
Computers and Electrical Engineering 73 (2019) 32–45

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

Blockchain-based searchable symmetric encryption scheme

�

Huige Li a , b , Haibo Tian

a , b , Fangguo Zhang

a , b , ∗, Jiejie He

a , b

a School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510 0 06, China
b Guangdong Key Laboratory of Information Security, Guangzhou 510 0 06, China

a r t i c l e i n f o

Article history:

Received 20 April 2017

Revised 24 October 2018

Accepted 24 October 2018

Keywords:

Searchable symmetric encryption

Bitcoin

Blockchain

Fairness

Cloud-computing

a b s t r a c t

The mechanism for traditional searchable symmetric encryption (SSE) is pay-then-use. This

situation is not fair to user because the cloud server may return wrong results. Besides,

the user needs to verify these results locally. In order to ensure fairness and reduce user’s

calculations, we combined blockchain with SSE, and proposed a fair SSE scheme based on

blockchain. Our scheme can guarantee fairness for both parties. That is, if the user is not

honest, he cannot get right results from the server, and at the same time the server cannot

get any information related to the plaintexts during this search process. If the server is not

honest, except for the service charge, it will be punished automatically. Moreover, the user

in our scheme does not need to verify the results locally. The security and performance

analyses showed our scheme was semantic secure and feasible.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of cloud computing, more and more service providers have issued a series of cloud products,

such as Amazon Web Services, Google Cloud, etc. These cloud storage systems have changed the original storage way of data.

Users can store their data on the cloud directly, and then get access to them on any device conveniently.

The data usually include some sensitive information, such as name, telephone number and so on. The cryptography

plays an important role in protecting data privacy. Namely, to protect the privacy of data, users can encrypt them before

uploading. However, which encryption algorithm is chosen will affect the search efficiency.

Searchable symmetric encryption (SSE) was firstly proposed by Song et al. [1] . It allows a user to outsource his data

to the cloud in a private manner, while maintains the ability of selectively search segments of the data. It involves three

participants in SSE: Data owner, cloud server and user. The data owner encrypts documents D 1 , D 2 , . . . , D n and stores them

on the cloud. The cloud server manages these ciphertexts and provides search service to users. If a user gets the permission

from the data owner, he can obtain search results with the help of the cloud server by using an encrypted keyword. Finally,

the user decrypts them locally.

There are two ways to construct SSE. The first is to use an index, and the second is not to use an index. Because the

former can improve search efficiency, the subsequent SSE works mostly accept this approach. A SSE scheme is secure if

anyone except authorised person cannot learn any information about the plaintexts when he/she only gets ciphertexts.
� This paper is for CAEE special section SI-bciot .Reviews processed and recommended for publication to the Editor-in-Chief by Area Editor Dr. G. Martinez

Perez.
∗ Corresponding author at: School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510 0 06, China.

E-mail address: isszhfg@mail.sysu.edu.cn (F. Zhang).

https://doi.org/10.1016/j.compeleceng.2018.10.015

0045-7906/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compeleceng.2018.10.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2018.10.015&domain=pdf
mailto:isszhfg@mail.sysu.edu.cn
https://doi.org/10.1016/j.compeleceng.2018.10.015

H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45 33

Meanwhile, when search, except the search results, he/she also cannot learn anything about the plaintexts and the keywords

that queried.

For existing SSE schemes, users need to pay before enjoying search service the cloud server provided. However, this

manner is very unfair to users. Once the search results are incorrect, the user needs to ask a third party to redeem the

service fee they paid, which may take a long time. If the third party colludes with the cloud server, the user will never be

able to defend their rights. This situation usually happens in medical systems, insurance company, etc. In order to prevent

such things from happening, it is necessary to solve the problem of fairness in SSE.

1.1. Related work

The search efficiency of scheme [1] is O (n), where n denotes the length of document. In order to improve it, Goh et al.

introduced an index [2] in the construction of SSE. However, this scheme may return wrong results, therefore, Curtmola et al.

[3] used the data structure to create a new index for all documents, whose search complexity was O (| D (w)|), where | D (w)|

denotes the number of documents that contain keyword w .

In order to enrich the function of SSE, the subsequent researchers proposed parallel search [4] , Boolean query search

[5–7] , fuzzy search [8–10] , dynamic updates [11–13] , search with multi-level access policy [14] .

Most SSE schemes can resist honest but curious adversary, such as [1,3,7] . While, Kurosawa et al. firstly gave a protocol to

resist malicious adversary [15] , which uses the message authentication code technology in the construction of index. Cheng

et al. designed an algorithm that also can resist such adversary by using the indistinguishability obfuscation [16] . Other

works that resist malicious adversary are [11–13] .

Undoubtedly, a stronger privacy guarantee for SSE scheme can be achieved when using oblivious Random Access Ma-

chines [17] . However, it needs multiple interactions between server and user. Therefore, the search efficiency is low, as a

result, it is not practical. Song et al. [1] pointed that to improve the search efficiency, it is feasible to weaken the privacy

security level appropriately.

Bitcoin is an emerging virtual digital currency which happened in peer-to-peer (P2P) network. It was firstly proposed

by Nakamoto [18] in 2008, who generated the first bucket of bitcoin in 2009. The issuance of bitcoin does not depend on a

trusted entity. Anybody may issue a certain amount of bitcoin as long as he mines a right nonce. It is a purely decentralized

system. It uses proof-of work (POW) to confirm a transaction. In this system, it requires that the majority of nodes in P2P

network are honest.

