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Abstract

This paper proposes a novel center-driven image set partitioning method

dedicated for efficient Structure from Motion (SfM) on unevenly distributed

images. First, multiple base clusters are found at places with high image

density. Instead of building a small initial model from two images, we build

multiple initial base models from these base clusters. This promises that the

scene is reconstructed from dense places to sparse areas, which can reduce

error accumulation when images have weak overlap. Second, the whole image

set is divided into several region clusters to decide which images should be

reconstructed from the same base model. In this step, the base models are

treated as centers and the affinity between an image with each of them is

measured by the reconstruction path length. To enable faster speed, images

in each region cluster are further divided into several sub-region clusters so

that they could be added to the same base model simultaneously. Based
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on the above partitioning results, the partial 3D models are reconstructed

in parallel and then merged. Experiments show that the proposed method

achieves remarkable speedup and better completeness than state-of-the-art

methods, without significant accuracy deterioration.

Keywords:

center-driven, image set partitioning, 3D reconstruction, Structure from

Motion.

1. Introduction

Investigating 3D information assists many applications in computer vision

[41, 40, 48, 37, 20, 11, 18]. Structure from Motion (SfM) is widely used

in reconstructing 3D camera poses and sparse point cloud from unordered

images. With the rapid development of the Internet, these images can be

easily searched and downloaded through keywords. However, due to the

large scale nature of such problems, accuracy and efficiency are still two

most challenging issues.

Existing SfM methods can be divided into three classes: incremental

[34, 32], global [42, 6, 7] and hybrid [5, 50]. This paper mainly focuses on

the first type. A typical incremental SfM pipeline consists of three steps: 1)

Constructing scene graph via image matching and geometry verification. 2)

Selecting two starting images and build an initial model for the incremental

process. 3) Adding new images to the existing model and run Bundle Ad-

justment (BA) [39] to refine parameters. The last step is repeated until no

more images could be added.

Some of these methods perform in a top-down manner. A coarse model
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which spans the whole scene is reconstructed as quickly as possible in the

first stage and then it is enriched in the second stage. Snavely et al. ex-

tracted a skeletal graph [33] that covers the full scene with the minimum

number of interior nodes. Leaf nodes can be added after the skeletal set is

reconstructed. This method is further used in [2], which designed a system

running on a distributed cluster to efficiently reconstruct a city in one day.

The concept of using iconic scene graphs to capture the major aspects of the

scene is proposed in [19] and [27]. After clustering images in the GIST [25]

feature space, they selected an iconic image for each cluster. The viewing

graph formed by iconic images is computed via vocabulary tree [24] index-

ing. Frahm et al. [13] improved the work of [2] by reconstructing a city on

a single machine with multi-core CPUs and GPUs. When selecting iconic

images the image descriptors were compressed to shorter binary codes so that

it is memory efficient for GPU computation. Heinly et al. [16] advanced the

state-of-the-art from city-scale modeling to world-scale modeling on a single

computer. They also leveraged the idea of iconic images. The database-side

feature augmentation is applied so that an iconic image can cover a broader

set of views. For the ability to handle world scale images, their system stores

an image in memory only when it is needed. COLMAP [28] improved several

components of the state-of-the-art methods, such as geometry verification,

view selection, triangulation and bundle adjustment to make a further step

towards a robust, accurate, complete and scalable system. Havlena et al.

[15] computed a minimal connected dominating set to reduce the input im-

ages. In order to get a good reconstruction in shorter computational time,

the reconstruction pipeline follows a task queue ordered by priority. Shah
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et al. [29] carried out hierarchical SfM without using iconic images. Moti-

vated by the preemptive matching strategy [46], a coarse yet global model

is quickly reconstructed using high scale SIFT feature correspondences in

the first stage. This model offers useful geometric constraints for the second

stage, in which the model is enriched by localizing unreconstructed images

and triangulating remaining features.

Some other methods perform in a bottom-up manner. They firstly recon-

struct several partial models and then gradually merges them. Fitzgibbon

and Zisserman [12] used image triplets to build partial models. For denser

images, Shum et al. [31] built a few local models from each video segment by

applying long baseline two-frame SfM and motion interpolation. However,

the triplets are always consecutive frames. Nistér [23] used a trifocal ten-

sor tree to select appropriate baseline for the triplets to remove redundancy.

