ V such that δv ≤ δ where δ is some small parameter.

odes with many external links for which δv > δ are considered

s single groups consisting of only one member. The parameter

determines the number of nodes in the aggregated graph and,

onsequently, will influence the accuracy and the efficiency of the

lgorithm. 

Let us denote by g the number of groups and g 1 the number

f single groups, and with g i the number of nodes in each clus-

er. Without loss of generality, we can reorder the entries of x � pgr 

n such way that the first g 1 elements corresponds to pages in

roup 1, the following g 2 to the values of PageRank corresponding

o nodes in cluster 2, and so on. 
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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Fig. 5. An example of the French model with n = 3 agents. 
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Let now 

˜ x � = [( ̃  x � 1 ) 
� , ( ̃  x � 2 ) 

� ] � where x � 1 ∈ R 

g whose i -th entry

correspond to the sum of the pages in cluster i and is called the

aggregated PageRank and 

˜ x � 
2 

∈ R 

|V| is a vector where each entry is

the difference between a page value and the average value of the

group members. It can be shown that there exists an invertible

matrix V = [ V � 
1 

, V � 
2 

] � such that 

 x � = V x � pgr 

or, equivalently, [˜ x � 1 ˜ x � 2 

]
= 

[
V 1 

V 2 

]
x � pgr . 

In these new coordinates, using the relation in (2) , the PageRank

relation can be rewritten as [˜ x � 1 ˜ x � 2 

]
= (1 − m ) 

[˜ A 11 
˜ A 12 ˜ A 21 
˜ A 22 

][˜ x � 1 ˜ x � 2 

]
+ 

m 

n 

[
V 1 1 n 

0 

]
where the contribution of internal links, i.e. links within the same

cluster, appears only in 

˜ A 21 and 

˜ A 22 . Moreover, such construc-

tion guarantees that ˜ A 11 is stochastic and the elements in 

˜ A 12 are

small in magnitude, see [32] for details. These properties suggest a

method to approximate the values of ̃  x through the vector ̃  x ′ satis-

fying [˜ x ′ 1 ˜ x ′ 2 

]
= (1 − m ) 

[˜ A 11 0 ˜ A 21 
˜ A 22 

][˜ x ′ 1 ˜ x ′ 2 

]
+ 

m 

n 

[
V 1 1 n 

0 

]
Then the approximated PageRank x ′ pgr is obtained by the transfor-

mation 

x ′ pgr = V 

−1 ˜ x ′ 

The error in the approximation is examined in [32] and is related

to the level of sparsity δ. Formally, the following result holds. 

Theorem 2. [32] For a given tolerance ε ∈ (0, 1), an aggregation with

level of sparsity 

δ ≤ mε

4(1 − m )(1 + ε) 

is sufficient to guarantee ‖ x � pgr − x ′ pgr ‖ 1 ≤ ε. 

This result points out that if the network can be aggregated in

a sparse reduced graph (with small δ) then a good approximation

of the PageRank can be obtained by the proposed method. More-

over x ′ pgr can be computed in a distributed way with a low-order

algorithm (see [32] for details of implementation). 

Example [27] . Let us consider a network consisting of six nodes,

depicted in Fig. 2 . The set of nodes is partitioned into three groups
 

 1 = { 1 , 2 } , ˜ V 2 = { 3 } , and 

˜ V 3 = { 4 , 5 , 6 } . It should be noticed that

the resulting aggregated graph is sparse in the sense that the num-

ber of external links pointing to other groups is small except for

node 3 in the original network that is considered as a single group.

In fact, we have δ1 = 1 / 2 , δ2 = 1 / 2 , δ3 = 1 , δ4 = 1 / 4 , δ5 = 0 , δ6 = 0 .

Then the performance measure is given by δ = 1 / 2 . In this case

the difference between PageRank vector and the approximation

obtained with the Web-aggregated approach is ‖ x � pgr − x ′ pgr ‖ 1 ≤
0 . 0188 . �

3.4. Distributed computation of other centrality measures 

The importance of deriving distributed algorithms for the com-

putation of other centrality measures besides PageRank, such as

degree, closeness and betweenness centralities, is also extensively

discussed by Tempo and coauthors in [31] . 

In particular, the paper proposes finite-time convergent algo-

rithms that compute the closeness centrality of a directed graph

in a distributed way. These algorithms have been extended to the
Please cite this article as: A.V. Proskurnikov et al., Dynamics and struc

survey of Roberto Tempo’s contributions, Online Social Networks and M
omputation of betweenness centrality of an oriented tree , based

n the idea of partitioning the network into multi-levels of neigh-

ors. The algorithm takes specific advantage of the fact that a tree

oes not contain any loop, and therefore every pair of nodes has

t most one shortest path. 

. Evolution of opinions and belief systems 

In the literature on social simulation, the term “opinion”

tands for an individual’s cognitive orientation towards some ob-

ect [10] (e.g. issue, event, action or another individual), repre-

ented by a scalar or vector quantity. Opinions can stand e.g. for

igned attitudes [35–37] , subjective certainties of belief [13,38] or

ubjective probabilities [39,40] . Mathematically, an opinion is a

calar or vector variable associated with an individual, which can

ttain values in a finite set of alternatives (e.g. vote for or against

 bill) or a continuum (e.g. some interval). 

Modeling the evolution of opinion under social influence re-

ains a challenging problem; numerous mathematical models,

roposed in recent years, capture only some important traits of

ynamics observed in real social groups. For detailed overview of

he relevant models, the reader is referred to surveys [3,10,41–43] .

n this survey, we consider only one type of models, taking their

rigin in the seminal work of French [44] , Harary [45] and DeG-

oot [39] , and later developed by Friedkin and Johnsen [8] . Tempo

nd his colleagues have obtained fundamental results, regarding

he dynamics of the Friedkin-Johnsen model and its extensions.

hese results are discussed in the next subsections. 

