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a b s t r a c t 

Among the applications enabled by the Internet of Things (IoT), continuous health moni- 

toring system is a particularly important one. Wearable sensor devices used in IoT health 

monitoring system have been generating an enormous amount of data on a continuous 

basis. The data generation speed of IoT sensor devices is very high. Hence, the volume of 

data generated from the IoT-based health monitoring system is also very high. In order 

to overcome this issue, this paper proposes a scalable three-tier architecture to store and 

process such huge volume of wearable sensor data. Tier-1 focuses on collection of data 

from IoT wearable sensor devices. Tier-2 uses Apache HBase for storing the large volume 

of wearable IoT sensor data in cloud computing. In addition, Tier-3 uses Apache Mahout 

for developing the logistic regression-based prediction model for heart diseases. Finally, 

ROC analysis is performed to identify the most significant clinical parameters to get heart 

disease. 

© 2017 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In recent years, there has been a perceptible increase the number of wearable devices for monitoring the patients’ health,

fitness and activities on a continues basis [1] . This has a long term impact on the recording of health, administration and

clinical service to patient’s physiological information. This advancement also helps the provision of more details relating to

the daily routine and physical examination. During the health monitoring period, IoT wearable devices are attached with the

human body to track the various health metrics that include blood pressure, heart rate, body temperature, respiratory rate,

blood circulation level, body pain and blood glucose level [2] . The data collected from the IoT-based wearable devices are

stored in a clinical database for necessary action when the patients’ health condition deteriorates. 

In general, traditional structured query language based databases are used in IoT health monitoring system to store clin-

ical data. There has been an increase in the variety and quantity of IoT-based health monitoring devices in recent times.

Hence, the traditional data processing methods and tools are not being used to store sensor data of huge volume gener-

ated by various IoT devices [3] . Scalable NOSQL (non structured query language) databases have to be used in the IoT-based

health monitoring system. Researchers have started the use of big data and NOSQL technologies in various IoT applications.

For example, Hassanalieragh et al. have used cloud computing with big data technologies to store the clinical data generated
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by various IoT devices [4] . In this application, the proposed health monitoring system continuously observes the individual’s

health condition. When, the health metrics such as ECG, respiratory rate, heart rate, sweating, skin temperature, blood pres-

sure and heart sound go beyond standard values, the IoT devices send an alert message with the observed health measures

to the doctor and other care holders. 

Sun et al. have developed the IoT-based tailings dam monitoring system to monitor emergency situations in a tailings

dam [5] . In this approach the cloud computing based scalable approach is used for taking the necessary action when situa-

tions of emergency arise. Rohokale et al. have developed IoT-based health monitoring system to observe health parameters

such as hemoglobin (HB), blood pressure (BP), blood sugar and abnormal cellular growth [6] . The existing approaches use

only traditional databases and tools to process the huge volume of sensor data generated from IoT devices. Hence, there is a

need to develop an efficient and scalable architecture that stores as well as analyzes the huge volume of clinical data. This

paper proposes a scalable big data based IoT health monitoring system for addressing this issue. 

The proposed IoT-based framework is interconnected with cloud computing technology to increase scalability and

availability. In addition, the proposed architecture uses Apache HBase to store the huge volume of the sensor data

in the cloud. The individuals’ health data is collected with the help of RFID and 5G mobile networks. In addition,

Apache Mahout is used in the proposed health monitoring system for building the logistic regression-based prediction

model for heart diseases. Finally, the performance of the prediction model is comparatively analyzed with the help of

various performance evaluation metrics. The computed results such as throughput, sensitivity, accuracy and f-measure

are used for demonstrating the efficiency and performance of the proposed IoT-based continuous health monitoring

system. 

The proposed IoT-based continuous health monitoring system is explained as follows: Section 1 describes the introduc-

tion to IoT-based health monitoring system. Section 2 reviews the recent works done in IoT-based healthcare systems. The

proposed IoT-based continuous health monitoring system is explained in Section 3 . Result and discussion, and performance

evaluation are described in Sections 4 and 5 respectively. Section 6 concludes the paper. 

2. Related work 

The Internet of Things (IoT) is an interconnection of various physical objects for observing the physical events on

a continues basis. The connected IoT devices communicate with each other with the help of advanced wireless net-

works and sensors [7] . IPv4 Internet was used in the last decade to transfer data at high speed. Advancements in net-

work connectivity have helped enhancement of IPv4 Internet to IPv6 Internet with reduced delay and response time.

