A design method of viscoelastic damper parameters based on the elastic-plastic response reduction curve

Li Zhanga, Mingzhou Sua, Chao Zhangb, Hua Shenc, Md Mofakkharul Islamc, Ruifu Zhangc,*

a Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
b College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
c Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, China

\textbf{A R T I C L E I N F O}

\textbf{Keywords:}
Viscoelastic damper
Design method
Elastic-plastic response reduction curve
Energy dissipation

\textbf{A B S T R A C T}

The traditional design method of the elastic response reduction curve (ERRC) was used to design the parameters of the viscoelastic damper (VED), where the plastic behavior of the primary structure is neglected. Considering the structural plastic behavior, in this study, a direct design method is proposed to obtain the parameters of VEDs based on the elastic-plastic response reduction curve (EPRRC), which can illustrate the relationship between damper parameters and the response reduction effect in the elastic-plastic stage. First, the ERRC is developed to the EPRRC, and the differences between them are compared using the displacement and acceleration response difference ratios, which demonstrate an overestimated response reduction effect of VEDs in the elastic-plastic stage using the ERRC. Then, the corresponding design procedures are given based on the EPRRC by referring to the direct displacement-based design theory. Finally, a benchmark model is used to illustrate the effectiveness of this proposed design method by conducting a time history analysis. The analysis results indicate that the target story drift of the structure can be satisfied under different earthquake intensities using VEDs. Thus, based on this study, the development of the EPRRC can be considered worthwhile, and the proposed design method of VED parameters is easy to implement and is effective.

1. Introduction

Passive control systems using energy dissipation devices have been demonstrated to be effective for seismic damage mitigation of structures [1–4]. Four kinds of devices, friction dampers, metallic yield dampers, viscous dampers and viscoelastic dampers (VEDs), are often used. Among these devices [5–10], VEDs provide both supplemental damping and stiffness and show the characteristics of the phase angle difference of the force-displacement relationship, thus, in some ways, they are more difficult to apply in design and practical use than other devices.

A typical VED usually consists of flaky viscoelastic materials bonded with steel plates. When relative shear deformation takes place in the viscoelastic materials, the energy caused by dynamic loads is then dissipated. Due to effective energy dissipation capacity from low to high displacement [11], VEDs were used to reduce the structural vibration caused by different kinds of dynamic loads, such as winds, earthquakes and even human activities. The practical projects of VEDs in resisting wind-induced vibration began in the 1960s [12], and the application of VEDs for reducing the seismic responses of civil engineering structures began in the 1990s [13,14]. Recently, VEDs have been recommended to mitigate human-induced vibrations [15]. Additionally, for fire-damaged structures, VEDs are also applied for vibration control [16]. A number of experiments and theories have been improved by scholars such as Shen and Soong [17], Chang et al. [18], Tsai [19] and Xu et al. [20], who have demonstrated that the mechanical properties of VEDs strongly depend on temperature and frequency, thus complicating the analysis and design of structures with the addition of VEDs. Consequently, to effectively simulate the practical application of VEDs, classical rheological models and fractional derivative models are often suggested to describe the VEDs [21–26]. In the frequency domain, Lewandowski and Pawlak [21] combined the widely used response spectrum theory for structures mounted with fractional VEDs. In the time domain, using the generalized Maxwell model and Laguerre polynomial approximation technique, the computation time of dynamic analyses for structures with VEDs is clearly reduced [27]. Therefore, the reasonable model and appropriate theory have been recognized to be effective and feasible for the application of VEDs in practical engineering.

Aimed at the effective and convenient application of VEDs, a
number of design methods for structures with VEDs have been presented with different standpoints. The traditional force-based design methods of VEDs use the force reduction factor and must often conduct iterative procedures based on linear static analysis [28]. However, force-based design methods neglect the lateral displacement of the structure, which is an important structural and nonstructural damage factor. To resolve this shortcoming, the direct displacement-based design method and the modified capacity spectrum method based on ATC-40 were presented for designing structures with VEDs [29–31]. These displacement-based design methods usually preset a target displacement to start the design procedure. Additionally, the process of accumulated energy dissipation is an important structural damage factor. Therefore, the energy-based design method was suggested by Habibi et al. [32] for structures with VEDs. Relying on the view of probability theory, reliability-based design methods were proposed by considering the stochastic seismic excitations and uncertain structural model parameters [33,34]. Furthermore, based on the optimization algorithms, some design methods of VEDs were presented. Zhang and Soong [35] suggested a sequential procedure based on the degree of controllability concept to determine the number and location of VEDs. However, identical dampers were used in all stories. Then, based on the study of Zhang and Soong [35], a step-by-step procedure was presented by Heydarinouri and Zahrai [36], and the dampers were distributed according to the lateral stiffness of each story. However, a time history analysis was needed at each sequence, which is time consuming. Singh and Moreschi [37] proposed a gradient-based algorithm to achieve the best performance by optimally distributing the dampers. By considering the variation in parameters for the structures with VEDs, Park et al. [38] suggested a genetic algorithm for the optimum design of a viscoelastically damped structural system. However, these methods are usually complex and not easy to implement.

The elastic response reduction curve (ERRC) presented by the Japan Society of Seismic Isolation (JSSI) [39] can reflect the relationships between the VED parameters and the response reduction effects. Because of its advantages of easy implementation and clear and graphical expression, the design method applied for VED parameters based on the ERRC has been accepted by many engineers. However, this method is limited by the elastic primary structure. Under strong ground motions, the primary structures may behave like plastic, and the structural behaviors in plastic stages are quiet different from the elastic stages. Therefore, it is necessary to take into account the plastic behavior of structures and develop the elastic-plastic response reduction curve (EPRRC).

In this paper, referring to the direct displacement-based design theory [30,40,41], a direct design method of viscoelastic dampers for damped structure based on the EPRRC is proposed. First, according to the design response spectrum and equivalent linear theory, the existing ERRC is developed to the EPRRC by considering the elastic-plastic behavior of the primary structure, which also has the advantages of the ERRC. Furthermore, the comparative study between the ERRC and EPRRC is illustrated using the displacement and acceleration response difference ratios. Then, by setting the target displacement and performing the pushover analysis, the corresponding design method is proposed, which does not require the time-consuming dynamic analysis process. Finally, this design method is applied to a benchmark model, and the time history analysis is conducted to illustrate the effectiveness of this method.