Because the bitcoin system is decentralized and irreversible, there has a boom of research of bitcoin mechanism [19–

21] . Andrychowicz et al. and Bentov et al. introduced bitcoin into multiparty computations [22–24] to resolve the fairness

problem respectively.

Blockchain is the core tool in bitcoin, which can be used to issue other forms of cryptography currency, such as Ethereum

[25] . In the Ethereum system, everyone can build some smart contracts, which can be invoked by anyone. In fact, the

protocol [23] can be seen as a smart contract, because it introduces a commitment algorithm h (x) in the out-script of

transaction.

Our contributions: In this paper, we constructed a fair SSE scheme by using blockchain. The documents are encrypted

and stored on the cloud server. When searching, the user and the server need to build a series of transactions to get the

final search results. Our contributions are listed as follows:

• We introduced blockchain into SSE, and design a fair SSE scheme. Our blockchain-based SSE scheme can maintain fair-

ness for both parties automatically. As long as one party does not perform the protocol honestly, it will lose its own

deposit. Moreover, our blockchain-based SSE scheme also can resist malicious server.

• In our scheme, it needs 6 transactions to obtain the search results. Nonetheless, the search efficiency is still linear with

the number documents that contain the querying keyword.

• Our scheme can verify the results automatically. Compared with the existing SSE schemes, our scheme can reduce the

calculation of users.

• We implemented our scheme in Java and Go language, and the experimental results showed that our scheme was feasi-

ble.

Organization. The remainder of this paper is organized as follows. In Section 2 , we review some preliminaries that will

be used in our construction. Then we propose our model of blockchain-based SSE and its security definition. In Section 4 we

present our concrete construction. Next we give the analyses of performance and security for our scheme. The last section

is our conclusion.

2. Preliminaries

In this section, we review some cryptographic tools and terms that will be used in our construction. It mainly includes

searchable symmetric encryption, bitcoin currency system and negligible function.

34 H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45

Fig. 1. Traditional SSE model.

2.1. Searchable symmetric encryption

As shown in Fig. 1 , there are three participants: Data owner, server and user. The data owner has n documents

D 1 , D 2 , . . . , D n . Before uploading, he encrypts them into ciphertexts C = (C 1 , C 2 , . . . , C n) by using his secret key K . Besides,

he generates an encrypted index I . Then, he sends C, I to the server. Suppose that the data owner and the user share the

private key K . Now, the user wants to search documents that contain keyword w . Therefore, he computes a search token t w

for keyword w by using key K , and sends it to the server. The server then computes the results C ij by combining t w

, C , and

I . Finally, the user decrypts C ij locally.

A searchable symmetric encryption is secure if the following properties hold:

• The server cannot learn anything about the plaintexts when it only gets ciphertexts.

• When the server executes search algorithm, it also can not learn anything about the plaintexts and the keywords queried

except the search results.

2.2. Bitcoin currency system

The blockchain is a core technology in bitcoin system. There does not have a standard definition for blockchain. In order

to understand it clearly, we will review the bitcoin.

A bitcoin system consists of addresses and transactions between them. The address usually is a hash value of the user’s

public key. Each user can have a pair of keys when he wants to build a transaction, i.e., a private key and a public key [23] .

The public key is used to verify whether the signature of a transaction is valid or not, while the private key is used to sign

this transaction. For brevity, we will use the capital letter (e.g. A) to denote this pair key (A .pk, A .sk). Let σ = sig A (T) denote

the signature of transaction T with respect to the private key A.sk of A , and ver A (T, σ) be the verification result by using the

public key A.pk of A .

In the bitcoin system, each transaction can have multiple inputs and two outputs at most. The transaction describes the

circulation of digital cryptocurrency, namely, the money is transferred from an address of user A to an address of user B . A

transaction can be denoted as T x = ((y 1 , a 1 , σ1) , . . . , (y l , a l , σl) , (v 1 , π1) , . . . , (v l , π l), t), where y i is a hash value of previous

transaction T y i , a i is an index of the output of T y i and σ i is the input-script. The (v 1 , π1) , . . . (v l , πl) can be seen as the out-

puts of T x , where the π i is output-script. The input-script and output-script are written in bitcoin scripting language, it is a

stack-based language [22] . The input-script of a transaction is associated with the output-script of previous transaction. Each

transaction can have a time lock t , which means it is valid only after t time. The ((y 1 , a 1) , . . . , (y l , a l) , (v 1 , π1) , . . . (v l , πl) , t)

usually is called as the body of T x , which we denote by [T x].

A transaction is valid if it satisfies that:

• The defined time t is reached.

H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45 35

Fig. 2. A transaction for a situation when a user locks v . y 1 and x denote the pairs of keys hold respectively by the sender and the receiver. t is a

moment of time, when the receiver can take his deposit back. T y 1 is an unredeemed transaction with value v , which can be redeemed with key y 1 . σ

denotes a signature of transaction T x created by x .

Table 1

Symbols/Functions list that we will use in our blockchain-based SSE scheme.

Symbol/Functions Meaning

D document

C ciphertext of D

w keyword

k system parameters

the form of currency in the blockchain

F 1 , F 2 pseudorandom functions, where F i : {0, 1} k × {0, 1} ∗ → {0, 1} k .

H a keyed hash function, such as SHA − 256 .

ε = (ε .Enc, ε .Dec) indistinguishability against chosen-plaintext attacks (IND − CPA) secure symmetric encryption

(SE) scheme, where ε. Enc denotes the encryption process and ε. Dec denotes the decryption

process.

δ = (δ.Enc, δ.Dec) a determinate SE scheme, where δ.Enc denotes the encryption process and δ.Dec denotes the

decryption process.

