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a b s t r a c t 

The problem of detecting bots, automated social media accounts governed by software but 

disguising as human users, has strong implications. For example, bots have been used 

to sway political elections by distorting online discourse, to manipulate the stock mar- 

ket, or to push anti-vaccine conspiracy theories that may have caused health epidemics. 

Most techniques proposed to date detect bots at the account level, by processing large 

amounts of social media posts, and leveraging information from network structure, tem- 

poral dynamics, sentiment analysis, etc. In this paper, we propose a deep neural network 

based on contextual long short-term memory (LSTM) architecture that exploits both con- 

tent and metadata to detect bots at the tweet level: contextual features are extracted from 

user metadata and fed as auxiliary input to LSTM deep nets processing the tweet text. 

Another contribution that we make is proposing a technique based on synthetic minority 

oversampling to generate a large labeled dataset, suitable for deep nets training, from a 

minimal amount of labeled data (roughly 30 0 0 examples of sophisticated Twitter bots). 

We demonstrate that, from just one single tweet, our architecture can achieve high clas- 

sification accuracy (AUC > 96%) in separating bots from humans. We apply the same ar- 

chitecture to account-level bot detection, achieving nearly perfect classification accuracy 

(AUC > 99%). Our system outperforms previous state of the art while leveraging a small 

and interpretable set of features, yet requiring minimal training data. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

During the past decade, social media like Twitter and Facebook emerged as a widespread tool for massive-scale and

real-time communication. These platforms have been promptly praised by some researchers for their power to democratize

discussions [31] , for example by allowing citizens of countries with oppressing regimes to openly discuss social and polit-

ical issues. However, due to many recent reports of social media manipulation, including political propaganda, extremism,

disinformation, etc., concerns about their abuse are mounting [19] . 

One example of social media manipulation is the use of bots (a.k.a. social bots, or sybils ), user accounts controlled by

software algorithms rather than human users. Bots have been extensively used for disingenuous purposes, ranging from

swaying political opinions to perpetuating scams. Existing social media bots vary in sophistication. Some bots are very

simple and merely retweet specific posts (based on some rules), whereas others are sophisticated and have the capability

to even interact with human users. 
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The challenge of bot detection has been taken seriously by our research community [43] . Different approaches have

been proposed to detect social media bots [17] . Supervised learning, in particular, exhibited promising results [13,38,45] :

examples of activity of human users and bots, labeled as such, can be fed to machine learning algorithms; trained models

are then used to classify unforeseen accounts, leveraging available data, e.g., obtained via the Twitter API. Alternatives based

on unsupervised learning aimed at identify large-scale behavioral anomalies and associate them to bot accounts. 

However, most, if not all, of the successful methods introduced so far detect bots at the account level. This means that,

given a record of activity (e.g., a few hundred tweets posted by a user), the algorithm would determine whether the scruti-

nized account is likely a bot or not. This type of approaches tend to focus on the overall account’s activity, e.g., the content

and sentiment of user posts, the network structure, and the temporal usage patterns. 

Though quite successful, account-level bot detection approaches are expensive as they require significant amounts of data

for each user to be scrutinized, as well as large labeled datasets for training purposes. In contrast, most available labeled

datasets have at most a few hundreds examples of tweets posted by a few thousands bots. For a comprehensive survey of

bot detection methods, we direct the reader to our recent review [17] . 

1.1. Research questions & contributions 

These fundamental limitations pose two research questions, that we try to address in this paper: 

RQ1: Is it possible to accurately predict whether a given tweet has been posted by a bot or human account? 

RQ2: Is it possible to enhance existing labeled datasets to produce more examples of bot and human accounts without the

additional (and very expensive) data collection and annotation steps? 

The contributions we provide here aim to address these challenges: 

1. We advance the problem of classifying individual social media accounts from single observations, i.e., determining

whether a single tweet comes from a Twitter bot or from a human user. We demonstrate that tweet-level bot detec-

tion is possible and can be very accurate: by exploiting both textual features and tweet metadata, we detect bots from

single tweets and even exceed the performance of earlier works that make use of a given user’s entire profile and recent

posting history. 

