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Abstract

We propose a cognitive Internet of Things (IoT)—cloud-based smart healthcare framework, which communicates with smart
devices, sensors, and other stakeholders in the healthcare environment; makes an intelligent decision based on a patient’s state;
and provides timely, low-cost, and accessible healthcare services. As a case study, an EEG seizure detection method using deep
learning is also proposed to access the feasibility of the cognitive loT—cloud smart healthcare framework. In the proposed
method, we use smart EEG sensors (apart from general healthcare smart sensors) to record and transmit EEG signals from
epileptic patients. Thereafter, the cognitive framework makes a real-time decision on future activities and whether to send the data
to the deep learning module. The proposed system uses the patient’s movements, gestures, and facial expressions to determine the
patient’s state. Signal processing and seizure detection take place in the cloud, while signals are classified as seizure or non-
seizure with a probability score. The results are transmitted to medical practitioners or other stakeholders who can monitor the
patients and, in critical cases, make the appropriate decisions to help the patient. Experimental results show that the proposed

model achieves an accuracy and sensitivity of 99.2 and 93.5%, respectively.
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1 Introduction

The Internet of Things (IoT), which can be considered an
interconnected network of intelligent sensor devices, often
has limited storage and low processing power capability.
IoT, together with cloud computing, which has a large storage
and sufficient processing power capability, has made essential
services, such as smart healthcare [1, 2], possible in a smart
city environment. However, monitoring and communicating
remotely with patients are necessary in such environments. In
addition, the need to provide low-cost, high-quality, and
patient-centric smart healthcare to patients has emerged.

The advancements in the field of IoT [3] and cloud tech-
nologies [4] has resulted in a tremendous demand for real-
time, intelligent, and remote healthcare services under the
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paradigm of smart cities. Furthermore, the integration of IoT
and cloud technologies has provided a seamless and ubiqui-
tous framework for smart healthcare monitoring. At present,
residents in smart cities have access to smart sensor devices
and advanced mobile technologies. In an environment such as
that of a smart city, finding specialized doctors, healthcare
centers, and hospitals nearby is difficult. The movement of
patients in critical conditions is also quite difficult. Hence,
we need to create a smart healthcare monitoring framework
by integrating the resources available at our disposal to im-
prove the quality and accessibility of healthcare services. In
such a smart healthcare monitoring framework, we can trans-
mit and process medical-related multimedia signals from
smart sensors and mobile devices to provide timely assistance
and quality healthcare services to patients. However, such
healthcare data and signals are often naturally large and chal-
lenging to handle because of their complexity.

The healthcare industry has emerged as one of the major
industries with tremendous demands. Apart from providing
patients with critical and crucial services, this industry is also
generating large revenues for the government and the private
sector. The smart healthcare industry has recently witnessed a
competition among various healthcare providers in providing
mature and sophisticated services and devices with high
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accuracy and dependability and low cost [5]. Therefore, the
IoT—cloud integration within healthcare has recently been the
focus of considerable research initiative. Several types of [oT
devices built for healthcare include smart wearable devices,
such as blood pressure devices, portable insulin syringe, stress
monitoring devices, weight tracking and general fitness de-
vices, hearing aids, and EEG and ECG monitors.

Although healthcare data, such as EEG, are complex in
nature, we have had numerous technological advances in the
fields of big data analytics and cloud computing to manage the
complexity of such data and provide the processing power and
storage capability needed by such information. However,
many interconnected IoT devices and sensors and extensive
multimedia, healthcare, and communication data make it dif-
ficult to build a smart healthcare framework that can cater to
the needs of all stakeholders in a smart city environment.

However, the concept of smart loT—cloud integration is
impossible without human brain-like intelligence. With big
data and its real-time processing coming into the picture, the
research community faces multiple challenges to develop a
smart and intelligent loT—cloud framework, which would be
able to make its own decisions. Consequently, the cognitive
computing framework was introduced and proposed to turn
IoT into a brain-powered cognitive [oT (CloT) [6], which
would possess a high level of intelligence. When we consider
complex and big data, such as healthcare data, for a smart city
paradigm, the CloT becomes considerably important.
Ecidently, having a cognitive loT—cloud smart healthcare
framework would require that the IoT devices inside a pa-
tient’s body (i.e., attached or around him/her) cooperate to
sense his/her body signals, movements, voice, disease bio-
markers, or monitored signals, such as EEG and ECG; and
deduce the state of the patient. The cognitive healthcare frame-
work is sufficiently intelligent to make the corresponding de-
cisions to make the patient comfortable and decide the future
course of activities by involving different stakeholders of the
smart city. Similar to the assumption that making life in a
smart city comfortable without intelligence is unachievable,
an loT framework without cognitive capability is only a waste
of resources. Therefore, considerable research effort has been
exerted [5] to develop such a healthcare framework, which
caters to the needs of the patients, medical practitioners, hos-
pitals, and all other service providers.