2. The development of the EPRRC

2.1. VED structural system characteristics

A single-degree-of-freedom (SDOF) mode with a VED, called the VED structural system, is used to illustrate the interactions among the VED, brace and primary structure, as shown in Fig. 1, where K_b and K_s are the elastic stiffness of the brace and primary structure, respectively; K'_{d} is the storage stiffness of VED, which is equal to the ratio of the damping force at the maximum displacement and the maximum displacement; and C_d is the damping coefficient. Thus, in this simplified model, the VED is modeled by a Kelvin element with a spring and dashpot connected in parallel, which is connected to the brace in series by the spring element in series, and then, the VED-brace component is incorporated into the primary structure in parallel. Since the VEDs are mainly composed of a viscoelastic material that is usually velocity dependent, the values for VED parameters may be different under different load frequencies. Thus, in this paper, the relations between the VED parameters below are determined under a certain frequency (usually the frequency of free vibration for the damped structure) [42]. Under harmonic excitation, the force-displacement relationships of VED, the VED-brace component and the VED structural system and their connections are illustrated in Fig. 2 [43], where the VED is assumed to be linear and idealized as an elliptical shape with a storage stiffness K'_{d} and K_s stands for the storage stiffness of the VED-brace component. The total curve of the VED structural system can be calculated by adding the curves of the VED-brace component and primary structure, and K' is the storage stiffness of the VED structural system. Since the VED-brace component is composed of the VED and brace, which are connected in series, the force of the VED is equal to that of the VED-brace component, as well as only the brace. Then, the VED-brace component is connected to the primary structure in parallel, and the total system is called the VED structural system. The displacement of the VED-brace component is equal to that of the VED structural system as well as the primary structure. The maximum equality relationships of the damping force and displacement are shown in Fig. 2(a) and Fig. 2(b). The damping forces of the VED and VED-brace component at zero displacement are F_0 and F_{max}, respectively, and F_b and u_{b} are the force and displacement of the brace, respectively. Furthermore, $u_{d_{max}}$ and u_{max} are the maximum displacement of the VED and VED structural system, respectively.

Preliminary, to estimate the energy absorbed by VED, the loss stiffness of the VED is defined as $K'_{d} = F_{max}/u_{d_{max}}$. Then, by considering that the VED and brace are acting in series and together constitute the VED-brace component, the storage stiffness K'_{d} and loss stiffness K'_{d} of the VED-brace component can be calculated as follows [44]:

$$
K'_{d} = \frac{\left(1 + \eta_{d}\right)K'_{d} + K_s}{K'_{d} + K_s} - K_s
$$

$$
K'_{d} = \frac{\eta_{d}K'_{d}}{K'_{d} + K_s}
$$

where $\eta_{d} = K'_{d}/K_s$ is the loss factor of VED. Similarly, the loss factor of the VED-brace component η_{d} can be obtained as:

$$
\eta_{d} = K'_{d} = K'_{d} = \frac{\eta_{d}}{1 + \eta_{d}}\frac{K'_{d}}{K_s}
$$

By adding the stiffnesses K'_{d} and K_{s}, the storage stiffness of the VED structural system K' can be written as:

$$
K' = K'_{d} + K_s
$$
The maximum displacement and the force at zero displacement of the VED-brace component are assumed to be equal to that of the VED structural system. Thus, K'_s and the loss stiffness of the VED structural system K^* are equal ($K'_s = K^*$). Now, the loss factor of the VED structural system can be calculated as:

$$\eta = \frac{\eta_0}{1 + K_s/K'_s}$$ \hspace{1cm} (5)

The relationship of u_d, max and u_{max} can be expressed as:

$$u_{max} = \sqrt{K'_s/K_s} u_{d, max}$$ \hspace{1cm} (6)

2.2. Response reduction theory

Plotting the response spectrum parameters of the VED structural system with the design response spectrum, the response reduction theory can be derived. By providing added damping and stiffness, supplemental VEDs increase the damping ratio and decrease the period of the primary structure. Consequently, dynamic responses are mitigated according to the seismic design response spectrum theory. The spectral displacement S_d, spectral pseudovelocity S_{pv} and spectral pseudoacceleration S_{pa} are three primary parameters of the response spectrum theory. The relationships between them can be expressed as follows [45]:

$$S_d(T, \xi) = \frac{T}{2\pi} S_{pv}(T, \xi) = \left(\frac{T}{2\pi}\right)^2 S_{pa}(T, \xi)$$

where T is the structure natural vibration period, and ξ is the damping ratio.

According to the theory and equation mentioned above, the equivalent period T_{eq} and the equivalent damping ratio ξ_{eq} of the VED structural system are suggested to estimate the reduced seismic responses. The equivalent period T_{eq} can be calculated as:

$$\frac{T}{T_{eq}} = \sqrt{\frac{K'_s}{K'}} = \sqrt{\frac{K_s}{K_s + K'_s}}$$

where T_s is the natural vibration period of the primary structure.

The equivalent damping ratio of the VED structural system ξ_{eq} can be determined as:

$$\xi_{eq} = \xi_0 + \varphi_\xi$$

where the recommended value of $\varphi = 0.92$ by JSSI [39] is called the reduction factor caused by the seismic response of random vibration and the phase angle difference in the VED structural system, ξ_0 is the material damping ratio, and ξ_ξ is the added damping ratio of the VED. Using the energy dissipation method, ξ_{eq} can be calculated as follows:

$$\xi_\xi = \frac{E_d}{4\pi E_s} = \frac{\eta}{2}$$

where $E_d = \pi K^* u_{max}^2$ is the energy dissipated by the VED structural system and $E_s = (K_s + K'_s) u_{max}^2/2$ is the strain energy of the VED structural system.