IoT-based frameworks follow the layered architecture for transfer of the signal and communication between the devices.

The layers that play an important role in network connectivity include Application Layer, Communication Layer, Secu-

rity Layer, Embedded Layer, Hardware Layer, Integration Layer and DB Layer. RFID tags, sensors and actuators are used

widely in IoT-based frameworks. Unique addressing schemes are used in IoT technology for mutual interaction between IoT

devices [8] . 

The use of IoT technology in various fields has been on the increase. For example, Bäumer et al. have discussed the po-

tential opportunities in using Internet of Things in a business organization [9] . CodeBlue project is the healthcare project

developed by Harvard University. The essential role of the CodeBlue project is in the monitoring of the individuals’ health

parameters such as ECG, EKG, EMG, SpO2, pulse oximeter and Mica2 motes. Various electronic devices such as PDAs, lap-

tops and personal computers are used in the CodeBlue project for necessary action from doctors and care holders when

the patients’ health condition deteriorates [10] . Published and subscription architecture are used in the CodeBlue project to

deliver the health status of the patients in continues manner [11–13] . Researchers from the University of Virginia have de-

veloped the Alarm-Net framework to monitor the patients’ health on a continues basis. The three-tier network architecture

is used in the Alarm-Net project to sense the physiological parameters. IoT devices such as ECG, accelerometer and SpO2

sensors are attached to the human body in the first tier phase. The second tier focuses on observing the environmental

parameters such as heat, moisture, movement and brightness [14] . Environmental sensors are attached to living things to

observe environmental parameters. Tier-3 architecture is used for providing the network connectivity between the gate-

ways. Tier three phase uses the internet protocol (IP)-based network to enable the wireless connection between source and

destination [15,16] . 

The first tier of Alarm-net is used for sensing the physiological parameters from a patient and transferring the clinical

data from the single-hop to the second tier phase. The second tier focuses on sending the clinical data from tier two to the

third tier using the shortest-path-first routing protocol. This project is widely used for predicting the emergency conditions

of the patients on the basis of the prior health records. Similarly, MobiCare is another healthcare project developed by

Chakravorty et al. [17] . The project finds extensive use in the monitoring of patients’ health over a wide-area. This project

observes the clinical measures of the patients meticulously and sends the physiological values to the doctor and the care

holder with the help of fog and cloud computing. The IoT wearable sensor devices used in the MobiCare project include

SpO2, ECG and blood oxygen [18,19] . 

The MobiCare project senses the individuals’ physiological information efficiently and sends it to the doctor and the care

holder through a mobile phone and PDA. CDMA or GPRS/UMTS wireless technologies are used for transfer of the clinical data

collected from the sensors to the doctor. The project uses HTTP POST protocol for sending the physiological data between

the source and the destination. Similarly, PAM project developed by Blum et al. help observation of the mental health
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condition of the patients [20] . The essential goal of the PAM project is to identify the bipolar disorder (BP) in advance.

Infrastructure and architecture based technologies are used in the PAM project for developing the PAM-I and PAM-A blocks

respectively. PAM-I based system uses electronic equipments like PDA, cellular phones, wearable IoT devices and PC. PAM

project uses environmental sensors in the IoT-based health monitoring system to observe the noise and dust pollution in the

atmosphere [21] . Bluetooth with 5G mobile networks is used for connecting the various IoT sensors in the health monitoring

system [22,23] 

The intermediate servers make connection observation of the clinical data and store them into the database for clinical

data analytics. The existing IoT-based health monitoring systems have not used big data technologies to store and process

such huge volume of clinical data. In order to fulfill this gap, the proposed framework uses Apache HBase to store the large

volume of clinical data in distributed manner [24] . Once the data is stored into the HBase, machine learning algorithms are

used for processing such huge volume of data. This paper encourages the use of Apache Mahout based machine learning

algorithms to develop the prediction model. MapReduce based logistic regression is identified to model the early stage of

heart disease. A comparative analysis of the performance of the proposed prediction model is made using other existing

machine learning approaches. The experimental results prove the effectiveness of the proposed model. 