2. As a technical contribution, we introduce the concept of a Contextual LSTM (Long Short-Term Memory) deep neural net-

work [23] , an architecture that takes both the tweet text and the tweet metadata as an input. Related architectures that

use side-information to enhance recurrent model representations have been alluded to by some authors before, primarily

in the context of language models, but has never been used in the context of social media classification—to the best of

our knowledge. The proposed architecture allows us to reach state-of-the-art performance in bot detection (i.e., over 96%

AUC scores). 

3. Finally, we introduce a technique based on the usage of synthetic minority oversampling [9] to enhance existing datasets

by generating additional labeled examples. This will allow us to achieve near perfect classification performance on the

account-level bot detection task, by leveraging only a minimal number of features and very small training datasets. 

1.2. Impact of this work 

A successful tweet-level bot detection approach would potentially overcome the limitations presented above, namely

the need for computationally expensive models that require large numbers of features, large labeled datasets for training

purposes, and access to the recent history of activity of the user profile to scrutinize. 

Given the same pool of users, a tweet-based bot detection approach would have significantly more labeled examples to

exploit. For instance, in the dataset we use in this paper (discussed in the next section), we have labels for 3474 human

users, who overall generated 8,377,522 tweets; we also have labels for 4912 social bot accounts, who generated 3,457,344

tweets. 

A tweet-level detection approach would be capable of leveraging nearly 12 million labeled datapoints, while an account-

level detection system would only be able to exploit about eight thousands examples of bots and human accounts, while

using those millions of tweets to learn patterns associated with the originating accounts. 

Shifting to tweet-level bot detection, and thus having training data orders of magnitude larger than otherwise, makes the

problem of bot detection far more amenable to the usage of deep learning models. Such techniques benefit greatly from vast

amounts of labeled data, showing extremely high performance in many contexts where such resources are available [29] ,

from image classification [28] to mastering games [35,40] . 

Traditional deep learning techniques used for text classification purposes (as well as in the broader context of language

models) rely solely on textual features (e.g., characters or n-grams) [25] . A straightforward implementation of such tech-

niques to tweet-level bot detection could be based exclusively on tweet texts as inputs for the deep neural network of

choice. However, prior results in bot detection suggested that tweet text alone is not highly predictive of bot accounts [17] .

Exploiting additional features such as account metadata, network structure information, or temporal activity patterns, have

been found to yield more robust and accurate results [17] . 
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To draw a parallel with recent advances in natural language processing (NLP) powered by deep learning, we here propose

a novel Contextual LSTM architecture that utilizes both tweet text and account metadata (which are provided by the Twitter

API alongside with the tweet itself, and do not require extra data collection steps) to yield a high classification accuracy. 

We hypothesize that the proposed model can be used in other deep learning applications where multimodal data are

available for such types of classification tasks. 

A successful tweet-level bot detection framework also has interesting practical implications: 

• Identifying instances of large numbers of bot-generated tweets coming from a single account would enable us to detect

account that mix bot-generated tweets with human generated one. 

• Since tweets are often viewed as a part of a feed containing both genuine and bot-generated tweets, it is potentially

useful to be able to flag isolated tweets as possibly bot-generated. 

1.3. Related work 

Bots (a.k.a., social bots, or sybil accounts ) have been found guilty of polluting social media conversations in a vari-

ety of scenarios [17] . Reports of online manipulation mediated by bots span political conversation [7,24,32,42,46,49] , fake

news [5,16] , conspiracy theories [43] , stock market manipulation [14] , public health [2,3] , propaganda [1,4,15,18,47] , and,

in some rare occasions, bots have been used for positive, rather than nefarious, purposes [36] . The research community

promptly responded to the problem of the increasing pervasiveness of bots in platforms like Twitter and Facebook. A wealth

of strategies and frameworks have been proposed to address the challenge of bot and campaining detection in these envi-

ronments [17,46] . A recent review [17] proposed a taxonomy describing three types of approaches: (a) methods based on

social network; (b) systems based on crowd-sourcing and human computation; (c) algorithms based on predictive features

that separate bots from humans. Our framework falls in the last category. 