As mentioned above, the addition of VEDs can effectively mitigate the seismic responses of the primary structure; thus, to measure the reduction effect, the displacement reduction ratio R_d and pseudoacceleration reduction ratio R_{pa} are defined as follows [44]:

$$R_d = \frac{S_{d}(T_{eq}, \xi_{eq})}{S_{d}(T_s, \xi_0)} = \frac{T_{eq}}{T_s} \frac{S_{pv}(T_{eq}, \xi_{eq})}{S_{pv}(T_s, \xi_0)}$$

$$R_{pa} = \frac{S_{pa}(T_{eq}, \xi_{eq})}{S_{pa}(T_s, \xi_0)} = \frac{T_{eq}}{T_s} \frac{S_{pa}(T_{eq}, \xi_{eq})}{S_{pa}(T_s, \xi_0)}$$

where D_T is the reduction rate of the design response spectrum caused by the increasing damping ratio. Because of the phase angle of the force-displacement relationship of the VED structural system, the spectral acceleration $S_{a}(T_{eq}, \xi_{eq})$ of the VED structural system differs with the pseudoacceleration $S_{pa}(T_{eq}, \xi_{eq})$ of the VED structural system [45]. Their numerical relationship is derived from Fu and Kasai [43], which can be expressed as:

$$S_a(T_{eq}, \xi_{eq}) = \sqrt{1 + 25S_{pa}(T_{eq}, \xi_{eq})^2}$$

Then, the acceleration reduction ratio R_a can be written as:
For different natural vibration periods of the structures, the characteristics of S_{np} and S_{np} are different. Then, the formulae of R_d and R_s can be further derived as follows:

1. When the natural vibration periods of the structures are in the short period range, S_{np} is a constant, and S_{np} is directly proportional to T. Additionally, the equivalent period is almost unchanged under random earthquake excitation. Therefore, the Eqs. (11) and (12) can be written as:

$$R_d = D_s \left(\frac{T_{eq}}{T_g} \right)^2$$ \hspace{1cm} (16)

$$R_{np} = R_s \left(\frac{T}{T_{eq}} \right)^2$$ \hspace{1cm} (17)

Substituting Eq. (17) into Eq. (15), R_s can be written as:

$$R_s = \left[1 + 4\xi^2 R_{np} \right] = \left[1 + 4\xi^2 R_d \left(\frac{T}{T_{eq}} \right)^2 \right]$$ \hspace{1cm} (18)

2. When the natural vibration periods of structures are in the medium or long period range, S_{np} is a constant. Then, Eq. (11) can be simplified as:

$$R_d = D_s \frac{T_{eq}}{T_g}$$ \hspace{1cm} (19)

The calculation for R_s is the same as Eq. (18).

2.3. The details of the ERRC

According to the aforementioned formulae, the response reduction ratios R_d and R_s can be written as a continuous function of η_s and K_s/K_i by substituting Eqs. (8) and (13) into the equations of R_d and R_s. Then, the R_d-R_s curve, the so-called ERRC, can be plotted. The detailed drawing procedure will be illustrated subsequently.

In this paper, the ERRC has been plotted according to Chinese code [46], and the formula for the spectral reduction rate D_s caused by increasing damping ratio mentioned earlier and the expression for the design response spectrum determined below from Eqs. (20)–(23) have been developed accordingly. According to the code, the range from the short to the medium period are recommended between 0.1 s and 5 T_g, which is the period range of most practical buildings, where T_g is the characteristic period of the design response spectrum considering the impact of near and far field earthquakes. Especially, further investigation may be needed for the damped structure under the near field earthquakes due to the characteristic of short duration pulses of long period with large peak ground velocities and accelerations. The design response spectrum can be expressed as:

$$S_{np} = \begin{cases}
(10(\eta_s - 0.45)T + 0.45)\xi \max, & (0<T \leq 0.1s) \\
(0.3T + 0.45)\xi \max, & (0.1s < T \leq T_g) \\
(0.2T + 0.45)\xi \max, & (T_g < T \leq 5T_g) \\
(0.9 + 0.05 - \xi) \max, & (5T_g < T \leq 6T_g)
\end{cases}$$ \hspace{1cm} (20)

$$\gamma = 0.9 + 0.05 - \frac{\xi}{0.3 + 6\xi}$$ \hspace{1cm} (21)

$$\eta_s = 0.02 + 0.05 - \frac{\xi}{4 + 32\xi}$$ \hspace{1cm} (22)

$$\eta_s = 1 + \frac{0.05 - \xi}{0.08 + 1.6\xi}$$ \hspace{1cm} (23)

where ξ_{max} is the maximum of the earthquake affecting coefficient, g is the acceleration of gravity, γ is the exponential of the downward section of the curve, η_s is the slope adjustment coefficient of the linear descending section, and η_s is the damping adjustment factor.

According to the derived response reduction ratio Eq. (11) and the characteristics of S_{np}, R_d can be expressed as follows using the design response spectrum given above:

1. For short period structures (0.1 s $T \leq T_g$), R_d can be derived as

$$R_d = \frac{S_{np}(T_{eq}, \zeta_{eq})}{S_{np}(T_g, \zeta_{eq})} = \left[\frac{\eta_{20}}{\eta_{30}} \left(\frac{T_g}{T_{eq}} \right)^2 \right]$$ \hspace{1cm} (24)

where η_{20} and η_{30} can be calculated from Eq. (23) using the value of ζ_{eq} and ζ_{eq}, respectively.

2. For medium period structures ($T_g < T \leq 5T_g$), R_d can be derived as

$$R_d = \frac{S_{np}(T_{eq}, \zeta_{eq})}{S_{np}(T_g, \zeta_{eq})} = \left[\frac{\eta_{20}}{\eta_{30}} \left(\frac{T_g}{T_{eq}} \right)^2 \right]^{\gamma}$$ \hspace{1cm} (25)

where η_{20} and η_{30} can be calculated from Eq. (21) using the value of ζ_{eq} and ζ_{eq}, respectively.

By expressing stiffness ratios which are the ratio of stiffness parameters to K_i (i.e., K_s/K_i and K_s/K_i etc.), the ERRC can be plotted by the following procedures:

1. Assume a reasonable stiffness ratio of the brace to primary structure K_i/K_i, which is usually a quite large value, and the recommended value is $K_i/K_i > 5$ [43].

2. Set the values of η_s and K_s/K_i, and then calculate the ratio of equivalent period T_{eq}/T_i and equivalent damping ratio ζ_{eq} according to Eqs. (8) and (9), respectively.

3. Calculate the response spectrum reduction rate η_{20}/η_{30} using the values of ζ_{eq} and ζ_{eq} (short and medium period). For the medium period primary structure, the values of η_s and η_s should be calculated, and the ratio T_i/T_g should be set.

