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ARTICLE INFO ABSTRACT

The seismic bearing capacity of shallow foundations is affected by inertia forces acting both on the structure and
in the supporting soil. Even though the former have been recognised to play often the major role, by increasing
the horizontal load and the overturning moment transferred to the foundation, both of them must be taken into
account in the seismic design of foundations. Using a pseudostatic approach and based on the upper bound
theorem of limit analysis, a comprehensive set of formulas is derived for the computation of the seismic bearing
capacity of strip footings resting on cohesive-frictional and purely cohesive soils. Results are given in terms of: (i)
reduction coefficients for the Terzaghi's equation of the vertical bearing capacity and (ii) ultimate failure en-
velopes in the space of normalised loading variables. These formulas extend to more general conditions other
literature results, allowing to take into account easily the effects of inertia forces acting both on the super-
structure (load inclination and eccentricity) and into the foundation soil. The reliability of the proposed equa-
tions, suitable for the design practice, is verified through a thorough comparison with other rigorous and ap-
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1. Introduction

Many studies on the seismic bearing capacity of shallow foundations
have shown that inertia forces acting on the structure and in the sup-
porting soil tend to reduce the bearing capacity under seismic condi-
tions. Most works on this topic have been carried out with a pseudo-
static approach [18,22,23,25,3,29,30,32,34,35,5,6,9], by adopting: (i)
different methods (numerical or theoretical) and theories (limit equi-
librium, limit analysis or method of characteristics); (ii) different con-
stitutive assumptions for the soil (purely frictional, purely cohesive or
cohesive-frictional); (iii) different hypotheses on the inertia forces on
the soil (with or without the vertical component) and (iv) on the
structure (equal to or a fraction of those acting on the soil).

Despite the fact that structure inertia has been recognised to play
often the major role in reducing the seismic bearing capacity of shallow
foundations, recent studies have highlighted possible situations in
which even the effects associated to soil inertia can have a significant
relevance, in the case of either frictional [22,6] or purely cohesive [24]
soils. Moreover, most design codes recommend to take into account the
effects of soil inertia in the seismic design of such systems (e.g.: [10]).

Going to the design practice, the bearing capacity of shallow foun-
dations under general loading is usually evaluated by means of simple
approaches, neglecting any possible soil-structure interaction effect. In
this context, codes and guidelines make use of closed form expressions
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for the bearing capacity, given in the form of either the classical
Terzaghi's formula [1,17] or complete three-dimensional failure en-
velopes [10]. With this respect, only few works in the literature provide
empirical formulas including inertia forces both on the structure and
into the soil.

As far as spread footings on cohesive-frictional soils are concerned,
Budhu and Al-Karni [3], Paolucci & Pecker [23] and Cascone et al. [5]
provide reduction factors for the vertical bearing capacity. However,
Budhu and Al-Karni [3] consider the same accelerations into the soil
and the structure; Paolucci & Pecker [23] do not contemplate the effects
of the structure inertia on the N. and N4 bearing capacity factors, while
Cascone et al. [5] refer only to the effects of the seismic action on the N,
term, thus resulting in a limited applicability of the proposed formulas.
Only very recently, Cascone & Casablanca [6] proposed empirical ex-
pressions for the reduction coefficients, derived from the best fit of
numerical results.

On the other hand, no reduction coefficients are available for the
case of shallow foundations on purely cohesive soils, while, in this case,
an approximate equation of the failure envelope was proposed by
Faccioli et al. [11], based on results of limit analysis [24,25].

This work aims to provide a comprehensive set of empirical equa-
tions for the evaluation of the seismic bearing capacity of shallow strip
foundations resting on a homogeneous layer of either cohesive-fric-
tional or purely cohesive soil. Moreover, the relative merits of structure
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and soil inertia in the reduction of the bearing capacity are discussed.
To this end, following a pseudostatic approach, the upper bound the-
orem of limit analysis is used, by modelling the soil as an elasto-plastic
material with a Mohr-Coulomb and Tresca yield criterion respectively.

Given the inherent uncertainties in the definition of the parameters
involved in a bearing capacity calculation, related to both the geo-
technical soil model and the earthquake input motion, the simplicity of
the empirical equation is by all means a key ingredient when suggesting
formulas to be used in the design practice. This is indeed one of the
underlying ideas of this work, where, after a thorough comparison of
the upper bound results with other literature data, simple formulas are
proposed for the reduction coefficients of the Terzaghi's equation,
partly incorporating the empirical equations provided by Hansen [14],
widely used in the static design practice. Moreover, the same reduction
coefficients are used to construct three-dimensional failure envelopes
for shallow strip foundations under pseudostatic loading.

