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a b s t r a c t 

In any knowledge discovery process the value of extracted knowledge is directly related 

to the quality of the data used. Big Data problems, generated by massive growth in the 

scale of data observed in recent years, also follow the same dictate. A common problem 

affecting data quality is the presence of noise, particularly in classification problems, where 

label noise refers to the incorrect labeling of training instances, and is known to be a very 

disruptive feature of data. However, in this Big Data era, the massive growth in the scale of 

the data poses a challenge to traditional proposals created to tackle noise, as they have dif- 

ficulties coping with such a large amount of data. New algorithms need to be proposed to 

treat the noise in Big Data problems, providing high quality and clean data, also known as 

Smart Data. In this paper, two Big Data preprocessing approaches to remove noisy exam- 

ples are proposed: an homogeneous ensemble and an heterogeneous ensemble filter, with 

special emphasis in their scalability and performance traits. The obtained results show that 

these proposals enable the practitioner to efficiently obtain a Smart Dataset from any Big 

Data classification problem. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Vast amounts of information surround us today. Technologies such as the Internet generate data at an exponential rate

thanks to the affordability and great development of storage and network resources. It is predicted that by 2020, the digital

universe will be 10 times as big as it was in 2013, totaling an astonishing 44 zettabytes. The current volume of data has

exceeded the processing capabilities of classical data mining systems [47] and have created a need for new frameworks

for storing and processing this data. It is widely accepted that we have entered the Big Data era. Big Data is the set of

technologies that make processing such large amounts of data possible [8] , while most of the classic knowledge extraction

methods cannot work in a Big Data environment because they were not conceived for it. 

Big Data as concept is defined around five aspects: data volume, data velocity, data variety, data veracity and data value.

While the volume, variety and velocity aspects refer to the data generation process and how to capture and store the data,

veracity and value aspects deal with the quality and the usefulness of the data. These two last aspects become crucial in

any Big Data process, where the extraction of useful and valuable knowledge is strongly influenced by the quality of the

used data. 
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In Big Data, the usage of traditional preprocessing techniques [16,18,20] to enhance the data is even more time consum-

ing and resource demanding, being unfeasible in most cases. The lack of efficient and affordable preprocessing techniques

implies that the problems in the data will affect the models extracted. Among all the problems that may appear in the data,

the presence of noise in the dataset is one of the most frequent. Noise can be defined as the partial or complete alteration

of the information gathered for a data item, caused by an exogenous factor not related to the distribution that generates the

data. Learning from noisy data is an important topic in machine learning, data mining and pattern recognition, as real world

data sets may suffer from imperfections in data acquisition, transmission, storage, integration and categorization. Noise will

lead to excessively complex models with deteriorated performance [46] , resulting in even larger computing times for less

value. 

The impact of noise in Big Data, among other pernicious traits, has not been disregarded. Recently, Smart Data (focusing

on veracity and value) has been introduced, aiming to filter out the noise and to highlight the valuable data, which can be

effectively used by companies and governments for planning, operation, monitoring, control, and intelligent decision making.

Three key attributes are needed for data to be smart, it must be accurate, actionable and agile: 

• Accurate: data must be what it says it is with enough precision to drive value. Data quality matters. 
• Actionable: data must drive an immediate scalable action in a way that maximizes a business objective like media reach

across platforms. Scalable action matters. 
• Agile: data must be available in real-time and ready to adapt to the changing business environment. Flexibility matters. 

Advanced Big Data modeling and analytics are indispensable for discovering the underlying structure from retrieved data

in order to acquire Smart Data. In this paper we provide several preprocessing techniques for Big Data, transforming raw,

corrupted datasets into Smart Data. We focus our interest on classification tasks, where two types of noise are distinguished:

class noise , when it affects the class label of the instances, and attribute noise , when it affects the rest of attributes. The

former is known to be the most disruptive [38,50] . Consequently, many recent works, including this contribution, have been

devoted to resolving this problem or at least to minimize its effects (see [15] for a comprehensive and updated survey). 

While some architectural designs are already proposed in the literature [49] , there is no particular algorithm which deals

with noise in Big Data classification, nor a comparison of its effect on model generalization abilities or computing times. 

Thereby we propose a framework for Big Data under Apache Spark for removing noisy examples composed of two al-

gorithms based on ensembles of classifiers. The first one is an homogeneous ensemble, named Homogeneous Ensembe for

Big Data (HME-BD), which uses a single base classifier (Random Forest) over a partitioning of the training set. The second

ensemble is an heterogeneous ensemble, namely Heterogeneous Ensembe for Big Data (HTE-BD), that uses different classi-

fiers to identify noisy instances: Random Forest, Logistic Regression and K-Nearest Neighbors (KNN) as base classifiers. For

the sake of a more complete comparison, we have also considered a simple filtering approach based on similarities between

instances, named Edited Nearest Neighbor for Big Data (ENN-BD). ENN-BD examines the nearest neighbors of every example

in the training set and eliminates those whose majority of neighbors belong to a different class. All these techniques have

been implemented under the Apache Spark framework [21] and can be downloaded from the Spark’s community reposi-

tory 1 . 

To show the performance of the three proposed algorithms, we have carried out an experimental evaluation with four

large datasets, namely SUSY, HIGGS, Epsilon and ECBDL14 . We have induced several levels of class noise to evaluate the

effects of applying such framework and the improvements obtained in terms of classification accuracy for two classifiers:

a decision tree and the KNN technique. Decision trees with pruning are known to be tolerant to noise, while KNN is a

noise sensitive algorithm when the number of selected neighbors is low. These differences allow us to better compare the

effect of the framework in classifiers which behave differently towards noise. We also show that, for the Big Data problems

considered, the classifiers also benefit from applying the noise treatment even when no additional noise is induced, since

Big Data problems contain implicit noise due to incidental homogeneity, spurious correlations and the accumulation of noisy

examples [13] . The results obtained indicate that the framework proposed can successfully deal with noise. In particular, the

homogeneous ensemble is the first suitable technique for dealing with noise in Big Data problems, with low computing

times and enabling the classifier to achieve better accuracy. 

The remainder of this paper is organized as follows: Section 2 presents the concepts of noise, MapReduce and Smart

Data. Section 3 explains the proposed framework. Section 4 describes the experiments carried out to check the performance

of the framework. Finally, Section 5 concludes the paper. 

2. Related work 

In this section we first present the problem of noise in classification tasks in Section 2.1 . Then we introduce the MapRe-

duce framework commonly used in Big Data solutions in Section 2.2 . Finally, we provide an insight into Smart Data in 2.3 . 
1 https://spark-packages.org/package/djgarcia/NoiseFramework . 

https://spark-packages.org/package/djgarcia/NoiseFramework
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2.1. Class noise vs. attribute noise 

In a classification problem, several effects of this noise can be observed by analyzing its spatial characteristics: noise

may create small clusters of instances of a particular class in the instance space corresponding to another class, displace

or remove instances located in key areas within a concrete class, or disrupt the boundaries of the classes resulting in an

increased boundaries overlap. All these imperfections may harm data interpretation, the design, size, building time, inter-

pretability and accuracy of models, as well as decision making [50] . 