Based on this work, Fang and Quan [9] used quasi-dense matches between

consecutive frames. Instead of building local models from two or three con-

secutive views, some other methods do this within a larger set. Douterloigne

et al. [8] directly divided the scene based on the order in which images were

taken. Graph-based clustering methods such as spectral clustering [35] and

k-way graph cut [22] are also widely used. Normalized Cuts [30] is used in [3]

for efficient large scale SfM. All the partial models are merged via the cutting

edges. Bottom-up reconstruction can be also performed on a tree. Faren-

zena et al. [10] built an aggregative clustering tree, whose leaves are images

and internal nodes correspond to partial reconstructions. The reconstruction

starts from sibling leaf pairs and gradually merges upwards. However, such

a tree might be highly unbalanced. Toldo et al. [38] improved this work by
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Figure 1: The distribution of Internet images used for SfM. A, B and C are three places

where images are densely distributed. A and B are connected by a weak reconstruction

path. But there is no sufficient overlap between AC and BC. The reconstruction result for

traditional SfM will be quite different when starting from different places.

proposing a balanced hierarchical clustering tree. At each merging step, they

selected top k nearest neighbors and then merged to the one with the small-

est cardinality. Differently, Chen et al. [4] designed a tree whose leaves are

atomic models reconstructed from pairwise geometry, and partial models are

merged as a node in a higher layer. In [36], each partition obtained by Nor-

malized Cuts is treated as a generalized camera [26, 49], whose pose will be

estimated by the incremental SfM algorithm. It’s worth to mention that top-

down methods and bottom-up methods are sometimes used in combination

with each other when the number of images is large.
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Although great achievements have been made, the challenges brought by

unevenly distributed images are somewhat ignored. Images downloaded from

the Internet are taken freely by different consumers. They are crowded at

some sites but sparse at other places in the scene. Fig. 1 is an example by

mapping their positions on a 2D manifold. Images are dense at three places

A, B and C, while they are sparse at other places. There is a weak recon-

struction path formed by some images with small overlap between A and B.

Traditional incremental methods will start to reconstruct the scene from a

pair of images [34, 32]. However, this strategy is sometimes unstable since the

relationship between the starting point and the other images are neglected.

As shown in Fig. 1, if the reconstruction starts from different places, the

results will be quite different. Besides, passing 3D structure between A and

B along the weak reconstruction path will result in large accumulation error

or even fail in the worst case. In terms of efficiency, when reconstructing

from sparse areas the model will grow slower and more efforts will be paid in

solving the optimization problem since the feature tracks may contain a high

ratio of outliers. To address these problems, several proper starting points

should be selected automatically according to the distributional properties

of the dataset. Besides, more than two images should be used to suppress er-

rors caused by inaccurate epipolar geometry when building the initial model.

Next, which part of the scene should be reconstructed from the same start-

ing point should be determined. This leads to a data partitioning problem.

Aforementioned bottom-up methods usually partition the images by con-

nected components, K-Means or Normalized-Cuts. The main drawback of

these methods is that the starting point selected within each subset may not
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be an optimal solution consistent with the global distribution. We call them

“blind partitioning” because the starting points are not known in advance.

Differently, our purpose is to divide the images by treating known starting

points as centers. Compared with “blind partitioning”, this “center-driven

clustering” method promises that each sub-SfM procedure starts from a place

with better global properties.

In this paper, a novel center-driven image set partitioning method ded-

icated for efficient SfM on unevenly distributed images is proposed. The

whole image set is divided into three kinds of clusters: base clusters, region

clusters and sub-region clusters. Base clusters are firstly extracted from the

image set. A base cluster contains several images around the image density

center. It will be used to build a base model of the scene, from which an

incremental SfM process begins. Since images around the density center have

sufficient overlap with each other, the base clusters have stronger ability to

build reliable initial models and propagate 3D structure to nearby places.

Next, to determine which part should be reconstructed from the same base

model, the remaining images are partitioned into region clusters by treating

the base models as centers. The affinities between an image with all the cen-

ters are measured by the reconstruction path length, and the winner-take-all

strategy is used to group them. However, adding images in each region clus-

ter to the base model sequentially might be still time-consuming. In order to

further improve speed, each region cluster is divided into several sub-region

clusters so that they can be added to the same base model in parallel. This

performs as if the region is reconstructed from the same starting point to

different directions. The relationship between these three kinds of clusters
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Figure 2: The tree representing the partitioning result. Base clusters act as the starting

points. A region cluster contains one base cluster and several sub-region clusters. The

scene is reconstructed in parallel not only between region clusters but also within each

region cluster.

can be represented by a tree, which is shown in Fig. 2. Building a 3D model

then needs two stages: reconstruction and merging. The reconstruction stage

reconstructs the base model first and then adds the sub-region clusters to it.

The merging stage performs inversely, which merges the sub-region models to

a region model first and then merge different region models into a complete

one.

The contribution of this work can be summarized in the following aspects.

1) We find multiple starting points according to the distribution property

of the dataset. At each starting point we build a base model from a set of

images with large overlap, which enforces global stability and reliability of the

initial models. 2) A “center-driven” data partitioning method is proposed to

divide the images into region clusters according to their reconstruction paths.

Compared with “blind partitioning”, it ensures that each partition could be

reconstructed from a starting point that has better global properties. 3) A
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balanced path tree partition method is proposed to further divide a region

cluster into several sub-region clusters. Not only the region clusters but also

the sub-region clusters could be reconstructed efficiently in parallel.