Bots exhibit great variability and diversity in terms of behavior, capabilities, and intent: this was illustrated with a cat-

egorization scheme proposed in another recent survey [34] . Another recent white paper discussed the capabilities of bots

powered by sophisticated Artificial Intelligence. Bots also attracted the attention of the cyber security research commu-

nity: Sometimes, large groups of bots are controlled by the same entity, called bot master , acting behind the scenes in

a command-and-control fashion, in analogy to traditional botnets used to deploy cyber attacks and other cyber-security

threats, as demonstrated on Twitter as well [1] . 

Much work on bot detection assumes extensive access to social media data. For example, Wang and collaborators used

clustering techniques to identify large-scale behavioral anomalies [48] , while other authors adopted supervised learning to

analyze all accounts of some platform and separate bots from humans [38,50] . Although these approaches can be useful, for

example to detect large-scale bot infiltrations, they can be implemented exclusively by social media service providers with

full access to data and systems. Some of them published studies showing the effectiveness of some implementations, e.g.,

SybilRank [8] , or the Facebook Immune System [41] . To obviate the limitation of unlimited data access, other techniques have

been designed to require smaller samples of user activity, and fewer labeled examples of bot and human users. Examples of

such trend include the classification system proposed by Chu et al. [10] , the system based on crowd-sourcing designed by

Wang et al. [48] , the detection techniques based on NLP presented by Clark et al. [11] , and BotOrNot [13] . 

To allow for bot detection at the user level, all these methods still require the analysis of some historical user data,

either by indirect data collection [10,11,48] , or, like in the case of BotOrNot [13] , by interrogating the Twitter API (which

imposes strict rate limits, making it impossible to do large-scale bot detection). To the best of our knowledge, no tweet-

based detection framework existed prior to this work. We filled this gap by designing a LSTM deep neural network based

on combinations of textual features and user metadata that is capable of determining if a single tweet is being posted by

a human or a bot with extremely high accuracy. The same architecture shows nearly-perfect accuracy in the user-level bot

detection task. 

2. Dataset 

The dataset used in our work is the one presented by Cresci and collaborators [12] , which contains an entirely new breed

of social bots. We use a mixture of the groups genuine accounts, social spambots #1, social spambots #2
and social spambots #3 . 

All these subsets of data combined together account for 8386 user accounts, and 11,834,866 tweets to train on. A group-

wise breakdown may be seen in Table 1 . 

Although many established techniques use a large number of features ( [13] , for example uses over 1500 features), recent

research [16,17] shows that similar high performance can be obtained by using a minimal number of features. For account-

level bot detection, we use the following features: 

• Statuses Count 

• Followers Count 

• Friends Count 

• Favorites Count 

• Listed Count 
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Table 1 

Breakdown of the dataset used to train our models. 

The dataset was obtained from Cresci and collabora- 

tors [12] . 

Dataset Accounts Tweets 

genuine accounts 3474 8,377,522 

social spambots #1 991 1,610,176 

social spambots #2 3457 428,542 

social spambots #3 464 1,418,626 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Default Profile 

• Geo Enables 

• Profile Uses Background image 

• Verified 

• Protected 

Similarly, for tweet-level classification we use only 6 features, apart from the tweet textual-content itself: 

• Retweet Count 

• Reply Count 

• Favorite Count 

• Number of Hashtags 

• Number of URLs 

• Number of Mentions 

The choice of limiting the size of the feature set is motivated by two important reasons: 

• Model efficiency: A reduced set of features yields very efficient models that can be trained faster and are less prone to

overfitting, which is a common issue in social media data mining. 

• Interpretability: A limited set of features with a clear meaning, like the ones provided by account metadata, allows to

produce interpretable models. This is a very important point, especially when combined with deep learning strategies

that are notoriously hard to interpret. 

Our choice goes somewhat in antithesis to that of many feature-based systems, which are designed to generate and

leverage as many features as possible, but whose computational efficiency is suboptimal and whose interpretability is chal-

lenging. 