4. For short period structures, calculate R_d using Eq. (24); for the medium period, calculate R_d using Eq. (25). R_s can be calculated using Eq. (18).

5. Next, repeat steps 2–4 illustrated above; the ERRCs can be plotted according to different η_s and K_s/K_i.

For an RC structure, ζ_{eq} is equal to 0.05. As shown in Fig. 3, by setting $K_s/K_i = 10$, $0.3 \leq \eta_s \leq 2$, $0 \leq K_s/K_i \leq 3$, and $T_i/T_g = 1.5$, the ERRCs can be plotted for structures of short and medium periods, respectively.

For the short period structure, both reduction ratios R_s and R_s are less than 1, which means the structural responses are reduced using different combinations of η_s and K_s/K_i. With a small constant K_s/K_i, as factor η_s increases, the reduction ratio R_d decreases. However, for a relatively large constant K_s/K_i such as $K_s/K_i = 3$, the reduction ratio R_s decreases until a specific increasing value of η_s, and then, R_s starts to increase. Thus, the combination of a large constant K_s/K_i and specific large η_s value of the VED cannot reduce the acceleration response continuously.

For a medium period structure with a constant η_s and increasing stiffness ratio K_s/K_i, the reduction ratio R_d decreases initially until some specific values of K_s/K_i, and then, it starts to increase, whereas R_s decreases continuously. Additionally, the combination of relatively large K_s/K_i value and a small η_s value may lead to a R_s value that is larger than 1. Thus, this combination is unreasonable for acceleration response reduction.
2.4. The details of the EPRRC

In this section, the ERRC is developed to the EPRRC. The plastic performance of the primary structures is taken into account. Because under moderate and severe earthquakes, the primary structures with VEDs produce the larger drift compared with frequent earthquakes, which causes the primary structure to enter a plastic stage. According to the philosophy of the performance-based design method, the performance targets should be satisfied not only in the elastic stage but also in the plastic stage of the structures under different earthquake levels. Obviously, when the structures are in the plastic stage, the design method based on the ERRC cannot ensure that the performance targets are satisfied. Therefore, the development of the EPRRC is worthwhile and can be reasonably used to estimate and design structures with VEDs in the elastic-plastic stage.

To derive the EPRRC, the primary structure is considered with an elastic-plastic bilinear curve, and the VED-brace component is still modeled with an elliptical shape. By superposing these two curves, the elastic-plastic curve of the VED structural system can be depicted as shown in Fig. 4, where \(F_y \) and \(u_{y0} \) are the yielding force and yielding displacement of the primary structure, respectively, \(\beta \) is the stiffness loss ratio after yielding, and \(K_s \) and \(K_{eq} \) are the secant stiffness of the primary structure and elastic-plastic VED structural system, respectively.

Similar to the ERRC, the equivalent period \(T'_{eq} \) and the equivalent damping ratio \(\zeta'_{eq} \) of the elastic-plastic VED structural system need to be calculated to derive the equations for the EPRRC. For the elastic-plastic primary structure, the equivalent period of primary structure \(T'_s \) can be calculated as:

\[
T'_s = T_s \left(K_s/K'_{eq} \right) = T_s \frac{\mu_s}{1 + \beta \mu_s - \beta}
\]

(26)

where \(\mu_s = u_{\text{max}}/u_{y0} \) is the plasticity factor. Then, \(T'_{eq} \) can be expressed as:

\[
T'_{eq} = T'_s \left(K'_{eq}/K_s \right) = T'_s \frac{1 + \beta (\mu_s - 1) \mu_s}{1 + \beta (\mu_s - 1) \mu_s K'_{eq}/K_s}
\]

(27)

To calculate the equivalent damping ratio \(\zeta'_{eq} \), in addition to the material damping ratio \(\zeta_s \) and the added damping ratio of the VED \(\zeta'_a \), the effective damping ratio of the primary structure \(\zeta_s' \) should also be considered. Then, \(\zeta'_{eq} \) can be calculated as:

\[
\zeta'_{eq} = \zeta_s + \zeta'_a + \varphi \zeta'_s
\]

(28)

By using the similar expression of Eq. (10), the two terms of Eq. (28) \(\zeta'_s \) and \(\zeta'_a \) can be derived as follows:

\[
\zeta'_s = \frac{1}{2} \frac{\mu_s K'_s/K_s}{1 + \beta (\mu_s - 1) \mu_s K'_{eq}/K_s}
\]

(29)

\[
\zeta'_a = \frac{2 \kappa (1 - \beta) (\mu_s - 1)}{\pi \mu_s [1 + \beta (\mu_s - 1) \mu_s K'_{eq}/K_s]}
\]

(30)

where \(\kappa \) is the damping modification coefficient in which the feature of the hysteretic loop is taken into account. For the full, moderate and poor hysteretic loops, it is recommended by ATC-40 that the values of \(\kappa \) are 1, 2/3 and 1/3, respectively [31]. The detailed derivation process of \(\zeta'_s \) and \(\zeta'_a \) can be found in Appendix A.

Considering the randomness of earthquake intensity, the plasticity factor will change from 1 to \(\mu_s \). Accordingly, \(\zeta'_s \) will also change with the change in \(\mu_s \). Therefore, under random seismic excitation, \(\zeta'_s \) can be expressed as:

\[
F
\]

Fig. 4. Force-displacement relationship of the VED structural system.
Fig. 5. ERRCs and EPRRCs.
\[\zeta_i = \frac{1}{\mu_i} \int_0^\infty \zeta_i(\mu) \, d\mu = \frac{2\pi}{\mu_i} \left(\ln \frac{m(\mu_i - 1) + n}{\mu_i} - \frac{n}{m} \ln n \right) \]
\[m = \beta + K_d/K_s \]
\[n = 1 + K_s/K_i \]

Due to the plastic behavior of the primary structure, the spectral displacement \(\xi_0 \) and acceleration \(\xi_1 \) must be calculated to derive the response ratios for the elastic-plastic primary structure. Therefore, the equivalent damping ratio of the primary structure without VED \(\zeta_{eq}^* \) should be derived. Considering \(\xi_0^* \), \(\xi_1^* \) can be derived as:

\[\zeta_{eq}^* = \zeta_0^* + \zeta_1^* \]

where \(\zeta_0^* \) is the effective damping ratio of the elastic-plastic structure without VED. Using a similar expression as Eq. (10), \(\zeta_1^* \) can be derived as:

\[\zeta_{eq}^* = \frac{2\pi(1 - \beta)(\mu_i - 1)}{\mu_i^2} \ln \left(1 + \frac{\mu_i}{\beta - \beta} \right) \]

The detailed derivation process of \(\zeta_{eq}^* \) can also be found in Appendix A.