A previous study [1] highlighted the challenges of provid-
ing smart healthcare services using smart sensors and cloud
connectivity in a smart city environment. Temperature, traffic,
humidity, and other related parameters should be controlled
through smart sensors to provide effective smart healthcare
services [6]. In [7], the researcher presented a patient status
monitoring framework, in which medical data are accessed
through voice and facial expression, to address such complex
medical-related data. In [8, 9], the authors proposed an emo-
tion recognition system that can be utilized in a cloud

@ Springer

framework. Previous studies [10, 11] showed that when cloud
technologies, [oT, and smart sensors are integrated, real-time
smart healthcare services can be provided in a smart city.
Another study focused on integrating edge computing with
cognitive technology for smart healthcare [12]. Therefore,
such a smart healthcare monitoring framework should be able
to effectively process multimedia signals and sensor data and
in real time to provide quality healthcare services.

Epilepsy has been called a neurological disorder that can
occassionally cause jerking in several parts of the human
body, loss of consciousness, and in severe cases, convulsions
in the entire body. This disorder can affect a patient’s quality
of life, cause social and economic problems in people of all
ages, and lead to premature death in extreme cases [13].
Approximately 50 million people are affected by epileptic
seizure globally [13]. However, only approximately 70% of
patients can be treated with medication, while approximately
8% of patients who do not respond to medication require
surgical intervention. If epilepsy is detected at an early stage,
epileptic seizures can be suppressed using antiepileptic drugs
or by electrical stimulation [14].

However, the main problem is that epileptic patients need
immediate and quality care. Any delay in treatment or
reaching specialized medical centers or hospitals can be cata-
strophic for patients who are affected by seizures. Therefore, a
smart healthcare monitoring system is essential for epileptic
patients and could generally solve this problem. Medical prac-
titioners can monitor and advise patients regularly. In serious
cases, other smart city services, such as smart ambulances and
mobile clinics, can be used to provide urgent medical assis-
tance to patients.

This study proposes an automatic and advanced method for
EEG-based seizure detection and monitoring to be used as a
component of the proposed cognitive healthcare IoT (CHIoT)
framework. In the proposed seizure detection method, we use
scalp EEG, which is recorded by smart EEG sensors, as the
input signal. Our system also uses other healthcare smart sen-
sors to record the psychological and physiological signals and
transmit them to the cloud via the Internet. Apart from EEG,
these signals include patients’ movements, gestures, and facial
expressions to determine their state. Thereafter, the cognitive
system makes a real-time decision on the activities and the
medical attention and services to be provided to patients based
on their state and whether to send the data to the deep learning
module. If the cognitive system believes that a patient is hav-
ing a seizure, then this system makes the decision to inform
other stakeholders and sends the EEG data to the deep learn-
ing module. Signal processing and seizure detection occur in
the cloud and signals are classified as seizure or non-seizure
with a probability score. The results are transmitted to medical
practitioners or other stakeholders who can monitor the pa-
tients and, in critical cases, make the appropriate decisions to
assist the patient. EEG signals have a low signal-to-noise ratio
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and are sensitive to external and internal noises. Eye blinking
and muscle movement artifacts can cause numerous problems
in extracting good features. Therefore, we use a novel deep
learning model composed of a deep convolutional neural net-
work (CNN) and stacked autoencoder. The deep CNN is used
to extract features, while the stacked autoencoder is used to
improve the subject-specific features and accuracy. The major
contributions of the proposed CHIoT framework are as fol-
lows. (1) The cognitive IoT—cloud technology is integrated
with the smart healthcare monitoring framework. (2) To the
best of our knowledge, this study is the first to use the smart
CHIoT framework for epileptic seizure detection and moni-
toring. (3) A novel integration of deep CNN and stacked
autoencoders, which is better than the state-of-the-art model
for seizure detection, is proposed in this research.

The remainder of this paper is organized as follows.
Section 2 discusses several related studies on CHIoT, smart
healthcare, and EEG seizure detection. Section 3 describes the
proposed smart healthcare monitoring framework. Section 4
presents the experiments, results, and discussion. Lastly,
Section 5 concludes this research.

2 Related work

In this section, we discuss a few of the state-of-the-art methods
for smart healthcare and the recent methods for seizure
detection.

2.1 Cognitive healthcare-loT

CHIoT is an advancing field that is creating a plethora of
applications to improve healthcare and revolutionizing the
entire concept of connected healthcare devices. Moreover,
CHIoT has a tremendous scope in providing smart services,
such as remote monitoring of patients; tracking, detection, and
generation of alerts; medical equipment operation and control;
and smart pill disbursal. CHIoT enables us to deal with med-
ical emergencies in an improved manner and provide rapid
response anywhere. CHIoT connects with smart sensors,
which are inside, on the surface, or around a patient’s body;
and monitors and interprets multimodal health data, including
the patient’s physiological and psychological signals, through
these smart sensors. Research initiatives have integrated
CHIoT with 5G technology to make it considerably phenom-
enal in the smart healthcare perspective [15]. Several of the
consumer-based cognitive systems have integrated smart plat-
forms, such as Microsoft Kinect, to fuse smart cognitive be-
havior in healthcare IoT frameworks. The Kinect platform is
based on gesture and activity recognition to understand human
behavior cognition. In one of such research initiatives, the
authors [15] proposed a speech emotion recognition-based
5G cognitive system for providing health services. However,

given that the domain is new and still developing, improve-
ments in framework design and enhancement of the end ser-
vices, intelligent behavior, and smart processing of multimod-
al health data are needed to fuel further exploration and inter-
est in this field.

All objects in CHIoT, such as sensors and devices, are
interconnected and cooperate to understand the physical and
social environments, store and process the learned information
and the extracted knowledge, and learn to adapt themselves.
The framework has intelligent decision-making capability that
requires minimum human intervention.

Many cognitive [oT frameworks for various applications
[3, 12, 15-17] are presented in the literature. In [18], the au-
thors propose a cognitive framework to assist in smart city
development and make it considerably sustainable. In [19], a
three-layer cognitive ring is proposed to achieve a good per-
formance and high intelligence and merges human cognition
with the system design. In [20], a cognitive system, which
could model human knowledge and process relative informa-
tion, was proposed. In [18], the authors developed a cognitive
system that has the open question answering capability and
makes use of text data and natural language processing. In
[21], big data are analyzed to build a cognitive system.
Many researchers have also applied cognitive computing to
different applications in the healthcare domain. A few re-
searchers have used it for physiological [5, 22, 23] and psy-
chological applications [15]. In [10], an emotion-aware cog-
nitive system is proposed based on cloud computing. In [19],
an emotion-aware cognitive system is also proposed, although
it uses human facial expression recognition. In [22], another
emotion-aware cognitive system is proposed but uses voice
and facial expression recognition.

2.2 Smart healthcare

Smart healthcare is attracting considerable interest from gov-
ernment organizations, private companies, and researchers
from different fields because of its social and economic ben-
efits. Accordingly, numerous studies [18], models [24], and
services [19, 25] related to smart healthcare have emerged
because of the integration of [oT—cloud technologies. In such
a type of smart healthcare model, medical practitioners, in-
cluding healthcare staff members, can analyze healthcare data
in real time. In another study [5], the author discussed a smart
healthcare framework, in which smart city residents can use
smart devices to find a route to healthcare centers. In another
study [19], the author discussed an interconnected smart
healthcare framework involving processing of electronic
health records. In [21], the researchers proposed a smart glu-
cose monitoring system for diabetic patients, which involved
daily activities and locations. In [25], the author proposed a
robot-controlled automatic ambulance to treat patients with
cardiac arrhythmia requiring immediate care. Other studies
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have explored medical forgery in smart healthcare [26]. The
effective use of communication technology, data analytics,
smart sensors, and cloud resources is crucial for the smart
healthcare environment [27].

Our proposed framework for smart healthcare monitoring
caters to the various needs and challenges discussed in the
literature and provides a solution for deploying an automatic
EEG-based seizure detection system. In particular, we use
smart sensing, loT-aware, and cloud technologies. In the sub-
sequent section, our seizure detection and classification
methods are discussed.

2.3 EEG seizure detection

This section reviews state-of-the-art seizure detection
methods.

The scalp EEG technique is commonly used for epileptic
seizure detection, prediction, classification, diagnosis, and on-
set detection. The EEG recordings are often analyzed by
trained neurologists who scan hours of EEG recordings for
characteristic patterns of seizures. This activity can be time-
consuming, tedious, and expensive even when done for a sin-
gle patient. Numerous researchers have developed automated
techniques for seizure detection and prediction to address
these issues [28-31]. Automated techniques also face many
problems because of the inherent nature of the EEG signal.
The EEG seizure patterns are different from patient to patient.
An epileptic seizure pattern in one patient may appear to be a
normal EEG in another patient. Hence, building a generic
automated method that functions correctly for every epileptic
patient is relatively a difficult task [29] because of the overlap
between seizure and non-seizure patterns.

In several methods [30], EEG signals are transformed into
images. In [31], the authors transformed EEG signals into
images by projecting the patient electrodes into 2D. These
studies employed hand-crafted features for automated seizure
detection and classification. These techniques are specific be-
cause epileptic seizures are nonstationary and the EEG pattern
varies significantly in epileptic patients [32].