3. Methods 

In this study, we face two classification tasks: (i) account-level bot detection, and (ii) tweet-level bot detection. In the

following, we describe the methodological approaches that we adopted to address these two challenges. 

3.1. Task 1: account-level classification 

Previous work on account-level classification has found that user metadata tends to be the best predictor for bot detec-

tion [16,17] . As presented in Section 2 , we use a minimal number of highly interpretable features that require little to no

data preprocessing. This enables us to use a multitude of out-of-the-box classical machine learning approaches as baselines,

listed in Section 4 . 

In this task, we found that most of these approaches have a satisfactory performance, above AUC 90%. The most success-

ful one is based on Random Forest, yielding an AUC of 98.45%. 

However, significant performance gains were observed by balancing the dataset via oversampling techniques , specifically

the synthetic minority oversampling technique (SMOTE) [9] . 

The SMOTE algorithm generates samples based on the feature space of the minority examples (i.e., the class that has

the fewer number of labeled datapoints), and is a powerful method that has seen successfully across many domains [21] .

Specifically, we use a combination of SMOTE and two undersampling techniques. Such data enhancement techniques are

used to remove any bias introduced by oversampling. Here, we combine SMOTE with data enhancement via (1) Edited Near-

est Neighbors (ENN) and (2) Tomek Links . These two combinations have been found to give excellent results on imbalanced

data [6] . Here, we apply SMOTE to the entire dataset and ENN/Tomek Links only to the majority class. 

Although combining SMOTE and undersampling through Tomek Links (SMOTOMEK) does not improve all results, as we

will discuss later, significant improvement is seen by combining SMOTE and undersampling through ENN (SMOTENN) across

all models. With SMOTENN, near perfect classification accuracy is achieved with the best model being an AdaBoost Classifier

at 99.81% AUC. 
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Our results will suggest that near-perfect accuracy bot detection at the account level can be achieved even without

complex deep learning architectures. The same does not hold for the next task, i.e, that of detecting bots from single obser-

vations. 

3.2. Task 2: tweet-level classification 

We now introduce the new problem of determining from a single datapoint (e.g., one tweet) whether its author is a bot

or not. 

The approaches that use tweet content tend to use feature engineering and specific characteristics of the tweets, such as

those extracted via Parts-of-Speech tagging, by counting the number of hashtags or by measuring tweet dissimilarity [17] .

For bot detection in particular, there is a dearth of convincing and successful approaches based on using single observations.

As a baseline, we attempted to use an approach similar to that presented in Section 3.1 by exploiting only the features

described in Section 2 . Without oversampling, however, none of these methods exceeded an AUC of 77%. By means of

oversampling via SMOTE, followed by undersampling through ENN, however, the results somewhat improved, as we will

discuss in Section 4.1 . 

Many of the state-of-the-art techniques in Natural Language Processing (NLP) that use textual content tend to focus on

inferring content style. These methods have been proven ineffective against more advanced social bots [12] . To overcome the

limitations of traditional techniques, we use Long Short Term Memory (LSTM) models [23] , a superior variant of Recurrent

Neural Networks (RNNs) [26] . RNNs and their variants have been found to be extraordinarily effective in many NLP tasks,

given their ability to learns relationships in sequential data [20] . 

To transform the tweet texts into a form amenable for processing via LSTMs, we adopt an embedding strategy: we use

a pre-trained set of Global Vectors for Word Representation (GloVE) specific for Twitter data [37] . GloVE is a log-bilinear

regression model that uses global matrix factorization and local context windows to effectively learn the substructure of

natural language, by training on word co-occurrence. These resulting world vector representations capture semantic and

syntactic regularities typical of natural language. Prior to this embedding strategy, we preprocess the tweets by tokenizing

their text following the steps suggested by the creators of GloVE, and detailed as follows. 

3.2.1. Preprocessing data 

Prior to training the LSTM on the tweets, we preprocess the data by forming a string of tokens from each tweet. 

• We replace occurrences of hashtags, URLs, numbers and user mentions with the tags “ < hashtag > ”, “ < url > ”, “ < num-

ber > ”, or ‘ < user > ”. 