Neither the effects of pore water pressure nor the reduction of the
shear strength of the soil due to seismic effects are taken into account.
Different inertia forces are considered on the structure and into the soil.

2. Problem definition and theoretical framework

Fig. 1 shows the problem under examination, consisting of a shallow
strip foundation (width B, embedment depth D) resting on a homo-
geneous soil (unit weight v, friction angle ¢, cohesion c). The founda-
tion is subjected to an inclined and eccentric load, including both the
static and inertia forces transmitted by the superstructure. The load is
defined by its vertical component V, its horizontal component H = V
tanf and an overturning moment M = Ve, where 8 and e are the angle
of inclination and the eccentricity, respectively. The inertia forces into
the soil are introduced through the pseudostatic coefficients ky, and k,,
acting in the horizontal and vertical direction, respectively. The soil
above the foundation level is replaced by a shear and normal stress
distribution proportional to the dead weight of the lateral soil, g = yD.

The load eccentricity is taken into account only indirectly, by as-
suming a reduced effective width B’= B-2e, in agreement with the
Meyerhof's suggestion [20]. This strategy, often adopted in the litera-
ture to reduce the complexity of the problem at hand, provides a good
approximation of the collapse load for shallow footings resting both on
sand [19] and clay [15,36].

According to limit analysis, an upper-bound of the exact collapse
load can be obtained by equating the power of external forces (P°*") to
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the power of internal dissipation (P'™), computed with reference to a
kinematically admissible collapse mechanism. Following
Dormieux & Pecker [9], a non-symmetrical Prandtl's mechanism is ex-
amined, characterised by two rigid wedges connected by a log-spiral
plastic zone, the latter reducing to a circle for a pure cohesive material.
The geometry of the failure mechanism, completely defined by the two
angles p and y, together with the assumed kinematic field, is given in
Fig. 1(c).

The reader may refer to Chen & Liu [7] for a thorough dissertation
on the upper-bound theorem of limit analysis, while its application to
the specific mechanism considered herein is detailed in Appendix A and
B for a cohesive-frictional soil (M-C yield criterion) and a purely co-
hesive soil (Tresca yield criterion) respectively.

The average limit load corresponding to the assumed failure me-
chanism can be expressed as:

1 ’
i (P2 $) = SYB' Ny + eNeig + gNgis eh)

where Nyi, N and Ny are functions of the geometry of the failure

mechanism, material properties, load inclination, and pseudostatic soil
accelerations. The upper-bound estimate of the bearing capacity is
given by:

.= min qF (p,
qhm H(p,$)<0 qhm (/J IIJ) (2)
where H(p,y) is the vector of physical and/or geometrical constraints.
Eq. (2) can be solved by numerical minimization and the results given
in standard form as:

Qim = %}/B’ YE + CM:E + quE (3)
where N,g, Nz and Ny are the seismic bearing capacity factors.
Based on the best fit of rigorous upper bound numerical solutions,
the following sections provide a comprehensive set of simplified for-
mulas for the seismic bearing capacity factors of shallow strip founda-
tions. In order to simplify the structure of the empirical equations, the
vertical pseudostatic coefficient is not taken into account in their de-
rivation (k, = 0), thus implicitly neglecting any contribution of the
vertical soil acceleration. This assumption if often introduced when
dealing with the seismic stability of geotechnical systems, including
shallow foundations [16,29-31], based on the fact that the vertical
acceleration is generally out of phase with and has a different frequency
content than the horizontal component, with the corresponding peak
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Fig. 1. Shallow strip foundation on homogeneous Mohr-Coulomb soil: (a) geometry and load configuration, (b) failure mechanism and (c) velocity field.
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values never occurring simultaneously [12,16,26,8]. As a result, posi-
tive and negative contributions from the vertical acceleration, on
average, have little effect on the seismic response of the system and can
be reasonably overlooked without significant loss of accuracy. On the
other hand, a thorough investigation on the effects of k, on the pseu-
dostatic calculation of the seismic bearing capacity of shallow foun-
dations has been recently carried out by Cascone & Casablanca [6], at
least with reference to cohesive-frictional soils, showing that positive
(upward) and negative (downward) values of k, tend to reduce and
increase the bearing capacity factors, respectively, compared to the case
of k, = 0.