The remainder of this paper is organized as follows. In Section 2, the

proposed center-driven data partitioning method is introduced. How to re-

construct 3D models from the partitioning results is presented in Section 3.

Experiment results and analysis are given in Section 4. Finally this paper is

concluded in Section 5.

2. The Proposed Center Driven Data Partitioning Method

2.1. Preparation and Overview

Suppose we have a set of unordered images I = {Ii}Ni=1. First of all,

a fast GPU implementation [44] is used to extract SIFT [21] features and

match them. Wrong matches are filtered out by estimating the epipolar ge-

ometry between two views using the RANSAC algorithm. Next, two kinds

of matching graphs are constructed: a similarity graph S and a difference

graph D. The matching graph G < V,E > is an undirected weighted graph

with a set of vertexes V and edges E. A vertex vi represents an image. If

there is scene overlap between two images, an edge will be added between

the corresponding vertexes. Both S and D have the same number of ver-

texes and edges, but the meaning of their edge weights are different. In the

similarity graph S, the edge weight sij reflects the content similarity between

two images. An intuitive way is to measure this similarity with the number

of matches between two images. However, it is sensitive to image resolution

and texture. High resolution or textured images will have more matches than
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low resolution or less textured images. In this paper, sij is computed from:

sij =
nij

ni ∪ nj

, (1)

in which nij is the number of matches between two images Ii and Ij, ni and nj

are the number of feature points on image Ii and Ij that have corresponding

points on the other images, respectively. Eq. (1) is also known as the Jaccard

similarity coefficient. A larger sij indicates that Ii and Ij have larger scene

overlap. The weights of the difference graph D are then computed from:

dij = 1− sij. (2)

The flowchart of the proposed method is shown in Fig. 3. In Fig. 3(a)

three base clusters (black) are found as starting points first. Next, all the

images are divided into three region clusters A (yellow), B (green) and C

(cyan) according to their reconstruction path length to the starting points.

Fig. 3(b) shows that images in a region cluster are split into several sub-

region clusters to enable faster reconstruction speed. The reconstruction path

from each image to the starting point should lie within the same sub-region

cluster, so that the starting point could propagate 3D structure to each sub-

region cluster independently without distinct accuracy deterioration. After

finishing the above steps, the base clusters are first reconstructed in parallel

to get several base models, which is shown in Fig. 3(c). Then several sub-

region cluster models are reconstructed by adding them to the same base

model simultaneously. As shown in Fig. 3(d), the base model is enriched

from different directions. Since these partial models share the same base

model, it’s easy to merge them to get the model of each region cluster, which
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Figure 3: The flowchart of the proposed method. (a) Three base clusters and region

clusters are found. (b) Each region cluster is divided into several sub-region clusters. (c)

The base models reconstructed from the base clusters. (d) Reconstruction results after

adding each sub-region cluster to the base models. (e) The model of each region cluster

after merging the partial models in (d). (f) The final result after merging the models of

different region clusters.

is shown in Fig. 3(e). Fig. 3(f) shows the final model acquired by merging

different region cluster models.

2.2. Finding Base Clusters by Distribution Property Inferring

Base clusters are used to reconstruct base models of the scene. They

should be found at places where images are densely distributed and are not

expected to contain too many images. Images at such places have large scene

overlap between each other, so the base models are accurate. In this part,

we use a loose greedy manner to progressively find multiple base models.
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Figure 4: The distribution of edge weights in the similarity graph. (a) Uniform intervals

and (b) Non-uniform intervals.

Suppose the ideal size of a base cluster lies within [m,αm], where m is

a positive number and α ≥ 1 is an inflation factor. We divide the similarity

graph S into multiple layers and find base clusters by traversing them. Given

the number of layers k and a set of edge weight thresholds θi(i ∈ 1, 2, . . . , k)

satisfying θi > θi+1, the ith layer contains edges whose weights are greater

than θi. Then we find connected components in this layer. If none of them

is larger than m, we move forward to the next layer, relaxing θi and adding

more edges. If a connected component is larger than m but smaller than αm,

the images in this component form a new base cluster and the corresponding

vertexes are removed from the current graph. If a connected component is

larger than αm, we will recursively divide the connected components into

multiple layers until a base cluster with proper size is returned. In this way,

each newly found base cluster is a set of images which have the strongest

overlap between each other among the current remaining images.

12
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Computing θi is a non-trivial task. Denote the minimum and maximum

edge weights in the similarity graph as Ea and Eb, respectively. In practice,

Ea is set to a truncation threshold max(ε,min(sij)) so that images having too

weak overlap with others are not considered in this stage. The range [Ea, Eb]

is divided by a set of decreasing thresholds θi(i ∈ 1, 2, . . . , k). Fig. 4 shows

the distribution of all the edge weights in the similarity graph. It can be seen

that there is a peak near 0.02. If the intervals are divided uniformly (Fig.

4(a)), lower intervals will contain more edges compared with higher intervals.