As described by Wang et al. [45] , from the large number of components that comprise a dataset, class labels and attribute

values are two essential elements in classification datasets. Thus, two types of noise are commonly differentiated in the

literature [45,50] : 

• Class noise , also known as label noise , takes place when an example is wrongly labeled. Class noise includes contra-

dictory examples [38] (examples with identical input attribute values having different class labels) and misclassifica-

tions [50] (examples which are incorrectly labeled). 
• Attribute noise refers to corruptions in the values of the input attributes. It includes erroneous attribute values, missing

values and incomplete attributes or “do not care” values. Missing values are usually considered independently in the

literature, so attribute noise is mainly used for erroneous values [50] . 

Class noise is generally considered more harmful to the learning process, and methods for dealing with class noise are

more frequent in the literature [50] . Class noise may have many reasons, such as errors or subjectivity in the data labeling

process, as well as the use of inadequate information for labeling. Data labeling by domain experts is generally costly, and

automatic taggers are used (e.g., sentiment analysis polarization [28] ), increasing the probability of class noise. 

Due to the increasing attention from researchers and practitioners, numerous techniques have been developed to tackle

it [15,16,50] . These techniques include learning algorithms robust to noise as well as data preprocessing techniques that

remove or “repair” noisy instances. In [15] the mechanisms that generate label noise are examined, relating them to the

appropriate treatment procedures that can be safely applied: 

• On the one hand, algorithm level approaches attempt to create robust classification algorithms that are little influenced by

the presence of noise. This includes approaches where existing algorithms are modified to cope with label noise by either

being modeled in the classifier construction [25] , by applying pruning strategies to avoid overfiting or by diminishing

the importance of noisy instances with respect to clean ones [33] . Recent proposals exist which that combine these

two approaches, which model the noise and give less relevance to potentially noisy instances in the classifier building

process [4] . 
• On the other hand, data level approaches (also called filters ) try to develop strategies to cleanse the dataset as a previous

step to the fit of the classifier, by either creating ensembles of classifiers [5] , partitioning the data [41] , iteratively filtering

noisy instances [23] , computing metrics on the data or even hybrid approaches that combine several of these strategies.

In the Big Data environment there is a special need for noise filter methods. It is well known that the high dimensionality

and example size generate accumulated noise in Big Data problems [13] . Noise filters reduce the size of the datasets and

improve the quality of the data by removing noisy instances, but most of the classic algorithms for noisy data, noise filters

in particular, are not prepared for working with huge volumes of data as they have an iterative approach. 

2.2. Big Data. MapReduce and Apache Spark 

The globalization of the Big Data paradigm is generating a large response in terms of technologies that must deal with

the rapidly growing rates of generated data [42] . Among all of them, MapReduce is the seminal framework designed by

Google in 2003 [11,36] . It follows a divide and conquer approach to process and generate large datasets with parallel and

distributed algorithms on a cluster. The MapReduce model is composed of two phases: Map and Reduce. The Map phase

performs a transformation of the data, and the Reduce phase performs a summary operation. Briefly explained, first the

master node splits the input data and distributes it across the cluster. Then the Map transformation is applied to each key-

value pair in the local data. Once that process is finished the data is redistributed based on the key-value pairs generated in

the Map phase. Once all pairs belonging to one key are in the same node, it is processed in parallel. Apache Hadoop [43] is

the most popular open-source framework based on the MapReduce model. 

Apache Spark [21] is an open-source framework for Big Data processing built around speed, ease of use and sophisticated

analytics. Its main feature is its ability to use in-memory primitives. Users can load their data into memory and iterate over

it repeatedly, making it a suitable tool for ML algorithms. The motivation for developing Spark came from the limitations in

the MapReduce/Hadoop model [14,27,36] : 

• Intensive disk usage 
• Insufficiency for in-memory computation 

• Poor performance on online and iterative computing. 
•
 Low inter-communication capacity. 



138 D. García-Gil, J. Luengo and S. García et al. / Information Sciences 479 (2019) 135–152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spark is built on top of a distributed data structure called Resilient Distributed Datasets (RDDs) [48] . Operations on

RDDs are applied to each partition of the node local data. RDDs support two types of operations: transformations, which

are not evaluated when defined and produce a new RDD, and actions, which evaluate all the previous transformations and

return a new value. The RDD structure allows programmers to persist them into memory or disk for re-usability purposes.

RDDs are immutable and fault-tolerant by nature. All operations are tracked using a ”lineage”, so that each partition can be

recalculated in case of failure. 

Although new promising frameworks for Big Data are emerging, like Apache Flink [1] , Apache Spark is becoming the

reference in performance [19,36] . 

2.3. From Big Data to Smart Data 

Big Data is an appealing discipline that presents an immense potential for global economic growth and promises to

enhance competitiveness of high technological countries. Such as occurs in any knowledge extraction process, vast amounts

of data are analyzed, processed, and interpreted in order to generate profits in terms of either economic or advantages for

society. Once the Big Data has been analyzed, processed, interpreted and cleaned, it is possible to access it in a structured

way. This transformation is the difference between “Big” and “Smart” Data [24] . 

The first step in this transformation is to perform an integration process, where the semantics and domains from sev-

eral large sources are unified under a common structure. The usage of ontologies to support the integration is a recent

approach [9] , but graph databases are also an option where the data is stored in a relational form, as in healthcare do-

mains [35] . Even when the integration phase ends, the data is still far from being “smart”: the accumulated noise in Big

Data problems creates problems in classical Data Mining techniques, specially when the dimensionality is large [12] . Thus,

in order to be “smart”, the data still needs to be cleaned even after its integration, and data preprocessing is the set of

techniques utilized to encompass this task [16,17] . 

Once the data is “smart”, it can hold the valuable data and allows interactions in “real time”, like transactional activities

and other Business Intelligence applications. The goal is to evolve from a data-centered organization to a learning organi-

zation, where the focus is set on the knowledge extracted instead of struggling with the data management [22] . However,

Big Data generates great challenges to achieve this since its high dimensionality and large example size imply noise accu-

mulation, algorithmic instability and the massive sample pool is often aggregated from heterogeneous sources [13] . While

feature selection, discretization or imbalanced algorithms to cope with the high dimensionality have drawn the attention

of current Big Data frameworks (such as Spark’s MLlib [32] ) and researchers [37,39,40] , algorithms to clean noise are still

a challenge. In summary, challenges are still present to fully operate a transition between Big Data to Smart Data. In this

paper we provide an automated preprocessing framework to deal with class noise, enabling the practitioner to reach Smart

Data. 

3. Towards Smart Data: Noise filtering for Big Data 

In this section, we present the first suitable framework for Big Data under Apache Spark for removing noisy examples

based on the MapReduce paradigm, proving its performance over real-world large problems. It is a MapReduce design where

all the noise filter processes are performed in a distributed way. 