First, applications of the proposed method to static conditions (k;, =
0) will be discussed. Then, the results for the dynamic case will be given
in terms of reduction factors with respect to the maximum static values
(Nys, Ncs, Ngs), corresponding to a vertically loaded footing (H = 0).

3. Cohesive-frictional soil (y = 0, ¢ = 0, ¢ = 0)

As already pointed out by Soubra [34], the proposed mechanism,
applied to the case of a weightless M-C soil (y = 0), provides the exact
values of the N.s and Ny factors, given by Prandtl [27] and Reissner
[28] respectively, i.e.:
M= (122
Nes = (Ngs — 1)cot ¢

4

On the other hand, when y % 0 both the failure mechanism and the
bearing factors depend not only on the soil friction angle, but also on
the dimensionless coefficients ¢/yB and q/yB. To simplify the calcula-
tion, an “all-minimum” procedure can be adopted, in which each factor
is taken as the minimum of the corresponding term in the bearing ca-
pacity equation [21], i.e.:

Ng = min(()l\f{’é(p, Y i=q, ¢y

H(p,9)

In spite of referring to different failure mechanisms, this procedure
provides a good estimate of the static bearing capacity factors, with
small errors always on the conservative side [21,37]. Moreover, fol-
lowing an “all-minimum” approach, the bearing capacity factors be-
come function of the soil friction angle only.

The upper bound values of N,g, referring to the static condition, are
shown in Fig. 2 for typical values of the soil friction angle, together with
the range of literature data and the approximate function proposed by
Hansen [14]. In agreement with Paolucci & Pecker [23], Fig. 2 indicates
that the upper bound theorem, combined with the non-symmetrical
Prandtl's mechanism, can lead to highly unconservative results with
respect to the Hansen's formula.

As far as the pseudostatic case is concerned, the bearing capacity
load is given by Eq. (3), where the seismic bearing capacity factors can
be written as:

1000
®  Upper Bound
--o- Hansen (1970)
range of literature data %
100 o
o .-
= o -7 o
.o
10 ¢ -
- Hansen (1970):
o~ N,g=1.5(N¢-1)tan¢
1 I‘ 1 | 1 1 1 1 | 1 1 | 1 1 | |
20 25 30 35 40
¢ ]

Fig. 2. M-C soil. Static bearing capacity factor Nys.
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Fig. 3. M-C soil. Reduction coefficients due to soil inertia for: (a) Nys and (b) Nys.
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k
Nyp = ¢y efNys 5)
The reduction coefficients in Eq. (5) are defined as:
Nieg=0)
ef = e
g _ Neg=o ‘=9 GV
& = Nis
(6)

describing the effect of soil inertia and the influence of the horizontal
load transmitted by the superstructure, respectively.

As far as soil inertia effects are concerned, the all-minimum proce-
dure provides exactly ef = 1, as the assumption of weightless soil is
introduced when ¢ # 0. Nonetheless, this is in substantial agreement
with the results by Shi & Richards [33], obtained for y # 0, showing
indeed a negligible dependence of N g on soil acceleration. On the other
hand, Fig. 3 shows the upper bound values of ef and eé‘, together with
the empirical formulas obtained from the best-fit of numerical data, i.e.:

( kn )(0.37 tan ¢0-3)
1-—
tan ¢

0.47
k _ _ _kn
& = (1 tan¢)

For the sake of completeness, Fig. 3 shows also other approximate
solutions proposed in the literature [23,33,6]. Both coefficients depend
strongly on ky, vanishing for k;, = tan¢, corresponding to which soil
fluidization occurs (Richards et al., 1990). A general good agreement is
observed between the upper bound results, the empirical equations
proposed by Cascone & Casablanca [6] and those suggested herein (Eq.
(7)), the latter having the same simple mathematical structure as the
equations proposed by Paolucci and Pecker [23] and Cascone et al. [5],
the difference being only in the exponents.