• The verification of π i ([T x], σ i)(1 ≤ i ≤ l) holds.

• The involved transactions are not redeemed.

• It was accepted by at least 6 nodes.

When the transaction is finished, it will be collected by a block. As shown in Fig. 2 , it is a simple transaction.

Definition 1. A function f is negligible if for every polynomial p (·) there exists an Integer N such that for all integer n > N

it holds that f (n) <

1
p(n)

.

Here, we also list some functions and symbols that we will use in our construction, which are shown in Table 1 .

3. Our system model

In fact, SSE technology can be used in many scenarios. For example, in a financial sector, employees can store their en-

crypted data on the cloud, which not only protects the interests of company, but also can provide convenient search services

for employees. Since the cloud is not trustworthy, when employee searches, it may return wrong results. If employees do

not check them locally, it may lead to them making a poor decision. Moreover, if the size of returned results is large, they

will take more time to finish this verification. Therefore, it is necessary to design a SSE scheme which can automatically

check the search results and guarantee the fairness for both parties.

In this section, we will give our model of blockchain-based SSE and its security definition.

3.1. Definition for blockchain-based SSE

As shown in Fig. 3 , in the blockchain-based SSE system, there mainly have three participants: Data owner, server and

user. The data owner has n documents D = (D 1 , D 2 , . . . , D n) . Suppose the data owner and the user share the private key k 1 .

In the first stage, the data owner uploads encrypted documents C = (C 1 , . . . , C n) and index I on the cloud server. In

the second stage, if the user wants to search documents that contain keyword w , he generates an encryption value T w
of keyword w , and sends it to the server to invoke it to participate in the following stages. Besides, the user builds a

transaction Appoint whose receiver either is himself or the server. In the third stage, the server creates a transaction ask to

get the decryption key of T w

. If the user provides it correctly, he can uses the transaction pay to redeem the transaction

36 H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45

Fig. 3. Blockchain-based SSE model.

ask , and at the same time the server needs to compute search results that contain keyword w locally; otherwise, the server

uses the transaction withdraw to get the money in the transaction ask back. In the fourth stage, to get the search result, the

user creates a transaction Get . As long as the server provides the right result, it can use the transaction Prove to redeem the

transaction Get , otherwise the user uses the transaction Fuse to get his money in the transaction Get back. Finally, the user

uses the search results to build a transaction Redeem to get his money in the transaction Appoint back, otherwise the server

will redeem it by using the transaction compesa .

Definition 2 (Blockchain-based SSE) . A blockchain-based SSE scheme is a tuple composed of seven polynomial time algo-

rithms π = (Gen, Enc, Srchtoken, Search, Verify, Dec, Rede) shown as follows:

• K ← Gen (1 k): It is a probabilistic algorithm that takes a security parameter k as input, and outputs a key array K .

• (I, C) ← Enc (K, D): It takes the key array K , data file collection D as input, and outputs ciphertexts C and an invertible

Index I .

• (Appoint, T w

) ← Srchtoken(w , K , T u): It is a deterministic algorithm. The user takes the keyword w , the private key array

K and an unredeemed transaction T u as input, and outputs a search token T w

and a transaction Appoint .

• (ask, Pay / Withdraw) ← Search (T w

, T s 1 , K , w): It takes the search token T w

, the key array K , the keyword w and an unre-

deemed transaction T s 1 as input, and outputs transactions ask and Pay (or Withdraw).

• (Get, Prove / Fuse) ← Verify (ask, Pay , C , I , K , T u 1 , T u 2): It takes the transactions ask and Pay , the ciphertexts C , the index I ,

the key array K and unredeemed transactions T u 1 , T u 2 as input, and outputs transactions Get and Prove (or Fuse).

• Redeem / compesa ← Rede (Appoint, Get, Prove): It takes transactions Appoint, Get and Prove as input, and outputs transaction

Redeem (or transaction compesa).

• D j ← Dec (P rov e, K) : The users takes the secret key array K , and transaction Prove as input, and outputs the plaintext D j .

3.2. Security definition

Our security definition mainly adopts the real/ideal simulation paradigm stated in [3] .

Definition 3. Let π = (Gen, Enc, Srchtoken, Search, Verify, Dec, Rede) be a block chain-based SSE scheme, k ∈ N be the secu-

rity parameter, A = (A 0 , . . . , A q) be an adversary such that q ∈ N , and S = (S 0 , . . . , S q) be a simulator, then consider the

probabilistic experiments Real π
A

(k) and Ideal π
A,S

(k) shown in Figs. 4 and 5 :

We say π is semantically secure if for all the probabilistic polynomial time (PPT) A , there exists a PPT S such that for

all polynomial size distinguisher D,

| P r [D (v , st A) = 1 : (v , st A) ← Real πA (k)] − P r [D (v , st A) = 1 : (v , st A) ← Ideal πA,S (k)] | ≤ negl(k) , (1)

where negl (k) is a negligible function in k .

In the experiment Ideal π
A,S

(k) , τ (D) is a trace related to documents D , which is composed of search pattern, access pat-

tern, the size of ciphertexts and the transactions that the user and the server built. The readers can refer to [3] to get more

detailed definitions about them.

H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45 37

Fig. 4. Experiment that adversary A plays in.

Fig. 5. Experiment that adversary A and simulator S played in.

38 H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45

Definition 4. The blockchain-based SSE scheme satisfies fairness if the following properties hold:

• If both parties execute the protocol honestly, the user can get the right result and the cloud server also can get the

service fee;

• If the user firstly terminates the search protocol or he is malicious, except losing the deposit, he also cannot get the right

result. Moreover, the server also cannot get any information about plaintext.