As a result, it is difficult to find large enough connected components at the

first few layers but will fall into deep recursion in higher layers because of

rapid growing of the connected component. In this paper, θi is computed

from the following formulation:

θi = Ea +
Eb − Ea

1.5i−1
, i ∈ 1, 2, . . . , k. (3)

As we can see from red lines in Fig. 4(b), such a division can keep the number

of edges in each interval roughly equal.

The base clusters found will be used to reconstruct several base models

via incremental SfM. Before that, we need to identify which image is the

first one to be added in each base cluster. The Affinity Propagation (AP)

clustering algorithm [14] is applied to images in each base cluster, and all the

cluster centers are treated as the candidates of the first image. The affinity

matrix required by the AP clustering algorithm is computed from Eq. (1).

The reason for choosing AP clustering is two-fold. On the one hand, AP

clustering algorithm can automatically determine the number of clusters.

On the other hand, the center of a cluster is one data point instead of a

virtual mean position. In practice, we expand the candidate set by adopting
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Figure 5: An example of four base clusters selected from the Roman Forum dataset [43].

The image with red box is the first image to be added.

the adjacent neighbors of the centers on the similarity graph S. For each

candidate image, the following score is computed:

δ(v) = hdeg(v) + β1 · hsim(v) + β2 · hndeg(v). (4)

The first term hdeg(v) is the degree of the vertex v, which counts the number

of images that overlap with it. It encourages v to overlap with as many images

as possible. The second term hdist(v) is the average similarity from the vertex

v to its neighbors, namely the mean adjacent edge weight on S. This term

encourages v to have large overlap with its neighbors. The last term hndeg(v)

is the average degree for the neighbors of v. That is to say, not only v itself

should overlap with many images, but also the images overlapping with it
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should also overlap with as many other images as possible. This strengthens

the potential to spread 3D structure to nearby places. Finally, the image

with the highest score is selected as the first image. Fig. 5 shows four base

clusters found from the Roman Forum dataset [43]. The image with red box

is the selected first image to be added when reconstructing base models. The

second image to be added by the incremental SfM is selected by traversing

the other images in this base cluster and finding the one who has the most

matches as well as the widest baseline with the first image [34].

2.3. Region Cluster Partitioning according to Reconstruction Path

When reconstructing the whole scene from different base clusters in par-

allel, which part is to be reconstructed from the same base cluster should

be decided in advance. However, it is not a general similarity-based classi-

fication problem. Indeed, this is a center-driven data partitioning problem,

in which the partitioning strategy is more tightly coupled to the selected

base clusters. In this part, a method that treats the base clusters as centers

and groups the images according to their reconstruction path length to the

centers is introduced. A reconstruction path between image A and B should

meet two basic requirements: 1) It is connected, that is, 3D structure could

propagate between A and B through this path; 2) It is compact, which means

the overlap between two adjacent intermediate images should be as large and

uniform as possible. This can be achieved by minimizing the maximum dif-

ference between adjacent images on such a path. As is shown in Fig. 6,

usually there might be more than one “route” between A and B. Smaller

edge weight indicates smaller scene difference and larger scene overlap. The

red path has shorter length than the green path. However, it is not consid-
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Figure 6: An illustration of the reconstruction path (gree path) in the proposed method.

ered as the reconstruction path because the overlap between adjacent images

varies a lot. There is an edge whose weight (0.66) is much larger than the

other two edges (0.14 and 0.18). This means that the 3D structure has to be

propagated via relatively weak image overlap, which is unstable. Although

the total length of the green path is longer than the red one, the edge weights

on it are small and similar to each other. If the green path is selected as the

reconstruction path, the risk of passing 3D structure via weak overlap will

be reduced.

To fulfill the above task, a Multi-layer Shortest Path (MSP) algorithm is

proposed to find the reconstruction path from each image to the base clusters.

The MSP algorithm operates on the difference graph D, in which the edge

weight indicates the scene difference between images. At the beginning, each

base cluster is initialized as a region cluster. The difference graph is divided

into L layers by another set of weight thresholds φi(i ∈ 1, . . . , L) satisfying

φi < φi+1. More specifically, the range of edge weights [min(dij),max(dij)]

on D is divided into L homogeneous intervals. For each interval the step

length is l = (max(dij)−min(dij))/L and φi is computed from

φi = i ∗ l + min(dij), i = 1, . . . , L. (5)
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Edges whose weights are smaller than φi are added to the ith layer. For an

image w in none of the base clusters, we find its shortest paths to all the

images in a base cluster. The one whose length is the shortest is treated

as the reconstruction path between w and this base cluster. In a certain

layer, the reconstruction paths from w to all base clusters are computed in

that way. If no reconstruction paths are found in this layer, we then add

more edges by using a larger edge weight threshold and repeat the steps in

the next layer. Otherwise, w will be put into the same region cluster with

the base cluster who has the smallest reconstruction path length. Once an

image w has been clustered, it will not be handled in the remaining layers.