As far as load inclination effects are concerned, Fig. 4 shows the
upper bound values of ef, eqﬁ and ef, together with the empirical for-
mulas proposed by Hansen [14]. In agreement with Loukidis et al. [19],

k _
eq—

)
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Fig. 4. M-C soil. Reduction coefficients due to load inclination for: (a) N,s, (b) Nys and (c)
Ngs.

soil friction angle does affect the ef coefficient, which tends to vanish
for tanf = tan¢. In this case, the equation:

(1_ tan[i’ )(441 tan ¢1'4)
(8

derived from the best-fit of numerical data, provides a better descrip-
tion of the actual trend exhibited by ef . This trend is less evident for the
other coefficients, corresponding to which the empirical formulas pro-
posed by Hansen [14] provide a reasonable and conservative estimate
of the actual values. It is worth noting that the upper bound results are
in very good agreement with those obtained very recently by Cas-
cone & Casablanca [6] using the method of characteristics.

In order to check the reliability of the proposed formulas, Fig. 5
shows a comparison between the values of the bearing capacity load
provided by the rigorous upper bound solution, the “all-minimum”
procedure and the empirical equations, with reference to the case of a
shallow strip foundation on a cohesive-frictional soil (y = 20 kN/mB, c
= 10 kPa, B = 3m, D = 1m) and assuming the same pseudostatic
accelerations into the soil and the structure (k;, = tanf). As expected,
the all-minimum procedure and the empirical formulas provide slightly
conservative values of the bearing capacity, with a maximum difference
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Fig. 5. M-C soil. Reduction of the seismic bearing capacity due to the combination of soil
inertia and load inclination (y = 20 kN/m® ¢ = 10 kPa, B = 3m, D = 1m, k, = tanf).

of 15% with respect to the rigorous solution.

4. Purely cohesive soil (y = 0, ¢ = ¢, ¢ = 0)

Under static conditions (k, = 0) and vertical load (H = 0), the
upper bound theorem provides the exact values of the bearing capacity
factors, that is:

Nys=1
Ns=2+nm
Nys=0 9

Moving to the pseudostatic case, the bearing capacity load is given
by Eq. (3), where:
Neg =
Nep

NyE=e

koB
eg g Ngs

eck ‘3c/i Nes
k
¥

(10)

and the reduction coefficients are defined as:

NyE (=0)
_ Nie@=0)

t Nis

B _ NiEKy=0)
L M o

i=q, c
11

where ¢ = H/B’ is the shear stress at the foundation base.

Contrary to the case of M-C soil, the seismic bearing capacity factors
were computed following a rigorous application of the kinematic the-
orem (Eq. (2)). On the one hand, in fact, when the sole horizontal loads
are taken into account (H % 0, k;, = 0), the functions N;“E and N,;"E are
identically equal to zero and to one, respectively. On the other hand,
when soil inertia is introduced (ky, % 0), the function ;“E is negative and
the “all-minimum procedure” cannot be applied.

As far as load inclination effects are concerned, Fig. 6 shows a
comparison between the upper bound values of ef, the static solution
provided by Bolton [2] and the simplified formula proposed by Hansen
[14]. The upper and lower bound solutions are virtually the same, the
results being in substantial agreement with the Hansen's equation
(1970).

As far as soil inertia effects are concerned, the best-fit of numerical
data is given by:

2
kpn kp
=1—-aq{——)—b
q q(kh,lim) I\ kntim

aqg = 0. 75kh,lim

®
|

bq = 1. 4kh,lim
eck =1
ek = _q ( ki )_ b ( i )2 ay = 1. 75kn lim
4 7\ Kntim 7\ Kn,lim b, = 1. 4k i, (12)

where kj, ;i is a dimensionless number depending both on the physical
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Fig. 6. Tresca soil. Reduction coefficient due to load inclination for Ns.

and mechanical properties of the soil and on the geometry of the
foundation, i.e.:

Cu

Knjim = ————
y(D + B/2)

13

As pointed out by Pecker & Salencon [25], ky, i, corresponds to the
actual limiting value of the pseudostatic acceleration, beyond which no
further equilibrium is attained into the soil. Its value can be obtained by
minimizing Eq. (2) under the assumption of V. = H = 0.

Fig. 7 reports the upper bound values and the empirical formulas for
the reduction coefficients due to soil inertia, showing a good agreement
in terms of e} and e}. Moreover, as for the case of M-C soil, the factor
N, exhibits a negligible dependence on the pseudostatic soil accel-
eration, thus justifying the approximation for e in Eq. (12).