• If the server is malicious, in addition to not receiving the service fee, it will be punished.

4. The detailed scheme

Suppose a data owner has n documents D 1 , D 2 , . . . , D n need to upload onto the server. In this section, we still use capital

letter (e.g. A) to denote the pair of keys (A.pk, A.sk), and use λ to denote the output length of δ.Enc .

Now the proposed blockchain-based SSE scheme is as follows:

• Gen : The data owner takes the security parameter k as input, and outputs a secret key array K = (K 1 , K 2 , K 3 , K 4 , K 5) ,

where K i ← { 0 , 1 } k (i = 1 , . . . , 5) .

• Enc : At this stage, it will output ciphertexts and an invertible index.

– Firstly, the data owner uses the private key K 1 to encrypt documents D i (1 ≤ i ≤ n):

C i = ε.Enc K 1 (D i)(1 ≤ i ≤ n) (2)

MAC(C i) = H(K 5 , C i) (3)

He then sets C ← ((C 1 , MAC(C 1)) , . . . , (C n , MAC(C n))) .

– In order to generate an index, the data owner firstly extracts keywords from document collection D . Suppose the

keyword collection is W = { w 1 , w 2 , . . . , w m

} . For each keyword w i ∈ W, he chooses an empty array DB (w i) of size n .

He then assigns DB (·) in this way: If j th document contains keyword w i , then DB (w i)[j] = 1 , otherwise, DB (w i)[j] = 0 .

Next, he computes:

t w i
= F 1 (K 2 , w i ‖ 0) (4)

k w i
= F 1 (K 2 , w i ‖ 1) (5)

e w i
= δ.Enc(k w i

, DB (w i)) (6)

K w i
= F 1 (K 3 , w i) (7)

M ac w i
= H(K w i

‖ DB (w i)) (8)

The data owner puts (t w i
, e w i

, M ac w i
) into I of length m · (2 k + λ) with lexicographically order. At last, he uploads (C,

I) onto the cloud.

• Srchtoken : Suppose the data owner shares key array (K 1 , K 2 , K 3 , K 4 , K 5) with a user. In order to search documents that

contain keyword w , the user computes:

t w

= F 1 (K 2 , w ‖ 0) , (9)

k w

= F 1 (K 2 , w ‖ 1) , (10)

k 31 = F 1 (K 4 , w) , (11)

T w

= δ.Enck (k 31 , t w

‖ k w

‖ H(k 31)) , (12)

Then, he sends T w

to the server, and waits for reply.

Let D (·) be a contract built by the server, which can be invoked by anyone. In this contract it mainly performs hash

operations, that is to say, when inputting (x, y), this contract can verify h (x)
? = y .

Meanwhile, the user builds a transaction Appoint shown in Fig. 6 in the following way:

H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45 39

Fig. 6. The process of the user deposits.

– Finds an unredeemed transaction T u of value d , whose receiver is himself.

– Embeds D (·) into the out-script of transaction Appoint .

– Computes the body of transaction Appoint .

– Both the user and the server compute the body of the transaction compesa by taking transaction Appoint as input.

Then the user sends his signature of transaction compesa to the server, who will add signature in it. Here the trans-

action compesa has a time-lock t max 1 , it means that after time t max 1 , the server can broadcast transaction compesa .

– The user signs transaction Appoint , and broadcasts it on the blockchain.

– If transaction Appoint does not appear on the blockchain until t max 1 − max 0 , the user can immediately redeem trans-

action T u by using his private key and quits the protocol, where the max 0 means the maximal possible delay of

including Appoint into the blockchain.

Let V(x, y) denote another contract created by the user. It will firstly perform a decryption algorithm δ, then executes a

hash verification.

• Search : After receiving T w

, the server establishes a transaction ask shown in Fig. 7 to get the decryption key k 31 of T w

in

the following way:

– Find an unredeemed transaction T s 1 of value d , whose receiver is the server.

– Embeds V(k 31 , T w

) into the out-script of transaction ask .

– Computes the body of transaction ask .

– Both the server and the user compute the body of the transaction withdraw by taking transaction ask as input. The

user sends his signature of transaction withdraw to the server to add its signature in it. The transaction withdraw has

a time-lock t , it means that after time t , the server can broadcast transaction withdraw .

– The server signs transaction ask and broadcasts it on the blockchain.

– If transaction ask does not appear on the blockchain until t − max 1 , where the max 1 means the maximal possible

delay of including ask into the blockchain, the server can immediately redeem transaction T s 1 by using its private key

and quits the protocol.

The user computes the body of transaction Pay by using transaction ask , and embeds k 31 into the in-script of transaction

Pay . After signing it, he broadcasts transaction Pay .

The nodes collect transaction Pay in the P2P network, and verify it in this way:

– Decrypts T w

by using key k 31 : t w

‖ k w

‖ H(k 31) = δ.Dec(k 31 , T w

) ;

– Verifies whether H(̃ k 31)
? = H (k 31) holds or not. If it holds, the transaction Pay will be accepted, otherwise it will be

rejected.

40 H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45

Fig. 7. The process of getting the decryption key of search token T w .

If the transaction Pay does not appear on the blockchain until time t , the server will broadcast the transaction withdraw

and gets his money back.

• Verify : In order to redeem d and charge d 1 service fee from the user, the server will do:

– Gets t w

‖ k w

from transaction Pay , and finds (t w

, e w

, M ac w

) from the index I by using t w

.

