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Abstract
Vehicular networks play a pivotal role in intelligent transportation system (ITS) and smart city (SC) construction, especially
with the coming of 5G. Mobility models are crucial parts of vehicular network, especially for routing policy evaluation
as well as traffic flow management. The big data aided vehicle mobility analysis and design attract researchers a lot
with the acceleration of big data technology. Besides, complex network theory reveals the intrinsic temporal and spatial
characteristics, considering the dynamic feature of vehicular network. In the following content, a big GPS dataset in Beijing,
and its complex features verification are introduced. Some novel vehicle and location collaborative mobility schemes are
proposed relying on the GPS dataset. We evaluate their performance in terms of complex features, such as duration
distribution, interval time distribution and temporal and spatial characteristics. This paper elaborates upon mobility design
and graph analysis of vehicular networks.
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1 Introduction

Nowadays, large population and heavy traffic in urban
areas lead to traffic congestion and automobile exhaust,
reducing people’s travel experience by a large scale
[1]. To address these issue, many schemes have been
proposed, and vehicular networks are one of them [2].
Furthermore, vehicular networks also play a pivotal role
in intelligent transportation system (ITS) and smart city
(SC) construction [3], which means a lot in terms of traffic
flow management [4], urban planing [5], location based
recommendation service [6], etc. The arrival of 5G era
provide vast potential for future development for vehicular
network. In other words, there will be a greater bandwidth,
higher carrier frequency, extreme base station and device
densities [7, 8]. Therefore, how to design and optimize
vehicular networks has been concerned by many scholars
and researchers.

Mobility models are of great importance to vehicular
network with the consideration that vehicular network
is dynamic [9]. Actually, mobility models determine its
spatial and temporal characteristics of the network topology.
Hence, a practical mobility model is important for assessing
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relevant algorithms and systems, especially for routing
policy evaluation as well as traffic flow management
[10]. An inappropriate mobility model may even lead to
erroneous conclusions [11]. In fact, we give the way of
combining the two classical mobility model construction
methods. The classic mobility model is based on math,
such as RWP. Pure data driven approach does not have a
certain of universality. Our method aims to combine the two
methods.

A single vehicle’s trajectory seems to be a random
motion but actually has its inherent pattern, which inspires
us to use the existing data to dig the pattern. Big data
technology, like parallel computing, machine learning and
deep learning, is booming, which makes the vehicular
network analysis and design based on big data quite noticed
[12, 13].

On the basis of the vehicle GPS data set, relevant
researches are conducted and original contributions are as
follows:

• Complex network feature verification: We first verify
that the vehicular network is essentially a complex
network. This inspires us to analyze and evaluate the
mobility model with the relevant characteristics of
complex networks theory.

• Mobility model design: Under the inspiration of the e-
commerce recommended system, we design some latest
vehicular mobility models, which approximates actual
data and is easy to explain.

• Time-varying network characteristics analysis: In view
of the fact that vehicular network is a dynamic network,
we compare the temporal and spatial characteristics of
different mobility models as well as their relevance with
real networks.

• Real-world dataset evaluation: Relying on the vehicle
GPS data in Beijing, we evaluate our scheme in terms
of complex features, duration distribution, interval time
distribution and temporal and spatial characteristics.

The remainders of this article are outlined as follows.
We commence with the related work review in Section 2.
Then, we introduce the vehicle GPS dataset and verify
that the vehicular network is essentially a complex network
in Section 3. In Section 4, we introduce the mobility
models and relevant indicators. Section 5 establishes the
performance comparison in complex features, duration
distribution, interval time distribution and temporal and
spatial characteristics, followed by the conclusion in Section 6.

2 State-of-the-art

Complex network studies become popular with the founding
of the “small world” characteristics in 1999 [14] and the the

“scale-free” feature in 2000 [15, 16]. Thanks to the truth
that the complex network theory has a certain degree of
universality, coupled with the complex network feature of
many real world networks, the complex network theory is
widely used in network analysis and optimization. Wang
et al. analyzed the complex features of vehicular network
based on some static parameters, focusing on their value on
clustering algorithm [17, 18]. Relying on complex network,
Ruela et al. designed a genetic algorithm for designing a
wireless sensor network [19]. At present, the combination
of complex networks and big data analysis is a trend of
complex network research [20, 21]. In our works, we exploit
the characteristics of complex networks to explore the
temporal and spatial characteristics of vehicular networks
and evaluate different mobility models based on static and
dynamic characteristics.