The reliability of the proposed formulas is illustrated in Fig. 8 with
reference to the case of a shallow strip foundation on a purely cohesive
soil (y = 20kN/m%, B = 4m, D = 1m), assuming three different
values of the ratio z/c, between the shear stress at the foundation base
and the undrained shear strength of the soil. Specifically, Fig. 8 shows a
comparison between the values of the seismic bearing capacity load
provided by the upper bound solution and the empirical equations, the
latter providing slightly conservative values of the bearing load, with a
maximum difference of about 15% with respect to the upper bound
solution.

5. Summary of results and ultimate failure envelopes

Based on the above results, Table 1 summarizes the complete set of
formulas for the seismic bearing capacity of shallow strip foundations
resting on either cohesive-frictional or purely cohesive soils, partly in-
corporating the simplified equations provided by Hansen [14]. Speci-
fically, focusing on the case of purely frictional and purely cohesive
soils, two limiting conditions can be identified for the inertia forces
acting into the soil and the superstructure, i.e.: (i) soil fluidization (k, =
tang or kp, = kpjim) and (ii) sliding along the foundation base (tanf =
tang or © = c,).

Using Eq. (3) together with the reduction coefficients given in
Table 1, and focusing for simplicity on the case of purely shallow
foundations (D = 0), it is possible to construct the three-dimensional
failure envelopes of the foundation in the general space of the loading
variables. This uncoupled procedure neglects any possible interaction
between horizontal and eccentric loads. However, it provides a good
approximation of more rigorous results for foundations on cohesionless
soils, at least in the case of a positive load eccentricity-inclination
combination [19], which is the most likely under seismic conditions.
Moreover, it provides always slightly conservative results in the case of
purely cohesive soils [13].
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Fig. 8. Tresca soil. Reduction of the seismic bearing capacity due to the combination of
soil inertia and load inclination (y = 20 kN/m® B = 4m, D = 1 m).

5.1. Cohesionless soils (y = 0, c = 0, ¢ = 0)

In static conditions, the ultimate bearing capacity of a strip foun-
dation under a centered vertical load is Vipu = 0.5yB?N,s. After
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Table 1
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Reduction coefficients for the seismic bearing capacity of shallow strip foundations on a homogeneous layer of cohesive-frictional and purely cohesive soil.

Cohesive-frictional soil
(y=0,¢=0,¢c=0)

Purely cohesive soil
(y=0,¢=0,¢c=c)

seismic bearing capacity load

load eccentricity (e = M/V)
seismic bearing capacity factors (k, = 0, H = 0)

static conditions
(kn = 0, H = 0)

load inclination (tanf = H/V,r = H/B’)

soil inertia
(kn = 0)

1
Qlim = EyB’NyE + cNeg + qQNgE
B'=B—2e
Ngs = eef Nos

Neg = eck ecﬁ Nes

Ngr = e ef Nos

Nep = efefNes

Ny = e;‘efNyg Nyg = ef
Ns=(1+ Si“¢)entan¢ Ngs =1
a: 1-— sing NcS =247
Nes = (Ngs — 1)cot ¢ Nys =0
Nys = 15(Ngs — Dtan ¢
c,f =(1—-05tang)> * e‘f =1
ef=ef of =05+ 051 = (c/e) ™
s fan g \(¢1@0 ¢4 ef =0
& = (1 - tan¢)
(0.37 tan ¢0-3) X w
k_(1_ _kn k_q_ k) h
4= (1 tan¢) K aq(kh,lim) I\ enlim
eck =1 eck =1
0.47 2
k _ kp k kp kp
e, =(1- = —q, || -
2 ( [an¢) 4 a’(kn,nm 27 Bt

ag = 0.75kplim by = 1.4kp,1im
ay = L.75kpiim by = 1.4Kkp,1im

Cu

kn,lim = TO+ED

) Hansen [14].
normalising the loading variables as V = V/Vyu, H = H/Vpa and 016 -
M = M/BVq., and defining E =1—-2M/V and K = ey" as the di- L e Meyerhof (1953) (a)
mensionless variables taking into account the load eccentricity and the 014 - © Hansen (1970)
soil inertia, respectively, the equation of the failure locus is given by: - B \Vesic (1_975)

