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A B S T R A C T

Financial ratios are often used in cluster analysis to classify firms according to the similarity of their financial
structures. Besides the dependence of distances on ratio choice, ratios themselves have a number of serious
problems when subject to a cluster analysis such as skewed distributions, outliers, and redundancy. Some so-
lutions to overcome those drawbacks have been proposed in the literature, but have proven problematic. In this
work we put forward an alternative financial statement analysis method for classifying firms which aims at
solving the above mentioned shortcomings and draws from compositional data analysis. The method is based on
the use of existent clustering methods with standard software on transformed data by means of the so-called
isometric logarithms of ratios. The method saves analysis steps (outlier treatment and data reduction) while
defining distances among firms in a meaningful way which does not depend on the particular ratios selected. We
show examples of application to two different industries and compare the results with those obtained from
standard ratios.

1. Introduction

Financial ratios, i.e., ratios comparing the magnitudes of accounts in
financial statements, constitute a case of researchers' and professionals'
interest in relative rather than absolute account magnitudes. From the
classical work on bankruptcy prediction by Altman (1968), the use of
financial ratios has spread along and across many research lines (Willer
do Prado et al., 2016), such as stock market returns (e.g.,
Dimitropoulos, Asteriou, & Koumanakos, 2010), firm survival analysis
(e.g., Kalak &Hudson, 2016), credit scoring (e.g., Amat,
Manini, & Antón Renart, 2017), assessing the impact of International
financial reporting standards (e.g., Lueg, Punda, & Burkert, 2014),
predicting donations to charitable organizations (e.g.,
Trussel & Parsons, 2007), accounting restatements (e.g., Jiang,
Habib, & Zhou, 2015), and earnings manipulation (e.g., Campa, 2015).
This article focuses on another frequent use of financial ratios: to
classify firms according to similarity of the structure of their financial
statements, searching for different profiles of financial structure, per-
formance or distress. Since the seminal works of Cowen and Hoffer
(1982), and Gupta and Huefner (1972), through the relevant con-
tributions by Dahlstedt, Salmi, Luoma, and Laakkonen (1994);
Ganesalingam and Kumar (2001); Mar Molinero, Apellaniz Gomez, and

Serrano Cinca (1996); Serrano Cinca (1998); and Voulgaris, Doumpos,
and Zopounidis (2000), the interest in clustering firms according to
their financial ratios remains current (Feranecová & Krigovská, 2016;
Lukason & Laitinen, 2016; Luptak, Boda, & Szucs, 2016; Martín-Oliver,
Ruano, & Salas-Fumás, 2017; Momeni, Mohseni, & Soofi, 2015; Santis,
Albuquerque, & Lizarelli, 2016; Sharma, Shebalkov, & Yukhanaev,
2016; Yoshino & Taghizadeh-Hesary, 2015; Yoshino, Taghizadeh-
Hesary, Charoensivakorn, & Niraula, 2016).

Despite the popularity of financial ratios, the financial and statis-
tical literature has long reported a number of serious practical draw-
backs of their use. The first of them has to do with the fact that most
ratios are distributed between zero and infinity and thus make fully
symmetric distributions impossible to achieve. Ratios also tend to have
asymmetric distributions because decreases in the denominator pro-
duce larger changes in the ratio value than increases do
(Frecka &Hopwood, 1983). Both phenomena tend to produce dis-
tributions with positive skewness and preclude using symmetric prob-
ability distributions such as the normal (e.g., Deakin, 1976;
Ezzamel &Mar-Molinero, 1990; Kane, Richardson, &Meade, 1998;
Martikainen, Perttunen, Yli-Olli, & Gunasekaran, 1995; Mcleay &Omar,
2000; So, 1987). Asymmetry is also connected to the commonly re-
ported outliers (e.g., Cowen &Hoffer, 1982; Ezzamel &Mar-Molinero,
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1990; Lev & Sunder, 1979; So, 1987; Watson, 1990). It can even be the
case that outliers are the main or only source of positive asymmetry in
the distributions (Frecka &Hopwood, 1983). These outliers do not al-
ways reflect atypical management practices but can also result from a
small value of the denominator of the ratio (e.g., Ezzamel &Mar-
Molinero, 1990; Kane et al., 1998). In the particular case of cluster
analysis, asymmetric distributions lead to some clusters being very
small (e.g., Feranecová & Krigovská, 2016; Santis et al., 2016; Sharma
et al., 2016; Yoshino et al., 2016; Yoshino & Taghizadeh-Hesary, 2015).
It is also well known that the presence of outliers distorts the results of
many clustering algorithms, and oftentimes it even leads to one-
member clusters (e.g., Feranecová & Krigovská, 2016; Sharma et al.,
2016; Yap, Mohamed, & Chong, 2014).

The second major drawback has to do with redundancy of the over
100 ratios currently in use (Chen & Shimerda, 1981;
Pindado & Rodrigues, 2004; Pohlman &Hollinger, 1981). Oftentimes,
redundancy occurs to such an extent that “there is no absolute test for
the importance of variables” (Barnes, 1987, 455) and “to identify those
ratios which contain complete information about a firm while mini-
mising duplication cannot be achieved purely by logic” (Barnes, 1987,
456). In extreme cases there is an exact dependency between ratios. For
instance, the inverse of the liability to asset ratio is the equity to debt
ratio plus one. In cluster analysis such redundancy has often led to
groups not capturing proper distinct profiles. Solutions with overall
ordered groups labelled as “healthy, in between, less healthy”, “highly
distressed, mildly distressed, not distressed”, “dynamic, medium,
weak”, or “good performers, average performers, poor performers”
abound (e.g., Ganesalingam&Kumar, 2001; Momeni et al., 2015;
Voulgaris et al., 2000; Yap et al., 2014; Yoshino et al., 2016;
Yoshino & Taghizadeh-Hesary, 2015). In cluster analysis, redundancy
has one further consequence: it increases distances among firms along
the added redundant information, which is tantamount to inadvertently
giving this redundant information greater weight in the results (e.g.,
Aldenderfer & Blashfield, 1984).