In Section 3.1 we describe the Spark primitives used for the implementation of the framework. In Section 3.2 we explain

in detail the classification algorithms used in the implementation of the framework. We have designed two algorithms

based on ensembles. Both perform a k -fold on the training data, learn a model on the training partition and clean noisy

instances in the test partition. The first one is an homogeneous ensemble using Random Forest as a classifier, named HME-

BD ( Section 3.3 ). The second one, named HTE-BD ( Section 3.4 ) is a heterogeneous ensemble based on the use of three

different classifiers: Random Forest, Logistic Regression and KNN. We have also implemented a simple filter based on the

similarity between the instances, named ENN-BD ( Section 3.5 ). 

3.1. Spark primitives 

For the implementation of the framework, we have used some basic Spark primitives from Spark API. These primitives

offer much com plex operations by extending the MapReduce paradigm. Here, we outline those more relevant to the algo-

rithms 2 : 

• map : Applies a transformation to each element of a RDD. Once the operation has been performed to each element, the

resulting RDD is returned. 
• zipWithIndex : for each element of a RDD, a pair consisting in the element and its index is created, starting at 0. The

resulting RDD is then returned. 
• join : Return a RDD containing all pairs of elements with matching keys between two RDDs. 
• filter : Return a new RDD containing only the elements that satisfy a predicate. 
2 For a complete description of Spark’s operations, please refer to Spark’s API: http://spark.apache.org/docs/latest/api/scala/index.html . 

http://spark.apache.org/docs/latest/api/scala/index.html
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• union : Return a RDD of pairs as result of the union of two RDDs. 
• kFold : Returns a list of k pairs of RDDs with the first element of each pair containing the train data, a complement of

the test data, and the second element containing the test data, being a unique 1/kth of the data. Where k is the number

of folds. 
• randomForest : Method to learn a Random Forest model for classification problems. 
• predict : Returns a RDD containing the features and the predicted labels for a given dataset using the learned model. 
• learnClassifiers : Although its not a pure Spark primitive, we use it to simplify the description of the algorithms. This

primitive learns a Random Forest, Logistic Regression and 1NN models from the input data. 

These Spark primitives from Spark API are used in the following sections where HME-BD, HTE-BD and ENN-BD algorithms

are described. 

3.2. Classification algorithms 

In this section we describe in detail the classification algorithms used in the implementation of the framework. 

3.2.1. Decision tree 

Decision trees are one of the most popular methods in machine learning for both classification and regression tasks.

They are easy to interpret, can handle categorical features and extend to the multiclass classification problem among other

features. 

A decision tree uses a tree-like graph for decision making. It starts with a single node which divides into possible out-

comes. Each of those outcomes leads to additional nodes, which in turn are divided into other nodes. The end nodes are

the decision of a certain branch of the tree. 

Spark’s implementation of the decision tree is optimized for scalability. The key optimizations are: level-wise training,

for selecting the splits for all nodes at the same level of the tree, approximate quantiles, bin-wise computation, for saving

computation on each iteration by precomputing the binned representations of each instance, and the avoiding of the map

operation. 

3.2.2. Random Forest 

Ensembles are algorithms that combines a set of models build upon other machine learning algorithms. Random Forests

are a combination of decision trees where each tree is trained independently using a random sample of the data. 

Spark’s Random Forest implementation builds upon the decision tree code, which distributes the learning of single trees.

Many of the optimizations are based upon Google’s PLANET project [34] . Random Forests are easily paralleled since each

tree can be trained independently. Spark’s Random Forest does exactly that, a variable number of sub-trees are trained in

parallel. 

3.2.3. KNN 

KNN is a supervised learning method typically used for classification. It is based on a learning through close examples

in the space of the elements. 

Since Spark doesn’t have a KNN implementation, we have used an exact implementation of KNN present in Spark’s

community repository kNN-IS 3 [31] . This implementation takes advantage of Spark’s in-memory operations for improving

the scalability of the KNN algorithm. 

3.2.4. Logistic Regression 

Logistic Regression is a linear method widely used to predict a binary response. The loss function is given by the logistic

loss. 

Spark’s implementation of the logistic regression algorithm uses the limited-memory BFGS (L-BFGS) algorithm [29] for

optimization of the memory used. 

3.3. Homogeneous Ensemble: HME-BD 

The homogeneous ensemble is inspired by Cross-Validated Committees Filter (CVCF) [41] . This filter removes noisy ex-

amples by partitioning the data in P subsets of equal size. Then, a decision tree, such as C4.5, is learned P times, each time

leaving out one of the subsets of the training data. This results in P classifiers which are used to predict all the training data

P times. Then, using a voting strategy, misclassified instances are removed. 

HME-BD is also based on a partitioning scheme of the training data. There is an important difference with respect to

CVCF: the use of Spark’s implementation of Random Forest instead a of a decision tree as a classifier. CVCF creates an

ensemble from partitioning of the training data. HME-BD also partitions the training data, but the use of Random Forest

allows us to improve the voting step: 
3 https://spark-packages.org/package/JMailloH/kNN _ IS . 

https://spark-packages.org/package/JMailloH/kNN_IS
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• CVCF predicts the whole dataset P times. We only predict the instances of the partition that Random Forest has not seen

while learning the model. This step is repeated P times. With this change we not only improve the performance, but also

the computing time of the algorithm since it only has to predict a small part of the training data each iteration. 
• We don’t need to implement a voting strategy, the decision of whether an instance is noisy is associated with the Ran-

dom Forest prediction. 

Algorithm 1 describes the noise filtering process in HME-BD: 

Algorithm 1 HME-BD Algorithm. 

1: Input: data a RDD of tuples (label, features) 

2: Input: P the number of partitions 

3: Input: nTrees the number of trees for Random Forest 

4: Output: the filtered RDD without noise 

5: part it ions ← kF old (d ata, P ) 

6: f ilteredData ← ∅ 
7: for all train, test in partitions do 

8: r f Mod el ← rand omF orest (t rain, nT rees ) 

9: r f P r ed ← pr ed ict(r f Mod el, test) 

10: j oined Data ← j oin (zipW ithInd ex (test) , zipW ithInd ex (r f P red )) 

11: markedData ← 

12: map original, prediction ∈ joinedData 

13: if l abel (original ) = l abel (prediction ) then 

14: original 

15: else 

16: (label = ∅ , f eatures (original)) 

17: end if 

18: end map 

19: f ilteredData ← union ( f iltered Data, marked Data ) 

20: end for 

21: retur n ( f ilter ( f il teredData, l abel � = ∅ )) 

• The algorithm filters the noise in a dataset by performing a kFold on the training data. As stated previously, Spark’s kFold

function returns a list of ( train, test ) for a given P , where test is a unique 1/kth of the data, and train is a complement of

the test data. 
• We iterate through each partition, learning a Random Forest model using the train as input data and predicting the test

using the learned model. 
• In order to join the test data and the predicted data for comparing the classes, we use the zipWithIndex operation in

both RDDs. With this operation, we add an index to each element of both RDDs. This index is used as key for the join

operation. 
• The next step is to apply a Map function to the previous RDD in order to check for each instance the original class and

the predicted one. If the predicted class and the original are different, the instance is marked as noise. 
• The result of the previous Map function is a RDD where noisy instances are marked. These instances are finally removed

using a filter function and the resulting dataset is returned. 

The following are required as input parameters: the dataset ( data ), the number of partitions ( P ) and the number of trees

for the Random Forest ( nTrees ). 

In Fig. 1 we can see a flowchart of the HME-BD noise filtering process. 

The computational complexity of the algorithm is reduced to the Random Forest learning and prediction time complexity.

As theoretically proved in [30] Random Forest’s computational complexity is: O (MK ̃

 N log ˜ N ) , being M the number of ran-

domized trees, K the number of variables randomly drawn at each node, N denotes the number of samples of the training

partition, and 

˜ N = 0 . 632 N due to the fact that bootstrap samples draw, on average, 63.2% of unique samples. The prediction

of the Random Forest is O ( M log L ), being L the number of samples in the test partition. We repeat this process P times, so

the final computational complexity is O (P (MK ̃

 N log ˜ N )) + O (P (M log L )) . 

3.4. Heterogeneous Ensemble: HTE-BD 

Heterogeneous Ensemble is inspired by Ensemble Filter (EF) [5] . This noise filter uses a set of three learning algorithms

for identifying mislabeled instances in a dataset: a univariate decision tree (C4.5), KNN and a linear machine. It performs a

k -fold cross validation over the training data. For each one of the k parts, three algorithms are trained on the other k − 1

parts. Each of the classifiers is used to tag each of the test examples as noisy or clean. At the end of the k -fold, each example

of the input data has been tagged. Finally, using a voting strategy, a decision is made and noisy examples are removed. 
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Fig. 1. HME-BD noise filtering process flowchart. 

 

 

HTE-BD follows the same working scheme as EF. The main difference is the choice of the three learning algorithms: 

• Instead of a decision tree, we use Spark’s implementation of Random Forest. 
• We use an exact implementation of KNN with the euclidean distance present in Spark’s community repository. 
• The linear machine has been replaced by Spark’s implementation of Logistic Regression, which is another linear classifier.

The noise filtering process in HTE-BD is shown in Algorithm 2 : 

Algorithm 2 HTE-BD Algorithm. 

1: Input: data a RDD of tuples (label, features) 

2: Input: P the number of partitions 

3: Input: nTrees the number of trees for Random Forest 

4: Input: vote the voting strategy (majority or consensus) 

5: Output: the filtered RDD without noise 

6: part it ions ← kF old (d ata, P ) 

7: f ilteredData ← ∅ 
8: for all train, test in partitions do 

9: cl assi f iersModel ← l earnCl assi f iers (train, nT rees ) 

10: predictions ← predict(cl assi f iersModel , test) 

11: j oined Data ← j oin (zipW ithInd ex (pred ictions ) , zipW ithInd ex (test)) 

12: markedData ← 

13: map r f, lr, knn, orig ∈ joinedData 

14: count ← 0 

15: if r f � = l abel (orig) then count ← count + 1 end if 

16: if l r � = l abel (orig) then count ← count + 1 end if 

17: if knn � = l abel (orig) then count ← count + 1 end if 

18: if v ote = ma jority then 

19: if count ≥ 2 then (label = ∅ , f eatures (orig)) end if 

20: if count < 2 then orig end if 

21: else 

22: if count = 3 then (label = ∅ , f eatures (orig)) end if 

23: if count � = 3 then orig end if 

24: end if 

25: end map 

26: f ilteredData ← union ( f iltered Data, marked Data ) 

27: end for 

28: retur n ( f ilter ( f il teredData, l abel � = ∅ )) 

• For each train and test partition of the k -fold performed to the input data, it learns three classification algorithms: Ran-

dom Forest, Logistic Regression and 1NN using the train as input data. 
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Fig. 2. HTE-BD noise filtering process flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Then it predicts the test data using the three learned models. This creates a RDD of triplets ( rf, lr, knn ) with the prediction

of each algorithm for each instance. 
• The predictions and the test data are joined by index in order to compare the predictions and the original label. 
• It compares the three predictions of each instance in the test data with the original label using a Map function and,

depending upon the voting strategy, the instance is marked as noise or clean. 
• Once the Map function has been applied to each instance, noisy data is removed using a filter function and the dataset

is returned. 

The following are required as input parameters: the dataset ( data ), the number of partitions ( P ), the number of trees for

the Random Forest ( nTrees ) and the voting strategy ( vote ). 

In Fig. 2 we show a flowchart of the HTE-BD noise filtering process. 

The computational complexity of HTE-BD is defined by the three classifiers used. As explained previously, time complex-

ity of learning and predicting a Random Forest is O (MK ̃

 N log ˜ N ) + O (M log L ) . kNN-IS is internally executed in two steps [31] ,

first a mapPartitions phase is performed with a computational complexity of O ( MN ) for finding the nearest neighbor training

example of a single test instance. Finally, a reduce phase is performed whose complexity can be despised. Lastly, Logistic

Regression time complexity depends upon the internal optimizer used, in our case L-BFGS. L-BFGS computational complex-

ity is given by O ( NT ), being T the number of iterations. In summary, HTE-BD computational complexity can be defined as

O (P (MK ̃

 N log ˜ N )) + O (P (M log L )) + O (P (MN)) + O (P (NT )) . 

3.5. Similarity: ENN-BD 

ENN-BD is a simple filtering algorithm that works as a baseline for comparison purposes. It has been designed based

on the Edited Nearest Neighbor algorithm (ENN) [44] and follows a similarity between instances approach. ENN removes

noisy instances in a dataset by comparing the label of each example with its closest neighbor. If the labels are different, the

instance is considered as noisy and removed. 

ENN-BD performs a 1NN using Spark’s community repository kNN-IS with the euclidean distance. It checks for each

instance if its closest neighbor belongs to the same class. In case the classes are different, the instance is marked as noise.

Finally, marked instances are removed from the training data. This process is described in Algorithm 3 . The only input

parameter required is the dataset ( data ). 

Computational complexity of ENN-BD is reduced to the time complexity of KNN. As described in HTE-BD, computational

complexity of kNN-IS is O ( MN ). 

4. Experimental results 

This section describes the experimental details and the analysis carried out to show the performance of the three noise

filter methods over four huge problems. In Section 4.1 , we present the details of the datasets and the parameters used in the

methods. We analyze the accuracy improvements generated by the proposed framework and the study of instances removed

in Section 4.2 . Finally, Section 4.3 is devoted to the computing times of the proposals. 
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Algorithm 3 ENN-BD Algorithm. 