3. Proposed framework for IoT-based Health Monitoring System 

The proposed IoT-based Health Monitoring System consists of a three-tier architecture to store and process a huge volume

of wearable sensor data. Tier-1 focuses on collecting data from IoT wearable sensor devices. Tier-2 uses Apache HBase to

store the huge volume of wearable IoT sensor data in the cloud. In addition, Tier-3 uses the Apache Mahout to develop the

logistic regression-based prediction model for heart diseases. Fig. 1 represents the proposed framework for IoT-based Health

Monitoring System. Fig. 2 represents the workflow for the proposed framework. 

3.1. Tier 1: data collection 

The proposed IoT-based health monitoring framework consists of three blocks, namely, data collection block, data storage

block and data analytics block. Data collection block is used for collecting the individuals’ physiological data using wearable

IoT sensor devices. IoT wearable devices attached to the human body collect the patient’s clinical data in a continuous man-

ner. When the clinical measure of the individuals exceeds its normal value, the devices send an alert massage with clinical

value to the doctor and the care holder. The alert messages and clinical values are collected and stored in the database in

continues basis. The proposed framework uses 5G mobile networks for transfer of the clinical data into the clinical database

for enabling the necessary action in an emergency situation. Algorithm 1 represents the IoT device initialization and contin-

uous monitoring procedure and indicates the necessary steps to move the clinical data ( clinical_data.csv ) observed from IoT

devices into the Amazon S3 bucket ( health_data) . The proposed IoT-based health monitoring system uses ‘s3cmd’ method

for transfer of the clinical data from the local disk into the cloud database. 

3.2. Tier 2: data storage 

In general, IoT devices have the objective of sending clinical data continuously. It is difficult to store and process such

huge amount data by traditional data processing tools and techniques. The proposed framework uses big data technologies

to store the clinical data in a distributed manner. Apache HBase plays an important role in data storage in a distributed

manner. Physical devices and personal computers are not sufficient to store the huge volume of data generated from the IoT

wearable devices. The proposed IoT-based health monitoring system solves the problem using cloud computing technologies

for scalability and elasticity. An account is created with Amazon to get the virtual machines with Apache HBase database

access. Initially, clinical data collected from the human body is transferred to the Amazon simple storage service S3 with the

help of the ‘s3cmd utility’ method. Hence, when the clinical measure of the individuals’ exceeds its normal value, the IoT

devices send the clinical measures to the Amazon S3. Compared to Amazon S3 storage, Apache HBase provides a scalable

data storage system in a distributed manner. Hence, the clinical data is transferred from the Amazon S3 to Apache HBase.

The proposed health monitoring system uses Apache Pig to transfer the clinical data from Amazon S3 to Apache HBase. 

Apache Pig is widely used to extract, load and transform the huge semi-structured, unstructured and structured data.

PigLatin is a language used in Apache Pig for performing the data transformation. Algorithm 2 represents the PigLatin pro-

gram for data transformation of the clinical data between the Amazon S3 bucket and Apache HBase. Fig. 3 is the data flow

diagram for the proposed framework. Wearable IoT devices fixed to the human body to collect the individual’s physiological

information. These devices generate a large volume of data that cannot be stored in the traditional databases. Hence, hadoop

distributed file system is used for storing a large volume of data in a scalable manner. Algorithm 3 is used for transfer of

the data between Amazon S3 and Apache HBase. 

3.3. Tier 3: data analytics 

Data analytics block used for the development of the prediction model using logistic regression. The proposed frame-

work uses Apache Mahout based machine learning libraries for implementing the logistic regression, which is one of the
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Fig. 1. Proposed framework for IoT-based health monitoring system. 
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Fig. 2. Workflow for the proposed framework. 

 

 

 

 

 

 

 

 

 

 

machine learning methods for predicting the coefficient between a dependent variable and one or more independent vari-

ables. Logistic regression works in the same manner as linear regression, with the difference of a dependent variable. In

linear regression, dependent variable Y’s and independent variable X’s are in the form of numbers, whereas, in logistic re-

gression, the independent variable X’s may also be categorical values and the dependent variable Y’s are coded as 1 in most

cases (for those who present) 0 (for those who absent). Multiple logistic regression is defined by, 

logit ( p ) = b 0 + b 1 X 1 + b 2 X 2 + . . . + b k X k (1) 

Where, 

p = denotes the probability of presence of the dependent variable (heart disease 0 or 1) 

b = denotes the coefficients, 

X i = denotes independent variables, 

i = Number of clinical parameters 

X1 = Respiratory Rate (RP), 

X2 = Heart rate (HR), 

X3 = Blood Pressure-Systolic Range (BP-SR), 

X4 = Blood Pressure - Diastolic Range (BP-DR), 

X5 = Body Temperature (BT), 

X6 = Blood Sugar - Fasting (BS-F), 

X7 = Blood Sugar - Post Meal (BS-PM). 