.1. The French–DeGroot model and social power 

In his seminal work [44] , French studied the following simple

odel of opinion evolution. Consider a group of individuals (called

ocial actors, or agents ), being in one-to-one correspondence with

odes of some graph G = (V, E ) . The arc connecting node i to node

 corresponds to social influence of individual i on individual j (us-

ng terminology from [44] , i “has social power over” j ). This means

hat opinion of individual i is displayed to individual j and affects

is/her opinion at each stage of the opinion iteration. 

The process of opinion formation is described by a simple pro-

edure of iterative averaging. At each step k = 0 , 1 , 2 , . . . , an indi-

idual updates his/her opinion to the mean value of all opinions,

xposed to him/her. For instance, consider a graph of social influ-

nce in Fig. 5 . Denoting the opinions of individual i ∈ {1, 2, 3} by

 i ( k ), the vector of opinions evolves in accordance with the equa-

ions 
 

x 1 (k + 1) 
x 2 (k + 1) 
x 3 (k + 1) 

] 

= 

[ 

1 / 2 1 / 2 0 

1 / 3 1 / 3 1 / 3 

0 1 / 2 1 / 2 

] [ 

x 1 (k ) 
x 2 (k ) 
x 3 (k ) 

] 

. (9)

s shown in Fig. 5 , each of the entries can be treated as a weight

f the correspondent arc, endowing thus G with the structure of a

eighted (valued) graph. 

A more general model of opinion dynamics, proposed by De-

root [39] under the name of “iterative opinion pooling” (see
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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lso [46,47] ) replaces (9) by the more general equation 

 (k + 1) = W x (k ) (10) 

 i (k + 1) = 

∑ 

j 

w i j x j (k ) ∀ i. (11) 

here x (k ) ∈ R 

n stands for the vector of opinions and W =
(w i j ) 

n 
i, j=1 

is a row-stochastic matrix (that is, w ij ≥ 0 and 

∑ 

j w i j = 1 ).

he entry w ij may be treated as an influence weight individual

 assigns to individual j . If w i j = 0 , then the j th agent’s opinion

oes not influence agent i ’s opinion directly (although an indirect

nfluence through a chain of other opinions may exist). Another

xtreme case is w i j = 1 (and thus w ik = 0 ∀ k � = j), where agent i

ully relies on the opinion of agent j in the sense that x i (k + 1) =
 j (k ) . If w ii = 1 , agent i is said to be stubborn since its opinion

emains unchanged x i ( k ) ≡ x i (0), being unaffected by the others’

pinions. Obviously, the French’s model is a special case of DeG-

oot’s model (10) , where each agent uniformly distributes influence

etween itself and its neighbors in the influence graph (equiva-

ently, in each row of W all non-zero entries are equal). 

DeGroot’s opinion pooling model (10) has been proposed as an

lgorithm for reaching an agreement (consensus) in expert com-

unity; the main concern of the work [39] was the convergence

f the opinions to a common value independent of the initial con-

ition 

lim 

 →∞ 

x 1 (k ) = . . . = lim 

k →∞ 

x n (k ) ∀ x (0) . 

t can be shown that consensus in this sense is established if and

nly if the sequence W 

k converges to the rank one matrix with

dentical rows 

 

k −−−→ 

k →∞ 

1 n p 
� 
∞ 

. (12) 

ince W is stochastic, the vector p ∞ 

is nonnegative with p � ∞ 

1 n = 1 .

he equality (12) also implies that p ∞ 

is a left eigenvector of W

ince 

 n p 
� 
∞ 

W 

(12) = lim 

k →∞ 

W 

k +1 = lim 

k →∞ 

W 

k (12) = 1 n p 
� 
∞ 

. 

Matrices satisfying the consensus condition (12) are said to be

ully regular [48] or SIA (stochastic indecomposable aperiodic) [49] ;

uch matrices have been long studied in matrix analysis and the

arkov chain theory [48,50,51] . Considering W as a matrix of

ransient probabilities in a Markov chain with n states, the vec-

or of probability distribution p(k ) ∈ R 

n obeys the equation “dual”

o (10) 

p(k + 1) � = p(k ) � W ⇐⇒ p(k ) � = p(0) � W 

k ∀ k. (13)

ondition (12) implies that the Markov chain is ergodic, “forget-

ing” its initial distribution and converging to the stationary distri- 

ution p ∞ 

. 

A necessary and sufficient spectral criterion for the full regular-

ty of W (that is, consensus in (10) ) is as follows [48] : the matrix

 has no eigenvalues on the complex unit circle { z ∈ C : | z| = 1 }
xcept for z = 1 , and the eigenvalue z = 1 is simple. A sufficient

ondition for this is the matrix’s primitivity (see Appendix A , that

s, positivity of all entries of W 

k for k being large [39] (primitivity

s equivalent to aperiodicity and irreducibility of W , see [48] ). Nec-

ssary and sufficient conditions for consensus are surveyed in [3] .

n the special case of French’s model with interaction graph G,

hese conditions boil down to the existence of a “root” node in

he graph, from which all other nodes are accessible by walks (this

ondition is known also as quasi-strong connectivity of the graph

nd is equivalent to the existence of a directed spanning tree); the

elevant criteria were obtained by Harary [45,52] . 
Please cite this article as: A.V. Proskurnikov et al., Dynamics and struc

survey of Roberto Tempo’s contributions, Online Social Networks and M
It should be noticed that consensus phenomenon was not

he main concern of the original work [44] , focused on the

henomenon of social power . The probability distribution p ∞ 

rom (12) has the following relation with the consensus opinion

f the group. In accordance with (12) , one has 

 (k + 1) = W 

k x (0) −−−→ 

k →∞ 

(p � ∞ 

x (0)) 1 n . (14)

ence the element p ∞ i can thus be treated as the weight of its

nitial opinion x i (0) in the final opinion of the group, measuring

he individual’s social power . The greater this weight is, the more

nfluential is the i th individual’s opinion. A more detailed discus-

ion of social power and social influence mechanism is provided

n [44,53] . The social power may be considered as a centrality mea-

ure on the nodes of the interaction graph, similar in flavor to the

onacich or eigenvector centrality discussed in Section 3 . Usually

entrality measures are introduced as functions of the graph topol-

gy [54] while their relations to dynamical processes over graphs

re not well studied. French’s model of social power disclose a dy-

amic mechanism of centrality measure and gives an efficient way

o compute it. 