But the vertex corresponding to it is not removed from the graph because

it may be on the reconstruction path of other unclustered images. In this

way, the green path in Fig. 6 will be found before the red path. After all

the images are clustered, we get a set of region clusters. Each region cluster

will be reconstructed from the base model in it by sequentially adding the

remaining images.

2.4. Dividing Sub-region Clusters via Balanced Path Tree Partitioning

So far all the region clusters can be reconstructed in parallel. However,

sometimes the number of images in a region cluster might be still too large

and adding them sequentially to the base model is time still consuming.

In this section, a large region cluster will be further divided into several

sub-region clusters so that each of them could be added to the same base

model in parallel without distinct accuracy deterioration. Specifically, the

splitting should satisfy three requirements. (1) Images within each sub-region

cluster should have considerable overlap with each other, so that 3D structure
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could propagate within this subset. (2) Each sub-region cluster should have

strong overlap with the base cluster so that it can be added to the base

model. (3) These sub-region clusters should be balanced in size to reduce

the synchronization overhead between different threads.

Inspired by [17], a novel Balanced Path Tree Partition method is proposed

in this part. For each image in a region cluster, its reconstruction path to

the base cluster described in Section 2.3 is recorded. All these reconstruction

paths start from different images but have the same end, i.e. the base cluster.

A path graph formed by all the reconstruction paths in a region cluster is

constructed. It is then converted to a tree T whose root is the base cluster by

applying the Minimum Spanning Tree (MST) algorithm. In fact, it can be

proved by means of reduction to absurdity that if the edges are not equally

weighted, the MST is the path graph itself. This is because if there are two

different paths P1 and P2 between image A and B on the path graph, then

the one satisfying

argP min(max(P1),max(P2), (6)

will be found earlier than the other one in our MSP algorithm (Section 2.3).

In Eq. (6) max(P1) and max(P2) are the largest edge weight in P1 and P2,

respectively.

Denote Tp as the subtree rooted at node p, Sp as the sons of node p, Wp

as the size of Tp and s as the ideal size of each sub-region cluster. The rooted

T is partitioned by gradually removing a subtree. Specifically, the tree is

traversed from bottom to top level by level. If Wp > s, it goes down to a

lower level to check the subtrees rooted at the sons of node p. By solving

a simplified knapsack problem, several subtrees whose total size is close to
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Figure 7: Two kinds of augmentation in our method. The nodes to be removed are in

green. First augmentation: nodes on the path from the subtree to the root (in blue) are

added. Second augmentation: nodes not in the current sub-region cluster (in red) are

added to enforce loop consistency of the path.

but less than s are selected. They are pruned as a sub-region cluster. The

remaining tree is pruned in the same way repeatedly until its size is no bigger

than s. In this way, the sub-region clusters are nearly equal in size, except

for the last one.

However, sub-region clusters found in the earlier stages might be at lower

levels and far from the root. In this case, it’s hard to directly propagate 3D

structure from the base model to them. So we need to augment the sub-region

clusters and enhance its linkage to the base cluster (or root). As is shown in

Fig. 7, this step involves two kinds of augmentation. First, when removing

a subtree from Tp, all the nodes on the path from this subtree to the root

are added to its corresponding sub-region cluster. Second, if there is no loop

between two nodes on the path from this subtree to the root, a new image

not in the current sub-region cluster is added to enforce loop consistency. For

efficiency, only 3-step and 4-step loops are considered here. The complete

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 Balanced Path Tree Partition
Input: A region cluster and a set of reconstruction paths

Output: A set of sub-region clusters

1: Build a path graph

2: Find the Minimum Spanning Tree (MST)

3: Root the MST at the base cluster in this region cluster

4: for i = max− level to root in T do

5: for each node p in the ith level do

6: while Wp > s do

7: Compute the sizes of the subtrees rooted at Sp

8: Select a set of subtrees whose total weight w̃ satisfies w̃ −→ s+

9: Remove these subtrees as a sub-region cluster from T

10: Augmentation 1: add nodes on the path from root to these subtrees

11: Augmentation 2: add nodes not in this sub-region cluster to enforce loop

consistency

12: Update Tp, Wp and Sp

13: end while

14: end for

15: end for

16: Return all the sub-region clusters

Balanced Path Tree Partition algorithm is summarized in Algorithm 1.

3. Model Reconstruction and Merging

Given the partitioning results, 3D models are reconstructed from the base

clusters to the sub-region clusters. Each base cluster is reconstructed with

a standard incremental SfM pipeline on an independent thread. Afterwards,

the sub-region clusters in the same region cluster will be added simultane-

ously to the base model reconstructed in the previous step, producing sev-
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eral sub-region models. The pose of each newly added image is initialized

by solving the PnP problem and then refined via bundle adjustment. In our

implementation, BA is performed on multi-core CPUs using Ceres [1] when

the number of reconstructed cameras is less than 20. Otherwise BA is carried

out using [47] on a GPU card. This hybrid strategy is a trade off between

accuracy and efficiency.