Logged odds are used for defining logistic transformation. The general formula for calculating of the odds ratio is defined

by, 

od d s = 

p 

1 − p 
= 

probability of presence of the v ariable 

probability of absence of the v ariable 
(2) 

Whereas logged odds is defined by, 

logit ( p ) = ln 

(
p 

1 − p 

)
(3) 

Logged odds are converted into probabilities for calculating the probability of the presence of the particular event. The

conversion between the logged odds and probabilities is defined by, 

p = 

e b 0 + b 1 X 1+ b 2 X 2 + ... + b k X k 

1 + e b 0 + b 1 X 1+ b 2 X 2 + ... + b k X k 
(4) 

The proposed IoT-based health monitoring framework uses logistic regression to develop the prediction model for mon-

itoring heart diseases at the early stage. The Apache Mahout is used with Elastic MapReduce (EMR) framework for the

development of the prediction model in cloud computing. Once the clinical data is stored in the Apache HBase, the Mahout-

based logistic regression uses the prior clinical records for developing a prediction model. Pseudo code 1 represents the
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Fig. 3. Data flow diagram for the proposed framework. 
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implementation steps for the Apache Mahout in the Hadoop Distributed File System (HDFS). The implementation is done in

the Linux based distributed environment. 

Pseudo code 1: Mahout Prediction Model Development in the Linux Environment 

Step1: Install Hadoop and Java 

Step2: Install maven 3 

sudo apt-get install maven 

Step3: mvn installation verification 

1. xyz@chameera-VirtualBox: ∼$ mvn -v 

2. Apache Maven 3.0.4 

3. Maven home: /usr/share/maven 

4. Java version: 1.7.0_45, vendor: Oracle Corporation 

5. Java home: /usr/local/lib/jdk1.7.0_45/jre 

6. Default locale: en_US, platform encoding: UTF-8 

7. OS name: "linux", version: "3.11.0–15-generic", arch: "amd64", family: "unix" 

8. xyz@xyz-VirtualBox: ∼$ 

Step4: Install svn 

1. Open terminal 

(Ctrl + Alt + T) 

2. sudo apt-get install subversion 

Step5: Verify that the installation 

1. xyz@xyz-VirtualBox: ∼$ svn –version 

svn, version 1.7.9 (r1462340) 

compiled Oct 15 2013, 12:40:34 

Copyright (C) 2013 The Apache Software Foundation. 

Step6: Install Mahout 

1. Select the directory to install Apache Mahout 

cd /home/xyz/home 

2. Make new directory 

mkdir mahout 

3. Find the new directory 

cd mahout 

4. Use Subversion to check out the code 

svn co http://svn.apache.org/repos/asf/mahout/trunk 

5. Find the trunk directory. 

cd trunk 

6. Build the Apache mahout 

mvn install 

mvn -DskipTests 

Pseudo code 2 represents the steps to train the logistic regression in Linux based distributed environment. Pseudo code

3 represents the performance of the logistic regression-based prediction model to identify the heart disease. 

Pseudo code 2: Mahout Prediction Model Training Phase 

Step1: Find the Mahout Path 

cd /home/xyz/home 

cd mahout 

Step2: Prediction Model Training 

mahout org.apache.mahout.classifier.sgd.TrainLogistic –passes 1 –rate 1 –lambda 0.5 –input donut.csv –features 21 

–output donut.model –target color –categories 2 – predictors x y xx xy yy a b c –types n n 

Pseudo code 3: Mahout Prediction Model Prediction Phase 

Step1: Find the Mahout Path 

cd /home/xyz/home 

cd mahout 

Step2: Prediction Model Training 

mahout org.apache.mahout.classifier.sgd.RunLogistic –input donut.csv –model donut.model –auc –scores –confusion 