Example . Consider the French model with n = 3 agents (9) , cor-

esponding to the graph in Fig. 5 . One can expect that the “central”

ode 2 corresponds to the most influential agent in the group. This

s confirmed by a straightforward computation: solving the system

f equations p � ∞ 

= p � ∞ 

W and p � ∞ 

1 3 = 1 , one obtains the vector of

ocial powers p � ∞ 

= ( 2 7 , 
3 
7 , 

2 
7 ) . 

.2. The Friedkin–Johnsen model and PageRank 

Whereas the French–DeGroot model naturally describes consen-

us of opinions in social groups, the behavior of real communities

s more complex. Instead of reaching consensus, individual behav-

ors may exhibit bimodal polarization or other forms of clustering.

his motivated Abelson [35,55] to formulate the following problem,

nown nowadays as the problem of community cleavage [10] or

belson’s diversity puzzle [56] : to disclose the reasons, preventing

ocial actors to reach consensus. The informal formulation of the

iversity puzzle given in [35] was as follows [35] : “Since universal

ltimate agreement is an ubiquitous outcome of a very broad class

f mathematical models, we are naturally led to inquire what on

arth one must assume in order to generate the bimodal outcome

f community cleavage studies”. 

It may seem paradoxical that mathematical models explain-

ng the irregular clustering behavior of opinions have appeared

ater than models of consensus. Tempo and his colleagues have

ontributed to the development of one important class of opin-

on cleavage models, originating from works of Friedkin and

ohnsen [8,9,57] . 

As has been already mentioned, the French–DeGroot

odel (10) admits the presence of stubborn individuals with

aximal self-confidence w ii = 1 , closed to the interpersonal in-

uence and retaining constant opinions x i ( k ) ≡ x i (0). Obviously,

n presence of more than one stubborn individual the commu-

ity usually fails to reach consensus (unless the opinions of

ll stubborn individuals coincide). The Friedkin–Johnsen model

henceforth referred to as the FJ model) is a natural extension

f the French-DeGroot model with stubborn individuals, allowing

ome individuals to be “partially” stubborn, being “anchored” in

ome sense at the initial opinion and still susceptible to social

nfluence. 

Similar to DeGroot’s dynamics (10) , the FJ model employs a

tochastic matrix of influence weights W . Along with W , a diago-

al matrix � = diag (λ1 , . . . , λn ) is introduced, where 0 ≤λi ≤ 1 de-

cribes the susceptibility of agent i to the social influence. The vec-

or of the agents’ opinions evolves in accordance with 
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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(c) Λ = diag(1, 0, 0, 1)

Fig. 6. Opinion dynamics for W from (16) and different �. 
x (k + 1) = �W x (k ) + (I − �) x (0) 

x i (k + 1) = λi 

n ∑ 

j=1 

w i j x j (k ) + (1 − λi ) x i (0) . (15)

An individual who is not susceptible to social influence ( λi = 0 ) is

stubborn and retains its opinion unchanged x i ( k ) ≡ x i (0). A max-

imally susceptible agent ( λi = 1 ) assimilates the others’ opinions

in accordance with DeGroot’s rule (11) . When all agents are max-

imally susceptible � = I, the FJ model (15) turns into the French–

DeGroot model (10) . An individual with 0 < λi < 1 participates in

the process of opinion pooling, however, factors his/her initial

opinion into any opinion iteration. Such an “anchorage” of some

agents at their initial opinions is explained by ongoing effect of ex-

ternal factors that had influenced the social group before the pro-

cess of opinion formation started [8] ; the vector of initial opinions

stores the group’s memory on these external factors. Without loss

of generality, one may assume that λii = 0 whenever w ii = 1 (using

induction on k , it can be easily shown that w ii = 1 implies stubbor-

ness x i ( k ) ≡ x i (0) independent of the choice of λii ). It is often as-

sumed [8] , furthermore, that the coupling condition λii = 1 − w ii ∀ i

holds, in other words, the more self-confident individual is, the

less is his/her susceptibility to the others’ opinions. 

Example [3] . Compare the behavior of opinions in the FJ

model (15) with n = 4 agents and the following matrix of influence

weights [8] 

 = 

⎡ ⎢ ⎣ 

0 . 220 0 . 120 0 . 360 0 . 300 

0 . 147 0 . 215 0 . 344 0 . 294 

0 0 1 0 

0 . 090 0 . 178 0 . 446 0 . 286 

⎤ ⎥ ⎦ 

. (16)

We put x (0) = [ −1 , −0 . 2 , 0 . 6 , 1] � and consider the evolution of

opinions for three different matrices � ( Fig. 6 ): � = I, � = I −
diag (W ) and � = diag (1 , 0 , 0 , 1) . In all cases agent 3 is stubborn.

In the first case the model (15) reduces to the French-DeGroot

model, and the opinions reach consensus ( Fig. 6 a). In the second

case ( Fig. 6 b) agents 1,2,4 move their opinions towards the stub-

born agent 3’s opinion, however, the visible disagreement of their

opinions is observed. In the third case ( Fig. 6 c) agents 2 and 3 are

stubborn, and the remaining agents 1 and 4 converge to different

yet very close opinions, lying between the opinions of the stubborn

agents. 