– Decrypts e w

by using k w

: DB (w) = δ.Dec(k w

, e w

) .

– Chooses an empty set C w

, and sets it in this way: If DB (w)[j] = 1 , it puts document (C j , MAC (C j) into C w

.

Let V 1 (x 1 , x 2 , x 3 , x 4 , { y i , mac y i } , z 1 , z 2) be a hash verification algorithm, which also can be seen as a smart contract. It

takes x 1 , x 2 , x 3 , x 4 , { y i , mac y i } as input, and verifies whether x 2
? = H(x 3 ‖ x 1) , mac y i

? = H(x 4 ‖ y i) and z 2
? = H(x 1 ‖ z 1) hold

or not. If they hold, it outputs 1, otherwise it is 0.

The user constructs a transaction Get to get the search results shown in Fig. 8 as follows:

– Finds two unredeemed transactions T u 1 of value d B and T u 2 of value d 1 B , whose receiver is the user.

– Embeds V 1 (DB (w), Mac w

, K w

, K 5 , C w

, z 1 , z 2) in the out-script of transaction Get , where z 1 is a session key generated

by server, and z 2 = H(DB (w) ‖ z 1) .
– Takes T u 1 and T u 2 as input, and computes the body of transaction Get .

– Both the user and the server compute the body of transaction Fuse by taking transaction Get as input. Then, the server

sends the signature of transaction Fuse to the user, who will add his signature into it. The transaction has a time-lock

t 1 , it means that the user can broadcast transaction Fuse after time t 1 .

– The user signs transaction Get and broadcasts it on the blockchain.

– If transaction Get is not appeared in the blockchain within time t 1 − max 3 , where the max 3 means the maximal

possible delay of including Get into blockchain, the user can immediately redeem T u 1 and T u 2 and quits the protocol.

The user computes the body of transaction Prove by using transaction Get , and puts K 5 , K w

into the in-script of transac-

tion Prove . Then, he sends his signature of transaction Prove to the server.

The server takes the transaction Get as input, and computes the body of transaction Prove . It then adds DB (w), Mac w

, C w

,

z 1 , z 2 into the in-script of transaction Prove . After signing it, the server broadcasts the transaction Prove .

The nodes collect the transaction Prove in the P2P network, and do:

– verify whether M ac w

? = H(K w

‖ DB (w)) , MAC C i
? = H(K 5 ‖ C i) and z 2

? = H(DB (w) ‖ z 1) hold or not. If they hold, the

transaction Prove will be accepted.

If the transaction Prove does not appear on the blockchain until time t 1 , the user can broadcast transaction Fuse to

redeem transaction Get .

H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45 41

Fig. 8. The process of returning and verifying the search results.

• Rede : The user takes transaction Appoint as input, and puts z 1 , z 2 , DB (w) into the in-script of transaction Redeem shown

in Fig. 6 . After signing it, he broadcasts it onto the blockchain. The nodes on the P2P network do:

– Verify whether z 2
? = H(DB (w) || z 1) holds or not.

– If it does, it outputs 1, which means the transaction Redeem will be accepted.

If the transaction Redeem does not appear on the blockchain until t max , the server broadcasts transaction compesa shown

in Fig. 6 to redeem transaction Appoint .

• Dec : If the transaction Prove appears on the blockchain, the user can reads { C j } from it. Then, he uses the secret key K 1

to decrypt C j : D j = ε.Dec(K 1 , C j) .

Lastly, the user updates the MAC (C i) for each ciphertext C i by using a new key K 5 , and deletes the old MAC (C i) that stored

on the cloud.

5. Security and performance analysis

5.1. Security analysis

In this section,we will give two theorems to prove that our scheme is secure and fair.

Theorem 1. If F 1 , F 2 are pseudorandom functions, H is a collision resistant hash function, and ε = (ε .Enc, ε .Dec) is IND-CPA-

secure SE scheme, then the scheme we present above is adaptively secure.

Proof 1. We need to construct a PPT simulator S = {S 0 , S 1 , . . . , S q } for the adversary such that A = {A 0 , A 1 , . . . , A q } , the

output of Real π
A

(k) and Ideal π
A,S

(k) are computationally indistinguishable.

Suppose that the simulator S is given the trace τ of documents D , then it can generate (I ∗, C

∗
, Appoint ∗,

Redeem

∗/ compesa ∗, ask ∗, Withdraw

∗/ Pay ∗, Get ∗, Prove ∗/ Fuse ∗) as follows:

• If q = 0 , the simulator S 0 can set I ∗ be a random strings whose size is |I| . S 0 puts the I ∗ in the state st S , and set

C ∗
i

← { 0 , 1 } | D i | . Besides it sets MAC ∗(C i) ← {0, 1} k at random. Since the state st A 0 does not have the key K 2 , K 3 , K 4 , the

simulator will uniformly choose t ∗w

← { 0 , 1 } k , k ∗w

← { 0 , 1 } k , and M ac w

∗ ← { 0 , 1 } k at random for each keyword w . It also

chooses k ∗
31

← { 0 , 1 } k , and sets T ∗w

= δ.Enc(k ∗
31

‖ t ∗w

‖ k ∗w

‖ H(k ∗
31

)) . The adversary A 0 chooses some unredeemed trans-

actions T ∗u , T ∗s 1 , T
∗

u 1
, T ∗

u 2
. Because the state st A 0 does not have the private key used to generate transactions, so the sim-

ulator chooses key pairs (u ∗. sk, u ∗. pk) and (s ∗. sk, s ∗. pk) randomly. Then, it builds transaction Appoint ∗ by using the pri-

vate key u ∗. sk , transaction ask ∗ by using the private key s ∗. sk and T ∗w

, transaction Pay ∗ by using the private key u ∗. sk

and k ∗ (or transaction withdraw by using private keys u ∗. sk and s ∗. sk), transaction Get ∗ by using the private key u ∗. sk