012 - 4 Paolucci & Pecker (1997)
o7 . 5. K): —I?EZ(1 B E)b _v—o - x Loukidis et al. (2008)
> 1, B K)D = av = a4) 0.10 & Butterfield & Gottardi (1994)

with the constraint 0 < V < K, where a and b depend on soil friction = o008
angle (a = tan ¢, b = 4.1 tan ¢'4). 0.06

Fig. 9 shows two sections of the failure envelope in: (a) the M — V
plane (H = 0) and (b) the H — V plane (M = 0), computed under static 0.04
conditions (K = 1) and for ¢ = 30°, together with other literature re- 0.02
sults [4,14,19,20,23]. It is apparent that Eq. (14) provides results in ’
good agreement with other numerical and theoretical static solutions, 0.00 £
with predictions being always slightly conservative.

To understand the relative merits of soil and superstructure inertia 016
forces in the reduction of the bearing capacity, Fig. 10 shows the 3D
failure envelopes computed for three different values of the pseudo- 0.14
static soil acceleration (ky/tang = 0, 0.25, 0.5), together with the iso-
moment contours in the H — V plane, for the case ¢ = 30°. Clearly, 012
while inertia forces in the superstructure can play a major role, by in- 0.10
creasing both the inclination and the eccentricity of the load transferred
to the foundation, soil accelerations also have a significant effect in IT o0.08
reducing the size of the failure locus. 0.06
5.2. Purely cohesive soils (y = 0, ¢ = ¢, ¢ = 0) 0.04

In this case the loading variables can be normalised as V = V/¢,B, 0.02
H =H/c,B and M = M/c,B?, while the other dimensionless loading 0.00 i i !

variables are: E =1—2M/V and K = ye}, where 7 =yB/c,. The
equation of the failure locus is given by:

oV, H, E.K): =EMS(1 + - %] +EE? -2V =0

with the constraints: 0 < V < (N,s + 0.5K) and H < E.
Fig. 11 shows two sections of the static failure envelope (K = 0) in:

(15)

69

0.0 0.2 0.4 0.6

"4
Fig. 9. M-C soil. Sections of the normalised failure locus in: (a) the M — V plane (H = 0)
and (b) the H — V plane (M = 0), computed under static conditions (K = 1) (D = 0,¢ =
0, ¢ = 30°).



R. Conti
kh/tan(,b =0 kh/tan(,b =0.25

0.08 0.08

IS 0.04 IS 0.04

Soil Dynamics and Earthquake Engineering 104 (2018) 64-74

kh/tanq") =0.5

0.08

IS 0.04

(a) (b) (©
I 1 1
0.75 0.75 0.75
=05 =05 = 05
0.25 0.25 0.25
0 0 0
0.1 0.05 0 2005 0.1 0.1 0.05 0 005 0.1 0.1 0.05 0 005 0.1
(d) H (© H (® H

Fig. 10. M-C soil. Three-dimensional failure envelope (H — V — M space) and contours of moment capacity (H — V plane) for: (a, d) ky/tang = 0, (b, €) ky/tang = 0.25 and (c, f) ky/

tang = 0.5( = 0,¢c = 0, ¢ = 30°).
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Eq.(18) (a)
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Fig. 11. Tresca soil. Sections of the normalised static (K = 0) failure locus in: (a) the
M — V plane (H = 0) and (b) the H — V plane, the latter computed for different load
eccentricities (E = 1.0, 0.8, 0.6, 0.4, 0.2).

(a) the M — V plane (H = 0) and (b) the H — V plane, the latter
computed for different values of the load eccentricity
(E =10, 0.8, 0.6, 0.4, 0.2). For comparison, the figure also shows
the numerical results of Taiebat & Carter [36] and the limit upper and
lower bound solutions given by Houlsby & Puzrin [15]. Again, the static
limit locus given by Eq. (15) is in perfect agreement with the other
results, with predictions always on the safe side.

Going to seismic conditions, the relative significance of soil and
structure inertia is highlighted in Fig. 12, showing the 3D failure en-
velopes computed for three different values of the ratio kn/kp jim (= O,
0.25, 0.5), together with the iso-moment contours in the H — V plane.
The limit locus is substantially unaffected by the soil inertia for small
values of the normalised vertical load (V<2), ie. for well-designed
foundations (see e.g. [24]), while a sharp size reduction can occur for
high values of V. However, it is worth noting that the limiting value of
the pseudostatic coefficients, kp jim, is usually larger than one in stan-
dard applications, thus implying that a ratio of kyn/kn1im = 0.5 would
correspond to relatively large accelerations.