Whereas models of opinion formation have been proposed in

abundance, the FJ model is among a few models that have been

validated experimentally [8,9,58,59] . In Tempo’s works, some im-

portant mathematical properties of the model have been estab-

lished, concerned with convergence of the opinion vector. In ex-

periments with real social groups, it has been observed that indi-

vidual’s opinions usually stabilize at some steady values [8] . These

final opinions are much easier to measure than the intermediate

opinion trajectory. A natural question thus arises which conditions

ensure the existence of 

x (∞ ) = lim 

k →∞ 

x (k ) 

under any initial condition x (0) and how “generic” is this conver-

gence property of the FJ model. 

Denoting u = x (0) , the equation (15) can be considered as a dy-

namical system with static input 

x (k + 1) = �W x (k ) + (I − �) u. (17)

It can be easily shown that the vector of opinions converges if sys-

tem (17) is asymptotically stable, i.e. matrix �W is Schur stable.

In such a situation, the steady opinion of the group can be easily

found 

x (∞ ) = V u, V = (I − �W ) −1 (I − �) . (18)
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t can be shown [3,10] that V is a stochastic matrix. Although for

 small-size group the stability can be tested in a straightforward

ay (by e.g. computing the spectrum of the matrix �W ), for large-

cale social networks such a procedure can be troublesome. Also,

t is interesting to understand the role of each matrix �, W in the

tability criterion. In Tempo’s works, the following convenient test

or stability has been obtained. 

We say that a matrix A = (a i j ) i, j∈V is adapted to the graph G =
(V, E ) if the graph’s arcs and non-zero entries of W are in one-to-

ne correspondence: 

( j, i ) ∈ E ⇐⇒ a i j � = 0 . 

bviously, the influence matrix W = (w i j ) 
n 
i, j=1 

is adapted to the

nly graph with the set of nodes V = { 1 , 2 , . . . , n } , henceforth de-

oted G[ W ] . The arc j �→ i in this graph corresponds to the influence

f agent j on agent i (since w ij > 0, agent i allocates a positive in-

uence weight to j ). In other words, the directions of arcs have the

ame meaning as in the original French’s model [44] . A directed

alk j �→ j 1 �→ ����→ j k �→ i corresponds to an indirect influence of agent

 on agent i . 

heorem 3. The matrix �W is Schur stable if and only if the subset

f nodes V 0 = { j : λ j j < 1 } is connected to all other nodes in G[ W ]

y directed walks. In other words, any individual is either partially

tubborn (has λii < 1 ) or influenced (directly or indirectly) by some

artially stubborn individual. 

Theorem 3 has been proved 

2 in [14] , the sufficiency part under

he coupling condition λii = 1 − w ii has been first proved in [11] . 

The convergence of opinions, in general, does not require sta-

ility. For instance, as it has been discussed, the French–DeGroot

odel (10) ( � = I n ) can converge (and even reach consensus),

hereas the corresponding matrix �W = W has eigenvalue z = 1

obviously, W 1 n = 1 n ). In fact, any unstable FJ model contains the

rench–DeGroot model in the following sense. 

heorem 4. [14] Renumbering the agents, any unstable FJ model

15) can be decomposed as follows 

x 1 (k + 1) 
x 2 (k + 1) 

]
= 

[
�11 W 

11 �11 W 

12 

0 W 

22 

][
x 1 (k ) 
x 2 (k ) 

]
+ 

[
I − �11 

0 

][
x 1 (0) 
x 2 (0) 

]
here the matrix W 

22 is stochastic and �11 W 

11 is Schur stable. The

ollowing conditions are equivalent: 

1. for any initial condition x (0), the vector of opinions has a limit; 

2. there exists the limit lim 

k →∞ 

W 

k 
22 

; 

3. there exists the limit lim 

k →∞ 

(�W ) k . 

It should be noticed that the equivalence of 3) and 1) has been

tated in Friedkin’s work [10] , however, the first complete proof

as been published in [14] . The group of agents corresponding to

he subvector x 2 ( k ) is “closed” in the sense that the opinions of

he remaining individuals do not affect its behavior. The vector of

nitial opinions also does not directly influence the behavior of the

pinion vector x 2 ( k ); in this sense, individuals “forget” the external

actors that influenced the group before the start of opinion forma-

ion process; for this reason in [14] such agents have been called

oblivious”. 

The concept of social power, introduced for the French–DeGroot

odel, can be extended to the model (15) . The corresponding cen-

rality measure appears to be a natural extension of PageRank, dis-

ussed in the previous sections. Consider an asymptotically sta-

le model (15) , whose steady opinion vector is given by (18) ( u =
2 Note that partially stubborn agents in [14] are called stubborn, and stubborn in 

ur sense are said to be totally stubborn. 

 

a  
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b  
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 (0) ). Recall that the definition of French’s social power assumed

onsensus of opinions x 1 (∞ ) = · · · = x n (∞ ) ; the social power of

gent i is defined as the weight of its initial opinion x i (0) in

his final opinion of the group. In his work [5] , Friedkin proposed

 generalization of social power of agent i as the mean weight

f its initial opinion in determining group members’ final opin-

ons [10] . Mathematically, these mean influence weights are ele-

ents of the non-negative vector c = n −1 V � 1 n , which satisfies the

ollowing equality 

¯
 = 

1 

n 

n ∑ 

i =1 

x i (∞ ) = 

1 

n 

1 � n V x (0) = c � x (0) . (19)

ollowing [5,10] , we call c i the influence centrality of agent i . Since V

s stochastic, c � 1 n = 1 . Similar to French’s social power, the influ-

nce centrality is generated by an opinion formation mechanism,

elating thus the properties of the influence graph and special dy-

amics over this graph. Suppose now that W = A 

� , where A is the

yperlink matrix from Section 3.1 , and � = (1 − m ) I n . Then 

 = n 

−1 V 

� 1 n = (I − (1 − m ) A ) −1 m 

n 

1 n , 

hat is, c coincides with the PageRank vector. In this sense, the

lassical PageRank appears to be a special case of the more general

riedkin’s centrality. Further relations between the PageRank and

J model can be found in [3,60,61] . It can also be shown [3] that as

 → 1, the PageRank converges to the French’s social power (pro-

ided that it exists). 