• Similarly, common emojis are replaced with specific tags (e.g., “ < smile > ”, “ < heart > ”, “ < lolface > ”, “ < neutralface > ”

or “ < angryface > ”). 

• For words written in upper case letters or for words containing more than 2 repeated letters, a tag denoting that is

placed after the occurrence of the word. For example, the word “HAPPY” would be replaced by two tokens, “happy” and

“ < allcaps > ”. 

• All tokens are converted to lower case. 

Then, these tokenized tweets are transformed into an embedding using the aforementioned pre-trained GloVE model. The

resulting sequence of vectors is then fed to the LSTM that outputs a single 32-dimension vector that is then fed forward

through 2 ReLU activated layers of size 128 and 64 to yield the output. A diagram of this simple LSTM architecture can be

seen in Fig. 1 . It should be noted that our model resets its state after each input, and therefore it only learns the sequential

structure within each tweet and across not the sequence of tweets. 

3.2.2. Limits of traditional LSTM deep nets 

However, this approach only uses the text content of the tweets, and does not utilize the metadata associated with it.

As observed from the results of Table 3 , which will be discussed later into detail, although using metadata alone does not

suffice to predict whether a user is a bot or not, metadata are weak predictors in that they significantly improve prediction

accuracy if paired with other information. 

However, metadata are not in the form of sequential data (unlike tweet text) that can be fed directly into the LSTM along

with the text embedding. This, therefore, requires an architectural change. We propose a new Contextual LSTM architecture

that can effectively utilize both the text and the metadata, even though these inputs have two different structures. 

3.2.3. Contextual LSTM architecture 

Our proposed architecture, depicted in Fig. 2 , has multiple inputs and outputs. Multi-input recurrent models have been

suggested before, mainly in language models for translation tasks: for example, some authors [22,33] adopted the idea of

introducing auxiliary inputs to either the input, hidden, or output layer of the recurrent model to enrich the learned repre-

sentations. Various types of auxiliary-information have been used, e.g., metadata such as keywords, descriptions, document

titles or topic headlines [22] , and even preconditioning topics learned via Latent Dirichlet Allocation (LDA) [33] . 

In our work, we augment the output layer with an auxiliary input. Similar to the previously described tweets-only model,

the main input of the proposed model is the tweet text that is tokenized and transformed into a set of GloVE vectors prior
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Fig. 1. Architecture of model for tweet-level bot detection that takes only the tweet content as its input. 

 

 

 

 

 

 

 

 

 

 

 

 

to feeding them into the LSTM. This again results in an output vector that is concatenated with our auxiliary input and then

given as input to a 2-layer neural network with ReLU activations to yield the output. The exact sizes of layers are the same

as that of our previous model. 

As a regularization mechanism, we introduce an auxiliary output, whose target is also the classification label, alongside

with the LSTM output. Such a mechanism has been successfully used before in Inception Nets [44] . The total loss is a

weighted average of the auxiliary output loss and the main output loss (0.2:0.8 was found to be optimal via hyper-parameter

search). 

4. Results 

In this section, we summarize and discuss the results yielded by the approaches outlined in the previous section. The

success of each method is measured on a variety of metrics, namely Precision, Recall, F1-Score, Accuracy and Area Under the

Receiver Operating Characteristic Curve (AUC/ROC). 

4.1. Task 1: account-level classification 

Table 2 shows the results of our experiments on the first prediction task, namely account-level classification. 

The first batch of five classifiers shows the results by solely using the data without any oversampling methods: Ran-

dom Forest Classifier and AdaBoost Classifier yield the best results, with an AUC > 98%. Overall, all classifiers perform well,

suggesting that the account-level classification task, at least for the dataset under analysis here, is not particularly daunting.

The second batch of models reported in Table 2 shows the results obtained after using oversampling with SMOTE, fol-

lowed by undersampling with ENN (SMOTENN): the metrics improve across all classifiers, with AdaBoost achieving near-
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Fig. 2. Architecture of the proposed contextual LSTM that uses both tweet content and the metadata that comes with the tweet. 