Similar to the derivation of \(\zeta_i^* \), due to the random seismic excitation, \(\zeta_1^* \) can be derived as:

\[\zeta_i^* = \frac{1}{\mu_i} \int_0^\infty \zeta_i(\mu) \, d\mu = \frac{2\pi}{\mu_i^2} \ln \left(\frac{1 + \beta_i - \beta}{\mu_i^2} \right) \]

Then, according to the natural vibration periods of the primary structures, the plastic response reduction ratios \(R_{eq}^* \) and \(R_{eq}^\prime \) for displacement and acceleration, respectively, can be defined as follows:

(1) For short period structures \((0.1 < T < T_e)\), \(R_{eq}^* \) can be derived as

\[R_{eq}^* = \frac{S_0(T_{eq}^* T_{eq})}{S_0(T_{eq}^* T_{eq})} = \frac{\eta_0}{\eta_0} \left(\frac{T_{eq}^*}{T_{eq}} \right)^2 \]

(37)

where \(\eta_0 \) can be calculated from Eq. (23) using the values of \(\zeta_{eq}^* \) and \(\zeta_{eq}^\prime \), respectively. Similar to the derivation of \(R_{eq}^* \), the phase angle of the force-displacement relationship of the VED structural system, \(R_{eq}^\prime \) can be written as:

\[R_{eq}^\prime = \sqrt{1 + 4(\zeta_{eq}^* - \zeta_{eq}^\prime)^2} \]

(38)

(2) For the medium period structures \((T_e < T \leq 5T_e)\), \(R_{eq}^* \) can be derived as

\[R_{eq}^* = \frac{S_0(T_{eq}^* T_{eq})}{S_0(T_{eq}^* T_{eq})} = \frac{\eta_0}{\eta_0} \left(\frac{T_{eq}^*}{T_{eq}} \right)^2 \]

(39)

\[R_{eq}^\prime = \frac{S_0(T_{eq}^* T_{eq})}{S_0(T_{eq}^* T_{eq})} = \frac{\eta_0}{\eta_0} \left(\frac{T_{eq}^*}{T_{eq}} \right)^2 \]

(39)

where \(\gamma_{eq} \) and \(\gamma_{eq}^\prime \) can be calculated from Eq. (21) using the values of \(\zeta_{eq} \) and \(\zeta_{eq}^\prime \), respectively. The calculation of \(R_{eq}^\prime \) is the same as Eq. (38).

According to the abovementioned formulae, the response reduction ratios \(R_{eq}^* \) and \(R_{eq}^\prime \) can also be written as a continuous function of \(\eta_0 \) and \(K_s/K_i \). Then, by referring to the plotting procedures of the ERR, the \(R_{eq}^* \) curve, which is called the EPRRC, can be plotted similarly. As mentioned, the VED parameters are usually frequency dependent.

Therefore, under different excitation frequencies, the response reduction ratios \(R_{eq}^* \) and \(R_{eq}^\prime \) are usually different for the change in VED parameters. The EPRRCs are plotted in the following analysis according to the analysis result and the design response spectrum.

2.5. Comparative study between the EPRRC and ERRC

To analyze the influence of the plastic behavior of the primary structures on the response reduction of the VED structural system, the EPRRC and ERRC are drawn together with the same parameters of the VEDs. To identify the differences between them, different plasticity coefficients of the primary structure \(\mu_i = 1.5, 2.0 \), and \(3.0, \) are considered, \(\beta = 0.6, \omega = 2/3 \) are assumed, and the parameters of VEDs are set as \(K_p/K_i = 10, \zeta_p = 0.05, T_o/T_e = 1.5, 0.3 \leq \eta_0 \leq 2 \) and \(0 \leq K_p/K_i \leq 3, \) equivalent to the parameters in Fig. 3. The EPRRCs and the ERRCs are then plotted together in Fig. 5. Based on the analysis, the EPRRCs are similar to that of the ERRCs, but the differences between the ERRCs and the EPRRCs are also obvious. To measure the differences, \(\rho_0 \) and \(\rho_1 \) are two different ratios of the displacement reduction and the acceleration reduction for structures with different periods, respectively, as shown in Tables 1–4.

Based on the same value of \(\eta_0 \) or \(K_p/K_i \), the difference ratios in response reduction for different plasticity coefficients of the elastic-plastic primary structure are compared, as shown in Tables 1–4. For example, for short period structures in Table 1, with the same plasticity coefficient, for \(\eta_0 = 1, \) as \(K_p/K_i \) increases, \(\rho_0 \) decreases as negative values, and \(\rho_1 \) increases as positive values. Thus, the ERRC may underestimate the response reduction and overestimate the acceleration response reduction, especially for a large \(K_p/K_i \). Therefore, for \(\eta_0 = 1, \) with an increasing \(\mu_s \), \(\rho_0 \) increases with small values of \(K_p/K_i \), but decreases with large values of \(K_p/K_i \), and \(\rho_1 \) increases continuously with an increasing \(\mu_s \), where \(\rho_1 \) always has a positive value. For \(\mu_s \) usually has a negative value, except for the condition of \(\mu_s = 3, \eta_0 = 2. \) This finding indicates that with a large combination of \(\mu_i \) and \(\eta_0 \), ERRC shows a tendency toward an overestimation of the displacement response reduction. For \(K_p/K_i = 0.5, \) with an increasing \(\mu_s \), \(\rho_0 \) decreases with the small values of \(\eta_0 \) but increases with large values of \(\eta_0 \), and \(\rho_1 \) increases continuously with the same values of \(\eta_0 \).

Similarly, these increasing and decreasing regularities can also be found for medium period structures, as shown in Tables 3–4. Positive values of \(\rho_0 \) are found to be greater than those in short period structures, especially for a large \(\mu_s \). Thus, the ERRC may overestimate the displacement response reduction due to the development of plastic behavior for the medium period structure. Similarly, for other values of \(\eta_0 \) and \(K_p/K_i \), this comparison can also be performed as described above.