31

42 H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45

and V 1 (DB (w) ∗, M ac ∗w

, K

∗
w

, K

∗
5
, C ∗w

, z ∗
1
, z ∗

2
) , where DB (w) ∗ ← {0, 1} n , K

∗
w

← { 0 , 1 } k , M ac ∗w

= H(K

∗
w

|| DB (w) ∗) , K

∗
5

← { 0 , 1 } k ,
C ∗

j
← { 0 , 1 } n , MAC (C ∗

j
) = H(K

∗
5
, C ∗

j
) , z ∗

1
← { 0 , 1 } k and z 2 = H(DB (w) ∗|| z 1) .

Since the state st A 0 does not have the keys K 3 , K 5 , therefore, the adversary A 0 cannot build a valid transaction Prove ∗ to

redeem transaction Get ∗. It also cannot build a valid transaction Fuse ∗ to redeem transaction Get ∗.

Because ε is IND-CPA secure, the adversary cannot distinguish C ∗
i

from C i that generated in the real experiment. Because

F 1 is a pseudorandom function and H is collision-resistant, the adversary cannot distinguish (t ∗w

, e ∗w

, M ac ∗w

) from true

(t w

, e w

, M ac w

) generated in Enc step. Therefore, the index I ∗ is undistinguishable from true index I generated in Enc

step.

• When q = 1 , the S 1 can read true DB (w 1) , M ac w 1
, C w 1

= { C j , MAC(C j) } , z 2 from trace τ of documents D , then it can

set e ∗w 1
= δ.Enc(k ∗w 1

, DB (w 1)) , where k ∗w 1
← { 0 , 1 } k . It puts (t ∗w 1

, e ∗w 1
, M ac w 1

) into I ∗, where t ∗w 1
← { 0 , 1 } k . The S 1 sets

T ∗w 1
= δ.Enc(k ∗31 ‖ t ∗w 1

‖ k ∗w 1
‖ H(k ∗31)) , where t ∗w 1

← { 0 , 1 } k , k ∗w 1
← { 0 , 1 } k and k ∗31 ← { 0 , 1 } k . Then, it builds a transaction

ask ∗ that embedded function V (T ∗w 1
, k ∗

31
) .

Because the adversary A 1 does not have the private key, it cannot give a valid signature for transaction Pay ∗, as well as

for transaction withdraw

∗. Therefore, it cannot use transaction Pay ∗ or withdraw

∗ to redeem transaction ask ∗.

The simulator S 1 embeds V 1 (DB (w 1) , M ac w 1
, K

∗
w 1

, K

∗
5
, C w 1

, z ∗
1
, z 2) into transaction Get ∗ and broadcasts it to the blockchain,

where K

∗
5 ← { 0 , 1 } k and z ∗1 ← { 0 , 1 } k .

Because the adversary A 1 does not have the key array K , it cannot build a valid signature for transaction Prove ∗, as well

as Fuse ∗. Therefore, it cannot redeem the transaction Get ∗ normally.

Because the F 1 is undistinguishable from function f : {0, 1} k → {0, 1} k , and H is collision resistant, we can get I ∗ is undis-

tinguishable from I generated in Enc step.

• For 2 ≤ i ≤ q : The simulator S i checks whether w i was queried or not. If w i = w j (1 ≤ j ≤ i − 1) , it sets σ (i, j) = 1 in τ . If

it does not be queried, it generates transactions ask ∗ and Get ∗ in the same way that S 1 does. If w i did previously appear,

the S i returns the corresponding transactions ask ∗, Get ∗ previously used for w i . The adversary A i builds the appropriate

transactions Pay ∗/ withdraw

∗ and Prove ∗/ Fuse ∗.

Because the adversary does not have the key array K , it cannot build a valid signature for transactions Pay ∗ and Prove ∗,

as well as withdraw

∗ and Fuse ∗. Therefore, it cannot redeem the transactions ask ∗ and Fuse ∗ normally. �

Theorem 2. If the blockchain is irreversible, our scheme can satisfy fairness.

• If the user is not honest, it means that the transaction Pay cannot be accepted by the blockchain. As a result, the server

cannot get t w

, k w

which were used to find the search results. During this process, the user will be penalized, while the

server cannot get any information about plaintexts.

• It the server is not honest, it either means the value T w

embedded in transaction ask is wrong, or it does not provide

right results. For the former, the server cannot get any information about plaintext; for the latter, it cannot get the service

fee.

• If both of them honestly execute the protocol, the user can get right results from transaction Prove , and the server can

get service fee as well.

5.2. Performance analysis

In this section, we will illustrate the practicality of our construction through experiments. These experiments are imple-

mented in Java and Go and consist of 751 lines of codes which is not optimized. The reason that we use different platforms

is that the constructions of current transaction and smart contract do not support Java language flexibly.

Our system configuration is Intel(R) Core (TM) I7 − 8700 k@3.70 GHz, 4GB RAM. We instantiate pseudorandom functions

F 1 , F 2 with H MAC − SH A 256 , the keyed hash function H with H MAC − SH A 256 , and the SE scheme ε, δ with AES in the CTR

mode with a 256 bit key. The type of the test data we chose was (w, ind), where w denoted a keyword and ind represented

a file identifier. The number of (w, ind) pairs ranged from 50 0 0 to 2 × 10 4 .