1: Input: data a RDD of tuples (label, features) 

2: Output: the filtered RDD without noise 

3: knnModel ← KN N (1 , ′′ euclidean ′′ , data ) 

4: knnP red ← zipW ithIndex (pred ict(knnMod el, d ata )) 

5: j oined Data ← j oin (zipW ithInd ex (d ata ) , knnP red ) 

6: f ilteredData ← 

7: map original, prediction ∈ joinedData 

8: if l abel (original ) = l abel (prediction ) then 

9: original 

10: else 

11: (noise, f eatures (original)) 

12: end if 

13: end map 

14: retur n ( f ilter ( f il teredData, l abel � = noise )) 

Table 1 

Datasets used in the analysis. 

Dataset Instances Atts. Total CL 

SUSY 5,0 0 0,0 0 0 18 90,0 0 0,0 0 0 2 

HIGGS 11,0 0 0,0 0 0 28 308,0 0 0,0 0 0 2 

Epsilon 50 0,0 0 0 20 0 0 1,0 0 0,0 0 0,0 0 0 2 

ECBDL14 1,0 0 0,0 0 0 631 631,0 0 0,0 0 0 2 

Table 2 

Parameter setting for the noise filters. 

Algorithm Parameters Classifiers 

HME-BD P = 4, 5 Random Forest: featureSubsetStrategy = “auto”, impurity = “gini”, maxDepth = 10 and maxBins = 

32 

HTE-BD P = 4, 5 Voting = 

majority, consensus 

1NN, Random Forest: featureSubsetStrategy = “auto”, impurity = “gini”, maxDepth = 10 and 

maxBins = 32 

ENN-BD K = 1 distance = “euclidean”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Experimental framework 

Four classification datasets are used in our experiments: 

• SUSY dataset, which consists of 5,0 0 0,0 0 0 instances and 18 attributes [26] . The first eight features are kinematic proper-

ties measured by the particle detectors at the Large Hadron Collider. The last ten are functions of the first eight features.

The task is to distinguish between a signal process which produces supersymmetric (SUSY) particles and a background

process which does not [2] . 
• HIGGS dataset, which has 11,0 0 0,0 0 0 instances and 28 attributes [26] . This dataset is a classification problem to distin-

guish between a signal process which produces Higgs bosons and a background process which does not. 
• Epsilon dataset, which consists of 50 0,0 0 0 instances with 20 0 0 numerical features. This dataset was artificially created

for the Pascal Large Scale Learning Challenge in 2008. It was further pre-processed and included in the LibSVM dataset

repository [7] . 
• ECBDL14 dataset, which has 32 million instances and 631 attributes (including both numerical and categorical) [40] . This

dataset was used as a reference at the ML competition of the Evolutionary Computation for Big Data and Big Learning

held on July 14, 2014, under the international conference GECCO-2014. It is a binary classification problem where the

class distribution is highly imbalanced: 98% of negative instances. For this problem, we use a reduced version with

1,0 0 0,0 0 0 instances and 30% of positive instances. 

Table 1 provides a brief summary of these datasets, showing the number of examples (Instances), the total number of

attributes (Atts.), the total number of training data (Total), and the number classes (CL). 

We carried out experiments on five levels of uniform class noise: for each level of noise, a percentage of the training

instances are altered by replacing their actual label by another label from the available classes. The selected noise levels

are 0%, 5%, 10%, 15% and 20%. In this case, a 0% noise level indicates that the dataset was unaltered. We have conducted a

hold-out validation due to the time limitations of the KNN algorithm. 

In Table 2 we can see the complete list of parameters used for the noise treatment algorithms. In order to evaluate the

effect of the number of partitions on the behavior of the filters, we have selected 4 and 5 training partitions for HME-BD and
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Table 3 

Parameter setting for the classifiers. 

Classifier Parameters 

KNN K = 1, distance = ”euclidean”

Decision Tree impurity = ”gini”, maxDepth = 20 and maxBins = 32 

Table 4 

KNN test accuracy. The highest accuracy value per dataset and noise level is stressed in bold. 

Dataset Noise (%) Original HME-BD HTE-BD ENN-BD 

P 4 5 4 4 5 5 

Vote Majority Consensus Majority Consensus 

SUSY 0 71.79 78.73 78.72 77.86 74.64 77.88 74.65 72.02 

5 69.62 78.68 78.69 77.68 73.38 77.68 73.39 69.84 

10 67.44 78.63 78.62 77.44 72.01 77.46 72.00 67.66 

15 65.27 78.62 78.61 77.19 70.52 77.20 70.53 65.28 

20 63.10 78.56 78.58 76.93 69.10 76.93 69.04 63.25 

HIGGS 0 61.21 64.26 64.25 63.94 62.30 63.93 62.23 60.65 

5 60.10 64.06 64.07 63.63 61.45 63.62 61.44 59.60 

10 58.97 63.83 63.84 63.29 60.65 63.24 60.66 58.56 

15 57.84 63.65 63.64 62.86 59.81 62.89 59.81 57.52 

20 56.69 63.53 63.40 62.55 58.89 62.55 58.85 56.45 

Epsilon 0 56.55 58.11 58.06 57.43 55.19 57.39 55.40 56.21 

5 55.71 58.64 58.60 57.47 55.47 57.39 55.41 55.43 

10 55.20 58.51 58.61 57.26 55.25 57.26 55.25 54.79 

15 54.54 58.39 58.41 57.00 55.00 57.02 55.03 54.30 

20 54.05 58.02 58.09 56.75 54.72 56.71 54.72 53.68 

ECBDL14 0 74.83 76.06 76.03 75.12 73.54 75.14 73.46 73.94 

5 72.36 75.60 75.59 74.59 72.89 74.59 72.84 72.77 

10 69.86 75.31 75.32 74.19 72.50 74.19 72.47 71.40 

15 67.39 75.11 75.12 73.99 72.11 74.01 72.06 69.68 

20 64.90 74.82 74.83 73.70 71.89 73.70 71.90 67.64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HTE-BD. For the heterogeneous filter, HTE-BD, we also use two voting strategies: consensus (same result for all classifiers)

and majority (same result for at least half the classifiers). For ENN-BD, with k = 5 we have higher network overload, and

due to the huge data redundancy in big datasets, it achieved similar performance in internal tests in comparison to k = 1 .

This is why we have chosen the most efficient option. 

Two classifiers, one MLlib classifier, a decision tree, and one algorithm present in Spark’s community repository, KNN, are

used to evaluate the effectiveness of the filtering carried out by the two ensemble proposals and the similarity filter. The

decision tree can adapt its depth to avoid overfitting to noisy instances, while KNN is known to be sensitive to noise when

the number of selected neighbors is low. Prediction accuracy is used to evaluate the model’s performance produced by the

classifiers (number of examples correctly labeled as belonging to a given class divided by the total number of elements).

The parameters used for the classifiers can be seen in Table 3 . Default parameters are used, except for the decision tree, in

which we have tuned the depth of the tree for a better detection of noisy instances. KNN is used with k = 1 as it is more

sensitive to noise, as opposed to the decision tree. 

The experiments have been carried out according to the following scheme: 

• No noise filtering: for each level of noise (from 0% to 20%) we learn a KNN and a Decision Tree using the training

partition of the data and then predict the test partition. 
• Noise filtering: for each level of noise (from 0% to 20%) we filter the training partition of the data using the corresponding

filter. Then we learn a KNN and a Decision Tree using the filtered dataset and predict the test partition. 

