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a b s t r a c t 

Big data plays a vital role in the prediction of diseases that occur due to climate change. 

For such predictions, scalable data storage platforms and efficient change detection algo- 

rithms are required to monitor the climate change. However, traditional data storage tech- 

niques and algorithms are not applicable to process the huge amount of climate data. This 

paper presents a scalable data processing framework with a novel change detection al- 

gorithm. The large volume of climate data is stored on Hadoop Distributed File System 

(HDFS) and MapReduce algorithm is applied to calculate the seasonal average of climate 

parameters. Spatial autocorrelation based climate change detection algorithm is proposed 

in this paper to monitor the changes in the seasonal climate. The proposed climate change 

detection algorithm is compared with various existing approaches such as pruned exact 

linear time method, binary segmentation method, and segment neighborhood method. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

“Big Data” is defined by volume, velocity, and variety of data. Big data is very complex to process by traditional data

processing techniques and tools. Nowadays, data generation sources like telescopes, satellite, sensor networks, social net-

works, wearable devices, mobile devices, streaming machines and high throughput instruments are continuously generating

a large volume of data. Recently, big data analytics has been applied in various domains, such as healthcare, business pro-

cess, scientific research, natural resource management, share marketing, social networking, community administration and

climate modeling. Climate data is observed from various advanced sensor technologies and is used to represent the seasonal

changes. Weather data collected from different climate laboratory and advanced computing technologies are used to give

valuable information to the world. Meteorological data is most often used to predict the weather and other climate-related

phenomena. In addition, climate data is also used for various purposes that lead to a significant development in weather

forecasting, rocket launching, and public health. 

However, climate data collected from various sources are used to identify the seasonal changes. In general, the climate

laboratories generate data in unstructured format. Statistical techniques or machine learning algorithms are used to get

meaningful information from the raw data. For example, statistical techniques are used to identify the number of precipi-

tation days for a specific region. In this regard, the World Climate Data Monitoring Programme (WCDMP) is developed by

WMO’s World Climate Programme (WCP) that focuses on management and collection of large climate data observed from

the global climate system [1] . Researchers and officials from the climate department use term Climate “normals” to compare
� Reviews processed and recommended for publication to the Editor-in-Chief by Associate Editor Dr. R. Varatharajan. 
∗ Corresponding author. 

E-mail addresses: gunavit@gmail.com (G. Manogaran), daphnelopez@vit.ac.in (D. Lopez). 

http://dx.doi.org/10.1016/j.compeleceng.2017.04.006 

0045-7906/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: G. Manogaran, D. Lopez, Spatial cumulative sum algorithm with big data analytics for climate 

change detection, Computers and Electrical Engineering (2017), http://dx.doi.org/10.1016/j.compeleceng.2017.04.006 

http://dx.doi.org/10.1016/j.compeleceng.2017.04.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
mailto:gunavit@gmail.com
mailto:daphnelopez@vit.ac.in
http://dx.doi.org/10.1016/j.compeleceng.2017.04.006
http://dx.doi.org/10.1016/j.compeleceng.2017.04.006


2 G. Manogaran, D. Lopez / Computers and Electrical Engineering 0 0 0 (2017) 1–15 

ARTICLE IN PRESS 

JID: CAEE [m3Gsc; April 12, 2017;9:16 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with other or past climate conditions. In general, normal climate is calculated using an average of the climate parameter

(e.g. maximum temperature) over a period. To check whether the day-to-day climate is normal or not, everyday climate is

compared with the past climate period from 1st January 1961 to 31st December 1990. 