Because of the development of the elastic-plastic behavior of the primary structures, according to the comparative results mentioned above, the ERRC may overestimate the response reduction effects of the
Table 2
Difference ratios for short period structures (K*/Ks = 0.5).

| Difference ratios | ρd = | Kd/Ks | × 100% | ρs = | Ks/Kd | × 100% |
|-------------------|------------------|----------|------------------|------------------|
| μi | 1.5 | 2 | 3 | 1.5 | 2 | 3 |
| ηi | 0.3 | 5.37% | 6.65% | 5.52% | 3.59% | 7.82% |
| | 0.5 | 4.34% | 5.04% | 6.30% | 3.43% | 7.66% |
| | 1 | 2.78% | 2.55% | 2.82% | 3.56% | 8.06% |
| | 1.5 | 1.93% | 1.17% | 0.84% | 3.78% | 8.54% |
| | 2 | 1.39% | 0.29% | 0.44% | 3.97% | 8.93% |

4. Plot the area equivalent bilinear capacity spectrum that intersects with the capacity spectrum at the SPP in the plastic stage, and then, the inflection point can be denoted as the yielding point (Syy, Sx).

Calculate the plasticity coefficient μi and the ratio of the post-yielding stiffness β using the following equations:

\[\mu_i = \frac{S_{dy}}{S_{dx}/S_{du}} \]

\[\beta = \frac{S_{dy} - S_{dx}}{S_{dy} - S_{dx}} \]

5. Set the stiffness ratio Ka/Ks and then plot the EPRRCs. Assume the loss factor ηi (the typical value is 1–1.4, which is close to the bottom of the figure of the EPRRC) of the VEDs installed at the ith story, and obtain the ratio of the stiffness K*/Ka according to the EPRRCs and Rdi. Moreover, the condition K*/Ka > 5 should be fulfilled [43].

6. Calculate the storage stiffness of the VEDs Kdi = Kd/Ka and the brace stiffness Kbi. The maximum damping force Fdi can then be expressed as follows:

\[F_{di} = \sqrt{1 + \eta_i^2} K_{bi} h_i [\delta] \frac{K^*}{K_{di}} \]

where K* can be calculated according to Eq. (2).

7. Choose the suitable VEDs and braces installed at the ith story.

4. Design example and verification

The proposed design method is illustrated by application to a benchmark six-story RC structure to design the parameters of VEDs for mitigating the seismic responses [47]. The six-story RC structure model is built by the program PERFORM-3D [48]. Then, a time history analysis is conducted to verify the effectiveness of the design procedures suggested above.

4.1. Model illustration of the structure

In this study, a benchmark six-story RC frame is denoted S0. The plan, elevation, and corresponding story weight are shown in Fig. 7. The cross dimensions of the structural members are listed in Table 5. The design response spectrum for moderate earthquakes provided by Chinese code is given as follows:

\[S_{du} = \begin{cases}
1 + 11.5T, & (0 < T \leq 0.1s) \\
2.25, & (0.1s < T \leq 0.4s) \\
2.25 \left(\frac{24}{T} \right)^{0.9}, & (0.4s < T \leq 2s) \\
2.25 \left(0.2^{2.09} - 0.02(T - 2) \right), & (2s < T \leq 6s)
\end{cases} \]

The recurrence time-interval of the moderate earthquake is 475 years. For this structure, ηi is set to 0.05.

For the longitudinal steel bars, the yielding strengths and ultimate strengths are 400 MPa and 520 MPa, respectively. For the stirrup steel bars, the yielding strengths and ultimate strengths are 235 MPa and 352.5 MPa, respectively. The axial compressive strength of the concrete is 30 MPa. Further details for the concrete are illustrated in Chinese code for design of concrete structures [49]. The strut model is used to model this frame structure. On each side of the beams and columns, the moment hinges and fiber segments are used to simulate the plastic deformation of the structural members, respectively. The moment-curvature relationship of the moment hinges is based on the trilinear model recommended by Takeda [50]. The fiber segments are built according to the placement of the steel bar in the columns.
4.2. Design result

In this study, the target drift δ for S_0 is set to $1/200$. Pushover analysis is performed on S_0. Then, the capacity spectrum can be obtained as shown in Fig. 8. According to the capacity spectrum method, the SPP is determined to be $(66.5 \text{ mm}, 94.4 \text{ gal})$. The story elastic stiffness can be calculated according to the $Q_i-\delta_i$ relationship of each story. At the pushover analysis step of the SPP, the story shear force Q_i and the story drift δ_i can be gathered. Then, the displacement reduction ratio R_{di} is calculated using Eq. (40). These results are listed in Table 6. According to the condition $R_{di} < 1$ illustrated in the design procedure, stories 1, 2 and 3 should be installed with VEDs to mitigate the seismic response.

Assuming that the area under the equivalent bilinear capacity spectrum is equal to that of the capacity spectrum, the equivalent bilinear capacity spectrum can be obtained by intersecting the capacity spectrum at the SPP, and the yielding point can be determined at the inflection point as $(36.0 \text{ mm}, 62.0 \text{ gal})$, as shown in Fig. 8. Then, the plasticity coefficient μ_p and stiffness loss ratio after yielding η_p can be calculated as 1.21 and 0.62 using Eqs. (41) and (42), respectively.

The natural vibration period is obtained as 1.51 s by performing the model analysis, which is in the medium period range. T/T_s is calculated as 3.78. Then, the EPRRC is plotted for the medium period structure by

Table 5
Dimensions of structural members.

<table>
<thead>
<tr>
<th>Story</th>
<th>Cross dimension of beam (mm × mm)</th>
<th>Cross dimension of column (mm × mm)</th>
<th>Slab thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side span</td>
<td>X1–X8</td>
<td>Y1–Y4</td>
<td>Side span</td>
</tr>
<tr>
<td>1</td>
<td>300 × 600</td>
<td>300 × 400</td>
<td>300 × 400</td>
</tr>
<tr>
<td>2–6</td>
<td>300 × 600</td>
<td>300 × 400</td>
<td>300 × 400</td>
</tr>
</tbody>
</table>

![Diagram](image_url)
setting the K_d/K_b of VEDs is set as 5, as shown in Fig. 9. In this study, the loss factor η_i of VEDs is set as 1.4, and then, the ratios of loss stiffness K_d/K_b of VEDs installed at stories 1, 2 and 3 can be obtained according to η_i and R_{di} in the EPRRCs, as shown in Fig. 9. According to the aforementioned design procedure, the storage stiffness of the VED K_d, the brace stiffness K_b and the maximum damping force F_d are calculated as shown in Table 7, which shows that the calculated results satisfy the condition $K_\text{d}/K_\text{b} > 5$ recommended in the design procedure.