Deep learning techniques have recently achieved promis-
ing results [33] in computer vision and speech recognition,
thereby proving that automatically extracted features work
better than manual extracted features. Deep learning methods
have also been applied to detect epileptic seizures. Deep neu-
ral networks trained with dropout are used in [34] for patient-
specific epileptic seizure detection. Deep belief networks are
used in [35] to detect seizures in multichannel and high-
resolution EEG data. Deep CNN and stacked autoencoders
are used in [36] for the analysis and classification of the
EEG data.

The majority of the deep learning methods discussed pre-
viously exhibit a good performance but are incomparable to
the deep learning models in other fields, such as computer
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vision. Therefore, considerable enhancement is needed in
deep learning methods applied to EEG analysis and seizure
detection.

Deep CNN is a variant of deep networks that learn local
and spatial features in data using convolutions. Deep CNN
often has multiple successive convolutional layers [30]. In
the initial layers, these networks extract features that are spa-
tial and of low level using the raw input. Thereafter, the net-
works in the deeper layers progressively extract considerably
global, high-level features. CNN has been successfully used
for such inputs as images, which are 2D. By contrast, the EEG
signal has different properties and comprises dynamic time
series data from electrode recordings on the three-
dimensional scalp surface. The EEG signal has the disadvan-
tage of having a low signal-to-noise ratio. That is, this signal is
affected by noise from artifacts that lack task-related informa-
tion. Therefore, the existing CNN architectures should be
modified and adapted to the EEG data. We use a novel deep
learning model composed of a deep CNN and stacked
autoencoder.

First, we use the deep CNN model to extract features from
the raw input data. Thereafter, we use these features as input to
the stacked autoencoder. During the supervised training phase
of the deep CNN model, the network parameters are
pretrained for the EEG seizure data set. These features are
eventually used by the stacked autoencoder to learn general
subject-specific features. In this manner, we are able to
achieve good specificity and accuracy for the cross-patient
dataset.

3 Proposed cognitive loT-cloud framework
and seizure detection technique

This section presents the proposed IoT—cloud-based smart
healthcare monitoring framework and discusses the EEG-
based seizure detection and classification method.

3.1 Cognitive loT-cloud smart healthcare scenario

The use of smart healthcare systems in an interconnected
smart city environment enables residents and medical practi-
tioners to use smart sensor devices and cloud and cognitive
IoT aware technologies to access their electronic health re-
cords. Through smart wearable technology and communica-
tion, patients can regularly update their health-related data.
The cognitive system can analyze these data in real time and
perform the best action to provide services to patients. These
uploaded data can also be remotely viewed and analyzed by
medical staff members who can also provide assistance and
advice to the concerned patients. This type of patient-
dependent healthcare monitoring is essential for smart
healthcare to achieve its major objectives, such as low
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healthcare cost, high efficiency, easy accessibility, error-free
diagnosis, reduced hospital and medical staff member visits,
and enhanced quality of life. Accordingly, we present a sce-
nario for our proposed smart healthcare monitoring frame-
work for a smart city environment.

Residents should use smart city infrastructures and register
with a smart healthcare service provider to enable the cogni-
tive system and the medical practitioner and staff members to
communicate with the service provider and obtain access to a
patient’s health record in a remote manner. The person’s loca-
tion information is also available in the system and can be
used in case of an emergency. The smart healthcare service
provider has a communication link with all specialized med-
ical practitioners, including those involved in epilepsy. Many
healthcare smart sensors can be used to record the real-time
psychological and physiological data from patients. These
signals include a patient’s movements, gestures, and facial
expressions. The cognitive system continuously calculates
the patient’s state in real time. The epileptic patient also has
to wear a smart EEG sensor, which comes in the form of a
comfortable and lightweight skull cap. Through sensor elec-
trodes, the EEG sensor continuously records the concerned
patient’s EEG. When the cognitive system detects that the
patient is having seizures, the recorded data are sent to the
cloud for further processing in real time. From the cloud, the
data are sent to the healthcare professionals for further analy-
sis. The medical staff members can further investigate and
advise the patient accordingly. The signals are processed con-
tinuously based on the severity of the seizure detection and
classification result. The cognitive system sends a warning to
the medical staff members and related stakeholders through
the smart healthcare provider. In case of emergencies, a smart
ambulance can rush through traffic to provide urgent care to a
patient. In such cases, ambulances are assisted by a smart
traffic light system, which ensures that these vehicles move
easily through traffic. Therefore, the smart city healthcare
framework can provide remote, real-time, and critical
healthcare services to residents and patients while they remain
in their respective locations.

3.2 System architecture

In our proposed smart healthcare monitoring framework (see
Fig. 1), different types of health-related multimedia and EEG
signals are obtained using smart IoT sensors. We have a local
area network (LAN) layer, which comprises short-range smart
communication devices. This LAN layer acts as an interface
to transmit the obtained signals, such as EEG, from IoT de-
vices’ layer to a hosting layer consisting of heterogeneous
smart devices, such as a smartphone or laptop. Thereafter,
these smart devices transmit the received data through the
wide area network (WAN) layer to the cloud. The WAN in-
terface uses smart communication technologies, such as 4G,

5G, or WiFi, to transmit data to the cloud. Once all health-
related data and signals, including EEG, reach the cloud, user
authenticity is verified by the system and the data are proc-
essed by the seizure detection system. Figure 1 shows that the
IoT sensors may include different types of healthcare-related
sensor devices, such as wristbands, smartwatch, wearable sen-
sors, and headgears; and can measure diverse health-related
data, such as heart rate, blood pressure, respiratory rate, body
temperature, body movement, ECG, and EEG. These smart
sensors’ devices can be worn by patients or may be embedded
in smart city environments, such as smart homes, medical
centers, offices, or automobiles. These smart sensor devices
can also communicate with each other using short-range com-
munication. The LAN interface layer is built upon smart com-
munication protocols for short- to medium-range communica-
tion and interconnection between devices. These protocols
include Zigbee, Bluetooth, Z-wave, and LoWPAN.

The hosting layer comprises heterogeneous smart devices,
such as smartphone, tablets, personal digital assistant, laptops,
or workstations, which collect data to be processed locally.
These devices have processing capabilities to detect general
health abnormalities through dedicated applications or pro-
grams. Health problems can include abnormal blood pressure,
heart rate, or body temperature. These data are eventually sent
to the cloud for further processing through the WAN interface.
The WAN interface is used for long-range communications
using WiFi, 4G, or 5G technologies. Once the data reaches
the healthcare service providers, they can analyze the patients’
health records to make any necessary immediate decision.
Thereafter, the data (e.g., EEG signals) are further processed
using the proposed seizure detection and classification system.
After final processing, the result is returned to the medical
practitioners for a detailed analysis. In non-emergency cases,
the visiting medical centers require time and involve high cost.
Hence, we can save money, time, and hospital space by using
such a smart healthcare framework.

The cloud comprises the cloud manager, data center, fea-
ture extraction server, detection server, and classification serv-
er. The cloud manager first authenticates whether a resident is
registered with a smart healthcare provider. The cloud manag-
er is also responsible for verifying the identity of all stake-
holders in the smart healthcare system, such as doctors, med-
ical staff members, hospital representatives, and patients. The
cloud manager also controls the data flow to and from the
various servers and manages communication, storage, and
other resources. The cloud manager sends the data to the cog-
nitive engine, which uses multimodal data including EEG,
psychological and physiological data and determines whether
the patient needs emergency care. The sensor signals also
include patient’s movements, gestures, facial expressions to
know about the patient’s state. The cognitive system then
makes a real-time decision based on patient’s state, about the
activities and the medical attention, services to be provided to
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the patient and whether to send data to the deep learning mod-
ule. If cognitive system believes that the patient is having a
seizure, then it makes the decision to inform other stake-
holders and the EEG data is sent to a deep learning module.
Deep learning techniques are used to extract features in the
feature extraction server. After the signals are preprocessed,
signal processing techniques are used to extract features from
the feature extraction server. The detection server detects and
classifies seizure data and sends the detection results to the
cloud manager. The data, features, results, and other model
parameters are eventually stored in the data center.
Healthcare professionals make the final decision on the type
of service to be provided to epileptic patients using the differ-
ent types of signal from various smart sensors and the EEG
classification results. These healthcare service details are
shared with all smart city stakeholders using smart communi-
cation that can access and analyze the patient health reports for
further care of the residents.

3.3 Seizure detection and classification
3.3.1 Dataset

We used the CHB-MIT dataset for our study, collected at the
Children’s Hospital Boston, which is the largest freely avail-
able dataset for EEG epileptic seizure data [37]. It has 686
multiple channel scalp EEG recordings from paediatric pa-
tients who were affected by intractable seizures. The data is
recorded from 23 epilepsy patients, which includes 5 males
and 18 females in the age group of 10 to 22 years. The 10-20
international EEG electrode montage system is used to record
the dataset. There are 969 h of scalp EEG recordings contain-
ing 173 epileptic seizures. The sampling rate used is 256 Hz
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and a resolution of 16-bit is used. Out of the total 686 EEG
recordings, only 198 contain one or more seizures. In most of
the EEG recordings, the seizure activity lasts about 25 s.