World Weather Records (WWR) is originally developed by the world climate organization in 1923. The primary goal of

World Weather Records (WWR) is to maintain the huge size of records such as monthly temperature, wind speed, rainfall,

precipitation and pressure data that are collected from thousands of weather stations around the globe. In recent years,

the number of stations is increased noticeably. Especially, many weather stations have been collecting metrological data in a

continuous manner. World Metrological Organization (WMO) has been collecting the day-to-day weather data in the form of

digital since 1920. Metrological data collected from WMO are digitally published by nine issues. It include 1921–30, 1931–40,

1941–50, 1951–60, 1961–70, 1971–80, 1981–90, and 1991–20 0 0 [2] . World Meteorological Organization (WMO) Commission

for Climatology (CCl) maintains NoSQL based database to store the massive amount of data related to world weather ex-

tremes and various abnormal conditions. The Commission for Climatology (CCl) published the world weather extreme data

that are available online to users. The essential role of this database is to maintain the huge extreme of various climate pa-

rameters respect to space and time. The database consists of following climate parameters it includes maximum/minimum

observed temperature, wind speed and most precipitation on earth respect to space and time. In addition, the CGI database

also maintains the most destructive earthquake, hurricanes, floods, storms, and tornadoes. 

World Meteorological Organization uses space temperature on the land to measure the world surface temperature. Ships

and buoys are used to measure the sea surface temperature whereas rain gauge and precipitation are measured with the

help of satellites. The US Climate Prediction Centre, US National Climatic Data Centre and Global Precipitation Climatology

Project (GPCP) are maintaining the database to store the precipitation data for the globe. Recently, researchers from bioinfor-

matics and climate modeling are identified the correlation between the disease and climate with help of big data analytics.

Merging of climate and health data has become a major role in big data analytics. This paper uses MapReduce framework

to process the huge climate data and to find the seasonal changes. 

The structure of the manuscript is explained as follows: Section 1 introduces the need for big data analytics in a climate

data processing system. Section 2 reviews the recent work in big climate data analytics. Section 3 discusses the proposed

framework for seasonal climate changes. Section 4 discusses the proposed algorithm for seasonal climate change detection .

Comparison of various change detection algorithms is discussed in Section 5 . Result and discussion, performance evaluation

are discussed in Section 6 . Finally, Section 7 concludes the work. 

2. Related work 

Global climate change is considered as one of the top challenges of 21st century. Many researchers are doing their re-

search in big data analytics based climate modeling and bioinformatics [3,4] . Data science is a major field to understand

the global climate modeling. Thus, big data plays a vital role in almost every domain [5] . For example, the United States

Environmental Protection Agency has identified the software to store and share the climate data [6] . This software is used

to monitor the present climate change and future possible changes in the seasonal climate data. In addition, Enviratlas also

used to find the relationship and impact of climate change in society, healthcare and ecosystems [7] . Similarly, NASA also de-

veloped the Climate Analytics-as-a-Service (CAaaS) in cloud computing to enable the best performance in following domains

such as data proximal analytics, scalable data administration (big data), software machine virtualization, high-performance

computing, adaptive analytics and synchronized API development [8] . In addition, researchers from Brazil has developed

Platform as a Service (PaaS) based cloud computing platform called EUBrazilCC project to store and analyze big climate data

[9] . 

Big data also plays a vital role in various healthcare applications. Data generation sources in healthcare domain are in-

creased, and it requires advanced big data tools and techniques to process such huge volume of data. It is observed that

various improvements have been made in the day-to-day clinical system. This advancement is used to develop knowledge

from huge clinical records and improve business insights. Recently, many research work has been done to reduce the overall

cost and improve the disease diagnosis in healthcare [10–13] . Moreover, the impact of big data and cloud computing has

been increased noticeably [14–18] . In addition, there is a need to provide security and privacy in healthcare big data an-

alytics. Katagi and Moriai have reviewed state-of-the-art cryptography algorithms in Internet of Things [19] . Bi et al. have

discussed the benefit of the DPA resistant circuits to provide low power consumption and high security [20] . Similarly, Lian

has discussed the algorithms and applications in multimedia encryption [21] . Bi et al. have reviewed the applications of

transistor technologies in hardware security [22,23] . 