The third major drawback has to do with arbitrariness of Euclidean
distance among firms. On the one hand, a different set of ratios leads to
different distances among firms, even if ratios are computed from ex-
actly the same set of financial accounts. On the other hand, Euclidean
distance is not an appropriate dissimilarity measure for ratios. Even
placement of accounts in the numerator or in the denominator of the
same ratio matters to Euclidean distance. This is because increases in
the numerator and in the denominator are not treated in the same way
(Frecka &Hopwood, 1983). Let us consider the simplest possible case in
which only two financial accounts x1 and x2 are of interest. Only two
ratios are possible: r1 = x1/x2 and r2 = x2/x1. Let us consider three
firms A, B, and C, such that x1A = 1, x2A = 1, x1B = 1, x2B = 2,
x1C = 2, x2C = 1. The ratio values are r1A = r2A = 1, r1B = 0.5,
r2B = 2, r1C = 2, r2C = 0.5. Intuitively, the ratios r1 and r2 should
contain the same information about firms. However, Euclidean dis-
tances computed from r1 are d(A,B) = 0.5, d(A,C) = 1, and d(B,C)
= 1.5, while Euclidean distances computed from r2 are d(A,B) = 1, d
(A,C) = 0.5, and d(B,C) = 1.5. In other words, when using r1 firms A
and B would tend to cluster together and when using r2 firms A and C
would tend to cluster together. Unclear distances which depend on
arbitrary decisions and even on a permutation of numerator and de-
nominator can only threaten the results of cluster analysis (Martín,
1998).

As regards the problem related to asymmetry and outliers, some
form of transformation and/or outlier trimming has often been applied.
These include transformations such as Box-Cox (e.g., Ezzamel &Mar-
Molinero, 1990; Mcleay &Omar, 2000; Watson, 1990), logs (e.g.,
Cowen &Hoffer, 1982; Deakin, 1976; Sudarsanam& Taffler, 1995),
ranks (e.g., Kane et al., 1998; Lueg et al., 2014), square roots (e.g.,
Deakin, 1976; Frecka &Hopwood, 1983; Martikainen et al., 1995),
weight of evidence (e.g., Nikolic, Zarkic-Joksimovic,
Stojanovski, & Joksimovic, 2013); outlier trimming (e.g.,

Ezzamel &Mar-Molinero, 1990; Frecka &Hopwood, 1983;
Lev & Sunder, 1979; Martikainen et al., 1995; So, 1987; Watson, 1990);
and outlier winsorization (e.g., Lev & Sunder, 1979).

Both transformation and outlier treatment have proved problematic.
Not only is there uncertainty about which transformation to apply or
which outliers to remove. There is also uncertainty regarding whether
one should first remove outliers and then transform to account for the
remaining non-normality or first transform and then remove the re-
maining outliers (e.g., Ezzamel &Mar-Molinero, 1990). The log trans-
formation is especially appealing, given its wide understanding and
ease of interpretation as relative change in the economic and financial
fields. It is also theoretically justified when the numerator and the de-
nominator follow a log-normal distribution. Empirically it is also often
reported to yield acceptable results (Sudarsanam& Taffler, 1995).
However, as shown above, there is no consensus on the transformation
issue, and in some cases more than one transformation has been shown
to yield approximately normal ratios (Buijink & Jegers, 1986).

As regards the redundancy problem, many clustering studies use
data reduction methods prior to the analysis, either to compute a few
aggregated functions of ratios or to select a few relevant and distinct
ratios. These strategies include principal component analysis (e.g.,
Cowen &Hoffer, 1982; Dimitropoulos et al., 2010; Martín-Oliver et al.,
2017; Sharma et al., 2016; Yoshino et al., 2016; Yoshino & Taghizadeh-
Hesary, 2015), grey relation analysis (e.g., Ho &Wu, 2006), factor
analysis (e.g., Feranecová & Krigovská, 2016; Lukason & Laitinen, 2016;
Yap et al., 2014), self-organising feature maps (e.g., Serrano Cinca,
1998), multidimensional scaling (e.g., Mar Molinero et al., 1996), or
cluster analysis on the transposed data matrix, to define groups of ratios
instead of groups of firms (e.g., Nikolic et al., 2013; Serrano Cinca,
1998). While this is generally sound practice, it adds an extra step to the
analysis, and it is often not clear which data reduction method should
be preferred for a particular problem.

To the best of our knowledge, the distance issue has not been solved
in the financial literature, but it has been solved in other scientific
fields, from which we draw below.

The aim of this article is to put forward an alternative financial
statement analysis method for classifying firms from the structure of
their financial statements, which aims at solving the above mentioned
shortcomings and draws from the compositional data analysis (CoDa)
literature. CoDa is the standard methodological toolbox to analyse the
relative importance of magnitudes in fields such as biology, chemistry
and geology. A key feature of CoDa is a particular type of log trans-
formation of ratios, which tends to lead to symmetric distributions with
few or no outliers, and to less redundancy, thus making data reduction
less necessary. This transformation also ensures that the distances
among clustered cases are meaningful and that they only depend on the
set of financial accounts which is considered for the analysis and not on
ratio choice. Once this transformation has been carried out, standard
clustering methods and software can be used, which is an attractive
possibility for applied researchers.

The article is organized as follows. Section 2 reviews the basics of
CoDa. Section 3 deals with the proposal to use an alternative financial
statement analysis method based on CoDa. Section 4 presents two nu-
merical real-data examples of cluster analysis in high tech and low tech
manufacturing industries. Results are compared to those obtained when
using standard financial ratios. Section 5 summarizes the main results
and makes suggestions for further research.