As vehicular network is a dynamic network, the mobility
models are essential to evaluate the performance of upper-
layer protocol, which means incorrect mobility model
can result in wrong conclusions [11]. Nowadays, GPS
data is quite popular in order to analyze the mobility
model. And as for vehicular network, four categories
can be roughly incorporated into mobility models [22]:
synthetic models, survey-based models, traffic simulator-
based models and the trace-based models. Synthetic models,
relying on mathematical models, are used for reflecting a
realistic physical effect, such as random way point [23] and
weighted way point model [24]. As the name goes, survey-
based models get the models property through surveys, such
as the agenda-based mobility model [25]. And the traffic
simulator-based models are generated from traffic simulator
obviously, such as SUMO [26], VISSIM [27]. However, the
big data focus more on the trace-based models [28].

Actually, the big data for mobility model analysis
includes not only the trace-based models but also the first
category [22]. For instance, the model based on social
network belongs to the first category [22]. Specifically,
Gonzalez et al. [25] discovered that most users traveled
around their familiar places, on the analysis of the data
collected through tracing mobile phone users. Song et
al. [29] researched and analyzed the distribution of time
interval, i.e, how long a user stayed at a certain place,
and sought out the truncated power law distribution. On
account of real trajectory data, Musolesi et al. [30] modeled
social relationships using interaction matrix, and the value
of matrix elements represented the relationship between two
specific users.

3 Complex Network Feature Verification

In this section, we first introduce the GPS dataset in Section 3.1,
which is the basis of our analysis and evaluation afterwards.
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Then, several typical complex network metrics will be
introduced in Section 3.2. Finally, relying on this dataset, we
verify the complexity of the network, that is, the “scale-free”
characteristics.

3.1 Dataset Introduction

Ten thousand vehicles’ GPS data in Beijing are the research
objects and each one of them is recorded for a few days.
The latitudes of taxi are distributed from 39.8 to 40.05 and
longitudes are distributed from 116.25 to 116.5. The edge
distribution is relatively sparse in remote area, and dense
in the middle area. This is consistent with the actual traffic
system. So we will adopt this dataset for analyzing our
models.

The whole vehicle distribution in a specific time in
Beijing is reflected clearly in Fig. 1. However, The function
of Fig. 1 is far beyond a good refection of the spatial
distribution of vehicles. It also presents the characteristics
of Beijings road network structure, i.e., the grid network
topology.

3.2 Complex Network Indicators and Feature
Verification

In the first place, we propose some key parameters
depending on the complex network theory, which will be
utilized in this subsection and the Section 5. Then, the
”scale-free” characteristics of the vehicular network will be
verified.

Node Degree Distribution: The node’s degree of the
vehicle i in the vehicular network, denoted by ki , is defined
as the number of its neighborhood. It describes the quantity
of links between the nodes in the network which is directly
connected with it [17]. Moreover, p(k) is the probability
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Fig. 1 A whole vehicle distribution in a specific time

that a randomized node’s degree of k. Then, the whole of all
vehicles’ degree distribution contribute to the node degree
distribution [31].

pk = numk

N
, (1)

where numk is the number of nodes with k neighborhoods
and N is the total number of nodes.

Clustering Coefficients: The neighbors of a specific node
can also connect with each other, which is measured by
the clustering characteristic, showing the tightness of the
network [17, 32]. And its specific definition is:

Ci = Ei

ki(ki − 1)/2
. (2)

In which ki indicates the node degree of vehicle i and Ei

is the number of links among its neighbors. Further more,
the general clustering coefficient of the entire network is the
average of Ci .

Betweenness Centrality: The normalized betweenness
centrality B reflects the importance of nodes in all the path
[17, 33], i.e.,

Bi = 2

(N − 1)(N − 2)

∑

s �=i �=t

ni
st

gst

, (3)

where gst is the number of the shortest path from s to t , and
ni

st notes the number of the shortest path via i from s to t .
Connected Component: The connected component

describes the connectivity of the network, which is a
very important parameter for the communication network.
Especially in the application of information broadcasting,
the maximum connected component determines the upper
bound of the information coverage ratio. It contains the node
index of the largest connected piece in the network [34].

Core Number: The core number is an effective index to
analyze the hierarchical structure of network. We can get rid
of the outer layer of the network nodes iteratively to get the
core number of nodes [35].

Due to different communication schemes, the commu-
nication distances may be different. We set up 3 sets of
experiments, the communication distances are 200 m, 500
m and 1000 m. Based on the above communication distance
and the vehicle distribution at a particular time, we establish
the corresponding topological graph. Specifically, if the dis-
tance between the two vehicles is less than the preset com-
munication distance, we think that the corresponding node
in the topology graph has a directly connected edge. Re-
lying on this topology graph, we analyze the degree distribu-
tion and the betweenness distribution, as shown in the Fig. 2.

As shown in the Fig. 2, the degree distribution basically
satisfies the scale-free property, especially when the
communication distance is small. As for the probability
density distribution of betweenness, all the communication
distances are satisfied with the scale-free property. In fact,
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Fig. 2 Degree and Betweenness distribution comparison

the density of the network increases because of the increase
of the communication distance. And the increase of the
network density makes the network nodes converge, which
leads to the uniform distribution of the network in terms
of the degree distribution. This proves that the vehicle
network belongs to the complex network, and we can use the
complex network theory to analyze and optimize the vehicle
network.

4 SystemModel

In this section, we commence with introducing the mobility
model designed in Section 4.1. Then, in Section 4.2,
we specify the evaluating indicator, which is utilized for
mobility scheme comparison in this paper.
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Fig. 3 Moving track of a vehicle

4.1 Mobility Model

Explanation of the reasons for introducing social attributes
comes first. The positions of a certain vehicle are plotted in
the given area, which are painted in the Fig. 3.

We can reach a conclusion from the chart that the driver
favors some locations, which is considered as random walk
traditionally. Therefore, We can not draw such conclusion
from mobility model. By contrast, using this preference
property, we may get a more realistic mobility model, which
will be reflected by social attributes.

Interaction matrix, denoted as R, is in demand a typical
social features which are for mirroring the connections
between two vehicles or a vehicle to a position. What’s
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Fig. 5 Interval time comparison

more, distance matrix, i.e., D, is the distance relationship of
the vehicles. Hence, the relationship and the distance of i

and j is on behalf of Rij and Dij . Markov process is capable
of modeling vehicles movement, which can be defined as:

Qij = RijDij∑m
j=1 RijDij

(4)

The RIS (random initialization scheme), the GCLAS
(global critical location assessment scheme) and the PCLAS
(personalized important location assessment scheme) are
included in the related solutions that is on account of the
diversities of social properties in R.

The initialization scheme are affected by the values in R.
Particularly, the initialization scheme are random when the
values in R are random, and the Rij is given as:

Rij = rand(1). (5)

In which rand(1) is defined as a random number between 0
and 1.

GCLAS is achieved, relying on the GCLA (global critical
location assessment). For example, the frequency of each
site which is under assessment is in proportion to its
probability. In GCLAS , the Rij is given by:

Rij =
∑
v

∑
t

transiti→j

∑
v

∑
t

∑
k

transiti→k

, (6)

In which v is defined as a vehicle , t stands for a period
of time and k means any location connecting location i. In
view of the diversities of the vehicle, the significance of

the location is assessed by the specific vehicle history data,
which results in the PCLAS. And the Rij is defined as:

Rk
ij

=
∑
t

transitki→j

∑
t

∑
k

transitki→j

(7)

And the Qij should be modified as follows:

Qk
ij

= Rk
ij
Dij

∑m
j=1 Rij

kDij

(8)

What’s more, real track data, simplified trajectory data
and random walk are regarded as comprising group.
STD (simplified trajectory data) is achievable by mapping
RTD (real track data) into a 25 ∗ 25 grid network. The
RWS (random walk scheme) takes the whole vehicles’
movements as random.

4.2 Evaluating Indicator

Particularly, we consider VANETs as the time variant graph
G = (No, E, T , ρ). No set is composed by vehicles. E set
stands for the relationship between No set, which means
a communication link in this research. In this paper, the
relationship represents a communication link. In dynamic
network, this relationship may chance over time. Therefore,
we regard T as the survival time and T as the time domain,
which meets the T ⊆ T . ρ : E × T → {0, 1} manifests
survival function, presenting in a specific time whether a
given edge exists or not. The duration of the connection and
the length of time internal are of great significance to the
time vary graph. That is to say:

• The duration of the connection: beginning with the
entity i and entity j connection, until the first breaking
time point appears. In this time horizon, ρij (T ) = 1 is
maintained;

• The length of time internal: beginning with the entity i

and entity j break, until the first connection time point
appears. In this time horizon, ρij (T ) = 0 is maintained.

The 2 parameters mentioned above will be discussed later
to assess the mobility model.

5 Scheme Comparison

In this section, we conduct some simulation analysis on
mobility models of the vehicular networks relying on
the dataset introduced in Section 3.1. We consider three
typical indicators, i.e., duration distribution, interval time
distribution, degree distribution and temporal and spatial
characteristics, in mobility model assessment. And the
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Fig. 6 Degree distribution comparison

relevant results and analysis are presented in Sections 5.1
and 5.2, 5.3 and 5.4, respectively.

5.1 Duration Comparison

People may lay emphasis on the latter 2 markers in
the research of network communication, leading to the
exploration in their property in duration chart.