Bates et al. have developed six use cases to reduce the overall cost of healthcare [24] . These use cases are applied to the

following domains to reduce the cost for patients, health record management, triage, readmissions, disease diagnosis, drug

recommendation and healing optimization. Hermon and Williams have identified four uses cases of big data in healthcare

it includes patient administration and healthcare delivery, medical decision support system, medical support services and

customer behavior [25] . Moreover, various big data analytical solutions are developed to reduce the cost of treatment path,

drug recommendation and healthcare delivery. Recently, researchers from bioinformatics and climate modeling have iden-

tified the correlation between the disease and climate with the help of big data analytics. Merging of climate and health

data becomes a significant role in big data analytics. Many researchers from University of California, Johns Hopkins Univer-

sity, and IBM have identified the various platforms and software to model the climate change and dengue. Research and
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Fig. 1. Proposed framework for climate change detection. 

Fig. 2. Weather station data. 

 

 

 

 

 

 

 

development team from IBM have used mathematical models for vector-borne disease and Spatio Temporal Epidemiological

Modeler (STEM) tool with big data to identify the diseases like dengue and malaria based on the climate change. Pfeiffer

et al. have identified the Spatio-temporal model based on the big data analytics to predict animal and human health risks. 

3. Proposed framework 

The proposed framework for climate change detection and raw weather station data are shown in Figs. 1 and 2 respec-

tively. The big climate data is reduced with the help of Hadoop MapReduce framework spatial cumulative sum algorithm

is proposed to monitor the seasonal changes in the climate data. MapReduce algorithm is used to create a table in Apache

HBase with the help of Apache Hive. The huge day wise climate data from 1979 to 2016 is reduced to seasonal data with

the help of Apache MapRedcue framework. Fig. 3 shows the original weather data generated from various weather stations

in the study area Tamil Nadu, India. Results generated from the MapReduce framework is shown in Figs. 4 and 5 . 
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Fig. 3. Daily climate range. 

Fig. 4. Seasonal mean climate data (1979–2016). 

Fig. 5. Rain fall (1979–2016). 
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Algorithm 1: Hive Algorithm to Create Table in HDFS. 

1. Input: Field name and data type of weather data 

2. Output: Weather table 

3. if (Weather_Table_Name � = NULL) or (Weather_Table _Field � = NULL) 

4. then 

5. for each column in Weather_Table _Field ε Day_wise_ Weather_Table 

6. do 

7. add field name and field data type < date Date, latitude Double, longitude Double, elevation Double, maximum_temperature Double, 

minimum_temperature Double, precipitation Double, wind Double, relative humidity Double, solar Double > 

8. for each row in Weather_Table_Fields ε Day_wise_ Weather_Table 

9. do 

10. Table_Fields terminated by ’,’ 

11. Return Hive Create Table query 

Algorithm 2: Hive Algorithm to Store Big Weather Data from Local File System to HDFS. 

1. Data: Weather data collected from multiple weather stations 

2. Input: Weather data ‘ climatedata.txt’ in Local File System 

3. Output: Day_wise_Climate_Table in HDFS 

4. if (Table_Name � = NULL) 

5. then 

6. load data local inpath ’${env:home}/climatedata.txt’ 

7. into table Day_wise_Climate_Table; 

8. Return Hive Load Table query 

Algorithm 3: MapReduce Algorithm to calculate the seasonal average of weather parameters from day wise weather data stored in HDFS. 