The reconstruction can be very fast if we have enough hardware resources

such as CPU cores and GPU cards, so that all the base clusters and sub-region

clusters can be truly reconstructed in parallel. The complexity of our method

is relevant to the ideal base cluster size m and the ideal sub-region cluster

size s, which is O(m + s). A state-of-the-art linear-time SfM algorithm [46]

has a complexity of O(N), where N is the number of reconstructed cameras.

Our method has a theoretical speedup factor of N
m+s

. When m or s increases,

the computational efficiency will decrease. However, small m may result in

inaccurate base models and small s will lead to over segmentation of the

scene. So in practice we recommend not to set them too small. For very

large image sets whose difference between N and m+ s is large, the speedup

will be more significant.

The reconstructed partial models are merged in the following steps. First,

the sub-region models in the same region cluster are merged to a region

model. This is not difficult because they share the same base model. Next,

different region models are merged to a complete scene model. There have

been several methods to fuse independent models into a global one. Although

using high-level optimization [50] will lead to better merging result, we find

that simply estimating a 3D similarity transformation from the common parts
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can produce satisfactory results.

One of the difficulties when merging different region models is to detect

the common parts between them. Since the same feature track reconstructed

in different models may be inconsistent, directly finding common 3D points

between models according to shared feature tracks will include a very large

portion of outliers. In this paper we narrow down the number of suspicious

common 3D points and then estimate the transformation in a RANSAC

framework. Specifically, consider two models M1 and M2, our method first

finds an image in M2 who has the most feature tracks reconstructed in M1.

Then the feature tracks on this image who have also been reconstructed

in M2 are counted. If the number of such feature tracks is greater than a

threshold τ , the corresponding points are used to estimate the transformation

between M1 and M2. Otherwise nothing will be done. A practical trick

is to merge smaller models to larger models, which can reduce numerical

error accumulation. If a model overlaps with several other models, then it is

merged to the one with the most overlapping 3D points in order to achieve

a more accurate estimation of the transformation.

4. Experiment Results

4.1. Parameter Settings

This part introduces the settings for some key parameters in our method.

When finding base clusters, edges in the similarity graph whose weights are

less than ε = 0.1 are not considered. In Eq. (3), we divide the range of

edge weights into k = 15 intervals. The size of a base cluster lies between m

and αm. m and α are computed respectively by m = min(60, 0.15 ∗ Z) and
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Figure 8: (a) Sample images of self-captured images. (b) Front view of its sparse 3D

model. (c) Top view of its sparse 3D model.

α = 1.5, where Z is the total number of images in that connected component.

We set the coefficients β1 = 100 and β2 = 1 in Eq. (4) when selecting the first

image in each base cluster. The number of layers in Eq. (5) is L = 30 when

finding region clusters with the Multi-layer Shortest Path method. The ideal

size of a sub-region cluster s is set to 3m. In the merging step, the smallest

count of shared feature tracks is τ = 4.

Our algorithm is implemented using C++ on Ubuntu 14.10 operating

system. The experiments are tested on a machine with two Intel Xeon CPU

E5-2630 v3 2.40GHz, one NVIDIA GeForce GTX TitanX graphics card and

128GB RAM. This experimental platform is kept the same through all the

experiments. All the compared methods are used with their default settings.

4.2. Results on Self-captured Images

In this part the results on a self-captured image set which contains 135

images are shown. These images are sampled from a short video captured

by a handheld camera in front of two buildings A and B beside the street.

Some of the example images and the sparse 3D scene structure are displayed
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Figure 9: (a) and (b) are results of Bundler and our method after the first sampling. (c)

and (d) are results of Bundler and our method after the second sampling. The fist row is

the front view and the second row is the top view. See the text for details.

in Fig. 8.

We want to see what happens when the distribution of the image set

changes. To achieve this goal, images within the blue region in Fig. 8 are

sampled twice. After each sampling the remaining images are reconstructed

by both Bundler [32] and the proposed method. The first sampling removes

14 images from the image set. Removing these images does not break the

connectivity of the viewing graph, but the scene overlap between A and B is

weakened and the reconstruction might be unreliable. The results of Bundler

[32] and our method are shown in Fig. 9(a) and (b), respectively. Bundler

starts the reconstruction from B and passes the structure to A. However, the

structure of A and its camera poses are wrong, which is caused by passing

3D structure via weak scene overlap between them. The proposed method
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reconstructs the whole scene from A and B simultaneously by assuming a

boundary in the blue region. It avoids passing 3D structure via weak over-

lapping images and returns two good models. In the second sampling 21

more images are removed, which completely breaks the connection between

A and B. As is shown in Fig. 9(c) and (d), Bundler can reconstruct only

one part of the scene while our method can still reconstruct each of them

correctly.

The goal of this experiment is to show that the proposed algorithm can

reconstruct good models robustly, no matter how the distribution of images

changes. When images are not strongly connected due to insufficient scene

overlap, our method tries to build several good partial models rather than

to build a wrong global model. If more images are added to reinforce the

overlap, these partial models will be merged to a complete one without any

problem.