The Fig. 4 above compares duration distribution of 6
schemes. It’s clear from the diagram that 4 schemes gather close
while the STD and RTD converge. Although the 4 schemes
gather close, GCLAS and PCLAS draw closer to RTD.

5.2 Interval Time Comparison

In this part, we take interval time of the 6 schemes into
comparison, which is shown in Fig. 5.

Figure 5 reveals that the interval time of GCLAS and PC
LAS are similar to STD, which lays its dominant position.

5.3 Degree Distribution Comparison

The mobility models are under evaluation in this section,
in the matter of their degree distribution. In fact, the
degree distribution play a vital role in complicated
communication networks. Its superiority embodies in
distinguishing network types.

Figure 6 manifests the 5 mobility schemes degree
distribution which are specified in Section 5.3 and the
realistic data. We can draw a conclusion from the figure that
the real data reflects the property of scale-free. However,
we can also discover the fact that the STD and 4 mobility
schemes are similar to a Gaussian network.

5.4 Time-Varying Network Characteristics Analysis

In this subsection, we compare the temporal and spatial
characteristics of different mobility models and the rele-
vance of real networks.
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Table 1 The value of some key parameters of vehicular complex network

Key parameters Time slot RTD STD RWS RIS GCLAS PCLAS

Edges [1-100] 1056.5 3170.2 1905.3 1903.9 2134.4 1931.9

[101-200] 1041.5 3110.3 1850.8 1900.4 2069.9 1930.5

[201-300] 970.0 3363.1 1871.3 1825.1 2053.6 1906.7

[301-400] 872.7 3456.4 1851.5 1844.2 1970.5 1949.6

Degree [1-100] 3.3809 10.1447 6.0969 6.0924 6.8300 6.1822

[101-200] 3.3329 9.9531 5.9225 6.0814 6.6236 6.1777

[201-300] 3.1042 10.7620 5.9883 5.8404 6.5714 6.1013

[301-400] 2.7926 11.0605 5.9248 5.9014 6.3055 6.2387

Clustering Correlation [1-100] 0.4413 0.5767 0.5455 0.5470 0.5433 0.5529

[101-200] 0.4278 0.5833 0.5423 0.5411 0.5394 0.5520

[201-300] 0.4182 0.5983 0.5394 0.5416 0.5362 0.5503

[301-400] 0.3893 0.5975 0.5423 0.5389 0.5374 0.5477

Betweenness [1-100] 609.9 4518.9 5883.8 5559.9 4912.0 6027.5

[101-200] 567.8 4375.5 5469.7 5515.2 4501.9 5732.2

[201-300] 464.2 4545.1 5403.3 5486.1 4691.1 5823.9

[301-400] 237.5 4177.0 5479.9 5282.7 4745.0 5590.5

Connected Component [1-100] 178.4400 38.7700 29.9900 31.1400 38.2900 24.9500

[101-200] 181.6800 36.5300 34.3000 33.5300 41.8000 26.3400

[201-300] 195.2700 38.5600 35.8200 35.2800 42.0300 26.9100

[301-400] 218.4100 36.8300 34.8100 37.9800 43.7800 26.8500

Core Number [1-100] 2.5164 8.3040 4.0936 4.0880 4.5234 4.1609

[101-200] 2.4643 8.0443 3.9989 4.0870 4.3773 4.1511

[201-300] 2.3474 9.0084 4.0230 3.9380 4.3520 4.1076

[301-400] 2.1120 9.4184 3.9938 3.9762 4.2060 4.1755

We split the whole time into 400 time periods, i.e, [1 −
400]. We counted the relevant indicators of 6 models, shown
in the Table 1. For the sake of intuition, we averaged 100

points in time [1 − 100], [101 − 200], [201 − 300] and
[301 − 400]. From the Table 1, we may also find that real
world network always have fewer edges, degrees, clustering
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correlation, core number and betweenness, especially the
betweenness, but its connected component is much more
larger. Based on this finding, we can infer that the real
network has a large number of weakly connected edges.
A large number of weakly connected edges, i.e.,weak tie
[36], make the sparse clusters in the graph connected
with each other. Most of our simulations have lost this
feature.

The Fig. 7 shows the change of the average and
betweenness of the network at all times. It can be seen that
the network has a certain degree of stability over time.

6 Conclusion

To sum, relying on the GPS dataset, we first verify
that the vehicular network is essentially a complex
network. This inspires us to analyze and evaluate the
mobility model using the relevant characteristics of
complex networks. Besides, we propose the corresponding
vehicle to location collaboration scheme in vehicular
network based on user to product collaboration scheme in
the e-commerce recommended system. Based on degree
distribution comparison, duration distribution, interval time
distribution and temporal and spatial characteristics, the
performances of the vehicle to location collaboration
scheme are verified.
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