1. Data: Weather data collected from multiple weather stations 

2. Input: Weather data ‘ climatedata.txt’ from HDFS 

3. Output: Seasonal_Average_Weather_Parameters to HDFS 

4. Function: Mapper 

5. method INITIALIZE 

6. Sum = new ASSOCIATIVE ARRAY 

7. Count = new ASSOCIATIVE ARRAY 

8. method MAP 〈 String ncp , double cpv 〉 
9. #nwp = Weather parameter name 

10. #wpv = Weather parameter value(day wise) 

11. Sum { nwp } = Sum { nwp } + wpv 

12. Count { nwp } = Sum { nwp } + 1 

13. method CLOSE 

14. for all term ncp ε Sum do 

15. Emit Intermediate ( string nwp, pair ( Sum { nwp }, Count { nwp })) 

16. Function: Reducer 

17. method REDUCE ( String ncp , pairs [( sum 1 , count 1 )…]) 

18. doubl e f inal _ sum = 0 . 0 ;
19. method REPEAT 

20. for all pair ( Sum, Count ) ε pairs [( sum 1 , count 1 ) to ( sum 122 , count 122 )] do 

21. f inal _ sum + = sum ;
22. double seasonal _ mean _ wpv = f inal _ sum/ 122 ;
23. ret urn ( St ring nwp, doubl e seasonal _ mean _ wpv ) ;

4. Proposed algorithm for seasonal climate change detection 

This section explains the existing approaches for climate change detection, such as cumulative sum method and bootstrap

analysis method. 

4.1. Cumulative sum method 

Cumulative sum methods are used to detect the slow and drastic changes in the mean value of a quantity of interest. This

method is used in many application it includes monitor the changes in the production environment, disease expectation,

fish populations, deforestation and crime analysis. This paper uses cumulative sum method to monitor the changes in the

climate. Taylor has developed the change point analysis method with the help of cumulative sum charts (CUSUM) and

bootstrapping analysis methods. CUSUM control chart can be calculated as follows: 

Calculate the average for ‘n’ data points X 1 , X 2 , …, X n, by the following equation: 

X̄ = 

X 1 + X 2 + . . . + X n 

n 

(1)
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The cumulative sum value S I is calculated based on the following equation: 

S I = S i −1 + 

(
X i − X̄ 

)
f or i = 1 , 2 , . . . , n (2) 

Where, 

S 0 = 0 

Calculate the maximum and minimum S max and S min , by the following equation 

S max = max 
i =0 , 1 , ... ,n 

S i (3) 

S min = min 

i =0 , 1 , ... ,n 
S i (4) 

Calculate the S diff Values to find the changes in cumulative sum value S I , by the following equation: 

S di f f = S max − S min (5) 

4.2. Bootstrap analysis method 

Cumulative sum method is used to find noticeable shift or change in the average. However, the bootstrap analysis is an

additional metric used to determine the significant changes calculated by randomly reordering the original ‘n’ values. This

bootstrap analysis is used to verify the changes initially calculated from the cumulative sum value S I . The confidence level

is calculated for the bootstrap analysis results. A single bootstrap consists of the following steps: 

• Step 1: Reorder the original ‘n’ values X 

0 
1 , X 

0 
2 , …, X 

0 
n using sampling without replacement method. 

• Step 2: Calculate the cumulative sum values S 0 0 , S 
0 

1 , …, S 0 n . 
• Step 3: Calculate the maximum, minimum and difference S 0 max , S 

0 
min , and S 0 diff values. 

• Step 4: Identify the bootstrap difference S 0 diff is less than the original difference S diff. 

The vital role of the bootstrap analysis is to identify the significant level of the cumulative sum results if no change has

occurred. Number of bootstrap analyses is performed to calculate the confidence level of the changes 

Confidence level CI can be calculated, by the following equation 

C on f idence Le v el ( C I ) = 100 ∗ X 

N 

% (6) 

Where, 

N = Number of bootstrap samples performed 

X = Number of bootstraps for which S 0 diff < S diff

In general, 90%, or 95% confidence level are required to identify the significant change in the original data. In addition,

it is not possible to perform bootstrap analysis for n!. However, 10 0 0 bootstrap analysis is sufficient to find the significant

changes in the original data. 