.3. From opinions to belief systems 

Both French–DeGroot (10) and FJ (15) models can be extended

o multidimensional opinions, that are conveniently represented

y row vectors x i = (x i 1 , . . . , x im 

) . Here m ≥ 1 stands for the num-

er of topics (issues) the agents discuss. Stacking these row vec-

ors on top of each other, one obtains the n × m opinion matrix

(k ) = (x i j (k )) . The multidimensional extensions of (10) , (15) are,

espectively, 

 (k + 1) = W X (k ) (20) 

 (k + 1) = �W X (k ) + (I − �) X (0) . (21) 

hese multidimensional extensions inherit all properties of the

riginal scalar-valued models, discussed in the previous subsection.

 closer look at them shows that in fact the dynamics of opinions

atrices X ( k ) can be decomposed into m scalar French-DeGroot or

J models, describing the evolution of different dimensions of the

pinion, i.e. the column vectors x ∗s = (x 1 s , . . . , x ns ) � , s = 1 , . . . , m .

uch a model is natural if the multidimensional opinion represents

n individual’s positions on several topics that are logically inde-

endent , and hence their dynamics can be decoupled. 

The situation where agents communicate on several mutually

ependent (entangled) topics is much more challenging. Mathe-

atical modeling of opinion formation with interdependent top-

cs is in its infancy, and only a few simplified models have been

roposed to describe them. Among the pioneering works in this

irection were the papers [13,14] , co-authored by Tempo, where

n extension of the FJ model with multiple interdependent top-

cs has been proposed. Alternative models have been advocated

n [62] (dealing with an extension of the Deffuant–Weisbuch

odel) and [63] (dealing with a novel “energy-based” approach to

pinion dynamics modeling). 

A multidimensional opinion, whose scalar elements represent

n individual’s positions on several interrelated issues, can be used

o describe a belief system [13] . The notion of a belief system has

een introduced by Converse who defined it as a “configuration
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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of ideas and attitudes in which the elements are bound together

by some form of constraint or functional interdependence” [64] .

The existence of logical dependencies imply that change in an atti-

tude to some issue implies changes in the attitudes to the depen-

dent issues in order to avoid tensions, caused by logical inconsis-

tences. The within-individual (introspective) tension-resolving pro-

cess, studied in cognitive dissonance and cognitive consistency the-

ory [65,66] , is believed to be an automatic process of the human

brain and maintains a coherent system of attitudes and beliefs. 

Modeling of logical dependencies between beliefs and tension-

resolving introspective processes is a challenging problem, and

the relevant mathematical models can hardly be simple. In the

works [13,14] a simplified two-stage opinion formation model has

been advocated, where the convex mechanism of iterative opinion

pooling (being the base for the French-DeGroot and FJ models) is

combined with the additional “integration” process, mimicking the

real tension-resolving process and introducing coupling (entangle-

ment) between the individual beliefs. The opinions considered as

row vectors x i ∗ = (x i 1 , . . . , x im 

) evolve as follows 

y i ∗(k + 1) = 

n ∑ 

j=1 

w i j x j∗(k ) 

x i ∗(k + 1) = λii y i ∗(k + 1) C � + (1 − λii ) x i ∗(0) . (22)

The intermediate opinion vector y i ∗(k + 1) resulting from aver-

aging the displayed opinions; the updated opinion of individual i is

based on the modified vector y i ∗ C � (being the results of the “inte-

gration” process) and, as in the usual FJ model, the initial opinion

x i (0). The “integration” part of the opinion evolution is determined

by an m × m matrix C , referred in [14] to as the matrix of multi-

issues dependence structure (MiDS). The MiDS matrix need not be

stochastic, nor even nonnegative (its negative entries may stand

for “repulsion” between the topics), however, usually the opinions

vary in some predefined interval (e.g. certainties of belief, or sub-

jective probabilities, stay in [0,1]), and the invariance of this inter-

val imposes a restriction on the choice of C . 

The dynamics (22) can be rewritten as follows 

x i ∗(k + 1) = λii 

n ∑ 

j=1 

w i j 

(
x j∗(k ) C � 

)
+ (1 − λii ) x i ∗(0) , (23)

in other words, one may equally suppose that the “integration”

step precedes the exchange and averaging of opinions rather

than follows them. The convenient matrix-form representation

of (22),(23) is [13] 

X (k + 1) = �W X (k ) C � + (I − �) X (0) , (24)

where X ( k ) is the n × m matrix, composed of n row opinion vectors

similar to the models (20) and (21) . 

Example. The following “academic” example from [14] demon-

strates that the presence of MiDS matrix, introducing even a

“weak” coupling among the topic, can substantially change the dy-

namics of the opinion vector. Consider first two mutually depen-

dent topics, e.g. the attitude to fish as a part of diet and the at-

titude to salmon, measured from −100% (maximally negative atti-

tude) to +100% (maximally positive attitude). As discussed in [14] ,

“If the influence process changes individuals’ attitudes toward fish,

say promoting fish as a healthy part of a diet, then the door is

opened for influences on salmon as a part of this diet. If, on the

other hand, the influence process changes individuals’ attitudes

against fish, say warning that fish are now contaminated by toxic

chemicals, then the door is closed for influences on salmon as part

of this diet.” Consider a group of n = 4 individuals with the matrix

of influence weights (16) and λ = 1 − w . Suppose that the initial
ii ii 

Please cite this article as: A.V. Proskurnikov et al., Dynamics and struc
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atrix of attitudes is given by 

 (0) = 

⎡ ⎢ ⎣ 

25 25 

25 15 

75 −50 

85 5 

⎤ ⎥ ⎦ 

. 