For all experiments we have used a cluster composed of 20 computing nodes and one master node. The computing nodes

hold the following characteristics: 2 processors x Intel(R) Xeon(R) CPU E5-2620, 6 cores per processor, 2.00 GHz, 2 TB HDD,

64 GB RAM. Regarding software, we have used the following configuration: Hadoop 2.6.0-cdh5.4.3 from Cloudera’s open

source Apache Hadoop distribution, Apache Spark and MLlib 1.6.0, 460 cores (23 cores/node), 960 RAM GB (48 GB/node). 

4.2. Analysis of accuracy performance and removed instances 

In this section, we present the analysis on the performance results obtained by the selected classifiers after applying the

proposed framework. We denote with Original the application of the classifier without using any noise treatment techniques,

in order to evaluate the impact of the increasing noise level in the quality of the models extracted by the classification

algorithms. 

Table 4 shows the test accuracy values for the four datasets and the five levels of noise using the KNN algorithm for

classification. From these results we can point out that: 



D. García-Gil, J. Luengo and S. García et al. / Information Sciences 479 (2019) 135–152 145 

Table 5 

Decision tree test accuracy. The highest accuracy value per dataset and noise level is stressed in bold. 

Dataset Noise (%) Original HME-BD HTE-BD ENN-BD 

P 4 5 4 4 5 5 

Vote Majority Consensus Majority Consensus 

SUSY 0 80.24 79.78 79.79 79.69 80.27 79.17 80.29 78.56 

5 79.94 79.99 79.97 80.07 80.36 80.10 80.34 77.49 

10 79.15 79.85 79.84 79.81 80.04 79.81 80.22 77.00 

15 78.21 79.81 79.80 79.32 79.47 79.61 79.48 75.81 

20 77.09 79.71 79.73 79.35 78.95 79.31 79.41 74.21 

HIGGS 0 70.17 71.16 71.17 69.61 70.41 69.68 70.33 68.85 

5 69.61 71.14 71.11 69.34 69.98 69.36 69.92 68.29 

10 69.22 71.06 71.04 68.95 69.56 68.97 69.58 67.52 

15 68.65 71.03 70.99 68.52 69.04 68.65 69.06 66.93 

20 67.82 71.05 71.02 68.18 68.38 68.35 68.39 66.05 

Epsilon 0 62.39 66.86 66.19 65.13 66.07 65.11 66.02 61.54 

5 61.10 66.64 66.83 65.32 66.09 65.33 66.09 60.41 

10 60.09 66.87 67.00 65.46 66.11 65.47 66.10 59.20 

15 59.02 66.62 66.85 65.33 65.99 65.29 66.00 58.09 

20 57.73 66.46 66.79 65.08 65.69 64.98 65.65 56.71 

ECBDL14 0 73.98 74.59 74.38 74.21 74.51 74.35 74.62 73.66 

5 72.87 74.64 74.40 74.16 74.54 74.25 74.75 73.48 

10 71.67 74.59 74.25 73.84 74.51 73.94 74.63 72.75 

15 70.28 74.61 74.22 73.82 73.91 73.98 74.10 71.68 

20 68.66 74.83 74.18 73.78 73.82 73.85 73.86 70.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• It is important to remark that the usage of any noise treatment technique always improves the Original accuracy value

at the same noise level. Please note that the usage of the noise treatment technique allows KNN to obtain better perfor-

mance at any noise level, even at the highest ones, than Original at 0% level for every dataset. Since Big Datasets tend to

accumulate noise, the proposed noise framework is able to improve the behavior and performance of the KNN classifier

in every case. 
• If we attend the best noise treatment strategy for KNN, we must point out that the homogeneous filter, HME-BD, enables

KNN to obtain the highest accuracy values. 
• The different number of partitions used for HME-BD has little impact in the accuracy values, which, in this respect,

makes it a robust method. 
• The heterogeneous ensemble filter, HTE-BD, is also robust to the number of partitions chosen, but its performance is

lower than HME-BD. However, the voting scheme is crucial for HTE-BD, as the consensus strategy will result in worse

accuracy for KNN, being close to 2% less accuracy for the consensus voting strategy. 
• While the Original accuracy value drops around 2% for each 5% increment of noise, totaling about 10% less accuracy in

20% of noise level, HME-BD drops less than a 1% of accuracy in total. 
• The baseline noise filtering method, ENN-BD, is the worst option as KNN obtains the lowest accuracy values among the

three noise treatment strategies. For ENN-BD, the accuracy drops around 2% for each 5% increment in noise instances.

However, as mentioned earlier, ENN-BD is still preferable to not dealing with the noise at all. This is due to the noise

sensitive nature of KNN. 

Table 5 gathers the test accuracy values for the three noise filter methods using a deep decision tree. From these results

we can point out that: 

• Again, avoiding the treatment of noise is never the best option and using the appropriate noise filtering technique will

provide a significant improvement in accuracy. However, since the decision tree is more robust against noise than KNN,

not all the filters are better than avoiding filtering noise ( Original ). When the filters remove too many instances, both

noisy and clean, the decision tree is more affected since it is able to withstand small amounts of noise while exploiting

the clean instances. KNN was very affected by the noisy instances left, in a higher degree than the decision tree. Thus, a

wrong filtering strategy will penalize the performance of the decision tree. We will elaborate more on this later. 
• In terms of the best filtering technique for the decision tree, for low levels of noise, the heterogeneous ensemble HTE-

BD can perform slightly better than the homogeneous HME-BD for some datasets. Nevertheless, from a 10% noise level

onwards, HME-BD outperforms HTE-BD, making it a better approach to deal with noise for the decision tree. 
• As observed previously, the Original accuracy drops for each increment of noise level. In this case, HME-BD is performing

even better than observed with KNN since accuracy value is almost the same at 0% and 20% level of noise. 
• Regarding the HTE-BD voting strategy, the consensus scheme achieves better results than the majority voting strategy.

Please note that the opposite has been observed in KNN: since KNN is much more sensitive and demands cleaner class

borders achieved with the majority voting, the decision tree benefits from a more accurate noise removal provided by

the consensus voting. 
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Fig. 3. Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD against the Original accuracy for KNN. 

Fig. 4. Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD for KNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The baseline method, ENN-BD, is achieving around 1% less accuracy than the rest for low levels of noise, but this differ-

ence increases to 5% less accuracy in higher noise levels. 