Four VEDs are needed for each story of the first three stories, and both frames on the Y1 and Y4 axes are arranged with the VEDs. The arrangements of the VEDs are shown in Fig. 10. The damping parameters of each VED are calculated as the total damping parameters divided by the number of dampers. Then, for convenience of the application, the calculated damping parameters of each VED are rounded up to suitable practical parameters, as listed in Table 8.

4.3. Verification

To verify the effectiveness of the design method, time history analysis is conducted on the structure with and without VEDs, which are denoted S0 and S1. Comparisons of the story drifts and story shear forces are performed between S0 and S1. In the time history analysis process, 10 different seismic waves are chosen according to the design response spectrum following Eq. (44) [51,52]. Among the 10 seismic waves, two of those (ASW1–2) are artificial seismic waves, and the others (NSW1-8) are natural seismic waves. The detailed information for the natural seismic waves is shown in Table 9. The design response spectrum and the response spectra of artificial seismic waves and natural seismic waves are presented in Fig. 11(a) and Fig. 11(b), respectively.

For different earthquake intensities, the peak ground accelerations (PGAs) of the abovementioned waves are 0.07 g for frequent earthquake, 0.2 g for moderate earthquake, and 0.4 g for severe earthquake. For PGA = 0.2 g, the time history analysis is performed using the S0 model. The calculated results and the target drift, which is 1/200 during a moderate earthquake as mentioned earlier, are presented in

Table 6
Calculated results of the pushover analysis.

<table>
<thead>
<tr>
<th>Story</th>
<th>Shear force Q_i (kN)</th>
<th>Story drift δ_i (rad)</th>
<th>Elastic stiffness $K_\text{d}i$ (kN/mm)</th>
<th>Target story drift δ_t (rad)</th>
<th>Displacement reduction ratio R_{di}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3140</td>
<td>0.0161</td>
<td>141</td>
<td>1/200</td>
<td>0.81</td>
</tr>
<tr>
<td>2</td>
<td>2670</td>
<td>0.0158</td>
<td>170</td>
<td>1/200</td>
<td>0.79</td>
</tr>
<tr>
<td>3</td>
<td>2304</td>
<td>0.0170</td>
<td>173</td>
<td>1/200</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>1928</td>
<td>0.0214</td>
<td>171</td>
<td>1/200</td>
<td>1.07</td>
</tr>
<tr>
<td>5</td>
<td>1422</td>
<td>0.0327</td>
<td>164</td>
<td>1/200</td>
<td>1.64</td>
</tr>
<tr>
<td>6</td>
<td>743</td>
<td>0.0658</td>
<td>140</td>
<td>1/200</td>
<td>3.29</td>
</tr>
</tbody>
</table>

Table 7
Total damping parameters of the VEDs.

<table>
<thead>
<tr>
<th>Story</th>
<th>Total parameters of the VEDs at each story</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Target displacement u_i (mm)</td>
<td>27.5</td>
</tr>
<tr>
<td>Loss factor η_i</td>
<td>1.4</td>
</tr>
<tr>
<td>Loss stiffness ratio K_d/K_b</td>
<td>0.12</td>
</tr>
<tr>
<td>Storage stiffness ratio K_d/K_b</td>
<td>0.09</td>
</tr>
<tr>
<td>Storage stiffness K_d (kN/mm)</td>
<td>12.69</td>
</tr>
<tr>
<td>Brace stiffness K_b (kN/mm)</td>
<td>705</td>
</tr>
<tr>
<td>Damper displacement u_d (mm)</td>
<td>27.03</td>
</tr>
<tr>
<td>Maximum damping force F_{d} (kN)</td>
<td>590.12</td>
</tr>
</tbody>
</table>
Table 9
Seismic waves input information.

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Event</th>
<th>Distance of epicentral (km)</th>
<th>Moment magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSW1</td>
<td>1942</td>
<td>Borrego</td>
<td>56.88</td>
<td>6.5</td>
</tr>
<tr>
<td>NSW2</td>
<td>1952</td>
<td>Kern County</td>
<td>38.42</td>
<td>7.4</td>
</tr>
<tr>
<td>NSW3</td>
<td>1971</td>
<td>San Fernando</td>
<td>22.77</td>
<td>6.6</td>
</tr>
<tr>
<td>NSW4</td>
<td>1971</td>
<td>San Fernando</td>
<td>39.45</td>
<td>6.6</td>
</tr>
<tr>
<td>NSW5</td>
<td>1976</td>
<td>Friuli, Italy-02</td>
<td>41.37</td>
<td>5.9</td>
</tr>
<tr>
<td>NSW6</td>
<td>1978</td>
<td>Tabas, Iran</td>
<td>24.07</td>
<td>7.4</td>
</tr>
<tr>
<td>NSW7</td>
<td>1979</td>
<td>Imperial Valley-06</td>
<td>35.64</td>
<td>6.5</td>
</tr>
<tr>
<td>NSW8</td>
<td>1980</td>
<td>Imperial Valley-06</td>
<td>15.84</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Fig. 12. According to the average story drift of S0, the drifts of the 1st–3rd stories exceeded the target story drifts, and thus, the VEDs should be installed.

Next, time history analysis is performed on S0 and S1 under different earthquake levels. The average calculated results for different earthquake levels are compared to verify the response reduction effect, as shown in Figs. 13–15. The target story drifts for frequent and severe earthquakes are set to 1/550 and 1/80 according to the Chinese code, respectively [38]. As shown in Figs. 13–15, the maximum average story drifts of the structure are decreased from 1/443 to 1/563 for frequent earthquakes, from 1/167 to 1/205 for moderate earthquakes, and from 1/70 to 1/92 for severe earthquakes. All the target story drifts are satisfied for different earthquake levels. Additionally, the story shear forces are reduced due to the installation of VEDs. To check the energy dissipation effects, the hysteretic loops of the VEDs installed on the Y1 axis of the 1st–3rd stories are plotted in Fig. 16. The corresponding seismic wave is ASW1 for PGA = 0.2 g. According to the hysteretic loops, which are full, the VEDs show good energy dissipation capacity during a moderate earthquake.