4.3. Proposed change detection method 

This paper uses spatial autocorrelation based cumulative sum algorithm to monitor the climate change. 

4.3.1. Spatial autocorrelation 

Spatial Autocorrelation is used to find the correlation of the variables over space. Spatial statistics group identified many

approaches to measure the spatial autocorrelation between the variables, such as Moran’s I, Geary’s C, Getis’ G and the Join

Count Analysis. This study uses local Moran’s I spatial auto correlation to find the correlation between the climate parameter

with itself over space. Local Moran’s I spatial auto correlation can be calculated, by the following equation: 

Z score z i = 

x i − x̄ 

SD 

(7) 

Local Moran ’ s I i = z i 
∑ 

j 

w i j z j (8) 

Where, 

n = Number of spatial locations indexed by i and j 

x = Variables 
i 
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x̄ = Mean of x 

SD = 

√ ∑ 

(
x − x 

)2 

n 

(9)

w ij = Spatial standardized weight matrix 

Algorithm 4: Proposed Algorithm for climate change detection. 

1. Input: Seasonal weather data 

2. Output: Seasonal changes 

3. Let C 1 , C, …, C i represent the ‘i’ data points 

4. Calculate the Standard Deviation for ‘i’ data point SD = 

√ ∑ 

( C−C ) 
2 

n 

5. Calculate Z score Value z i = 

C i −C 
SD 

6. Calculate Spatial Local Moran’s I Value I i = z i 
∑ 

j w i j z j 
7. Calculate the average Ī = 

I 1 + I 2 + ... + I n 
n 

8. Initialize cumulative sum S 0 =0 

9. Calculate the other cumulative sums S I = S i −1 + ( I i − I ) for i = 1, 2, …, n 

10. Calculate S max = max i =0 , 1 , ... ,n S i 
11. Calculate S min = min i =0 , 1 , ... ,n S i 
12. Calculate S diff =S max −S min 

13. Sampling without replacement: Generate a bootstrap sample of ‘n’ units, denoted X 0 1 , X 
0 

2 , …, X °n , by randomly reordering the original ‘n’ values 

14. Calculate the bootstrap CUSUM S 0 i for i = 1, 2, …, n (S 0 0 , S 
0 

1 , …, S 0 n ) 

15. Calculate the maximum, minimum and difference of the bootstrap CUSUM, denoted S 0 max , S 
0 

min , and S 0 diff . 

16. Determine whether the bootstrap difference S 0 diff is less than the original difference S diff . 

17. Let N be the number of bootstrap samples performed and let X be the number of bootstraps for which S 0 diff < S diff

18. Calculate Con f idence Le v el CI = 100 ∗ X 
N 

% 

5. Comparison of various change detection algorithms 

The proposed spatial CUSUM based change detection algorithm is compared with various existing change detection ap-

proaches, such as Pruned Exact Linear Time (PELT), binary segmentation and segment neighborhood method. 

5.1. PELT algorithm 

The Pruned Exact Linear Time (PELT) method is used to detect multiple changes in the large datasets. The proposed

algorithm is tested with larger regions of the genomes. The proposed approach primarily used to minimize the cost function

over possible numbers and locations of change points. PELT method uses a new method to find the minimum of such cost

functions. Hence, a result generated from the PELT method has optimal number and location of change points. 

5.2. Binary segmentation algorithm 

The binary segmentation algorithm is used to analyze the variance in the multiple homogeneous groups. The proposed

algorithm uses multiple comparison methods for analyzing various groups. A likelihood ratio test is also proposed in this

algorithm to identify the differences among the resulting groups. 

5.3. Segment neighborhoods 

The segment neighborhood method is used to estimate the parameters of the model that describe the boundaries of

each segment neighborhood. The proposed algorithm also efficiently used in the least squares and maximum likelihood

estimation. This algorithm is effectively used to model the changes in haemagglutinin protein of influenza virus. 