The results presented have shown the importance of applying a noise treatment strategy, no matter how much noise

is present in the dataset. For a deeper analysis of the results, we have performed a Bayesian Test in order to analyze if

one of the proposed algorithms is statistically better than the rest. Bayesian Tests obtain a distribution of the difference

between two algorithms, and make a decision when 95% of the distribution is in one of the three regions: left, rope (region

of practical equivalence), and right [3] . The Bayesian Sign Test is a Bayesian version of non-parametric sign test that uses the

Dirichlet Process. This test is applied to the mean accuracy of each dataset. A sample of the distribution of the probabilities

is obtained. Each point is a triplet with the probabilities of the difference between two algorithms belonging to the left, rope

or right regions. For HME-BD and HTE-BD, the best performing configuration has been selected accordingly to the Friedman

Test. HME-BD is used with 4 partitions while HTE-BD uses 5 partitions for both KNN and the decision tree. HTE-BD uses

majority voting in KNN, and consensus voting with the decision tree. 

In Fig. 3 we compare HME-BD, HTE-BD and ENN-BD against the Original accuracy using KNN as classifier. As we can ob-

serve, the probability of the difference being to the right is minimal for HME-BD and HTE-BD. This means that the Bayesian

Sign Test is assigning a probability of 0 to these methods performing worse than the Original accuracy. In ENN-BD we can

see that the performance is very similar to the Original accuracy. For the Bayesian Tests and graphics we have employed an

R package that contains a set of non-parametric and Bayesian Tests, namely rNPBST [6] . 

In Fig. 4 we compare the proposed algorithms against each other using KNN as classifier. As we can see HME-BD is

statistically better than HTE-BD according to the Bayesian Sign Test. Both HME-BD and HTE-BD performs much better than

ENN-BD. 

We have performed the same experimentation with the decision tree using the Bayesian Sign Test. These experiments

can be seen in Figs. 5 and 6 . These results show that HME-BD is still the best performing method according to the Bayesian

Sign Test also for the decision tree, performing better than HTE-BD, ENN-BD and the Original accuracy. As expected, ENN-BD

is not improving against the Original accuracy with a decision tree. 

To better explain why HME-BD is the best filtering strategy in the framework, we must study the amount of instances re-

moved. In Table 6 we present the average number of instances left after the application of the three noise filtering methods

for the four datasets. In Fig. 7 we can see a graphic representation of the number of instances for the sake of a better de-

piction. As we can expect, the higher the percentage of noise, the lower the number of instances that remain in the dataset

after applying the filtering technique. However, there are different patterns depending on the filtering technique used: 

• For the homogeneous ensemble HME-BD, there is no effect in the number of partitions P chosen with respect to the

amount of removed instances. On average, HME-BD removes around 20% of the instances at a 0% noise level. At each

noise level increment an average of 3% of the instances are removed. 
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Fig. 5. Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD against the Original accuracy for a decision tree. 

Fig. 6. Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD for a decision tree. 

Table 6 

Average number of instances for HME-BD, HTE-BD and ENN-BD. 

Dataset Noise Original HME-BD HTE-BD ENN-BD 

P 4 5 4 4 5 5 

Vote Majority Consensus Majority Consensus 

SUSY 0% 2,50 0,0 0 0 1,984,396 1,983,785 1,974,018 2,281,521 1,973,587 2,280,941 1,262,317 

5% 2,50 0,0 0 0 1,910,750 1,911,317 1,872,868 2,241,766 1,874,053 2,242,598 1,260,781 

10% 2,50 0,0 0 0 1,837,604 1,837,408 1,801,616 2,207,999 1,800,276 2,203,012 1,258,441 

15% 2,50 0,0 0 0 1,763,890 1,764,176 1,728,789 2,174,051 1,727,949 2,175,876 1,256,611 

20% 2,50 0,0 0 0 1,691,290 1,691,506 1,657,323 2,144,595 1,657,035 2,141,811 1,254,441 

HIGGS 0% 5,50 0,0 0 0 3,900,547 3,900,035 3,567,784 5,048,874 3,564,879 5,051,498 2,765,831 

5% 5,50 0,0 0 0 3,787,0 0 0 3,786,366 3,484,271 5,014,344 3,484,274 5,013,132 2,763,942 

10% 5,50 0,0 0 0 3,672,429 3,672,553 3,404,181 4,972,401 3,401,624 4,973,794 2,760,547 

15% 5,50 0,0 0 0 3,554,120 3,557,252 3,324,547 4,930,575 3,323,465 4,932,060 2,754,636 

20% 5,50 0,0 0 0 3,446,352 3,443,459 3,242,174 4,888,991 3,240,623 4,886,961 2,756,382 

Epsilon 0% 250,0 0 0 164,222 164,292 194,252 242,757 194,037 242,730 125,072 

5% 250,0 0 0 186,707 186,839 186,890 239,200 186,957 239,200 124,983 

10% 250,0 0 0 180,489 180,517 180,296 235,425 180,332 235,456 125,064 

15% 250,0 0 0 173,027 173,114 173,226 231,962 173,274 231,997 124,980 

20% 250,0 0 0 166,191 166,247 166,394 228,153 166,285 228,394 124,583 

ECBDL14 0% 50 0,0 0 0 387,815 387,873 393,242 470,731 393,273 470,924 367,101 

5% 50 0,0 0 0 370,991 371,094 377,451 458,758 377,239 459,212 344,717 

10% 50 0,0 0 0 357,565 357,270 361,587 448,460 361,614 448,550 324,674 

15% 50 0,0 0 0 344,363 344,427 346,454 439,633 346,633 439,028 306,832 

20% 50 0,0 0 0 330,694 330,761 331,552 430,4 4 4 331,511 430,357 292,0 0 0 

 

 

 

 

 

 

 

• For the Epsilon dataset, at 20% nosie, HME-BD does not remove as many instances as expected, but it is still the best

option out of the two classifiers. A high instance redundancy in this dataset may cause homogeneous voting to not

discard as many instances as the other filters. 
• Like HME-BD, HTE-BD is not affected by the number of partitions, but the voting scheme does have a great impact on

its behavior. While the majority voting strategy achieves almost the same number of removed instances as HME-BD, the

consensus voting strategy is more conservative. Consensus voting removes 10% of the instances for 0% level of noise, and

it is increasing a 3% on average as the level of noise increases, the same rate as HME-BD. 
• ENN-BD is the filter that removes more instances. On average it removes half the instances of the datasets for 0% level

of noise and then increases around 1% at each increment of noise level. This aggresive filtering hinders the performance

of noise tolerant classifiers, such as the decision tree. 
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Fig. 7. Number of instances after the filtering process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• In general, HME-BD is the most balanced technique in terms of instances removed and kept. Although the amount of

instances removed by HTE-BD with majority voting is very similar to HME-BD, the instances selected to be eliminated

are different, severely affecting the classifier used afterwards. 

We have performed a deeper analysis of the removed instances, analyzing the amount of correctly removed instances for

each method in the framework. 