4. Result and discussion 

Table 1 depicts the predicted coefficient values for the logistic regression-based prediction model. Respiratory Rate (RP),

Heart rate (HR), Blood Pressure (BP)-Systolic Range (SR) and Blood Pressure (BP)-Diastolic Range (DR) are identified as sig-

nificant variables for heart disease on the basis of p-values. Body Temperature (BT), Blood Sugar (BS)-Fasting and Blood

Sugar (BS)-Post Meal are considered as not significant variables for heart disease based on the p-values. In this study, seven

attributes are used for performing the experiment [25] . 

http://svn.apache.org/repos/asf/mahout/trunk
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Table 1 

Logistic regression results. 

Variable Beta Std error Z P value Odds ratio 

Respiratory Rate (RP) −0.17 0.0356 −0.2764 0.0023 3.41 

Heart rate (HR) −0.04 0.0164 −0.0923 0.0018 4.32 

Blood Pressure (BP): Systolic Range (SR) −0.02 0.0873 −0.0537 0.0145 2.11 

Blood Pressure (BP):Diastolic Range (DR) −0.47 0.1023 −0.2894 0.0334 1.01 

Body Temperature (BT) −0.01 0.3421 −0.0323 0.1543 0.75 

Blood Sugar (BS):Fasting 0.45 0.3873 0.8732 0.3451 0.05 

Blood Sugar (BS):Post Meal 0.23 0.0461 0.3984 0.0174 1.14 

Table 2 

Confusion matrix. 

Variable Level Yes No 

Respiratory Rate (RP) Low ( < 12) 229 86 

Medium (12–50) 61 254 

High ( > 50) 25 290 

Heart rate (HR) Low ( < 60) 92 223 

Medium (60–160) 136 179 

High ( > 160) 87 228 

Blood Pressure (BP): Systolic Range (SR) Low ( < 75) 2 313 

Medium (75–140) 268 47 

High ( > 140) 45 360 

Blood Pressure (BP):Diastolic Range (DR) Low ( < 50) 59 256 

Medium (50–90) 93 222 

High ( > 90) 163 478 

Body Temperature (BT) Low ( < 36.6) 59 256 

Medium (36.6–37) 201 114 

High ( > 37) 55 260 

Blood Sugar (BS):Fasting Low ( < 70) 146 169 

Medium (70–100) 45 270 

High ( > 100) 124 191 

Blood Sugar (BS): Post Meal Low ( < 70) 43 358 

Medium (70–140) 36 279 

High ( > 140) 236 79 

 

 

 

 

 

 

 

 

5. Performnace evaluation 

Sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), disease prevalence (DP), positive pre-

dicted value (PPV) and negative predicted value (NPV) are calculated for evaluating of the prediction model. The validations

metric are defined by, 

Speci f icit y = 

T rue Negat i v e ( T N ) 

F alse P osit i v e ( F P ) + T rue Negat i v e ( T N ) 
(5)

P ositi v e Liklihood Ratio ( P LR ) = 

Sensiti v ity 

100 − Speci f icity 
(6)

Negati v e Liklihood Ratio ( NLR ) = 

100 − Sensiti v ity 

Speci f icity 
(7)

P ositi v e P redicted V alue ( P P V ) = 

T rue P ositi v e ( T P ) 
T rue P ositi v e ( T P ) + F alse P ositi v e ( F P ) 

(8)

Negati v e P redicted V alue ( NP V ) = 

T rue Negati v e ( T N ) 

T rue Negati v e ( T N ) + F alse Negati v e ( F N ) 
(9)

Sensit i v it y = 

T rue P osit i v e ( T P ) 
T rue P osit i v e ( T P ) + F alse Negat i v e ( F N ) 

(10)
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Table 3 

ROC analysis. 

Variable Cut point True positive rate False positive rate 

Respiratory Rate (RP) 12 0.7270 0.2730 

50 0.9206 0.0794 

Heart rate (HR) 60 0.2921 0.7079 

160 0.7238 0.2762 

Blood Pressure (BP): Systolic Range 75 0.0630 0.9370 

140 0.8571 0.1429 

Blood Pressure (BP):Diastolic Range 50 0.1873 0.8217 

90 0.4825 0.5175 

Body Temperature (BT) 36.6 0.1873 0.8217 

37 0.8254 0.1746 

Blood Sugar: Fasting 70 0.4635 0.5365 

100 0.6063 0.3937 

Blood Sugar: Post Meal 70 0.1365 0.8635 

140 0.2508 0.7492 

Table 4 

Validation metrics. 