gents 1 and 2 have modest positive liking for fish and salmon;

he third (totally stubborn) agent has a strong liking for fish, but

islikes salmon; the agent 4 has a strong liking for fish and a

eak positive liking for salmon. Assuming the independence be-

ween two topics (the matrix C is trivial C 1 = I 2 , the final matrix

f opinions [14] is as follows 

 1 (∞ ) = 

⎡ ⎢ ⎣ 

60 −19 . 3 

60 −21 . 5 

75 −50 . 0 

75 −23 . 2 

⎤ ⎥ ⎦ 

, 

n other words, under the influence of the stubborn individ-

al (agent 3) the group’s attitude to salmon becomes negative,

hereas the attitude to fish as a part of diet is quite positive. Sup-

ose now that the MiDS matrix, describing influence between two

opics, is the following 

 = C 2 = 

[
0 . 8 0 . 2 

0 . 3 0 . 7 

]
. 

hen the matrix of final attitudes is 

 2 (∞ ) = 

⎡ ⎢ ⎣ 

39 . 2 12 

39 10 . 1 

75 −50 . 0 

56 5 . 3 

⎤ ⎥ ⎦ 

. 

 moderate dependence between two topics dramatically changes

he outcome of opinion formation process. All agents, except for

he stubborn individual 3, retain moderately positive attitudes to

almon as a part of diet, at the same time, their attutides to fish in

eneral become much less positive than in the case of independent

opics. The trajectories of opinions are illustrated in Fig. 7 . 

A more interesting example has been considered in [13] and

tudies the 1992–2003 fluctuations of the U.S. population’s certain-

ies of belief on truth statements involved in the decision to in-

ade Iraq. The corresponding statements, presented in Colin Pow-

ll’s speech to UN Security Council in 2003, are as follows: (A) Sad-

am Hussein has a stockpile of weapons of mass destruction; (B)

hese weapons of mass destruction are real and present dangers

o the region and to the world; (C) A preemptive invasion of Iraq

ould be a just war. It was conjectured in [13] that Powell’s speech

resented a logic structure, described by the rank 1 matrix 

 = 

[ 

1 0 0 

1 0 0 

1 0 0 

] 

, 

n which high certainty of belief on statement 1 implies high cer-

ainty of belief on statements 2 and 3 and, conversely, the low

ertainty of belief on statement 1 implies low levels of belief on

tatements 2 and 3. The model (21) with � = I n (all individuals

re open-minded), C just introduced and a random large-scale ma-

rix W , simulated in [13] , explains the strong majority support of

he preemptive invasion in the immediate aftermath of Colin Pow-

ll’s speech and strong majority of the public believed that the Iraq

ar was based on incorrect assumptions upon the failure to find

he weapons of mass destruction, witnessed by the actual opinion

olls. We do not include the corresponding results of simulation

nd refer the interested readers to [13] . 

Although the dynamics of the model (24) may seem very com-

licated, its stability conditions remain the same for any MiDS
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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atrix with the spectral radius ρ( C ) ≤ 1 (this holds, in particular,

hen C is stochastic or substochastic). 

heorem 5. [14] Assume that �W is a Schur stable matrix (that is,

he usual FJ model (15) is asymptotically stable) and ρ( C ) ≤ 1 . Then the

odel (24) is also asymptotically stable. The same holds in a more

eneral situation where ρ( �W ) ρ( C ) < 1 . The matrix of steady opin-

ons X ( ∞ ) is the unique solution to 

 (∞ ) = �W X (∞ ) C � + (I − �) X (0) . 

Introducing the row vectorization of the matrix X , that is, the

olumn ( nm )-dimensional vector 

˜ 
 = (x 11 , . . . , x 1 m 

, x 21 , . . . , x 2 m 

, . . . , x n 1 , . . . , x nm 

) � , 

he model (24) can be rewritten as follows [14] 

˜ 
 (k + 1) = (�W � C) ̃  x (k ) + ( (I − �) � I m 

) ̃  x (0) , 

nd the vector of final opinions can be found explicitly 

˜ 
 (∞ ) = (I nm 

− �W � C) −1 ( (I − �) � I m 

) ̃  x (0) . (25)

ere A �B denotes the Kronecker (or tensor) product of two matri-

es A, B , see Appendix A for a definition. 

.4. Gossip-based asynchronous interactions 

A visible disadvantage of the FJ model is the assumption on

ynchronous interactions among the agents, being too simplistic

ven for small groups interacting face-to-face. This was clearly re-

lized by Friedkin and Johsen, admitting that “interpersonal influ-

nces do not occur in the simultaneous way and there are com-

lex sequences of interpersonal influences in a group” [8] . In other

ords, real social groups are featured by asynchronous “ad hoc”

nteractions among individuals. At the same time, extensive exper-

ments with real social group [8,58,59] have demonstrated the pre-

ictive power of the FJ model (15) and revealed the strong corre-

pondence between the predicted final opinion vector (18) and ac-

ual outcome of the opinion formation process. A natural question

hus arises: can a modification of the FJ model be designed that

onverges to the same steady opinion vector (18) yet allows asyn-

hronous interactions among the agents? 