In Table 7 we present the average percentage of correctly removed instances after the application of the three noise

filtering methods for the four datasets. In Fig. 8 we can see a graphic representation of these percentages of correctly

removed instances. As we can see, the consensus voting strategy is much more conservative removing noisy instances than

the rest of the methods. We can also outline some patterns depending on the filtering method used: 

• While ENN-BD is the filter that more instances removes, it is also the one that less noise removes from the datasets,

averaging a 50% of noisy instances removed. 
• Similarly to the number of instances removed, HME-BD and HTE-BD are not affected by the number of partitions, while

the voting strategy does influence the percentage of correctly removed instances. As we could expect, the consensus

voting strategy is the one that less noisy instances clean. Consensus voting removes only 25% of noisy instances in

HIGGS dataset, and only increases to 45% in ECBDL14 dataset. 
• HME-BD and HTE-BD with majority voting, are removing aroung 65% and 80% of noisy instances. Both methods outper-

form the other in two out of four datasets. 
• In Epsilon dataset, HTE-BD is cleaning 10% more noisy instances than HME-BD, but HME-BD performs better in test

accuracy. This can be explained by the accumulated noise of this particular dataset. 
• As we can expect, the higher the accuracy of the classifier used by the filters, the better the detection of noisy instances.

That explains the different behaviors of the three noise filters, and why ENN-BD is not the method that most noisy

instances removes. 

In view of the results, we can conclude that HME-BD is the most suitable ensemble option in the proposed framework

to deal with noise in Big Data problems. Even when we did not introduce any additional noise, the usage of noise treatment
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Table 7 

Average percentage of correctly removed instances for HME-BD, HTE-BD and ENN-BD. 

Dataset Noise HME-BD HTE-BD ENN-BD 

P 4 5 4 4 5 5 

Vote Majority Consensus Majority Consensus 

SUSY 5% 79.45 79.44 78.98 38.16 79.02 38.18 50.36 

10% 76.79 76.74 77.50 38.03 77.52 39.24 50.32 

15% 76.77 76.77 76.48 37.71 76.49 37.71 50.38 

20% 79.34 79.37 78.83 37.26 78.83 37.25 50.29 

HIGGS 5% 69.19 69.04 66.04 26.18 66.03 26.17 49.12 

10% 69.26 69.24 66.10 25.82 66.09 25.82 49.56 

15% 69.39 69.37 66.14 25.81 66.14 25.80 49.62 

20% 69.45 69.49 66.23 25.78 66.23 25.78 49.55 

Epsilon 5% 65.18 65.05 77.18 30.67 77.08 30.64 50.13 

10% 66.02 65.98 77.65 30.31 77.60 30.27 49.80 

15% 67.19 67.15 77.60 30.74 77.57 30.70 49.98 

20% 66.74 66.51 77.71 30.89 77.68 30.86 49.77 

ECBDL14 5% 74.45 74.35 78.30 44.79 78.28 45.15 70.83 

10% 74.36 74.32 77.26 46.83 77.22 46.84 68.55 

15% 74.41 74.35 77.07 44.79 77.04 44.84 66.45 

20% 74.38 74.36 77.29 43.79 77.26 43.80 64.25 

Fig. 8. Percentage of correctly removed noisy instances after the filtering process. 

 

 

 

methods has proven to be very beneficial. As previously mentioned, Big Data problems tend to accumulate noise and the

proposed noise framework is a suitable tool to clean and proceed from Big to Smart Datasets. 

4.3. Computing times 

In the previous section we have shown the suitability of the proposed framework in terms of accuracy. In order to

constitute a valid proposal in Big Data, this framework has to be scalable as well. This section is devoted to present the
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Table 8 

Average run times for HME-BD, HTE-BD and ENN-BD in seconds. 

Dataset HME-BD HTE-BD ENN-BD 

P 4 5 4 4 5 5 

Vote Majority Consensus Majority Consensus 

SUSY 513.46 632.54 5,511.15 5,855.66 6,701.62 6,399.32 8,956.71 

HIGGS 587.72 675.07 15,300.62 15,232.99 16,417.26 17,067.97 25,441.09 

Epsilon 1,868.75 2,021.14 4,120.79 7,201.05 5,179.09 5,664.06 2,718.97 

ECBDL14 1,228.24 1,348.10 9,710.70 11,217.02 10,798.18 11,366.01 14,080.03 

Fig. 9. Run times chart. 

 

 

 

 

 

 

 

 

 

 

 

 

computing times for the two prosposed ensemble techniques, HME-BD and HTE-BD, and the simple similarity method,

ENN-BD, used as a baseline. 

In Table 8 we can see the average run times of the three methods for the four datasets in seconds. As the level of noise

is not a factor that affects the run time, we show the average of the five executions performed for each dataset. In Fig. 9 we

can see a graphic representation of these times. 

The measured times show that the homogeneous ensemble, HME-BD, is not only the best performing option in terms

of accuracy, but also the most efficient one in terms of computing time. Although the accuracy value is not affected by the

number of partitions, the run times of the algorithms suffer an increase in time with the number of partitions. HME-BD is

about ten times faster than the heterogeneous filter HTE-BD and the similarity filter ENN-BD. This is caused by the usage

of the KNN classifier by HTE-BD and ENN-BD, which is very demanding in computing terms. As a result, HME-BD does

not need to compute any distance measures, saving computing time and being the most recommended option to deal with

noise in Big Data problems. 

In view of the results we can conclude that: 

• The usage of any of the noise treatment techniques in the framework always improves the Original accuracy value at the

same noise level. 
• HME-BD has shown to be the best performing method overall for both classifiers, KNN and the decision tree. It is also

the most efficient method in terms of computing time. 
• The number of partitions has little impact in the accuracy and almost no impact in the number of removed instances. 
• The voting strategy has a huge impact in the number of removed instances. 
• As we could expect, KNN is a very demanding method in computing terms. This is reflected in the longer computing
time of HTE-BD and ENN-BD. 
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5. Conclusions 

This work presents the first suitable noise filter in Big Data domains, where the high redundancy of the instances and

high dimensional problems pose new challenges to classic noise preprocessing algorithms. We have proposed several noise

filtering algorithms, implemented in a Big Data framework: Spark. These filtering techniques are based on the creation of en-

sembles of classifiers that are executed in the different maps, enabling the practitioner to deal with huge datasets. Different

strategies of data partitioning and ensemble classifier combination have led to three different approaches: an homogeneous

ensemble, an heterogeneous ensemble and a simple filtering approach based on similarities between instances. 

The suitability of these proposed techniques has been analyzed using several data sets, in order to study the accuracy

improvement, running times and data reduction rates. The homogeneous ensemble has shown to be the most suitable

approach in most cases, both in accuracy improvement and better running times. It also shows the best balance between

removing and keeping sufficient instances, being among the most balanced filter in terms of preprocessed training sets. 

The problem of noise in Big Data classification is a crucial step in transforming such raw data into Smart Data [24] . We

have tackled this problem and enabled the practitioner to reach Smart Data. Our proposal can deal with problems with

millions of instances and thousands of features in a short time, obtaining clean datasets of noise. 

This proposal opens promising research lines in this topic, where the presence of iterative algorithms and the usage of

noise measures are also known as viable alternatives for dealing with noise. Another research line is the study of whether

removing or relabelling of noisy instances may be a better strategy. Finally, for multiclass or imbalanced problems, cost

sensitive filters which prioritize the removal of instances from the majority classes can be an interesting topic [10] . 
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