4.3. Results on Dataset with One Model

Then the results on the Roman Forum dataset [43] are reported. It con-

tains 2364 images in total and 1741 of them form a principal connected

component. These images distribute unevenly in the scene and present sev-

eral density centers. Compared with the previous dataset, this dataset is

more challenging. There are many places where the overlap between images

is weak. Because of large discrepancy such as viewpoint, scale and occlu-

sion between these views, wrong feature correspondences are more likely to

happen. Our method is compared with some state-of-the-art methods in-

cluding: Bundler [32], VisualSFM [45] and COLMAP [28]. Bundler offers

two BA alternatives: SBA with a single thread and Ceres with multiple
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Table 1: Comparison results on the Roman Forum dataset.

Method #Cameras #Points MRE(pix) Time

Bundler-Ceres [32] 1441 498566 0.6568 6353.4

VisualSFM [45] 1267 343222 0.872 456

COLMAP [28] 1287 228876 0.5184 1398.76

Ours-MBMS 1312 343830 0.6512 186.065

Ours-MBSS 1366 521507 0.6368 276.924

Ours-SBSS 1381 502026 0.6974 1437.46

Ours-SBMS 1352 247313 0.6187 416.404

Ours-SBNC 794 96689 0.2897 7118.29

threads. Here we choose the faster Ceres with 12 threads. VisualSFM and

COLMAP are more recent systems which use techniques such as GPU-based

BA, Local-Global BA and so on. For the proposed method, different settings

are tested. These settings differ in the number of base clusters and whether

a region cluster is divided into several sub-region clusters. They are: (a) Use

Multiple Base clusters and Multiple Sub-region clusters (MBMS). (b) Use

Multiple Base clusters and a Single Sub-region cluster (MBSS). (c) Use a

Single Base cluster and a Single Sub-region cluster (SBSS). (d) Use a Single

Base cluster but Multiple Sub-region clusters (SBMS). In both MBSS and

SBSS a region cluster is not divided so it is equivalent to have a single sub-

regions cluster. Besides, we also try to use Normalized Cuts to partition the

region cluster into multiple sub-region clusters when there is a Single Base

cluster (SBNC).

We first compare our method MBMS with the other three methods. As

we can see from the top five rows of Table 1, the number of reconstructed

cameras and mean reprojection errors (MRE) for different methods do not
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vary too much. MRE is conventionally used to measure the accuracy of the

reconstruction result. It is a statistic of all the 3D points and their visible

views on a certain dataset. The smaller MRE is, the more accurate the

result will be. The number of 3D points for our method is much smaller than

Bundler. This is mainly because data partitioning cuts many long tracks

into short segments, which could not be reconstructed any more. The main

difference between the four methods is the reconstruction speed. Bundler

is the most time consuming because it only uses CPUs for computation.

Although VisualSFM and COLMAP process the whole image set sequentially

without partitioning the data, they are much faster than Bundler with GPU

acceleration. The speedup also owns to the global-local bundle adjustment

strategy used in both methods. Nevertheless, VisualSFM is about 3 times

faster than COLMAP because COLMAP carried out additional steps such as

re-triangulation after BA and iteratively outlier removing & refinement. Our

method is about 2.5 and 7.5 times faster than VisualSFM and COLMAP,

respectively. This speedup is mainly because data partitioning enables us

to reconstruct different parts of the scene in parallel. Table 2 shows details

about the base clusters and sub-region clusters in our method. There are

four base clusters and region clusters. The number of sub-region clusters in

each region cluster are 5, 3, 5 and 6, respectively. The sub-region clusters in

each region cluster are nearly equal in size. An approximate ideal speedup

ratio could be computed by 1300/(104+90) ≈ 6.7. However, when compared

with VisualSFM the actual speedup ratio is only 2.4, which is far from the

ideal value. The reason is that global BA used by our method will spend

more time than local-global BA used by VisualSFM. This gap will be closed
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Figure 10: Results on the Roman Forum dataset [43]. From top-left to bottom-right are

the results of Bundler [32], VisualSFM [45], COLMAP [28] and our method, respectively.

Table 2: The number of images in the partition result of the Roman Forum dataset.

Base Cluster 66 104 78 77

Sub-region Cluster 76 87 76 81 43 66 48 62 85 61 82 79 39 90 83 70 69 77 63

by adopting local-global bundle adjustment into our framework, which is left

as a future work. The reconstruction results are visualized in Fig. 10.

We then investigate our method when using different number of base

clusters and sub-region clusters. When images in a region cluster are not

partitioned (MBSS), the algorithm is parallel between region clusters but

sequential within each of them. Its running time is 48% longer than MBMS.