2. Compositional data analysis

2.1. Compositional data

Compositional Data are positive vector variables carrying informa-
tion about the relative size of their D components to one another
(Aitchison, 1986; Barceló-Vidal &Martín-Fernández, 2016):
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= ⋯ > = ⋯x x x x j Dx ( , , , ) with 0, 1, 2, ,D j1 2

In our case, the components represented by the xj variables are
different financial accounts, such as inventories, sales, operating ex-
penses, equity, or accounts receivable.

The standard methodological framework for dealing with composi-
tional data (known as Compositional data analysis - CoDa) was born in the
fields of geology and chemistry. These disciplines typically focus interest
on the relative importance of the parts of the whole rock or substance
which is analysed, while the size of the rock or chemical sample is deemed
irrelevant. After the seminal works of Aitchison (1982, 1986) thirty five
years of development have led to a well-established standard CoDa
toolbox which is covered in text books (van den Van den
Boogaart& Tolosana-Delgado, 2013; Pawlowsky-Glahn&Buccianti, 2011;
Pawlowsky-Glahn, Egozcue, & Tolosana-Delgado, 2015). Recently, CoDa
has also been applied in finance and in management to answer research
questions concerning relative magnitudes. Examples include crowd-
funding (Davis, Hmieleski, Webb, & Coombs, 2017), financial markets
(Ortells, Egozcue, Ortego, &Garola, 2016), market segmentation (Ferrer-
Rosell and Coenders, in press; Ferrer-Rosell, Coenders, &Martínez-Garcia,
2016), market share (Morais, Thomas-Agnan, & Simioni, 2017), shopping
basket mining (Kenett, Martín-Fernandez, & Vives-Mestres, 2017), patents
(Hingley, 2017), consumer research (Ferrer-Rosell, Coenders, &Martínez-
Garcia, 2015; Ferrer-Rosell, Coenders, Mateu-Figueras, & Pawlowsky-
Glahn, 2016; Vives-Mestres, Martín-Fernández, &Kenett, 2016), quality
management (Vives-Mestres, Daunis-i-Estadella, &Martín-Fernández,
2014, 2016), and management education (Batista-Foguet, Ferrer-Rosell,
Serlavós, Coenders, & Boyatzis, 2015; Mateu-Figueras et al., 2016).

From a historical perspective, CoDa was born as a method to analyse
parts of a whole (Aitchison, 1986). Recently, the emphasis in CoDa has
shifted to the sheer interest in relative size of any set of positive mag-
nitudes (Barceló-Vidal &Martín-Fernández, 2016). Interesting applica-
tions of CoDa to data which do not represent parts of any whole are in
Ortells et al. (2016) and Azevedo Rodrigues, Daunis-i-Estadella, Mateu-
Flgueras, and Thió-Henestrosa (2011). This is the case in financial
statement analysis, in which, for instance, sales and assets are not parts
of any whole and the asset turnover ratio compares the magnitudes of
both, in relative terms.

CoDa can involve using specialised methods and software on the
raw data (e.g., Palarea-Albaladejo &Martín-Fernández, 2015; Thió-
Henestrosa &Martín-Fernández, 2005; Van den Boogaart & Tolosana-
Delgado, 2013). However, using existent standard statistical methods
with standard software on transformed data (the so-called coordinates,
see Mateu-Figueras, Pawlowsky-Glahn, & Egozcue, 2011) tends to be a
more attractive possibility for applied researchers. The latter approach
is fully feasible in the cluster-analysis case (e.g., Ferrer-Rosell and
Coenders, in press) and we embrace it in this article. In cluster analysis,
transformations and distances are, of course, interrelated, as shown
below.

2.2. Compositional transformations

Logarithms of ratios are the standard transformation in CoDa
(Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado, 2015). Several
choices are possible to compute log-ratios. In all cases they involve a
logarithm of a ratio among single components or among geometric
means of components. A scaling constant multiplying the log-ratio may
or may not be included. A log-ratio involving only two components
might be computed as:

x
x

log 1

2

where log stands for the natural logarithm. Positive values mean that x1
is larger than x2. Negative values show the opposite. A zero log-ratio
implies equality of both magnitudes, exactly in the same way as a unit
standard ratio.

A log-ratio is symmetric in the sense that its range is from minus
infinity to plus infinity. Besides, permuting the numerator and de-
nominator components leads to the same distance from zero:

= −x
x

x
x

log log1

2

2

1

Furthermore, if one of the components being compared is close to
zero, it may lead to an outlying standard ratio when placed in the de-
nominator and to a typical ratio when placed in the numerator. For log-
ratios placement makes no difference.

Another argument for log-ratios is that they tend to be approxi-
mately normally distributed (Aitchison, 1986). Normality after a log
transformation is justified by the additive log-normal distribution
(Aitchison, 1982) and by the compositional equivalent to the central
limit theorem (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado,
2015).

Even if log-ratios solve the asymmetry and outlier problems, re-
formulating all financial ratios in the literature as log-ratios would
leave us with the same redundancy problems encountered in standard
financial ratio analysis. It can be show that just D−1 log-ratios contain
all information about the relative importance of D components
(Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado, 2015). For cluster
analysis purposes it is also important that log-ratios are coherent with a
meaningful notion of distance. Both aims are achieved by the so-called
transformation into isometric log-ratio (ilr) coordinates (Egozcue,
Pawlowsky-Glahn, Mateu-Figueras, & Barceló-Vidal, 2003).

Ilr coordinates can be easily formed from a sequential binary partition
(SBP) of components. To create the first ilr coordinate, the complete
composition x = (x1,x2, …,xD) is split into two groups of components:
one for the numerator and the other for the denominator of the log-
ratio. In the following step, one of the two groups is further split to
create the second ilr coordinate. A SBP always implies D−1 ilr co-
ordinates.