Table 2 

Classification performance of various models on the account-level (user) bot detection task. The first batch of models 

represent traditional off-the-shelf baseline approaches, that already exhibit very accurate performance. The second and 

third batches of models are enhanced by means of synthetic minority oversampling techniques, to illustrate how it is 

possible to achieve nearly perfect account-level bot detection without the need for complex deep architectures. For each 

batch of models we highlighted the best accuracy and AUC/ROC performing ones: AdaBoost consistently provides the top 

(or nearly the top) performance across all account-level bot detection benchmarks. 

Model Precision Recall F1-Score Accuracy AUC/ROC 

Logistic Regression 0.94 0.93 0.93 0.9066 0.8891 

SGD Classifier 0.87 0.87 0.87 0.8726 0.8680 

Random Forest Classifier 0.98 0.98 0.98 0.9839 0.9845 

AdaBoost Classifier 0.98 0.98 0.98 0.9823 0.9823 

2-layer NN (50 0,20 0,1) RelU + Adam 0.95 0.95 0.95 0.9496 0.9475 

Logistic Regression (With SMOTENN) 0.99 0.99 0.99 0.9859 0.9862 

SGD Classifier (With SMOTENN) 0.95 0.94 0.94 0.9433 0.9443 

Random Forest Classifier (With SMOTENN) 0.99 0.99 0.99 0.9937 0.9938 

AdaBoost Classifier (With SMOTENN) 1.00 1.00 1.00 0.9981 0.9981 

2-layer NN (30 0,20 0,1) RelU + Adam (With SMOTENN) 0.99 0.99 0.99 0.9878 0.9879 

Logistic Regression (With SMOTOMEK) 0.92 0.91 0.91 0.9094 0.9098 

SGD Classifier (With SMOTOMEK) 0.90 0.90 0.90 0.9030 0.9031 

Random Forest Classifier (With SMOTOMEK) 0.99 0.99 0.99 0.9859 0.9859 

AdaBoost Classifier (With SMOTOMEK) 0.99 0.99 0.99 0.9865 0.9865 

2-layer NN (30 0,20 0,1) RelU + Adam (With SMOTOMEK) 0.95 0.95 0.95 0.9391 0.9489 
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Table 3 

Classification performance of various models, including the proposed Contextual LSTM, on the tweet-level bot detec- 

tion task. The first batch of models represent traditional off-the-shelf baseline approaches: their accuracy and AUC/ROC 

scores range between 71% and 80%. The second and third batches of models are enhanced by means of synthetic minor- 

ity oversampling techniques, showing better classification performance between 76% and 90% accuracy and AUC/ROC 

scores. The LSTM architecture that we propose is presented in the fourth batch of models: our results outperform 

the other approaches by a significant margin, averaging above 96% accuracy and AUC/ROC scores, to demonstrate that 

tweet-level bot detection can be achieved with extremely high accuracy, small number of features, and limited-size 

training datasets. For each batch of models we highlighted the best Accuracy and AUC/ROC performing ones. Among 

the traditional machine learning models (i.e., excluding the proposed approach that significantly outperforms all the 

baselines and their variants using synthetic minority oversampling), both Random Forest and AdaBoost classifiers ap- 

pear to consistently deliver the best performance across all tweet-level bot detection benchmarks. 