In the works of Tempo and his colleagues [11,14,29,67] , gossip-

ased asynchronous counterparts of the FJ model and its multi-

imensional extension have been proposed that converge on av-

rage to the same vectors of final opinions as the original mod-

ls. The gossiping interactions lead to randomness in the model:

t each stage of the opinion evolution, a pair of individuals (cor-

esponding to one of nodes in the interaction graph) meets and

iscuss some issues, upon which one of the opinions is modified.

hereas the idea of gossip-based communication is not very new

see e.g. [68,69] ), the effects of gossiping in social systems have not

een well studied. 3 

Here we consider the most general gossip-based counterpart of

 stable model (15) , introduced in [14] . Let G[ W ] = (V, E ) be the

nfluence graph, corresponding to the matrix W , 
1 = �W and
2 = (I − �) W . We use γ 1 

i j 
, γ 2 

i j 
to denote the entries of the ma-

rices 
1 , 
2 . Similarly to gossip algorithms for PageRank compu-

ation, at each step an arc is randomly sampled with the uniform

istribution from the interaction graph G[ W ] . If this arc is ( i, j ),

hen the i th agent updates its opinion in accordance with 

 i (k + 1) = (1 − γ 1 
i j − γ 2 

i j ) x i (k ) + γ 1 
i j x j (k ) + γ 2 

i j x i (0) . (26)
3 Besides the models from [11,14,29,67] , only a few models of opinion forma- 

ion admit gossip-based interactions, the most known of them is the Deffuant–

eisbuch model [62,70–72] and novel models of opinion evolution over signed net- 

orks [73,74] . 

i  

d  

b

 

t  
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he opinions of other individuals (including agent j ) remain un-

hanged 

 l (k + 1) = x l (k ) ∀ l � = i. (27)

n some sense, the entries γ 2 
i j 

determine the level of “anchor-

ge” at the initial opinion; notice however that, unlike the FJ

odel (15) , these coefficient depend on both � and W . The fol-

owing theorem proved in [14] , shows that the gossip-based algo-

ithm (26),(27) converges on average (similarly to the PageRank al-

orithm, values x i ( k ) do not converge and typically exhibit oscilla-

ory behavior). 

heorem 6. Assume that ρ( �W ) < 1 . Let 
1 = �W and 
2 = (I −
) W . Then, the limit x ∗ = lim 

k →∞ 

Ex (k ) exists and equals to the final

pinion (18) . Furthermore, the random process x ( k ) is almost sure and

 

p ergodic, i.e. x̄ (k ) → x ∗ with probability 1 and E‖ ̄x (k ) − x ∗‖ p −−−→
k →∞ 

 , where 

¯
 (k ) := 

1 

k + 1 

k ∑ 

l=0 

x ( l) . 

he aforementioned statements remain valid, replacing 
2 = (I −
) W by any matrix, such that 0 ≤ γ 2 

i j 
≤ 1 − γ 1 

i j 
, 

∑ n 
j=1 γ

2 
i j 

= 1 − λii 

nd γ 2 
i j 

= 0 as (i, j) �∈ E . 

A similar gossip-based counterpart exists for the model (24) ,

here for the randomly chosen arc ( i, j ) one has 

x i ∗(k + 1) = (1 − γ 1 
i j − γ 2 

i j ) x i ∗(k ) + γ 1 
i j x j∗(k ) C � + + γ 2 

i j x i ∗(0) , 

 l∗(k + 1) = x l∗(k ) ∀ l � = i. (28) 

heorem 6 remains valid for the model (28) (the corresponding

ultidimensional averaged opinions x̄ i ∗ converge to the rows of fi-

al opinion matrix X ( ∞ ), or, equivalently, subvectors of the vec-

or (25) ). 

Fig. 8 illustrates the behavior of the gossip-based counterpart of

he model from Fig. 7 . As one notices, the convergence of averages

s rather slow, whereas the random opinions themselves do not

onverge, exhibiting oscillatory behavior. 

.5. Identification of social dynamics 

Motivated by recent breakthroughs in systems and control ap-

roaches to analyze how individuals’ opinions evolve and reach

onsensus/disagreement, Tempo and his coauthors recognized that

 crucial point in the analysis of social systems is to perform model

dentification and validation. 

Although the identification of structures and dynamics in social

etworks using experimental data is a very active area in statistics,

hysics and signal processing [75–77] , this problem has received

elatively less attention in the control community so far. The main

hallenge consists in setting theoretical foundations for the estima-

ion of the parameters using large-scale data, e.g. W , � and C in

22) . This requires the development of sophisticated mathematical

ools to deal with partial information and high-dimensional data.

wo different approaches, known as finite-horizon and infinite hori-

on identification procedures, can be adopted [14] . 

In the finite-horizon approach the opinions are observed after

 rounds of conversation and, if enough observations are available,

hen W , � and C can be estimated as the matrices that best fit the

ynamics for the considered T time steps. This method requires the

nowledge of the time-sequence for observations made and may

nvolve a large amount of data. Moreover, the system is usually up-

ated with an unknown interaction rate and the interaction times

etween agents are not observable in most scenarios, as in [76] . 

The infinite-horizon identification procedure is applicable only

o stable models and performs parameter estimation starting from
ture of social networks from a systems and control viewpoint: A 

edia (2018), https://doi.org/10.1016/j.osnem.2018.03.001 
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Fig. 7. Dynamics of opinions in the model (24) : independent topics (a) vs. depen- 

dent topics (b). ©2017IEEE. Reprinted, with permission, from [14] . 
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Fig. 8. Gossip-based counterparts of opinion dynamics in Fig. 7 : (a) averaged opin- 

ions, independent topics; (b) averaged opinions, dependent topics and (c) opin- 

ions without averaging (dependent topics) exhibit no convergence. ©2017IEEE. 

Reprinted, with permission, from [14] . 
observations of the initial and final opinions’ profile only. In

[78,79] , Tempo and coauthors adopt this second approach to esti-

mate the influence matrix W under the assumption that the matrix

is sparse (i.e. agents are influenced by few friends), using tools bor-

rowed from compressed sensing theory. In particular, under suit-

able assumptions, they derive theoretical conditions to guarantee

that the estimation problem is well posed and sufficient require-

ments on the number of observation ensuring perfect recovery. 