In any step of the SBP, when the yj ilr coordinate is created, a group
containing r + s components is split into two: r components (xn1, …,
xnr) are placed in the numerator, and s components (xd1,…,xds) in the
denominator. The ilr coordinate is a scaled log-ratio of the geometric
means of each group of components (Egozcue et al., 2003):

=
+

⋯
⋯

y rs
r s

x x
x x

log ( )
( )j

n nr
r

d ds
s

1
1/

1
1/

The choice about placement in the numerator or the denominator
will not modify any property of the log-ratio but the sign. A positive
sign of the coordinate implies greater importance of the components in
the numerator as compared to those in the denominator. The scaling
constant

+
r s

r s
plays a role in the distances defined in the next section.

2.3. Compositional distances

As stated in the introduction, when applied to financial ratios,
Euclidean distance depends on the particular set of ratios computed
from the financial accounts of interest, and even yields different results
when permuting which part is in the numerator and which in the de-
nominator.

The commonest distance measure used in CoDa, which is called
Aitchison's distance (Aitchison, 1983; Aitchison, Barceló-Vidal, Martín-
Fernández, & Pawlowsky-Glahn, 2000) solves these drawbacks. Aitch-
ison's distance between compositions x and x⁎ is computed from the
differences in the logarithms of the ratios of all pairwise comparisons of
components:

∑ ⎜ ⎟= ⎛

⎝
− ⎞

⎠

= ⋯ = ⋯

≠

∗

∗D
x
x

x
x

i

D j D

x xd( , ) 1
2

log log with

1, 2, , ; 1, 2, ,

i j

i

j

i

j

2


Under Aitchison's distance all parts appear both in the numerator
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and in the denominator and are compared to all other parts. Thus,
distance depends only on the selected financial accounts which are
included in x, and not on the particular ratios or log-ratios selected.
Other attractive properties are described in Aitchison (1992) and
Martín (1998).

In connection with Aitchison's distances, ilr coordinates have the
attractive property that Euclidean distances computed using ilr co-
ordinates as data:

∑= − = ⋯ −∗y y j Dx xd( , ) ( ) with 1, 2, , 1
j

j j
2

equal Aitchison's distances computed from the raw composition. This
holds for any choice of SBP (Egozcue et al., 2003). On the basis of this
property, the method suggested in Section 3 involves first computing ilr
coordinates and then applying standard cluster analysis methods with
standard software using ilr coordinates as data.

3. Step-by-step CoDa method for the analysis of financial
statements

3.1. Account selection

Without loss of generality, the method is described on the basis of a
simplified balance sheet (Fig. 1), which is enough for computing the
commonest debt and liquidity ratios (ratios indicating whether assets can
pay for the whole debt, and quick assets and other current assets can
pay for short term debt; e.g., Linares-Mustarós, Farreras-Noguer, Ferrer-
i-Comalat, & Rabaseda-Tarrés, 2012).

Common liquidity ratios which can be computed from Fig. 1 include
the acid test ratio= x3/x6, also known as quick ratio, and the current
ratio = (x2 + x3)/x6. Typical debt ratios include the liability to asset
ratio = (x5 + x6)/(x4 + x5 + x6), the equity to debt ratio = (x4)/
(x5 + x6), the equity to long term debt ratio = x4/x5, the current liability
to asset ratio = (x6)/(x4 + x5 + x6), and the long term debt to asset
ratio = (x5)/(x4 + x5 + x6).

By just adding x7 = operating expenses and x8 = sales from the
profit and loss statement (also known as income statement), liquidity and
debt information is complemented with that carried by profitability and
activity ratios. Examples are operating margin = (x8-x7)/x7 and asset
turnover = x8/(x1 + x2 + x3).

The method we present does not imply using those particular ratios.
We only want to raise the point that we aim to classify firms based on
comparable information to that provided by such ratios. Of course,
greater detail can be included in the balance sheet at will, for instance
by distinguishing several types of inventories and quick assets, and any
other account from the profit and loss statement can be included at
wish.

3.2. Ilr coordinate computation

While any SBP will do the job, an attractive and interpretable pos-
sibility to compute ilr coordinates is to divide assets on the one hand
and liabilities and equity on the other. Then one can continue to define
partitions and ilr coordinates within assets within liabilities and equity.

A very simple procedure is to order the balance sheet from less to more
liquid assets and from longer to shorter term liabilities. For assets we
could have the following ilr coordinates:

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

y x x
x

y x
x

2
3

log ( ) , 1
2

log1
1 2

1/2

3
2

1

2

and for liabilities:

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

y x x
x

y x
x

2
3

log ( ) , 1
2

log3
4 5

1/2

6
4

4

5

For instance, y1 compares quick assets (x3) with the geometric
average of less liquid assets (fixed assets –x1– and inventories –x2). A
larger y1 coordinate is interpreted as a larger weight of fixed assets and
inventories compared to quick assets.

The ilr coordinate comparing assets with liabilities and equity is:

⎜ ⎟= ⎛
⎝

⎞
⎠

y x x x
x x x

9
6

log ( )
( )5

1 2 3
1/3

4 5 6
1/3

An additional coordinate compares the set of profit and loss ac-
counts to the set of balance sheet accounts:

⎜ ⎟= ⎛
⎝

⎞
⎠

y x x
x x x x x x

12
8

log ( )
( )6

7 8
1/2

1 2 3 4 5 6
1/6

Finally, the set of profit and loss accounts can be partitioned in any
order:

⎜ ⎟= ⎛
⎝

⎞
⎠

y x
x

1
2

log7
8

7

y7 is readily interpreted as a substitute for operating margin. The
reader must be reminded that CoDa compares positive magnitudes.
Note that we avoid constructing log-ratios using profits (which may be
negative) with no loss of information, since any information on prof-
itability is included by considering expenses and revenues separately,
which cannot be negative.