6. Result and discussion 

This paper uses Cumulative sum control charts to find the differences of each sample value from the target value. CUSUM

control charts are also called as time-weighted control chart used to monitor the small shifts in the mean of a process. The

traditional CUSUM control chart is used to monitor the changes in rainfall, precipitation, maximum temperature, minimum

temperature, humidity, wind speed and solar and the results are shown in Figs. 6 to 12 respectively. The cumulative sum is

not the cumulative sum of the values. Instead, it is the cumulative sum of differences between the values and the average

(target value). Because the mean is subtracted from each value, the cumulative sum also ends at zero. A CUSUM control

chart is used to identify the cumulative sums (CUSUMs) of the deviations of each sample value from the target value.

Moreover, small drifting in the mean vale will lead to steadily increasing or decreasing cumulative deviation values. However,
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Fig. 6. Cusum control chart for rain fall (‘X’ axis represents the time in months (1979–2016) and ‘Y’ axis represents the rain fall change points). 

Fig. 7. Cusum control chart for precipitation (‘X’ axis represents the time in months (1979–2016) and ‘Y’ axis represents the precipitation change points). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interpreting the changes identified by the control charts can still be difficult. In order to analyze these changes, a change-

point analysis can be performed. The CUSUMs are also named as change points. Fig. 6 represents the CUSUM control chart

for identifying the CUSUMs of the deviations of rainfall from the target value. 

As shown in Fig. 6 , the rainfall CUSUMs in summer is more deviations from the target value. Fig. 7 represents the

CUSUMs for precipitation. The change points for precipitation are varied based on the seasons. Figs. 8 –10 represent the

change points for minimum temperature, maximum temperature, and humidity respectively. More deviations in minimum

temperature, maximum temperature, and humidity are identified during the summer season. Figs. 11 and 12 represents the

change points for wind speed and solar respectively. As shown in Figs. 11 and 12 , more deviations are occurred in wind

speed and solar during the monsoon and winter season respectively. Various significant climate changes are identified with

the help of Pruned Exact Linear Time (PELT) method, binary segmentation method, segment neighborhood method, and the

results are depicted in Tables 1 –6 . Fig. 13 shows the original changes in various climate parameters during 1979–2016.

The original change is identified with the help of a mixture of Pruned Exact Linear Time (PELT) method, binary segmen-

tation method, and segment neighborhood method. Table 1 represents the significant changes in the rainfall for the year

1979–2016. As shown in Table 1 , the major change in rain fall is identified during summer 2014 with + 256 mm difference.

Another significant change in rainfall is identified during monsoon 1984 with −249 mm difference. Table 2 represents the

significant changes in the maximum temperature for the year 1979–2016. Table 2 depicts the maximum temperature change

during summer 2004 with + 7.662 °C. 

In addition, the second significant change during summer 2014 with + 6.382 °Celsius. Table 3 represents the significant

changes in the minimum temperature for the year 1979–2016. The most significant change in the minimum temperature is
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Fig. 8. Cusum control chart for minimum temperature (‘X’ axis represents the time in months (1979–2016) and ‘Y’ axis represents the minimum tempera- 

ture change points). 

Fig. 9. Cusum control chart for maximum temperature (‘X’ axis represents the time in months (1979–2016) and ‘Y’ axis represents the maximum temper- 

ature change points). 

Table 1 

Rain fall changes. 

Year Change point Rain Fall Rain Fall change Level of change 

From To 

2012 Summer 72 89 112 + 23 5 

2014 Summer 74 112 368 + 256 1 

1984 Monsoon 81 368 119 −249 2 

1991 Monsoon 88 119 249 −130 4 

1996 Monsoon 93 249 118 + 131 3 

 

 

 

 

 

−5.572 °C, + 4.4933 during summer 1981 and winter 1996 respectively ( Table 3 ). Table 4 represents the significant changes

in the precipitation for the year 1979–2016. The results depict the most significant change in precipitation during monsoon

1989, 1991 with −44 mm and + 39 mm respectively. Table 5 represents the significant changes in the solar for the year

1979–2016. The most significant change in solar is identified with the value −18.204 during winter 1991. Table 6 represents

the significant changes in the wind speed for the year 1979–2016. The maximum change in the wind speed is identified

during summer 2005 with −1.259 m/s. 
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Fig. 10. Cusum control chart for humidity (‘X’ axis represents the time in months (1979–2016) and ‘Y’ axis represents the humidity change points). 