5. Conclusion

In this paper, based on the EPRRC, a direct design method of VED parameters has been proposed by referring to the direct displacement-based design theory, which is the expansion of the method using the ERRC. To estimate the effects of the EPRRC, comparisons were made between the ERRC and the EPRRC. A benchmark six-story RC frame was illustrated adopting this proposed design method, and time history analysis was conducted to verify the effectiveness of this method. Thus, the following conclusions were obtained:

(1) The derived EPRRC can reflect the relationships between the VED parameters and the response reduction effect of the VED structural system in the elastic-plastic stage. The development of the EPRRC provides a more detailed theory for the design parameters of the VEDs of dampened structures in the elastic-plastic stage.

(2) The traditional ERRC can overestimate response reduction of the VEDs, especially for acceleration reduction, whereas the EPRRC can estimate the response reduction of the VED structural system in the elastic-plastic stage, indicating that the design method based on the EPRRC is more reliable.

(3) Using the above-suggested design method, the displacement and shear force responses can be effectively reduced under different earthquake levels, and the story drift targets can also be satisfied as expected. Referring to the above discussion, it can be concluded that the proposed method is effective.

However, there are also some limitations to the proposed design method. The torsion irregularities and the flexural deformation of the primary structure were not considered in this study, in which only the shear stiffness of the primary structure was taken into account. These limitations are expected to be solved by upgrading the EPRRC to consider torsion irregularities and flexural deformation of the primary structure in future studies. Additionally, only the direction of the structure, which is the same as the direction of the pushover lateral force, is considered in the proposed design method. To consider every direction to install and design the damper, the 3D pushover may be adopted for the design of the VED parameters [53], which is expected to be examined in future analyses.

Acknowledgements

This study was supported by the National Natural Science Foundation of China under Grant nos. 51778489 and 51778490, the Shanghai Pujiang Program under Grant no. 17PJ1409200, the Fundamental Research Funds for the Central Universities under Grant no. 22120180064, the Key Program for International S&T Cooperation Projects of China under Grant no. 2016YFE0127600, the Sichuan Department of Science and Technology under Grant no. 2016JZ0009, and the Key Laboratory of Green Building in West China under Grant no. LSKF201804.
Fig. 12. Seismic response for time history analysis (PGA = 0.2 g).

(a) Story drifts of S0

(b) Story shear forces of S0

Fig. 13. Average seismic response for time history analysis (PGA = 0.07 g).

(a) Average story drift

(b) Average story shear force

Fig. 14. Average seismic response for time history analysis (PGA = 0.2 g).

(a) Average story drift

(b) Average story shear force
Appendix A. Detailed derivation of the damping ratios

With the aim of deriving EPRRC, the equivalent damping ratio ζ_{eq} of the plastic-elastic VED structural system and of the primary structure without VED ζ_{s0} must be calculated. The added damping ratio of the VED ζ_{a} and the effective damping ratio of the primary structure ζ_{s}^{*} are two components of ζ_{s0}, and the effective damping ratio ζ_{s}^{*} of the primary structure without VED is a part of ζ_{s0}^{*}. The derivation processes for these parameters are given as follows:

(1) According to the calculation diagram shown in Fig. A1, the derivation process of ζ_{s}^{*} is given as follows:

Fig. A1. Calculation of ζ_{s}^{*}.

Fig. 15. Average seismic response for time history analysis (PGA = 0.4 g).

Fig. 16. Hysteretic loops of VEDs.
\[E_{\text{Da}} = \pi K_s u_{\max}^2 \quad \text{(A1)} \]
\[E_s = \frac{1}{2} u_{\max} [K_s u_{\text{y}} + \beta K_s (u_{\text{max}} - u_{\text{y}}) + K_s u_{\text{max}}] \quad \text{(A2)} \]
\[E_s' = \frac{E_{\text{Da}}}{4\pi E_s} = \frac{\mu_s K_s^\prime}{K_s} \quad \text{(A3)} \]

where \(E_{\text{Da}} \) is the energy dissipated by the VED-brace component and \(E_s \) is the strain energy of the VED structural system.

(2) According to the calculation diagram shown in Fig. A2, the derivation process of \(E_s' \) is given as follows:
\[E_{\text{Ds}} = 4 \left([K_s u_{\text{y}} + \beta K_s (u_{\text{max}} - u_{\text{y}})] u_{\text{max}} - K_s u_{\text{y}}^2 - \beta K_s (u_{\text{max}} - u_{\text{y}})^2 \right) = 4K_s (1 - \beta) u_{\text{y}} (u_{\text{max}} - u_{\text{y}}) \quad \text{(A4)} \]
\[E_s = \frac{1}{2} u_{\max} [K_s u_{\text{y}} + \beta K_s (u_{\text{max}} - u_{\text{y}}) + K_s u_{\text{max}}] \quad \text{(A5)} \]
\[E_s' = \frac{E_{\text{Ds}}}{4\pi E_s} = \frac{2\mu_s (1 - \beta) (\mu_s - 1)}{4\pi E_s} \quad \text{(A6)} \]

where \(E_{\text{Ds}} \) is the effective energy dissipation of the primary structure.

(3) According to the calculation diagram shown in Fig. A3, the derivation process of \(E_s'^* \) is given as follows:
\[E_{s^*} = E_{\text{Ds}} = 4K_s (1 - \beta) u_{\text{y}} (u_{\text{max}} - u_{\text{y}}) \quad \text{(A7)} \]
\[E_s^* = \frac{1}{2} u_{\max} [K_s u_{\text{y}} + \beta K_s (u_{\text{max}} - u_{\text{y}})] \quad \text{(A8)} \]
\[E_s'^* = \frac{E_{s^*}}{4\pi E_s^*} = \frac{2\mu_s (1 - \beta) (\mu_s - 1)}{4\pi E_s^*} \quad \text{(A9)} \]

where \(E_{s^*} \) is the effective energy dissipation of the primary structure, and \(E_s^* \) is the strain energy of the primary structure without VED.