SBPs can be represented in an intuitive way by means of a tree
diagram. The implied SBP by y1 to y7 is in Fig. 2.

Even if components are compared in a particular way in the SBP, all
information comparing any accounts is included in the existent ilr co-
ordinates. This is so irrespective of the chosen SBP. For instance:

• a linear combination of y3 and y4 compares equity (x4) with both
debt accounts (x5 and x6) and thus conveys similar information as
the equity to debt ratio. It must be taken into account that log ratios
substitute geometric means for sums:

Assets Liabilities and 
equity

x1=Fixed assets x4=Equity

x2=Inventory x5=Long term debt

x3 = Quick assets x6=Short term debt

Fig. 1. Simplified balance sheet.
Fig. 2. Tree diagram showing the SBP. Coordinates (y1 to y7) and components which they
compare (x1 to x8).
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⎜ ⎟ ⎜ ⎟+ = ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

y y
x x x

x x
x

x x
1
2

3
2

3
4

2
1

log
( )

log
( )3 4

4 5
1/4

4
3/4

6
1/2

5
3/4

4

5 6
1/2

• a linear combination of y1 and y3 compares quick assets and short
term debt in a similar way as the acid test ratio. It must be taken into
account that quick assets exceed short term debt when long term
debt and equity exceed the remaining assets; hence the additional
term at the end of the equation:

− = + ( )( )y y log logx
x

x x
x x

3
2 3

3
2 1

( )
( )

3
6

4 5 1/2

1 2 1/2

• a linear combination of y6 and y7 is interpreted analogously to asset
turnover:

⎜ ⎟+ = ⎛
⎝

⎞
⎠

y y x
x x x x x x

8
12

1
2

log
( )6 7

8

1 2 3 4 5 6
1/6

This does not imply that the researcher or the professional should
embark in the tedious calculations of such linear combinations of ilr
coordinates. Quite on the contrary, we mean to show that this effort is
unnecessary because the information about the relative importance of
any sets of components is already contained in the ilr coordinates.

3.3. Cluster analysis

Once ilr coordinates have been computed, any standard cluster
analysis method using Euclidean distances (e.g., Wards' method or the
k-means method which assume Euclidean distances, or other standard
hierarchical clustering methods for which Euclidean distances are an
option) can be applied with standard software, providing equivalent
results to Aitchison's distances. Standardization of ilr coordinates is not
desirable because it modifies distances and would thus make Euclidean
distances no longer be equivalent to Aitchison's distances.

3.4. Interpretation

Once the cluster analysis has been carried out, clusters are described
with geometric means of the original components x1 to x8 computed
within each cluster. In CoDa, geometric rather than arithmetic means of
components are always used as estimates of the centre of a dataset. This
is coherent with a focus on relative rather than absolute information.
Since different clusters might contain firms of different sizes, cluster
geometric means are better interpreted after some sort of normal-
ization, for instance by multiplying all geometric means in a given
cluster by the appropriate constant so that total assets =
(x1 + x2 + x3) = 100. The practitioner's favourite standard financial
ratios can also be computed from those normalized geometric means as
the representative financial ratios in each cluster.

As in any cluster analysis, it is very useful to relate the classification
to external non-financial variables to enrich interpretation. Since this
differs in no way from standard practice, we do not give it further
consideration in this article.

4. Applications

4.1. Clustering method

In the first application we attempt to mirror common cluster ana-
lysis practice, both with standard financial ratios and with ilr co-
ordinates. For an overview on cluster analysis see Everitt, Landau,
Leese, and Stahl (2011).

The most popular clustering methods in the applied literature on

clustering with financial ratios are Ward's method (e.g., Dahlstedt et al.,
1994; Ganesalingam&Kumar, 2001; Martín-Oliver et al., 2017;
Voulgaris et al., 2000) and the k-means method (e.g.,
Feranecová & Krigovská, 2016; Luptak et al., 2016; Momeni et al.,
2015; Yap et al., 2014). Both implicitly use Euclidean distances. Using
the k-means method with Ward's solution as initial clustering is strongly
recommended in the cluster analysis literature, and applications in the
financial field start to appear (e.g., Santis et al., 2016). This approach
both provides a refinement of Ward's solution and a sensible initial
solution for the k-means method, which is very sensitive to the initial
clustering choice.

It is well known that variables with larger variances have a larger
weight on the classification, and standardization of financial ratios
constitutes sound practice. As argued above, standardization is not
convenient on ilr coordinates.

4.2. Ilr coordinates and ratios

In our application we draw from the unstandardized ilr coordinates
(y1 to y7) and from the 12 standardized financial ratios used by one of
the most cited articles (Voulgaris et al., 2000), which can all be com-
puted from x1 to x8.

r1 = Current assets/Current liabilities = current ratio = (x2 + x3)/
(x6)

r2 = (Current assets − Inventory)/Current liabilities = acid test
ratio = (x3)/(x6)

r3 = (Long-term debt + equity)/Fixed assets = (x5 + x4)/(x1)
r4 = Long-term debt/Total assets = long term debt to asset ratio =

(x5)/(x4 + x5 + x6)
r5 = Total debt/Total assets = liability to asset ratio = (x5 + x6)/

(x4 + x5 + x6)
r6 = Equity/Long term debt = equity to long term debt ratio = (x4)/

(x5)
r7 = Current liabilities/Total assets = current liability to asset

ratio = (x6)/(x4 + x5 + x6)
r8 = Inventory × 360/Sales = (x2 × 360)/(x8)
r9 = Sales/Fixed assets = (x8)/(x1)
r10 = Profit/Sales = (x8 − x7)/(x8)
r11 = Profit/Equity = (x8 − x7)/(x4)
r12 = Profit/Total assets = (x8 − x7)/(x4 + x5 + x6)

Another often cited article using a similar number of analogous
ratios which are also computable from x1 to x8 is that by Cowen and
Hoffer (1982).