Fig. 11. Cusum control chart for wind speed (‘X’ axis represents the time in months (1979–2016) and ‘Y’ axis represents the wind speed change points). 

Fig. 12. Cusum control chart for solar (‘X’ axis represents the time in months (1979–2016) and ‘Y’ axis represents the solar change points). 
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Fig. 13. Climate change points detection. (a) Humidity changes in fraction. (b) Rain fall changes in mm. (c) Minimum temperature changes in ‘c. (d) 

Minimum temperature changes in ‘c. (e) Precipitation changes in mm. (f) Wind speed changes in m/s. (g) Solar changes in MJ/m2. 
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Table 2 

Maximum temperature changes. 

Year Change point Maximum temperature Maximum temperature change Level of change 

From To 

1990 Winter 12 35.1206 30.278 + 4.8426 5 

2015 Winter 37 30.278 36.229 −6.051 3 

1981 Summer 43 36.229 41.524 −5.295 4 

1999 Summer 59 41.524 44.609 −3.085 7 

2004 Summer 64 44.609 36.947 + 7.662 1 

2010 Summer 70 36.947 40.512 −3.565 6 

2014 Summer 74 40.512 34.13 + 6.382 2 

Table 3 

Minimum temperature changes. 

Year Change point Minimum temperature Minimum temperature change Level of change 

From To 

1996 Winter 17 23.4753 18.582 + 4.4933 2 

2013 Winter 34 18.582 21.247 −2.655 3 

1981 Summer 42 21.247 26.819 −5.572 1 

2013 Summer 73 26.819 25.74 + 1.079 4 

Table 4 

Precipitation changes. 

Year Change Point Precipitation (mm) Precipitation change Level of change 

From To 

1987 Winter 8 35 18 + 17 3 

1992 Winter 13 18 3 + 15 4 

1989 Monsoon 83 3 47 −44 1 

1991 Monsoon 85 47 8 + 39 2 

2002 Monsoon 92 8 1 + 7 5 

Table 5 

Solar changes. 

Year Change Point Solar Solar change Level of change 

From To 

1984 Winter 5 17.178 4.231 + 12.965 2 

1991 Winter 12 4.231 22.435 −18.204 1 

2014 Winter 35 22.435 17.543 + 4.892 5 

1991 Summer 52 17.543 24.221 −6.678 3 

2003 Summer 63 24.221 18.325 + 5.896 4 

Table 6 

Wind speed changes. 

Year Change Point Wind speed Wind speed change Level of change 

From To 

2005 Summer 95 2.862 4.121 −1.259 1 

 

 

 

 

 

 

 

 

The proposed spatial CUSUM based change detection algorithm is compared with Pruned Exact Linear Time (PELT)

method, CUSUM with Bootstrap, binary segmentation method and segment neighborhood method and the results are de-

picted in Tables 7 and 8 . Fig. 14 shows the performance of the proposed spatial CUSUM based change detection algorithm.

As shown in Table 5 , the performance evaluation of change detection methods is comparatively analyzed with the help of

precision value. The precision is defined by, 

Precision = 

True Positive 

True Positive + False Positive 

Experimental results prove that Spatial CUSUM based climate change detection algorithm performed well when com-

pared with Pruned Exact Linear Time (PELT) method, binary segmentation method, and segment neighborhood method. The

PELT algorithm identifies 20 original changes in the seasonal climate with the precision of 74.07. Similarly, BinSeg, SegNeigh,

and CUSUM with Bootstrap methods determine the original changes in the seasonal climate with the precision of 77.77,
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Table 7 

Comparison of climate change prediction by various methods. 