3.3.2 Input representation

There are many techniques used for the EEG input represen-
tation in the deep learning models. Since deep learning models
like convolution neural networks need 2D inputs, therefore, a
lot of researchers have converted EEG recordings into images
and topo-maps [30, 31]. Some deep learning models used
electrode voltage to transform the EEG recordings into topo-
graphical images organized in a time series [31]. However,
there is evidence that EEG signal is correlated over time series
data, [38], therefore in this study we used raw EEG data as
input, represented as a two-dimensional array in which the in
width we have the time steps (samples) and in the height there
are all the electrodes. The input is represented as a two-
dimensional array in which the width has all time steps and
the height has all electrodes.

3.3.3 Deep CNN

Deep CNN learns local and spatial features in such signals by
using convolutions and nonlinearity and have the ability to
represent higher-level features as a combination of lower level
features. The pooling layers help the network to represent
intermediate feature maps in a concise way by retaining the
most important information using downsampling. Hence deep
CNN models are best for end-to-end learning, which use raw
data to extract features automatically. CNN takes raw data as
input and learns spatial features in the initial layers, and
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Fig. 2 Using sliding window to crop the signal and Deep CNN Architecture

progressively in the deeper layers, and it is able to learn tem-
poral features.

Our deep CNN model is based on the architecture [33],
which has convolution and max-pooling blocks followed by
fully connected layers. We changed the first convolution layer
to manage the multi-channel EEG input, as suggested in [39].
We tried with a different number of convolution and max-
pooling layers, with different types of training, normalization
strategies, and activation functions. Since our input is 2D,
having time and electrodes dimension so we make CNN first
convolve overtime followed by convolution over electrodes.
Convolution layers are followed by the max-pooling layer.
Then we have another normal convolution-max-pooling
block. The next convolution layer is followed by fully con-
nected softmax classifier as shown in Fig. 2. In CNN we have
a convolutional layer which is composed of filters or kernels.
Each of these kernels is slid over the input signal and in this
way, the kernel is convolved with the input signal. We also
have a parameter called stride, which decides the amount of
convolution of the kernel with the input signal. The output for
three-dimensional convolution, which is a set of kernel or
feature maps, can be shown with eq. (1) below.

(1)

x=(xy, ...xp) is the input for the network layer where (i, j)
are the dimension of the weight filter, (i’, j’) are the location of
the input on the 2D map where the weight filter is convolved,
w=(wy, ...w,) is the learned weight, k is the number of chan-
nels and k’ is the number of filters. The max-pooling operation
can be shown with following eq. (2):

YiiKk = Zijkwijkk’ Xivi i

(2)

yijk:max{yif]/k:iSi <it+pj<j <j+p}

Where p is called the padding operator,(i, j) are pooling
location in the 2D map, (i’, j°) are the pooling window

dimension. For activations function we used the Exponential
linear units as shown below in eq. (3):

3)

Vi = Xigk Jor Xy > 0 and yy = e ~1 for x; <0

et
Y et

(4)

Yije =

The eq. (4) above shows softmax operation or the normal-
ized exponential function, which is used to represent a prob-
ability distribution of D dimensional vector.

Batch normalization is applied to intermediate outputs of
layers to set them to unit variance and zero mean so that we
can apply training examples in batches. It is also applied to the
output of convolutional layers before we apply nonlinearity on
it. Dropout sets randomly some inputs to zero, in each iteration
of the training phase. It helps to achieve generalization and
prevents overfitting. Dropout is used with a 0.5 probability at
the beginning.

3.3.4 Stacked autoencoders

An autoencoder is usually a three-layer neural network with
an input layer, one hidden layer and an output layer [40], with
the output layer having the same number of neurons as the
input layer in order to reconstruct its own inputs. Therefore,
autoencoders are unsupervised learning methods. An
autoencoder is trained so that the input x is mapped to the
hidden layer, this stage is called the encoding stage, then the
output of hidden layer z is mapped to the output layer, to
reconstruct the input, this stage is called the decoding stage.
These steps are shown in the following equations.

z=0(Wx+b)
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Fig. 3 Deep Learning model
using CNN and stacked
autoencoder

i ‘ Deep

Segment

x =0 (W,x + b/)

Where Wand W are weight matrix, b and b’ are bias vec-
tors. The functions o and o are element wise activation func-
tions. The weights are said to be tied if we set W= [W". Then
training the autoencoders helps to minimize reconstruction
error, E(x, x').

argminy {E (x, x/)}

After the autoencoder is trained and we obtain the learned
hidden layer features, these features are used for classification
tasks. We can also use these features as input to the next layer
in stacked autoencoder. A stacked autoencoder consists of
multiple layers of autoencoders. Stacking autoencoder is the
greedy layer-wise training technique for pre-training a deep
neural network. It trains each autoencoder layer in turn. The
encoding and decoding step in autoencoder is run for each
layer of the stacked model while the parameters of all other
layers are frozen. After training step is complete then a super-
vised fine-tuning step is also performed in which all the net-
work parameters are trained simultaneously using
backpropagation algorithm [40], to improve results. In this
study, we use stacked autoencoder with 2 hidden layers.