Model Precision Recall F1-Score Accuracy AUC/ROC 

Logistic Regression (Metadata-only) 0.80 0.80 0.79 0.8008 0.7633 

SGD Classifier (Metadata-only) 0.76 0.76 0.75 0.7625 0.7191 

Random Forest Classifier (Metadata-only) 0.80 0.80 0.80 0.8042 0.7765 

AdaBoost Classifier (Metadata-only) 0.80 0.80 0.79 0.7991 0.7618 

Logistic Regression (Metadata-only + SMOTENN) 0.92 0.92 0.92 0.9188 0.8820 

SGD Classifier (Metadata-only + SMOTENN) 0.91 0.90 0.90 0.8992 0.8860 

Random Forest Classifier (Metadata-only + SMOTENN) 0.92 0.92 0.92 0.9233 0.8806 

AdaBoost Classifier (Metadata-only + SMOTENN) 0.93 0.92 0.93 0.9234 0.9065 

Logistic Regression (Metadata-only + SMOTOMEK) 0.79 0.77 0.76 0.7666 0.7667 

SGD Classifier (Metadata-only + SMOTOMEK) 0.78 0.77 0.76 0.7664 0.7664 

Random Forest Classifier (Metadata-only + SMOTOMEK) 0.79 0.77 0.77 0.7747 0.7748 

AdaBoost Classifier (Metadata-only + SMOTOMEK) 0.79 0.77 0.77 0.7715 0.7716 

LSTM (Tweet-only + 50D GloVE) 0.96 0.96 0.96 0.9553 0.9567 

Contextual LSTM (25D GloVE) 0.96 0.96 0.96 0.9567 0.9585 

Contextual LSTM (50D GloVE) 0.96 0.96 0.96 0.9618 0.9627 

Contextual LSTM (100D GloVE) 0.96 0.96 0.96 0.9618 0.9626 

Contextual LSTM (200D GloVE) 0.96 0.96 0.96 0.9633 0.9643 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

perfect accuracy and AUC of 99.81%. This suggests that our strategy of synthetic minority oversampling is really effective

when dealing with this type of account-level classification tasks. 

The third batch of models shows the results of oversampling with SMOTE followed by undersampling with TOMEK (SMO-

TOMEK): with this approach the results improve as well, though not as systematically as by using ENN. 

Overall, we demonstrated the feasibility of high-accuracy account-level bot detection by means of unsophisticated off-

the-shelf algorithms in combination with synthetic minority oversampling techniques employed to enhance training data. 

4.2. Task 2: tweet-level classification 

We now illustrate the proposed tweet-level bot detection task. Table 3 shows four batches of models: the first three show

the baseline models provided by the off-the-shelf classifiers, specifically in their naive implementation (first batch), and by

using again synthetic minority oversampling in combination with ENN (second batch) or TOMEK (third batch); finally, the

fourth and last batch shows the performance of the proposed LSTM deep architectures, showing different configurations. 

The first batch of models that only uses the tweet metadata does not work particularly well. Without data augmentation,

none of the results cross an AUC of 78%. 

By means of synthetic minority oversampling, in combination with ENN, results drastically improve: the second batch of

models shows that all models approach an accuracy between 88% and 90%. 

However, no such improvement is seen by using SMOTE in combination with TOMEK. Although the reasons of such a

difference with respect to the previous task are not obvious, and warrant further investigation, we hypothesized that ENN

works better because tweets originated by bots exhibit identical or very similar metadata thus a nearest-neighbor strategy

works best. 

The fourth batch of results presents our architecture and deserves an in-depth discussion. By using only the text of the

tweets, our LSTM model provides a classification accuracy of 95.53%, see “LSTM (Tweets-only + 50D GloVE)”. This result is

very promising: the use of our proposed deep net architecture yields a lift in performance in the order of 5%, even using

only the tweet texts. 

Following the intuition that metadata can enrich the information available for classification purposes, the last four mod-

els show the results of our Contextual LSTM combining metadata and tweet text features. Our Contextual LSTM shows a

boost in performance yielding a classification accuracy of about 96.33% for the best model with 200-dimension GloVE em-

bedding, see “Contextual LSTM (200D GloVE)”. It is worth noting that different configurations of GloVE, obtained by varying

the dimensionality of the word embedding space, do not exhibit drastically different performance: the evidence seems to

suggest that higher dimensionality yields increasingly slightly-better performance. In conclusion, from our analysis we derive

that, even though metadata is just a weak predictor of the account’s nature, as seen in the baseline results, our proposed
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Fig. 3. Representations over time of LSTM 32 hidden units activations for a tweet generated by a human. Each column corresponds to LSTM outputs at 

each time step. Cells correspond to the 32 dimensions of the representation at each timestep. 

Fig. 4. Representations over time of LSTM 32 hidden units activations for a tweet generated by a bot. Each column corresponds to LSTM outputs at each 

time step. Cells correspond to the 32 dimensions of the representation at each timestep. 