When using a single base cluster and a single sub-region cluster (SBSS), it

is completely sequential without parallel mechanism and the running time
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is the longest. If the region cluster is divided into several parts (SBMS), all

the sub-region clusters could be processed in parallel and the running time

is shortened by 3.4 times. The above tests show that either using multiple

region clusters or multiple sub-region clusters will improve the reconstruction

efficiency without significant accuracy loss. The last row of Table 1 is the

result of SBNC, which uses Normalized Cuts to partition the single region

cluster. Unfortunately, the number of both reconstructed cameras and 3D

points decrease dramatically when compared with SBMS. This is because

Normalized Cuts works in regardless of the starting point and consequently

3D structure is not able to propagate from the base model to some sub-region

clusters. Due to bad partitioning result the reconstruction time rises rapidly

as well.

4.4. Results on Dataset with Several Independent Models

In this part, three other public datasets including Montreal Notre Dame

[43], Vienna Cathedral [43] and Yorkminster [43] are tested. The number of

images in these datasets are 2298, 6288 and 3368, respectively. Different from

the Roman Forum dataset which has one dominant connected component,

these image sets contain several independent models. This experiment wants

to see if the proposed method can automatically reconstruct all the models

correctly.

Our method is compared with Bundler [32] (using Ceres for BA), Visu-

alSFM [45] and COLMAP [28]. The number of reconstructed cameras, the

mean reprojection errors and the running time for different methods are given

in Table 3. The number of dominant partial models in each dataset is 3, 2

and 3, respectively. Since Bundler uses only a single starting point and runs
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Table 3: Results on the Montreal Notre Dame, Vienna Cathedral and Yorkminster

datasets. For each partial model, the number of reconstructed cameras and the mean

reprojection error are given. The running time for bundle adjustment is in the last col-

umn.

Dataset Method #Cam MRE(pix) Time(s)

Montreal

Notre Dame

Ours 385 355 97 0.6241 0.7286 0.5112 231.1

COLMAP [28] 499 330 92 0.565 0.468 0.491 1489.7

VisualSFM [45] 343 504 97 1.596 1.467 0.909 457

Bundler [32] 399 1.5083 648.2

Vienna

Cathedral

Ours 1000 292 0.6550 0.8684 363.0

COLMAP [28] 962 278 0.511 0.612 2665.8

VisualSFM [45] 929 275 1.901 1.519 1216

Bundler [32] 1197 0.7106 12181.1

Yorkminster

Ours 593 333 121 0.6935 0.5451 0.5905 281.1

COLMAP [28] 524 226 110 0.542 0.511 0.536 1358.2

VisualSFM [45] 517 128 106 1.429 0.639 0.664 796

Bundler [32] 122 0.6265 209.3

incremental SfM once, it can reconstruct only one of the primary models.

What’s more, it is still the most time-consuming. VisualSFM will find a new

starting point in the remaining images and run another SfM procedure when

the current process stops due to lack of overlapping images. So it manages

to reconstruct several models from the whole image set by trial and error.

However, most of these models are very small, containing few cameras. This

means that the starting point selected is of strong locality and the initial

model could not propagate 3D structure to further places. Usually a good

model is returned after many failed attempts, which wastes a lot of time.

On the Vienna Cathedral dataset, VisualSFM reconstructs similar number
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Figure 11: The reconstruction results of our method. From top to bottom are: 3 models

in Montreal Notre Dame, 2 models in Vienna Cathedral and 3 models in Yorkminster,

respectively.

of cameras with Bundler, but saves 90% of the time due to GPU acceler-

ation. Since our method reconstructs the whole scene in parallel, it is 2-4

times faster than VisualSFM and 6-7 times faster than COLAMP. However,

our method does not reconstruct multiple primary models in a trial and er-

ror manner. Instead, we investigate the data distribution and launch several

starting points in possible sub-models before reconstruction, which is more

effective and reliable. The reconstruction results of our method is visualized
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in Fig. 11.

5. Conclusion

In this paper, an image set partitioning method is proposed for efficient

Structure from Motion on unevenly distributed images. Different from ex-

isting “blind partitioning” methods which first divide the image set and the

select a starting point in each part, what proposed here is a center driven

method. It selects several base clusters at places with high image density,

and then divide the remaining images into region clusters according to their

reconstruction paths to the base clusters. To further improve reconstruction

efficiency, images in each region cluster are further divided into several sub-

region clusters so that they could be added to the base model reconstructed

from the base cluster simultaneously. The proposed method reconstructs the

scene in parallel not only between different region clusters, but also within

each region cluster. This leads to significant speedup. Experiments show

that the proposed data partitioning method achieves much faster speed than

state-of-the-art methods without much precision deterioration.

SfM is an intermediate step in the full vision-based 3D model reconstruc-

tion. However, it estimates only camera poses and sparse point cloud. Its

output can be fed into a subsequent Multi-view Stereo (MVS) process to build

a dense model. If the result of SfM is accurate enough, the dense model is

able to present rich details, which is very useful in many applications such

as 3D printing, virtual reality and vision-based manipulation.
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