5. Conclusions and acknowledgements 

In this paper, we overview the recent achievements of Tempo

and his coauthors (Er-Wei Bai, Ming Cao, Paolo Frasca, Noah Fried-

kin, Hideaki Ishii, Sergey Parsegov, Li Qiu, and Keyou You) in SNA

and modeling of social dynamics. Focusing on Tempo’s works, we

deliberately avoid many related works on social dynamics and dis-

tributed algorithms; the most “mature” of the recent achievements

in the field are summarized in the tutorial papers [3,4] and other

recent surveys [10,42,43,67,80] . 

Another important work that has to be mentioned is the vision

paper [81] , giving an overview of the new trends and future direc-
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ions of control theory. An active and highly respected member of

ystems and control community, Tempo was invited to contribute

everal sections to this report and, in particular, he formulated sev-

ral open problems lying at the frontier between control theory

nd SNA [81, Section 5.20] and concerned with the dynamics of

techno-social” networks, where social actors interact via online

ocial media. One of the toughest problems is to create and ex-

mine rigorously novel dynamics models, describing asynchronous

nd spontaneous interactions among the agents discussing several

nterrelated topics. Modeling real interactions in social media, one

as to take into account the “temporal” structure of the network,

here both nodes and arcs can continuously appear and disap-

ear. Many problems of the classical SNA (e.g. centrality computa-

ion and community detection) remain unsolved for such temporal

raphs, and new efficient algorithms are needed to cope with these

roblems. Another important class of problems is concerned with

esilience to malicious attacks on the social media and “techno-

ocial” spamming, when individuals, or machines, are fictitiously

roadcasting artificial connections. 

The authors are indebted to Noah Friedkin and Hideaki Ishii for

heir valuable comments and suggestions. 

ppendix A. Matrix analysis 

Unless otherwise stated, a n -dimensional vector x = (x i ) 
n 
i =1 

is

reated as a column of height n ; the set of all n -dimensional real

ectors is denoted R 

n . More generally, one may consider a m × n

atrix A = (a i j ) with m rows and n columns (here i = 1 , . . . , m and

j = 1 , . . . , n ); the set of such matrices with real entries a ij is de-

oted R 

m ×n . Given a matrix A = (a i j ) ∈ R 

m ×n , we employ A 

� to de-

ote its transpose A 

� = (a ji ) ∈ R 

n ×m . For instance, a transpose to a

ingle row (1 × n matrix) is a column 

(x 1 , . . . , x n ) 
� = 

⎡ ⎣ 

x 1 
. . . 

x n 

⎤ ⎦ . 

 matrix with equal numbers of rows and columns is said to be

quare . We use 1 n to denote the n -dimensional column of ones,

nd I n is the identity n × n matrix 

 n = 

⎡ ⎣ 

1 

. . . 
1 

⎤ ⎦ , I n = 

⎡ ⎢ ⎢ ⎣ 

1 0 · · · 0 

0 1 

. . . 
. . . 

0 0 · · · 1 

⎤ ⎥ ⎥ ⎦ 

For the basics of matrix operations (e.g. their addition, sub-

raction and multiplication of matrices) and the key concepts of a

quare matrix’s determinant (denoted det A ) and eigenvalues (spec-

rum points), we refer the reader to any standard textbook on ma-

rices or linear algebra, e.g. [82] . We only remind that the product

f m × n matrix A and n × p matrix B is a ( m × p ) matrix, in partic-

lar, for two column vectors x, y ∈ R 

n the product x � y is a scalar

1 × 1 matrix), whereas xy � is a square n × n matrix. 

A square matrix is said to be diagonal if its off-diagonal

ntries are zeros. Given a sequence of scalars α1 , . . . αn ∈ R ,

iag (α1 , . . . , αn ) stands for the matrix 

 

 

 

 

α1 0 0 

0 α2 

. . . 
. . . 

0 0 αn 

⎤ ⎥ ⎥ ⎦ 

iven a square matrix A = (a i j ) 
n 
i, j=1 

, let diag A =
iag (a , a , . . . , a nn ) ∈ R 

n ×n . 
11 22 
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Given a pair of matrices A ∈ R 

m ×n , B ∈ R 

p×q , their Kronecker (or

ensor) product is defined [51] by 

 � B = 

⎡ ⎢ ⎢ ⎣ 

a 11 B a 12 B · · · a 1 n B 

a 21 B a 22 B · · · a 2 n B 

. . . 
. . . 

. . . 
a m 1 B a m 2 B · · · a mn B 

⎤ ⎥ ⎥ ⎦ 

∈ R 

mp×nq 

the matrix is obtained by combining the blocks a ij B into a single

atrix). For instance, 

1 0 

2 3 

]
�

[
1 

3 

]
= 

⎡ ⎢ ⎣ 

1 0 

3 0 

2 3 

6 9 

⎤ ⎥ ⎦ 

Given a n × n matrix A with eigenvalues λ1 , . . . , λn (that can

e complex numbers), the maximal modulus of the eigenvalues

(A ) = max | λi | is said to be the spectral radius of the matrix. The

atrix A is Schur stable if ρ( A ) < 1, which appears to be equivalent

o the relation lim n →∞ 

A 

n = 0 . 

A matrix A = (a i j ) with nonnegative numbers a ij ≥ 0 is stochas-

ic if 
∑ n 

j=1 a i j = 1 ∀ i and substochastic if 
∑ n 

j=1 a i j ≤ 1 ∀ i . For a sub-

tochastic matrix A, ρ( A ) ≤ 1 as implied e.g. by the Gershgorin disc

heorem [48] ; if A is stochastic, then ρ(A ) = 1 (hence a stochastic

atrix cannot be Schur stable). 

We call a stochastic matrix M primitive if M 

n consists of strictly

ositive entries for some power n ≥ 1 (in particular, a matrix with

ositive entries is primitive). It can be shown [48,83] that the

rimitive matrix is regular in the sense that a limit M ∗ = lim 

n →∞ 

M 

n .

oreover, the rows of M 

∗ are identical , and hence a primitive ma-

rix is in fact fully regular [48] or SIA [49] . 
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