The effects of soil inertia is further highlighted in Fig. 13, referring
to the case of a shallow foundation (D = 0) on a purely cohesive soil,
subjected to an inclined centered load. The reduction of the horizontal
limit load, H, with respect to the corresponding static value, Hg, is
computed under given values of the vertical normalised load, V, using
both the upper bound theorem and the empirical equations in Table 1.
The results of Paolucci & Pecker [24], obtained by applying the upper
bound theorem to a different plastic mechanism, are also reported for
comparison. A general good agreement is observed between the em-
pirical formulas and the rigorous upper bound solution presented in this
work, both providing conservative results with respect to those re-
ported by Paolucci & Pecker [24]. Again, soil inertia has a negligible
influence on the bearing capacity for V<2, while inducing a sharp drop
in the bearing resistance with increasing the vertical load.

6. Conclusions

Following a pseudostatic approach and based on the upper bound
theorem of limit analysis, simple equations for the evaluation of the
seismic bearing capacity of shallow strip foundations resting on both
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Fig. 12. Tresca soil. Three-dimensional failure envelope (H — V — M space) and contours of moment capacity (H — V plane) for: (a, d) kn/kn 1im = 0, (b, €) kn/kn 1im = 0.25 and (c, f)

kn/knjim = 0.5 (D = 0).
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Fig. 13. Tresca soil. Reduction of the horizontal limit load as a function of ky/k jim, for
different values of the normalised vertical load (D=0).

cohesive-frictional and purely cohesive soils were derived. An all-
minimum procedure was used in the first case, always leading to an
accurate and conservative estimate of the bearing capacity factors,
while a rigorous application of the kinematic theorem was adopted for
the case of purely cohesive soils.

Results were firstly given in terms of reduction coefficients for the
Terzaghi's equation of the vertical bearing capacity, permitting to take
into account easily the effects of inertia forces acting both on the su-
perstructure (load inclination and eccentricity) and into the foundation
soil.

Then, referring to the case of purely shallow foundations (D = 0),
the classical equation for the vertical bearing capacity (Eq. (3)) and the
reduction coefficients given in Table 1 were used to construct three-
dimensional failure envelopes in the general space of the loading
variables, extending to pseudostatic conditions other results presented
in the literature for the static case. The availability of simple equations
for both the Terzaghi's formula and the 3D failure domains provides
definitely a better description of the bearing capacity of shallow foun-
dations under the general loading induced by seismic actions, including
soil inertia, horizontal shear and moment.
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The reliability of the proposed equations, suitable for the design
practice, has been verified through a thorough comparison with other
rigorous and approximate solutions, referring to both static and pseu-
dostatic conditions.

As far as cohesive-frictional soils are concerned, soil inertia leads to
a significant reduction of the Ngg and N, terms, depending on the ratio
kyn/tang, while the all-minimum procedure provides exactly eX = 1, due
to the assumption of weightless soil. The latter result is in substantial
agreement with other works in the literature, taking into account soil
inertia, showing indeed a negligible dependence of Nz on ky. On the
other hand, the effects of load inclination due to structure inertia on the
Nge and N terms can be conveniently described using the Hansen's
equations (1970), widely used in the static design practice, while an ad
hoc formula is introduced for the ef coefficient, depending on the soil
friction angle. Finally, moving to the general space of the loading
variables and referring for simplicity to the case of a shallow foundation
on a cohesionless soil (D = 0, ¢ = 0), it was shown that soil inertia can
lead to a significant size reduction of the failure locus.

As far as purely cohesive soils are concerned, upper and lower
bound solutions for the load inclination coefficient ef are virtually the
same and, again, in good agreement with the simplified equation pro-
posed by Hansen [14]. Soil inertia effects are introduced by means of
the reduction coefficients e;‘ and e[;‘, both depending on the limiting
acceleration kp jim, While Nz shows a negligible dependence on soil
acceleration. In agreement with the results by Paolucci & Pecker [24], it
was found that the failure envelopes are substantially unaffected by soil
inertia for V<2, while possibly exhibiting a significant reduction of the
limit horizontal load otherwise, depending on the ratio kyn/kn jim-

Acknowledgements

The work presented in this paper was developed with the financial
support of the Italian Department of Civil Protection within the ReLUIS
research project. The Author is extremely grateful to the anonymous
Reviewers, whose comments and suggestions led to a significant im-
provement of the manuscript.