4.3. Data source

The data come from the SABI (Iberian Balance sheet Analysis
System) database, developed by INFORMA D& B in collaboration with
Bureau Van Dijk, and contains financial statements of over 2 million
Spanish companies and> 500,000 Portuguese ones. The database was
last accessed 28/8/2017. Search criteria included:

• NACE (Statistical classification of economic activities in the
European Community) code 21.2: Manufacture of pharmaceutical
preparations.

• Availability of data for 2015.

n= 168 companies fulfilled the search criteria. Firms which were
not operating (zero revenues, n = 15) or bankrupt (n= 14) were ex-
cluded. A number of firms had zero values in some components, which
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made it impossible to compute either ratios or coordinates. The final
usable sample was n = 110.

4.4. Descriptive statistics

Table 1 shows standard financial ratios to globally have larger
skewness than ilr coordinates, which is generally positive, thus in-
dicating positive asymmetry. Kurtosis serves as an indication of the
presence of outliers and also tends to affect ratios to a much larger
extent than ilr coordinates. Tables 2 and 3 show Pearson correlations as
a measure of redundancy. Some financial ratio correlations are ex-
tremely high. No similar phenomenon is observed in ilr coordinates. In
order to gather further evidence on redundancy, we submitted the
matrices in Tables 2 and 3 to principal component analyses. In the
principal component analysis of the ilr coordinate correlation matrix
(Table 2), the last component explains 2.4% of the variance. In the
principal component analysis of the financial ratio correlation matrix
(Table 3), the last four components explain only 0.0%, 0.0%, 0.1% and
1.3% of the variance, respectively, and are thus redundant to a much
greater degree. Principal component screeplots are in Fig. 3.

4.5. Cluster analysis

The dendrogram using Ward's method on the unstandardized ilr
coordinates y1 to y7 (Fig. 4) shows a 3-group solution to be appropriate,
which was used as initial solution for the k−means method.

Table 4 shows cluster geometric means for components. For ease of
interpretation, the geometric means of x1 to x3, x7 and x8 have been
multiplied row-wise by the appropriate constant so that total as-
sets = x1 + x2 + x3 = 100. In the same vein, the geometric means of
x4 to x5, and x6 have been multiplied by the appropriate constant so
that x4 + x5 + x6 = 100. These magnitudes can be interpreted on their
own as the balance sheet and profit and loss statement of a typical firm
in the cluster, with a normalized balance sheet size equal to 100.
Standard financial ratios can validly be computed from these geometric
means for ease of interpretation of the cluster financial profiles. For
instance, the acid test ratio of the representative firm in cluster 1 in the

3-cluster coordinate solution is easily obtained as 26.8/32.9. In this
way, traditional ratios can be used to enrich the CoDa cluster inter-
pretation if one wishes to do so.

A standard graphical representation of cluster analysis results in
CoDa is the geometric means barplot. This plot depicts the log-ratio of
the cluster geometric mean of each component over the overall geo-
metric mean of the component. Positive bars show above average
components for that particular cluster and negative bars below average
components. Fig. 5 shows this plot for the 3-cluster coordinate solution.

At the top of Table 4, Cluster 1 in the 3-cluster solution on ilr co-
ordinates (49 firms) shows a profile of financial distress, with small
margin and return on assets (when comparing x8 to x7, and their dif-
ference to total assets = 100), short term liquidity problems (short term
debt –x6– exceeds quick assets –x3), very high leverage (low equity –x4–
as compared to liabilities), and very high fixed assets (x1) as compared
to equity. Clusters 2 (49 firms) and 3 (12 firms) show distinct finan-
cially healthy profiles. Cluster 2 contains a profile which is char-
acterised by the highest margin and profitability. It also has the best
acid test ratio, stemming from an asset composition with a low share of
fixed assets and a large share of quick assets (Fig. 5). Cluster 3 shows a
profile which reveals the option not to have long term debt (Fig. 5),
with a higher turnover and a lower margin than Cluster 2. Both clusters
thus reveal different strategic choices rather than a gradation of fi-
nancial distress.

In the two next blocks of Table 4, we compare results by using the
same combination of clustering methods on the standardized ratios r1 to
r12. Since some clusters are built around outliers, in order to find 3
substantial clusters we need to move to the 6-cluster solution. Cluster 1
(47 firms) is reminiscent of cluster 1 in the ilr-coordinate case (38 firms
are actually included in this cluster by both methods). Cluster 2 (50
firms) is reminiscent of Cluster 2 in the ilr-coordinate case (33 firms are
actually included in this cluster by both methods). Cluster 3 (9 firms)
markedly differs from the previous solution and contains an extremely
healthy profile, with the highest margin, the highest return on assets,
the lowest fixed asset to equity ratio, and the lowest liability to asset
ratio. Clusters 1, 2 and 3 thus provide a gradation from more to less
financial distress. Clusters 4 to 6 are built around 4 outliers often arising
from small values in the denominator of certain ratios (one case has a
long term debt and equity to fixed assets ratio r3 = 466.7 and a sales to
fixed assets ratio r9 = 511.2; one case has a profit to equity ratio
r11 = 3.14 and a profit to total assets ratio r12 = 0.69; one case has
r11 = 2.65; and one case has an equity to long term debt ratio
r6 = 7903.03).

As expected, when working with financial ratios, either outliers
need to be removed from the sample prior to performing a cluster
analysis or the number of clusters has to be increased. On the contrary,
thanks to the fact that ilr coordinates have much lower kurtosis and are
less prone to outliers, there seems to be no need to remove outliers. As
expected, working with financial ratios leads to redundancy problems.
As repeatedly shown in the literature, given the fact that financial ratios
provide redundant and overlapping information on financial distress,
clusters often reflect a mere gradation from more to less distress, which
is also the case in this application. On the contrary, at least in in this
application, working with ilr coordinates has yielded clusters with
distinct financial profiles.