Table 1 Structure of CNN

Layers Type

1 Convolution (10 x 1, 20 filters)
2 Convolution (20 x 23, 20 filters)
3 Max-pooling (2 x 1, stride 2)

4 Convolution (10 x 20, 40 filters)
5 Max-pooling (2 x 1, stride 2)

6 Convolution (10 x 40, 80 filters)
7 Fully connected(2 classes)

RawEEGi CNN  Features

Softmax output

Autoencoder
Autoencoder

Input

3.3.5 Proposed model architecture

Even when recording EEG in controlled environments there
are always some differences among subjects and among re-
cording sessions. Therefore it is difficult to identify common
features for cross-subject recordings. In the case of EEG, since
the signal to noise ratio is poor, it is sensitive to external and
internal noise. Eye blinking and muscle movement artifacts
can cause a lot of problems in extracting good features.
Therefore we use a novel deep learning model composed of
deep CNN followed by stacked autoencoder.

In our model, during the pre-training stage, CNN is
employed to train all the weights and biases in the network
simultaneously. In this supervised learning strategy, the deep
CNN maps each of the time steps in the input data to one of the
given classes (output labels) and the error is used to train the
network parameters. Hence the important features are learned,
noise artifacts in the EEG dataset are ignored, and it does not
over-fit to noise in the data.

We used cropped training technique that uses sliding win-
dows within the input. By using this technique we achieve a
large number of training examples. We used this technique as
the CHB-MIT database has only 173 seizure events, hence
especially for seizure class we have limited training data,
and hence there are chances that our deep CNN model could
overfit. It not only increases stabilize the dataset but also in-
creases classification accuracy. Figure 2 illustrates the use of
the sliding window in the proposed architecture.

Figure 3 shows the overall architecture of the deep learning
model. Since the sampling rate for the dataset is 256 Hz there-
fore in a 2-s window we have about 500 samples for all chan-
nels, which are presented to the first convolution layer. The

Table 2 Structure of Stacked Autoencoder

Layers Type

1 Input layer (1000 neurons)

2 Autoencoder (500)

3 Autoencoder(200)

4 Softmax, Fully connected(2 classes)
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Fig. 4 Sensitivity: Deep CNN
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first convolution layer uses 20 filters of size 10 x 1, which are
slid over every sample, therefore this convolution is over time
for each electrode at a time. The second convolution is over all
electrodes or channels having 20 filters of size 20 x 23 as there
are 23 channels. Then within this block, we have max pooling
layer having a filter of size 2 x 1 with stride 2. After this, we
again apply a convolution and max-pooling block having 40
filters of size 10 x 20 and max-pooling filter of the same size
of 2 x 1 with stride2. In the last block, we apply convolution
without max-pooling with 80 filters of size 10 % 40 and finally
a fully connected layer with softmax function to give the out-
put probability for the two classes.

The structure of CNN and stacked autoencoder are shown
in Table 1 and Table 2, respectively. In our model the training
takes place one patient at a time, therefore the softmax classi-
fier gives us patient-specific probability distribution over out-
put classes, which is 2 here.

We first use deep CNN model as explained earlier for the
extracting features from the raw input data, then these features
are used as input to the stacked autoencoder. During the su-
pervised training phase of deep CNN model, the network pa-
rameters are pre-trained for the EEG seizure dataset. Then
these features are used by the stacked autoencoder to learn

Fig. 5 Accuracy: Deep CNN
model comparison with Deep
CNN + Stacked Autoencoder
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==@=Sensitivity (%) Deep CNN
==@==Sensitivity (%) Deep CNN + Stacked Autoencoder

general subject-specific features. These learned features from
CNN are used individually for each patient but in cross trial
manner. This is achieved by having the stacked autoencoder to
reconstruct a different trial of the same patient. In this way, we
also increase the training set as there are many trials available
for each patient. After training the stacked autoencoders using
trials from the same patient, we again trained them with trials
from different patients but belonging to the same class. In this
way were able to achieve good sensitivity and at the same time
good accuracy for the cross-patient dataset.

4 Results

We used PyTorch deep learning framework to build deep
CNN-stacked autoencoder model and used GTX 960 GPU
card on Intel Pentium i7 machine. We tested the performance
of the model using sliding window strategy to increase the
dataset size. Since we took 2 s window as an input to our
model for testing the output label was the mean of the labels
for all the events in a single trial.

There are improvements in the result when using
autoencoders with CNN as compared to only CNN method.