We will use the following characteristics to show feasibility of our scheme. The first is setup time, that is, how long it

takes to produce an invertible index. The second is the time used to generate a search token for a single keyword w . The

third is the search time needed to finish a search task.

Setup time . Since the construction of encrypted Index table does not depend on the blockchain, we implement it in Java.

Firstly, we extracted the keyword set from the test data with different size, and classified the file identifiers based on these

keywords. To generate the index, we invoked AES two times and SHA 256 four times. From Fig. 9 , we can see that the setup

time increased linearly in the number of (w, ind) pairs.

Search token generation time . Here we only focus on single keyword search. To generate a search token, the user needs

to use pseudorandom functions F 1 three times, hash function H once, and SE once. Therefore, we invoked SHA 256 four times,

and AES once. As shown in Fig. 10 , we can get that the generation time of a search token was not depended on the number

of (w, ind) pairs. It took about 1 ms to generate a search token for a keyword with size 1 kB.

Search time . When search, the user needs to interact with the server on the blockchain and build transactions six times.

Therefore, we put the search process on the Fabric 1.0 ran on a VMware Workstation on the ubuntu 16.04 LTS system. We

H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45 43

Fig. 9. Time of building an invertible index for keyword/identifier pairs with different size.

Fig. 10. Time of building a search token for a single keyword.

instantiated the smart contract D (·) with SHA 256, V(x, y) with a combination of AES and SHA 256, and V 1 (. . .) with a function

invoked SHA 256 three times on the Fabric. The language we used is Go. In this process, the server also needs to decrypt T w
into t w

, k w

, and uses t w

, k w

to find the search results from index I locally. Therefore, the search time is equal to the time it

took to find the search results locally plus the time spent by 6 transactions from creation to finish. Fig. 11 shows the search

time was linear with the number of (w, ind) pairs. Since these contracts can verify the result automatically, the users can

reduce their calculations locally. Moreover, in this process, only the user provided correct results in transactions Redeem , he

could redeem his deposit. Similarly, only the server provided right search results, it could charge the service fee.

Once the transactions we built invokes the smart contracts, it can automatically judge whether the results embedded

in them are valid. If they are not accepted by the blockchain, the user cannot get the search results or will be punished,

44 H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45

Fig. 11. Time of returning the search results to user.

while the server cannot obtain any information about plaintexts. Therefore, compared with [4,15] , our scheme can guarantee

fairness and also can resist the malicious user.

6. Conclusion

Although the blockchain is decentralized, it can automatically protect the rights of users. Therefore, based on this tech-

nology, we give a feasible solution to solve the fairness problem happened in the searchable symmetric encryption. From

our scheme, the user can obtain the search results automatically without verification. If the server is malicious, except losing

the deposit, it will not be able to obtain the service fee.

Because our scheme can safeguard the interests of users, it has many practical scenarios, such as in medical system,

securities company, and so on. In addition, our scheme can not only support single keyword search, but also can be extended

to multiple keywords search. However, the transaction time on the blockchain is long, it makes the search time in our

experiment test phase low. Therefore, our next work is to design a new cryptography currency system, which can deal with

our scheme cheaply and quickly.

Acknowledgments

This work is supported by the National Key R&D Program of China (2017YFB0802503), the National Natural Science

Foundation of China (no. 61672550), the Fundamental Research Funds for the Central Universities (no. 17lgjc45), and Guangxi

Key Laboratory of Cryptography and Information Security (no. GCIS201711).

References

[1] Song DX , Wagner D , Perrig A . Practical techniques for searches on encrypted data. In: 20 0 0 IEEE symposium on security and privacy, Berkeley, Cali-
fornia, USA; 20 0 0. p. 14–17 . May

[2] Goh E. J.. Secure indexes, IACR cryptology eprint archive 2003. 2003. https://gnunet.org/sites/default/files/secureindex.pdf . 216.

[3] Curtmola R , Garay J , Kamara S , Ostrovsky R . Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM conference on computer and communications security. ACM; 2006. p. 79–88 .

[4] Kamara S , Papamanthou C . Parallel and dynamic searchable symmetric encryption. In: International conference on financial cryptography and data
security. Springer; 2013. p. 258–74 .

[5] Cash D , Jaeger J , Jarecki S , Jutla CS , Krawczyk H , Rosu MC , Steiner M . Dynamic searchable encryption in very-large databases: Data structures and
implementation. In: 21st annual network and distributed system security symposium, NDSS 2014, San Diego, California, USA; 2014. p. 23–6 . February

[6] Moataz T , Shikfa A . Boolean symmetric searchable encryption. In: Proceedings of the 8th ACM SIGSAC symposium on Information, computer and

communications security. ACM; 2013. p. 265–76 .
[7] Cash D , Jarecki S , Jutla C , Krawczyk H , Ro ̧s u MC , Steiner M . Highly-scalable searchable symmetric encryption with support for boolean queries. In:

Advances in cryptology–CRYPTO 2013. Springer; 2013. p. 353–73 .
[8] Boldyreva A , Chenette N . Efficient fuzzy search on encrypted data. In: Fast software encryption. Springer; 2014. p. 613–33 .