4.6. Second application

This application differs from the former in some important respects,
including a low tech industry, a much larger sample size and a different
clustering method. Having said this, it uses the same data source and
selection procedures on firms belonging to NACE code 14.1
(Manufacture of wearing apparel, except fur apparel). The usable
sample size is n = 809. In the same manner as with the previous ap-
plication, skewness and kurtosis are much larger for ratios than for
coordinates. Six out of twelve ratios have absolute skewness higher

Table 1
Skewness and kurtosis coefficients of ilr coordinates (left) and financial ratios (right).

Skewness Kurtosis Skewness Kurtosis

y1 −0.4 2.9 r1 1.8 3.3
y2 0.2 0.2 r2 2.1 4.8
y3 −0.6 0.0 r3 10.4 109.4
y4 0.6 0.1 r4 1.1 −0.1
y5 0.5 0.5 r5 0.3 −1.1
y6 −0.2 0.3 r6 8.4 78.5
y7 −1.1 13.1 r7 1.2 1.0

r8 2.2 8.7
r9 10.3 107.6
r10 −5.3 44.3
r11 4.2 26.3
r12 1.5 7.3

Table 2
Pearson correlations among ilr coordinates.

y1 y2 y3 y4 y5 y6 y7

y1 1.000 0.072 0.180 −0.344 −0.100 −0.318 −0.215
y2 0.072 1.000 0.340 −0.233 −0.408 −0.421 −0.063
y3 0.180 0.340 1.000 −0.470 −0.549 −0.629 −0.047
y4 −0.344 −0.233 −0.470 1.000 0.768 0.557 0.216
y5 −0.100 −0.408 −0.549 0.768 1.000 0.534 0.145
y6 −0.318 −0.421 −0.629 0.557 0.534 1.000 0.249
y7 −0.215 −0.063 −0.047 0.216 0.145 0.249 1.000
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than 10 while the highest absolute skewness among coordinates is 3.4.
Redundancy also follows the same pattern as in the previous applica-
tion.

With such a large sample size, hierarchical cluster analysis becomes
less practical. We used only the k-means method by selecting the best of
100 solutions with random initial clustering. The number of clusters
was selected from a scree plot of the within-cluster sums of squares,

suggesting a 4-cluster solution with ilr coordinates (Fig. 6). A 7-cluster
solution with ratios r1 to r12 provided 4 substantial clusters and three
clusters with one or two outliers for comparison (Table 5).

As it is often the case, when clustering highly skewed variables some
clusters are very large and some very small (the largest and smallest
cluster when using standard financial ratios contain 368 and 10 firms,
respectively). Under both solutions, cluster 1 shows a financial distress
profile with negative operating profit and debt problems. Under both
solution cluster 2 seems to have liquidity problems. Similarity between
both solutions ends here. The remaining two clusters in the ilr solution
reveal distinct healthy profiles with a strategic orientation to have ei-
ther low long-term debt or low inventory (Fig. 7). The remaining two
clusters in the standard ratio solution are on the one hand a very large
cluster with generally healthy firms and a very small cluster with ne-
gative operating profit and very low leverage.

5. Discussion, limitations and future research

The proposed financial statement analysis method based on CoDa
boils down to computing alternative measures of the relative im-
portance of components in the balance sheet and the profit and loss
statement, called ilr coordinates. Ilr coordinates are simply scaled
logarithms of ratios of geometric means of components, as arranged in a
SBP, which can be represented as a tree diagram. Standard cluster
analysis can subsequently be applied with the researchers' favourite
clustering method and software. Results can be presented to a statisti-
cally non-sophisticated readership just as typical financial statement
profiles for each cluster, from which even standard financial ratios can
be computed.

Ilr coordinates are constructed in such a way as to reduce their
mutual redundancy and are sparing in number. This is so because ilr
coordinates define an orthonormal basis (Egozcue et al., 2003). Once D
strictly positive relevant components of interest in the balance sheet
and the profit and loss statement have been selected, D−1 coordinates
are enough. CoDa can be understood as the manner in which a
minimum number of coordinates can be selected which carrys all in-
formation about the relative importance of any component to any
other. Being a particular case of log-ratios, ilr coordinates tend to be
symmetric (Aitchison, 1982, 1986).

Euclidean distance computed using ilr coordinates as data is
equivalent to Aitchison's distance, the most commonly used measure of
compositional distance. This distance focuses on the relative size of
components and is thus coherent with the aim of financial ratio ana-
lysis. The selected components in the balance sheet and the profit and
loss statement are what matters to distances and not the chosen ilr
coordinates. Any SBP constructed from the same set of accounts leads to
the same Aitchison's distances. The worries in the literature about the
choice of the best ratios, hampered by their mutual redundancy and

Table 3
Pearson correlations among financial ratios.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