123456 7 8 9101112131415161718192021222324

==@= Accuracy (%) Deep CNN
==@==Accuracy (%) Deep CNN + Stacked Autoencoder
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Table 3  The performance of some methods for seizure detection

Study Problem Design choices Accuracy Sensitivity
[37] Patient Specific Seizure Detection and Prediction SVM 96% -

[31] Cross patient Epileptic Seizure detection CNN + RNN 95% 85%

[42] General seizure detection across different subjects without prior knowledge k-NN 93% 88%

[43] Patient Specific Seizure Detection stacked autoencoders - 100%

[44] Context-learning based EEG analysis for seizure detection SVM 88.8% -

[45] DWT to improve accuracy and to reduce computational cost of seizure detection DWT 9230% —

Our Model Patient Specific and Cross Patient Seizure Detection and Classification CNN + stacked autoencoders 99.20%  93.5%

It can be seen that the average values for sensitivity are close
to 93% and average recognition accuracy is 99.2%. For some
patients, the sensitivity was less as is the case for patient 5 and
6. It shows that the EEG is highly variable across patients.

When we applied cropped training strategy on the CHB-
MIT dataset, the deep CNN-stacked autoencoder model gave
us an overall accuracy of 99.5%, which is better than the state
of the art on the same dataset. The sensitivity of the system
was comparable with state of the art, which means this deep
CNN- stacked autoencoder architecture can be used as a
patient-specific as well as cross-patient seizure detector. The
sensitivities and the accuracies are shown in Figs. 4 and 5,
respectively.

Our result was better than the state of the art when com-
pared with patient-specific approaches as well as cross-
patient techniques. Researchers in [37] built a patient-
specific detector for detection of epilepsy seizures and re-
ported an accuracy of 96%, which is less than our model’s
accuracy. Our model also got better accuracy and sensitivity
than REVEAL algorithm discussed in [41], which had good
results for cross-patient seizure detection. One of the stud-
ies [31] used recurrent and convolution deep learning meth-
od for seizure detection reported a sensitivity of 85% for
cross-patient detection, is also less than our model’s sensi-
tivity of 90%. In [42], they used supervised k-NN classifier
for seizure detection across subjects and reported a classi-
fication accuracy of 93% and sensitivity of 88%, which is
also less than what we report. In [43], the authors used
stacked autoencoders with logistic classifiers for patient-
specific seizure detection on the CHB-MIT dataset, to
achieve 100% sensitivity. In [44], authors proposed
context-learning for seizure detection by extracting hidden
inherent features within EEG fragments and the temporal
features from EEG contexts. They used SVM to achieve an
accuracy of 88.8%. Discrete Wavelet Transform (DWT),
was applied to selected frequency bands, in [45] to attain
an accuracy of 92.30% on the CHB-MIT dataset. Table 3
compares accuracies and sensitivities of the proposed
CNN-stacked autoencoder model with the discussed state
of the art models, showing our method outperforms them in
accuracy and is comparable in terms of sensitivity.

@ Springer

5 Conclusion

This study proposes a cognitive smart healthcare monitoring
framework based on the integration of IoT and the cloud. An
epileptic seizure detection and classification system inside the
framework is built using deep CNN and stacked autoencoders.
The proposed system also uses other healthcare smart sensors
to record the psychological and physiological signals and
transmit them to the cloud via the Internet. These signals in-
clude patients’ movements, gestures, and facial expressions to
determine their state. Thereafter, the cognitive system makes a
real-time decision on the activities and the medical attention
and services to be provided to patients based on their state and
whether to send the data to the deep learning module. If the
cognitive system believes that a patient is having a seizure,
then it makes the decision to inform other stakeholders and
sends the EEG data to the deep learning module. Signal pro-
cessing and seizure detection occur in the cloud and signals
are classified as seizure or non-seizure with a probability
score. The results are transmitted to medical practitioners or
other stakeholders who can monitor the patients. In critical
cases, these medical practitioners make the appropriate deci-
sions to assist patients.

This study also evaluated deep CNN and stacked
autoencoders for EEG epileptic seizure detection and classifi-
cation. Deep CNN is able to extract a robust and wide range of
features from EEG, while stacked autoencoders facilitate the
removal of noise artifacts from the signal. Deep CNN and
stacked autoencoders also increase the overall accuracy of
the system and assist in building a generic cross-patient
classifier.

Experiments showed that the proposed system is accu-
rate and sensitive for cross-patient seizure detection.
However, we should address several issues before such
framework can be operative in a secure manner. These is-
sues include interoperability, availability, scalability, and
security. We attempted to solve the issues of interoperabil-
ity in the proposed framework. Security should be provided
at the end of the healthcare service provider. For future
research direction, we can create a cognitive framework to
handle big data of EEG in the cloud.
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