 

 

 

 

 

 

 

 

 

architecture uses this extra information to yield more accurate prediction results. It is worth noting that metadata have not

been oversampled with the Contextual LSTM models. 

4.3. Interpretation of LSTM models 

Deep neural network models are often touted as uninterpretable black boxes. Although they provide extraordinary results

in many practical applications, various researchers, practitioners, policy makers, and funding agencies demand attention to

the matter of AI’s interpretability [39] . Recently, several studies aimed at shedding light on the inner states of recurrent

models by visualizing their hidden state dynamics. Karpathy and collaborators, for example, examined inner states of lan-

guage models [27] , while Li et al. [30] introduced strategies to help interpreting deep neural network results in NLP tasks.

With this in mind, we here attempt to understand and interpret the effectiveness of our methods by analyzing the hidden

state activations of our neural network model. 

We first visualize the change in the representation, i.e., the output over time of the LSTM hidden units. We give exam-

ples of tweets generated by a human and by a bot in Figs. 3 and 4 respectively. We observe significant differences in the

activations between the examples, suggesting that the LSTM hidden units may correspond to different linguistic features. 



S. Kudugunta, E. Ferrara / Information Sciences 467 (2018) 312–322 321 

Fig. 5. Distribution of activation values of 32 LSTM hidden units on tweets generated by humans (left) and bots (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been observed by Cresci et al. [12] that using simple textual features reveals ineffective against the more sophis-

ticated social bots we study in this work. We plot the distributions of the final LSTM representations of genuine tweets

and bot-generated tweets in Fig. 5 , left and right respectively. We see that the majority of hidden units have a significant

difference in the distribution of activation values for genuine tweets versus to bot-generated tweets. For example, Unit 0

(bottom blue box) has a broad activation range centered around -0.6 for tweets generated by humans, as opposed to a nar-

row activation range centered around 0 for tweets generated by bots. Similarly, Unit 31 (top orange box) is activated in the

negative [ −1,0] range for genuine tweets, but again narrowly around 0 for bot-generated tweets. In general, it appears that

the activation ranges are much broader for genuine tweets, and much narrower for bot-generated ones, maybe suggesting

more heterogeneity and nuances in the signature of human language. These examples suggest the mechanism behind the

ability of LSTM to learn more complex, non-linear features, which are effective in identifying bot-generated tweets even

from single observations. 

4.4. Considerations and limitations 

We developed bot detection models requiring a minimal number of features as well as one single observation of a tweet

generated by the account to be scrutinized. For the account-level bot detection, we showed that using oversampling and

data enhancement techniques could yield models that perform nearly perfectly. 

Our main contribution, however, is presenting to the best of our knowledge the first bot detection model that detects the

nature of an account from a single tweet. First, we find that simply using the tweet metadata does not suffice. We also show

that, while simply using the content of the tweet works quite well with our proposed LSTM architecture, we can improve

the performance by effectively utilizing the information available in the metadata. 

5. Conclusions 

Given the prevalence of sophisticated bots on social media platforms such as Twitter, the need for improved, inexpensive

bot detection methods is apparent. We proposed a novel Contextual LSTM architecture allowing us to use both tweet content

and metadata to detect bots at the tweet level. From a single tweet, our model can achieve an extremely high accuracy

exceeding 96% AUC. 

We show that the additional metadata information, though a weak predictor of the nature of a Twitter account per se,

when exploited by LSTM decreases the error rate by nearly 20%. In addition to this, we propose methods based on synthetic

minority oversampling that yield a near perfect account-level detection accuracy ( > 99% AUC). Both these methods use a

very minimal number of features that can be obtained in a straightforward way from the tweet itself and its metadata,

while surpassing prior state of the art. 

In the future, we plan to make our framework open source, and to implement a Web service (for example, an API) to

allow the research community to perform tweet-level bot detection using it. 

From a research standpoint, we plan to use the proposed framework to scrutinize social media conversation in different

contexts, in order to determine the extent of the interference of bots with public discourse, as well as to understand how

their capabilities and sophistication evolve over time. 
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