[9] Li J , Wang Q , Wang C , Cao N , Ren K , Lou W . Fuzzy keyword search over encrypted data in cloud computing. In: INFOCOM, 2010 proceedings IEEE.
IEEE; 2010. p. 1–5 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0001
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0001
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0001
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0001
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0001
https://gnunet.org/sites/default/files/secureindex.pdf
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0002
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0002
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0002
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0002
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0002
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0003
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0003
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0003
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0004
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0005
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0005
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0005
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0006
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0006
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0006
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0006
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0006
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0006
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0006
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0007
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0007
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0007
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0008
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0008
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0008
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0008
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0008
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0008
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0008

H. Li, H. Tian and F. Zhang et al. / Computers and Electrical Engineering 73 (2019) 32–45 45

[10] Wang B , Yu S , Lou W , Hou YT . Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In: INFOCOM, 2014 proceedings IEEE.
IEEE; 2014. p. 2112–20 .

[11] Stefanov E , Papamanthou C , Shi E . Practical dynamic searchable encryption with small leakage. NDSS 2014;14:23–6 .
[12] Bost R., Fouque P.A., Pointcheval D.. Verifiable dynamic symmetric searchable encryption: optimality and forward security. In: Cryptology ePrint

archive: report 2016/062 (2016). https://eprint.iacr.org/2016/062 .
[13] Bost R . o ϕo ς : forward secure searchable encryption. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security.

ACM; 2016. p. 1143–54 .

[14] Alderman J , Martin KM , Renwick SL . Multi-level access in searchable symmetric encryption. In: International conference on financial cryptography and
data security; 2017. p. 35–52 .

[15] Kurosawa K , Ohtaki Y . Uc-secure searchable symmetric encryption. In: Financial cryptography and data security. Springer; 2012. p. 285–98 .
[16] Cheng R , Yan J , Guan C , Zhang F , Ren K . Verifiable searchable symmetric encryption from indistinguishability obfuscation. In: Proceedings of the 10th

ACM symposium on information, computer and communications security, ASIA CCS ’15, Singapore; 2015. p. 14–17 . April
[17] Goldreich O , Ostrovsky R . Software protection and simulation on oblivious rams. J ACM 1996;43(3):431–73 .

[18] Nakamoto S.. Bitcoin: a peer-to-peer electronic cash system. http://www.cryptovest.co.uk/resources/Bitcoin%20paper%20Original.pdf .
[19] Reid F , Harrigan M . An analysis of anonymity in the bitcoin system. In: Security and privacy in social networks. Springer; 2013. p. 197–223 .

[20] Eyal I , Gencer AE , Sirer EG , Renesse RV . Bitcoin-ng: a scalable blockchain protocol. In: 13th USENIX symposium on networked systems design and

implementation (NSDI 16); 2016. p. 45–59 .
[21] Garay J , Kiayias A , Leonardos N . The bitcoin backbone protocol: analysis and applications. In: Annual international conference on the theory and

applications of cryptographic techniques. Springer; 2015. p. 281–310 .
[22] Andrychowicz M , Dziembowski S , Malinowski D , Mazurek L . Secure multiparty computations on bitcoin. In: 2014 IEEE symposium on security and

privacy. IEEE; 2014. p. 443–58 .
[23] Andrychowicz M , Dziembowski S , Malinowski D , Mazurek L . Fair two-party computations via bitcoin deposits. In: International conference on financial

cryptography and data security. Springer; 2014. p. 105–21 .

[24] Bentov I , Kumaresan R . How to use bitcoin to design fair protocols. In: International cryptology conference. Springer; 2014. p. 421–39 .
[25] Buterin V.. A next-generation smart contract and decentralized application platform. https://cryptorating.eu/whitepapers/Ethereum/Ethereum _ white _

paper.pdf .

Huige Li received her M.S degree from the School of Mathematics and Information Science, Shaanxi Normal University in 2013. She is currently reading

for her Ph.D. at the school of Electronics and Information Technology of Sun Yat-sen University, China. Her research focuses on Searchable Encryption.

Haibo Tian received his Ph.D. from the School of Communication Engineering, Xidian University in 2006. He is currently an associate Professor at the
School of Data and Computer Science of Sun Yat-sen University, China. His research mainly focuses on security protocol analysis and its design.

Fangguo Zhang received his Ph.D. from the School of Communication Engineering, Xidian University in 2001. He is currently a Professor at the School of
Data and Computer Science of Sun Yat-sen University, China. He is the co-director of Guangdong Key Laboratory of Information Security Technology. His

research mainly focuses on cryptography and its applications.

Jiejie He received his B.E. degree from the School of Information Technology, Minzu University of China in 2015. At present, he is reading for his M.E. at
the school of Data and Computer Science of Sun Yat-sen University, China. His research focuses on Blockchain and its applications.

http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0009
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0009
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0009
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0009
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0009
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0010
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0010
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0010
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0010
https://eprint.iacr.org/2016/062
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0011
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0011
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0012
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0012
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0012
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0012
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0013
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0013
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0013
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0014
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0014
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0014
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0014
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0014
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0014
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0014
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0015
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0015
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0015
http://www.cryptovest.co.uk/resources/Bitcoin20paper20Original.pdf
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0016
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0016
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0016
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0017
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0017
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0017
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0017
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0017
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0018
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0018
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0018
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0018
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0019
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0019
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0019
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0019
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0019
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0020
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0020
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0020
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0020
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0020
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0021
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0021
http://refhub.elsevier.com/S0045-7906(17)30976-X/sbref0021
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf

	Blockchain-based searchable symmetric encryption scheme
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Searchable symmetric encryption
	2.2 Bitcoin currency system

	3 Our system model
	3.1 Definition for blockchain-based SSE
	3.2 Security definition

	4 The detailed scheme
	5 Security and performance analysis
	5.1 Security analysis
	5.2 Performance analysis

	6 Conclusion
	Acknowledgments
	References