r1 1.000 0.976 0.074 −0.326 −0.657 0.087 −0.575 −0.077 0.052 0.207 −0.083 0.169
r2 0.976 1.000 0.101 −0.299 −0.610 0.110 −0.538 −0.220 0.079 0.199 −0.053 0.181
r3 0.074 0.101 1.000 −0.102 −0.081 0.028 −0.010 −0.094 0.997 0.020 −0.013 0.003
r4 −0.326 −0.299 −0.102 1.000 0.684 −0.185 −0.058 0.036 −0.116 −0.231 −0.103 −0.281
r5 −0.657 −0.610 −0.081 0.684 1.000 −0.219 0.688 0.094 −0.063 −0.175 0.173 −0.170
r6 0.087 0.110 0.028 −0.185 −0.219 1.000 −0.116 −0.119 0.032 −0.016 −0.060 −0.078
r7 −0.575 −0.538 −0.010 −0.058 0.688 −0.116 1.000 0.093 0.029 −0.010 0.339 0.046
r8 −0.077 −0.220 −0.094 0.036 0.094 −0.119 0.093 1.000 −0.102 −0.137 −0.237 −0.235
r9 0.052 0.079 0.997 −0.116 −0.063 0.032 0.029 −0.102 1.000 0.033 0.031 0.036
r10 0.207 0.199 0.020 −0.231 −0.175 −0.016 −0.010 −0.137 0.033 1.000 0.440 0.672
r11 −0.083 −0.053 −0.013 −0.103 0.173 −0.060 0.339 −0.237 0.031 0.440 1.000 0.738
r12 0.169 0.181 0.003 −0.281 −0.170 −0.078 0.046 −0.235 0.036 0.672 0.738 1.000
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Fig. 3. Principal component analysis screeplots. Proportion of explained variance by each
principal component.

Fig. 4. Ward's method hierarchical clustering dendrogram using ilr coordinates.
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thus interchangeability, and by the lack of deep theoretical grounds
favouring one ratio over the other, are avoided when using CoDa.
Dependence on the choice of numerator and denominator is also solved.

Our applications show our financial statement analysis method to
effectively reduce redundancy, outliers, skewness; and to lead to a more
interpretable clustering solution in terms of financial profiles rather
than a mere gradation of financial distress, to a lower dispersion of
cluster sizes, and to no clusters including only a few outliers. The need
to perform a careful and partly controversial outlier trimming prior to
the analysis seems to have been circumvented, at least in our data sets.
Since ilr coordinates reduce redundancy, the need to perform a prior

data reduction, for instance, a principal component analysis, is dimin-
ished. CoDa can be understood as a manner of keeping analysis steps
down to a minimum, as compared to standard ratio analysis.

A commonly mentioned drawback of log-ratio transformations is
that data may contain no zero values (e.g. Martín-Fernández, Palarea-
Albaladejo, & Olea, 2011). This drawback is largely also present in
standard financial ratio analysis, in which zeros are not allowed either,
at least for components in the denominator. In the last years CoDa has
developed an advanced toolbox for zero treatment and further research
can include the application of the standard procedures for the re-
placement of zeros in CoDa, by extending the methods in Martín-
Fernández et al. (2011) and Palarea-Albaladejo and Martín-Fernández
(2015) to the financial case. This would make financial statement
analysis possible even when some accounts of interest equal zero.

The objective of this article was not to establish the superiority of
any clustering algorithm or any criterion for deciding the number of
clusters over any other. The approach we suggest concerns the way of
treating data and distances prior to clustering and is compatible with
any clustering algorithm supporting Euclidean distance. Having said
this, further research can include using alternative clustering methods
such as mixture models (e.g., Comas-Cufí, Martín-Fernández, &Mateu-
Figueras, 2016; Ferrer-Rosell, Coenders, and Martínez-Garcia, 2016), or
fuzzy clustering (Palarea-Albaladejo, Martín-Fernández, & Soto, 2012).

Our analysis approach makes it possible to include any other posi-
tive magnitude whose size one wishes to compare with financial ac-
counts in relative terms, which also deserves further research. This
holds even for non-monetary magnitudes, such as the number of em-
ployees, as is often done when using ratios for managerial purposes and
strategy or performance assessment. The required magnitudes can
simply be added to the list of selected profit and loss accounts, in any
order.

Further research can also extend the proposed CoDa approach to
predict failure, bankruptcy, distress, survival time, stock market re-
turns, or other variables, as in the research stream started by Altman
(1968). Ilr coordinates just need to be included as predictors in the
chosen standard statistical or econometric model (Coenders, Martín-
Fernández, & Ferrer-Rosell, in press). No serious outlier, non-linearity
and collinearity problems are expected.

Last but not least, alternative CoDa methods have been developed in
order to take into account not only composition but also firm size
(Coenders et al., in press; Ferrer-Rosell, Coenders, Mateu-Figueras et al.,
2016; Pawlowsky-Glahn, Egozcue, & Lovell, 2015). Further research in
this arena is promising in case researchers believe that proportionality
among accounts does not tell the whole story in financial statement
analysis.

Table 4
Cluster labels, size and component geometric means scaled to total assets = 100 (pharmaceutical industry).

Assets Equity Liabilities Expen. Sales

Label Size x1 x2 x3 x4 x5 x6 x7 x8

3-cluster solution (ilr coordinates) 1 49 63.9 9.3 26.8 34.7 32.4 32.9 72.9 74.4
2 49 31.7 14.1 54.2 72.4 3.5 24.1 100.7 115.9
3 12 43.1 14.1 42.8 72.0 0.2 27.8 112.7 119.9

3-cluster solution (ratios) 1 71 54.3 13.2 32.6 43.0 15.3 41.7 95.9 99.0
2 38 37.2 9.9 52.9 83.2 1.7 15.1 77.8 91.7
3 1 0.2 3.4 96.5 70.4 0.2 29.4 70.5 77.3

6-cluster solution (ratios) 1 47 58.3 12.0 29.7 33.2 24.7 42.1 85.1 86.0
2 50 45.0 14.2 40.8 75.3 2.7 22.1 97.3 106.5
3 9 22.7 5.2 72.2 86.0 3.5 10.4 54.3 72.3
4 2 16.5 3.7 79.8 12.4 4.7 82.9 108.7 172.8
5 1 43.5 2.5 54.0 85.6 0.0 14.4 72.2 72.4
6 1 0.2 3.4 96.5 70.4 0.2 29.4 70.5 77.3

Fig. 5. Geometric means barplot of the 3-cluster solution (ilr coordinates).
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Fig. 6. Scree plot of k-means within-cluster sums of squares using ilr coordinates.
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