Variable Cut point Sensitivity Specificity Positive 

likelihood 

ratio 

Negative 

likelihood 

ratio 

Disease 

prevalence 

Positive 

predicted 

value 

Negative 

predicted 

value 

Respiratory Rate (RP) 12 72.7% 86.25% 5.33 0.32 33.33% 72.7% 86.35% 

50 92.06% 46.03% 1.71 0.17 33.33% 46.03% 92.06% 

Heart rate (HR) 60 29.21% 64.60% 0.83 1.10 33.33% 29.21% 64.66% 

160 72.38% 36.19% 1.13 0.76 33.33% 36.19% 72.38% 

Blood Pressure: SR 75 0.63% 56.53% 0.01 1.76 30.43% 0.63% 56.53% 

140 85.71% 50.00% 1.71 0.29 30.43% 42.86% 88.89% 

Blood Pressure: DR 50 18.73% 73.22% 0.70 1.11 24.78% 18.73% 73.22% 

90 48.25% 50.00% 0.97 1.03 24.78% 24.13% 74.57% 

Body Temperature 36.6 18.73% 59.37% 0.46 1.37 33.33% 18.73% 59.37% 

37 82.54% 41.27% 1.41 0.42 33.33% 41.27% 82.54% 

Blood Sugar: Fasting 70 46.35% 72.03% 1.66 0.74 32.98% 44.92% 73.17% 

100 60.63% 30.32% 0.87 1.30 33.33% 30.32% 60.63% 

Blood Sugar: Post Meal 70 13.65% 50.00% 0.27 1.73 30.55% 10.72% 56.83% 

140 25.08% 11.03% 0.28 6.79 30.55% 11.03% 25.08% 

 

 

 

 

 

 

 

 

Disease Pr e v alence (DP ) = 

T rue P ositi v e ( T P ) + F alse Negati v e ( F N ) 

T rue P ositi v e ( T P ) + F alse P ositi v e ( F P ) + T rue Negati v e ( T N ) + F alse Negati v e ( F N ) 

(11) 

Table 2 depicts the confusion matrix generated from the prediction model for various levels of clinical parameters such

as Respiratory Rate (RP), Heart rate (HR), Blood Pressure-Systolic Range (BP-SR), Blood Pressure - Diastolic Range (BP-DR),

Body Temperature (BT), Blood Sugar -Fasting (BS-F) and Blood Sugar - Post Meal (BS-PM). Receiver operating characteristic

(ROC) analysis is performed for evaluating of the most significant clinical values. Tables 3 and 4 show that Respiratory Rate

(RP) at the rate of 50 and 12 as highly significant in causing the heart disease. In addition, heart rate 160 is highly significant

indicating the heart disease. Similarly, Blood Pressure (BP): Systolic Range and Body Temperature (BT) at 140 and 37 is also

considered as a highly significant variable for heart disease. Figs. 4 and 5 represents the true positive and false positive

rates, and performance evaluation metrics for various significant clinical parametric values. Fig. 4 is a graphical visualization

of Table 3 while Fig. 5 is a graphical visualization of Table 4 . 
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Algorithm 1 

IoT device initialization and continuous monitoring. 

Step1: Fix the IoT medical devices in patients’ body Start Device Initialization 

Step2: Continuously monitoring the patient health condition based on the following metrics 

1. if(Approximate Age == Newborn) 

2. { 

3. Respiratory Rate (RP) == 30-50 && Heart rate (HR) == 100-160&&Blood Pressure (BP):Systolic Range (SR) == 75-100&&Blood Pressure (BP):Diastolic 

Range (DR) == 50-70&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

4. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

5. } 

6. elseif(Approximate Age == 0-5 months) 

7. { 

8. Respiratory Rate (RP) == 25-40&& Heart rate (HR) == 90-150&&Blood Pressure (BP):Systolic Range (SR) == 75-100&&Blood Pressure (BP):Diastolic 

Range (DR) == 50-70&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

9. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

10. } 

11. elseif(Approximate Age == 6-12 months) 

12. { 

13. Respiratory Rate (RP) == 20-30&& