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Abstract
This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) choose to offload their
computation tasks to an edge server. To conserve energy and maintain quality of service for WDs, the optimization of
joint offloading decision and bandwidth allocation is formulated as a mixed integer programming problem. However, the
problem is computationally limited by the curse of dimensionality, which cannot be solved by general optimization tools in
an effective and efficient way, especially for large-scale WDs. In this paper, we propose a distributed deep learning-based
offloading (DDLO) algorithm for MEC networks, where multiple parallel DNNs are used to generate offloading decisions.
We adopt a shared replay memory to store newly generated offloading decisions which are further to train and improve all
DNNs. Extensive numerical results show that the proposed DDLO algorithm can generate near-optimal offloading decisions
in less than one second.

Keywords Mobile edge computing · Offloading · Deep learning · Distributed learning

1 Introduction

With the development of wireless communication tech-
nology, transmitting tremendous computation tasks from
wireless devices to nearby access points or base stations
is possible, which triggers meaningful cloud-computing
applications, e.g., online gaming, virtual/augmented reality,
and real-time media streaming. By deploying computation
servers at user side and avoiding backhauling traffic gener-
ated by applications to a remote data center, mobile edge
computing (MEC) [1–3] provides an efficient approach to
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bridge user and edge server. It reduces the delay in execut-
ing the computation tasks and saves the energy consumption
for those delay-sensitive cloud-computing applications.

The decision whether aWD offloads its computation task
to an MEC server or not should be carefully studied. If
computation tasks are aggressively offloaded to the edge
server, a severe congestion will occur on the uplink wireless
channels, which leads to a significant delay in executing
computation tasks. Therefore, to exploit the computation
offloading, we need a joint management for offloading
decisions and the associated radio bandwidth allocation.
However, due to the binary property of offloading
decisions, directly enumerating all those possible solutions
is computationally prohibitive.

Different low-complexity algorithms are proposed to
solve the binary computation offloading problem in the
literature [4–12]. A distributed algorithm based on game
theory is proposed for MEC system in [4], which requires
multiple iterations of communications between the edge
server and WDs. Another iterative algorithm to solve
joint task offloading and resource allocation in MEC
networks is to iteratively update the binary offloading
decision [5, 6], where the traditional resource allocation
problem is solved when the binary offloading decision
is present. By relaxing the binary constraints to real
variables, [7] proposes an eDors algorithm for MEC
systems. The algorithm is further extended in [8], which
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iteratively improves the binary offloading decisions after
relaxation. Separable semidefinite relaxation is applied to
jointly optimize the binary offloading decisions of all
users and the communication bandwidth allocation in [9],
whose complexity is still too high for real-time offloading.
However, all those algorithms are limited by the trade-off
between optimality and computational complexity, which is
not applicable for real-time computing offloading under the
MEC networks with time-varying environments.

Deep learning that uses a deep neural network (DNN)
with multiple processing layers to learn representations of
data [13] has achieved many breakthroughs in different
areas, e.g., robot control [14], natural language process [15],
and gaming [16]. For systems with large-scale state-action
space, using a DNN to approximate the state-action relation-
ship can obtain near-optimal performance [16, 17]. Deep
learning has also been applied to solve computationally
expensive problems in wireless communications [18], e.g.,
resource allocation [19, 20], signal detections [21, 22], inter-
ference alignment [23], and caching [24]. There exist few
recent works on deep reinforcement learning-based offload-
ing for MEC networks [25–28]. However, most of existing
works for MEC networks are based on the deep Q-network,
whose tabular-search nature is not suitable for handling
problems with high dimensional space.

In this paper, we resort to deep learning to propose
an effective and efficient offloading framework for MEC
networks. We consider an MEC network with one edge
server and multiple wireless devices (WDs), where each
WD can choose to offload its computation tasks to the edge
server. To conserve energy and maintain quality of service
for WDs, we obtain the following results:

1. We model the system utility of MEC networks as
the weighted sum of energy consumption and task
completion delay for all WDs. To minimize the system
utility, we present a joint task offloading and bandwidth
allocation problem for MEC networks that jointly
optimizes the offloading decisions for each task ofWDs
and the transmission bandwidth for each WD.

2. We propose a distributed deep learning-based offload-
ing algorithm for MEC networks, which is composed
of offloading action generation and deep learning. The
algorithm uses multiple parallel deep neural networks
(DNNs) to effectively and efficiently generate offload-
ing decisions. Those generated offloading decisions are
stored in a shared memory to further train and improve
DNNs.

3. We numerically demonstrate that the proposed algo-
rithm converges to optimal when two or more DNNs
are used. Under a wide range of parameter settings, the
algorithm provides near-optimal offloading decisions in
less than a second.

Fig. 1 System Model of an MEC network with multiple WDs and
multiple tasks

The distributed deep learning-based offloading algorithm
provides a new parallel method to effectively and efficiently
generate offloading decisions for MEC networks. Although
our work jointly solves offloading decision and bandwidth
allocation, the proposed algorithm can be easily extended
to other bandwidth allocation problems, e.g. transmission
power allocation at WDs and computing resource allocation
at edge server, by replacing the bandwidth allocation block
in the algorithm structure with other dedicated ones.

The remainder of this paper is organized as follows.
In Section 2, we present the system model and problem
formulation. We propose distributed deep learning-based
offloading algorithm in Section 3. Numerical results are
presented in Section 4, and a conclusion is provided in
Section 5.

2 Systemmodel and problem formulation

2.1 Systemmodel

In this work, we consider an MEC network composed by
one edge server, one wireless access point (AP), and N

WDs, denoted by a set N = {1, 2, . . . , N}, as shown
in Fig. 1. The AP and the edge server is connected by
an optical fiber, whose transmission delay can be ignored.
Each WD has multiple tasks to be processed locally or be
offloaded to the edge server via the AP. Without loss of
generality, we assume that each WD has M independent
tasks, denoted by a set M = {1, 2, . . . ,M}. Denote dnm as
the workload of the m-th task of user n. Each WD n can
determine whether to offload its task m to the edge server
or not, and the offloading decision is denoted by a binary
variable xnm ∈ {0, 1}. Specifically, xnm = 1 denotes that
user n decides to offload its task m to the edge server, and
xnm = 0 means that user n decides to execute its task m

locally. The detailed operations of edge computing and local
computing are illustrated as follows.
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2.2 Edge computing

When a task is offloaded to the edge server, the WD n

transmits its workload dnm to the AP via wireless channels
which is further forwarded to and processed at the edge
server. We neglect the energy consumption and delay when
the edge server transmits the computing results back to
WDs, because the data size of feedback information is small
in general [4, 6, 7, 29]. We denote Et

nm as the energy
consumed by WDs for uploading its workload to the edge
server and model the energy cost for data process at edge
server as a linear function of workload dnm [9]. Specifically,
we denote the total cost for user n to offload its task m to
the edge server as:

Ec
nm = Et

nm + αdnm, (1)

where α is the weight of the energy consumption at
edge server. When α = 0, we only consider the energy
consumption at WDs. Notice that the cost Ec

nm includes the
energy consumptions for sending the task and the server’s
utility cost for executing this task.

We next model the delay in computation offloading.
Specifically, we use cn to denote the allocated bandwidth to
user n for transmitting its offloaded task to the edge server.
Therefore, the transmission delay when user n offloads its
task m to the edge server is given by:

T t
nm = dnm

cn

. (2)

In addition, the edge processing delay is given by

T c
nm = dnm

f c , (3)

where we denote f c as the edge processing rate. In
summary, given the offloading decisions {xnm}, the total
delay of user n when it executes MEC can be given by:

T c
n =

M∑

m=1

(
T t

nm + T c
nm

)
xnm, ∀n. (4)

We assume that the edge server can only start to process user
n’s task m after this task is completely received by the edge,
and the edge-server can only start to send back the output
data after the entire task m is completed [9].

2.3 Local computing

We next model the case when user n decides to execute
its task locally. Specifically, we use eln to denote the local
energy consumption per data bit of user n. Thus, user n’s
energy consumption for executing its task m locally is given
by:

El
nm = dnmeln. (5)

Meanwhile, we denote user n’s local processing time per
data bit as t l. As a result, the total processing time for user
n to execute its task m is given by:

T l
nm = dnmt l. (6)

Thus, given user n’s offloading decision {xnm}, the total
delay for user n to finish its tasks locally is given by:

T l
n =

M∑

m=1

T l
nm(1 − xnm). (7)

2.4 Problem formulation

To minimize both the total delay finishing all users’
tasks and the corresponding energy consumptions, we
first introduce a system utility Q(d, x, c) defined as the
weighted sum of energy consumption and task completion
delay, as

Q(d, x, c) =
N∑

n=1

(
M∑

m=1

(
El

nm(1 − xnm) + Ec
nmxnm

)

+ β max{T l
n, T

c
n }

)
,

where d = {dnm|n ∈ N , m ∈ M}, x = {xnm|n ∈
N , m ∈ M}, c = {cn|n ∈ N }, and β denotes the
weight of energy consumption and task completion. Then,
we formulate an optimization problem (P1) to minimize
Q(d, x, c) by jointly optimizing each user n’s offloading
decisions {xnm} and the bandwidth allocations cn for user
n’s task transmission, which is expressed as follows:

(P1) : Q∗(d) = minimize
x,c

Q(d, x, c) (9a)

subject to:
N∑

n=1

cn ≤ C, (9b)

cn ≥ 0, ∀n ∈ N , (9c)

xnm ∈ {0, 1}. (9d)

Here, constraint (9b) means that the total uplink bandwidth
allocation for all users cannot exceed the maximum
bandwidth C. The allocated bandwidth for each user cn is
either 0 or positive as given in (9c). The binary constraint
on xnm is given in (9d). Table 1 lists the important notations
used in this paper.

The optimization problem (P1) is a mixed-integer
programming problem, which is difficult to solve in general.
In the next section, we study an approximate algorithm
based on deep learning to efficiently and effectively solve
(P1).
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Table 1 Notations used in this paper

Notation Definition

xnm xnm = 1 if user n offloads its task m to the

edge server. Otherwise, xnm = 0

dnm Data size of user n’s m-th task

Et
nm Data transmission energy consumption of

user n’s m-th task

cn Bandwidth assigned to user n

C Total bandwidth

T t
nm Transmission time of user n’s m-th task

T c
nm Edge processing time of user n’s m-th task

f c Edge processing rate

T c
n Edge processing time consumption of user n

eln Local energy consumption per data bit of user n

El
nm Local energy consumption of user n’s m-th task

t l Local processing time per data bit

T l
nm Local processing time consumption of user

n’s m-th task

α Weight of the system utility cost

β Weight between energy consumption and

processing delay in the system cost

Ec
nm Energy consumption of the edge sever for

executing user n’s m-th task

T l
n Local processing delay of user n

3 DDLO algorithm

In this section, we propose a DDLO algorithm for MEC
networks, where K parallel multiple DNNs are used to
generate binary offloading decisions.

Given the sizes of output data and input data of all
users, denoted as d, our goal is to find an offloading policy
function π to generate the optimal offloading action x∗ ∈
{0, 1}NM for (P1), as

π : d �→ x∗. (10)

The size of target binary offloading decision set {x} is
2NM , which exponentially increases with the number users
N in MEC networks and the number of tasks per user M .
Since it is NP-hard to find the optimal offloading action, in
this paper we approximately express π by a parameterized
function based on DNN.

We propose a DDLO algorithm for MEC networks,
which is composed of offloading action generation and
deep learning, as illustrated in Fig. 2. Specifically, for
each input d, K distributed offloading actors are used to
efficiently and effectively generate K candidate offloading
actions {xk|k ∈ K} where K = {1, 2, . . . , K}. Then, the
offloading action with the lowest system utility is chosen
as the output, denoted as x∗. Finally, the data entry (d, x∗)
is further stored in a memory structure to train these

Fig. 2 Architecture of distributed deep learning-based partial offload-
ing algorithm

K distributed offloading actors. The detailed procedures
of offloading action generation and deep learning are
explained as follows.

3.1 Offloading action generation

For each input d, we use K offloading actors to generate
K candidate offloading actions with one action per actor,
as shown in Fig. 3. Inside each offloading actor, a DNN is
used to generate binary offloading action xk , which can be
represented by a parametrized function fθk

, as

fθk
: d → xk, (11)

where θk denotes the parameters of the k-th DNN. All
those K DNNs have the same structure but with different
parameter values θk .

Once a binary offloading decision xk is given, the
original optimization problem (P1) becomes a bandwidth
allocation problem (P2), as

(P2) : Q∗(d, x) = minimize
c

Q(d, x, c) (12a)

subject to:
N∑

n=1

cn ≤ C, (12b)

cn ≥ 0, ∀n ∈ N . (12c)

Fig. 3 An offloading actor
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Fig. 4 K DNNS are separately trained with randomly sampled data
entries

There are extensive studies on how to efficiently solve
bandwidth allocation problems in the literature [30, 31]. In
this paper, (P2) is a convex problem which is solved by
a standard optimization tool written in Python, known as
scipy.1

After solving K bandwidth allocation problems (P2), the
offloading action with least Q∗(d, xk) is selected among all
K candidates, as

x∗ = argmin
k∈K

Q∗(d, xk). (13)

This selected x∗ will be output as the binary offloading
decision with respect to the input d.

3.2 Deep learning

Once the best offloading decision x∗ is obtained, we save
it as a new entry of labeled data, (d, x∗), in the finite-size
memory structure, where the oldest data entry is discarded
when the memory is full. Those generated labeled data are
then used to train all K DNNs, as illustrated in Fig. 4.

Instead of training DNNs with the whole memory of data,
an experience relay technology [16, 32, 33] is used in the
proposed algorithm. Specifically, all DNNs share the same
memory and each DNN randomly extracts a batch of data
samples from the memory. A gradient descent algorithm is
performed to optimize parameter values θk of each DNN by
minimizing the cross-entropy loss, as

L(θk) = −xT log fθk
(d) − (1 − x)T log(1 − fθk

(d)).

1The source code of scipy is available at https://www.scipy.org.

The finite-size design of the memory structure helps to
improve data efficiency, since newly generated data entries
are more preferred than older ones. Other more advanced
techniques, such as distributed importance sampling [34,
35] and prioritized experience replay [33, 36], can be
applied to further speed up training.

The proposed DDLO algorithm for MEC networks
is shown in Algorithm 1, which is implemented using
TensorFlow [37]. At the beginning, all K DNNs are
initialized with random parameter values θk and the memory
is empty. By choosing a K ≥ 2, the algorithm is expected
to converge to optimal offloading actions. We numerically
study the convergence and performance for the proposed
algorithm in the next section.

Algorithm 1 DDLO algorithm

1: Input: Input different workloads at time
2: Output: Optimal offloading decision at time
3: Initialization:
4: Initialize the DNNs with random parameters ,

;
5: Empty the memory structure
6: for 1 2 do
7: Replicate different workloads to all DNNs.
8: Generate -th offloading action candidate from

the -th DNN in a parallel way, as ;
9: Solve all bandwidth allocation optimization (P2)

in a parallel way when the offloading action
candidates are present;

10: Select the best offloading decision as the output
arg min ;

11: Store into the memory structure;
12: Randomly Sample batches of training data from

the memory structure;
13: Train the DNNs and update ;
14: end for

4 Performance evaluation

In this section, we show the numerical results for our
proposed algorithm for solving Problem (P1). In our
simulation, we set the number of WDs N = 3 and each
user has M = 3 different tasks. In addition, we set the
local computation time of the mobile device as 4.75× 10−7

s/bit, and the processing energy consumption as 3.25×10−7

J/bit [9]. We assume that the input data size of all tasks is
randomly distributed between 10MB and 30MB. In all those
simulations, we set the uplink bandwidth limit as 150 Mbps.
The receiving energy consumption and transmission energy
consumption of the mobile device are both 1.42×10−7 J/bit.

https://www.scipy.org
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Fig. 5 Convergence performance under different number of DNNs

The CPU rate of the edge sever is 10 × 109 cycle/s. We
further set α = 1.5 × 10−7 J/bit, and β = 1 J/s.

4.1 Convergence performance

Figure 5 shows the effects of number of DNNs on
the convergence of our DDLO algorithm. Because the
system utility Q(d, x, c) varies under different input d, we
introduce a greedy method as a benchmark, which generates
the optimal system utility by enumerating all 2NM binary
offloading decisions, as

max
x′∈{0,1}NM

Q∗(d, x′). (14)

For better comparison, we plot the gain ratio between
DDLO and the greedy method, as shown in Fig. 5. DDLO
algorithm converges to 1 with the increase of learning steps.
A gain ratio 0.98 is achieved within 1000 learning steps
when 5 DNNs are used. However, when only one DNN is
used, the DDLO learns nothing from the data generated by
itself and cannot converge. Therefore, at least 2 DNNs are
required by DDLO. The more DNNs are used, the faster
DDLO converges.

Fig. 6 Convergence performance under different learning rates

Fig. 7 Convergence performance under different memory sizes

We study the convergence of our DDLO algorithm under
different learning rates and different memory sizes in Figs. 6
and 7, respectively. The higher the learning rate, the faster
the convergence speed of DDLO is. However, when the
learning rate increases, we suffer from a larger possibility
of obtaining a local optimal solution instead of the global
optimal one. Hence, we need to choose an appropriate
learning rate regarding to specific situations. We study the
effects of different memory sizes in Fig. 7. A smaller
size of memory leads to faster convergence but may fall
into local optimum. In the considered MEC network, we
select an experience replay memory with size 1024 as a
compensation between convergence and performance.

4.2 System utility

We compare the performance of our proposed DDLO
method with other four schemes, specifically, the local
processing only scheme, the edge processing only scheme,
the greedy scheme, and the deep Q-network based algorithm

Deep

Fig. 8 Energy cost under different α for different offloading
algorithms
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Deep

Fig. 9 Energy cost under different β for different offloading
algorithms

[28]. The performance is studied under different α and
β parameters in Figs. 8 and 9, respectively. The local
processing only scheme means that all users’ tasks are
processed locally. The edge processing only scheme means
that the edge processes all users’ tasks. For the greedy
scheme, we enumerate all offloading decision combinations
and then adopt the best one. However, it is noticed that
the greedy scheme is very time-consuming, especially when
the number of users and tasks are large. As illustrated in
Figs. 8 and 9, as α or β increases, the total energy cost of
all schemes increases. Our DDLO method outperforms the
deep Q-network based method, which is close to the greedy
scheme.

4.3 Computation time

We further study the computation time of DDLO under
different number of DNNs in Fig. 10. For DDLO employed
with different number of DNNs, the computation time

Fig. 10 Time cost for each input under different number of DNNs

for each input is almost identical, around 0.1 second for
an MEC network with 3 WDs with 3 tasks. Since the
convergence performance of DDLO can be improved by
increasing the number of DNNs as shown in Fig. 5, we
can deploy DDLO with more parallel DNNs depending on
the computing hardware at edge server. Nowadays, all those
server-oriented CPUs have multi-core support, e.g. a single
Intel Xeon W-2195 processor owns 18 cores.2 Therefore, it
is applicable to implement DDLO on multiple cores to boost
its performance.

5 Conclusion

In this work, we have proposed a distributed deep learning-
based offloading algorithm, DDLO, for MEC networks,
to minimize the overall system utility including both the
total energy consumption and the delay in finishing the
task. The algorithm takes advantages of multiple DNNs
and generates close-to-optimal solutions without manually
labeled data. Numerical results have validated the accuracy
of the proposed algorithm and the performance advantage
compared with the existing deep Q-network algorithm.
Furthermore, the proposed DDLO algorithm can generate
near-optimal offloading decisions in less than one second,
whose computation time is independent of the number of
DNNs. We expect that such a distributed deep learning-
based framework can be further extended to optimize real-
time offloading in future implementation of MEC networks.
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