Climate Parameters Year Change detection methods Spatial cusum 

PELT BinSeg SegNeigh Cusum with bootstrap 

Rain Fall Change 2012 Summer Y Y Y Y Y 

2014 Summer Y Y Y Y Y 

1984 Monsoon N Y N Y Y 

1991 Monsoon N N Y N N 

1996 Monsoon Y Y Y Y Y 

Maximum Temperature Change 1990 Winter N Y N N Y 

2015 Winter Y Y Y Y Y 

1981 Summer N Y Y Y Y 

1999 Summer Y Y N Y Y 

2004 Summer N N Y Y Y 

2010 Summer Y N Y Y Y 

2014 Summer Y Y Y Y Y 

Minimum Temperature Change 1996 Winter Y Y Y N Y 

2013 Winter Y Y N Y Y 

1981 Summer Y N Y N N 

2013 Summer Y Y Y Y Y 

Precipitation Change 1987 Winter Y Y Y Y Y 

1992 Winter N Y Y N N 

1989Monsoon Y N Y Y Y 

1991 Monsoon Y Y Y Y Y 

2002 Monsoon Y Y Y N Y 

Solar Change 1984 Winter Y Y Y Y Y 

1991 Winter Y N Y Y Y 

2014 Winter Y Y Y N N 

1991 Summer Y Y N Y Y 

2003 Summer Y Y Y Y Y 

Wind Speed Change 2005 Summer N Y T Y Y 

Note: ‘Y’ represents ‘Yes: change detected’ and ‘N’ represents ‘No change is not detected’. 

Table 8 

Performance evaluation of change detection methods. 

Validation 

Metrics 

Change detection methods 

PELT BinSeg SegNeigh Cusum with bootstrap Spatial cusum 

Correctly Predicted (True Positive) 20 21 22 20 23 

Wrongly Predicted (False Positive) 7 6 5 7 4 

Precision 74.07 77.77 81.48 74.07 85.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81.48, and 74.07 respectively. Spatial CUSUM based climate change detection algorithm achieved the precision of 85.18. The

SegNeigh method is also performed well when compared to Pruned Exact Linear Time (PELT) method, binary segmentation

method. SegNeigh based change detection method achieved the precision of 81.48. In addition, Spatial CUSUM based climate

change detection algorithm predicts 23 seasonal changes in the climate data. 

7. Conclusion 

Big data refers to voluminous amounts of structured or unstructured data that becomes complex to process by using

traditional data processing techniques and platforms. In other words, big data is difficult to store, process and visualize using

state-of-art technologies. Big Data has gained much attention from many private organizations, public sector, and research

institutes. The push towards collecting and analyzing large amounts of data in diverse application domains has motivated us

to use a variety of applications such as Health and Human welfare, Nature and natural processes, Government and the public

sector, commerce, business and economic systems, social networking and the internet, and computational and experimental

methods. This paper uses day wise weather data collected from Global Weather Data for SWAT Inc. The large climate data is

stored into the HDFS in distributed manner, and MapReduce algorithm is applied to calculate the seasonal average of various

climate parameters such as maximum temperature, minimum temperature, precipitation, wind, relative humidity and solar.

In this paper, a novel climate change detection algorithm is proposed to monitor the changes in the seasonal climate. The

proposed climate change detection algorithm is compared with various existing approaches such as Pruned Exact Linear

Time (PELT) method, binary segmentation method, and segment neighborhood method. The experimental results prove the

efficiency of the proposed climate change detection algorithm. As a future work, we intend to use the climate change values

to predict the seasonal diseases. 
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Fig. 14. Precision comparison of various change detection methods. 
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