R. Conti Soil Dynamics and Earthquake Engineering 104 (2018) 64-74
Appendix A. Cohesive-frictional soil

By referring to the case of a homogeneous soil layer obeying the Mohr-Coulomb yield criterion (y = 0, ¢ = 0, ¢ = 0) and to the failure
mechanism in Fig. 1, expressions are provided here for: (i) the power of the external forces; (ii) the power of the internal dissipation; (iii) the average
limit load and (iv) the vector of constraints for the minimization problem.

Power of external forces
The power of external forces is given by:
P =P + B +B, (AD

where Py, is the power of the external load applied to the foundation, Ps is the power of body forces into the soil and P is the power of the lateral
overburden. The three terms are given by:

PL = ‘/—COS({3 ) R%E

cos 8
k= %}’Brzcoﬁs;@ (by + ¢ — dp)vy
B =—qB'dn, (A2)

where:

by = sinp[(1 — k,)cos p + kj sin p]

_ cosie—9)
T (1+9tan? ¢)cos ¢

x {(1 — k,)[e3* 2 4(3 tan ¢ cos(p + ) + sin(p + P)) — (3tan ¢ cosp + sin p)]
+ kp[e3¥ ¢ (3 tan ¢ sin(po + ) — cos(p + P)) — (3tan ¢ sinp — cos p)]}
dy = S sy uand| (1 — k)cos(p + B) + ky sin(o + P)]

41

cos(p+ 9P —¢) (A3)
and:
&= —C =B puns[(1-k,)cos(o + $) + knsin(o + )]
cos(p + P — @) (A4)
Power of internal dissipation
The power of internal dissipation is given by:
Pim = CB"(bz + ¢ — d2)~v1 (AS)
where:
b, = sinp
_ coslp—=@) ¢ 2
= W(e dund 1)
_ cos(p—@)sin(e +9) 2y tan ¢
d = cos(p+ 9 — @) € (A6)
Average limit load
By equating P*** = P™ and defining q*, = V/B’, we obtain Eq. (1), where:
N;E(P, P) =a(d — by —c))
Ni(o, ¥) = ay(by + ¢ — dy)
Nz (o, ¥) = azds (A7)
and
__ cosBcos(p—¢)
@ = cos ¢ cos(B — p)
@& = a: = cos B
277 wosB-p) (A8)

Constraints for minimization

The two angles p > 0 and y > 0 must satisfy some constraints, emerging from the requirement that all the angles are positive and the external
load must do positive work for the assumed velocity field. The vector of constraints is given by:
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e+ —m
72+ é—-p-79
He. 9) = p—¢—m/2
p—p-n2 (A9)

Appensix B. Pure cohesive soil

In this section, the case of a homogeneous soil layer obeying the Tresca yield criterion is addressed (y £ 0, ¢ = ¢y, ¢ = 0). The failure mechanism
and the velocity field are the same as those given in Fig. 1 for a M-C soil, provided a zero friction angle is assumed. Terms related to the external load
are given in a different form with respect to the M-C case, more suitable for the analysis of a pure cohesive material.

Incremental external work

The power of external forces is given by Eq. (A1), where:

P, = (Vcosp + Hsinp)s»,

cos(p + ) —cosp o
cos(p + )

F= —qB’-%[(l — ky)cos(p + ¥) + kysin(p + )] vy (B1)

P = % B'2ky, cos p

Incremental internal energy dissipation

The power of internal dissipation is given by:

cos p- sin(p + ¥) )
7(:05@ + ) + 2y cosp |1y (B2)

Pint = ¢, B’ sinp —

Average limit load

By equating P*** = P™ and defining q;*, = V/B’ and t = H/B', Eq. (1) is obtained, where:

N;E(P, ¢) — kh cos p— cos(p +9P)

cos(o +¥)
in(o +9)
Nig(o, ) =1 — k) + khh
. oy SMP(q _ T _ sn+y)
(e, ¥) =2 + cosp(l cu) coste +9) (B3)

Constraints for minimization

The two angles p > 0 and y > 0 must satisfy the requirement that all the angles are positive. The resulting vector of constraints is given by:

e+ —m
H(o, §) = {7/2 —p - ¢
o —m/2 (B4)
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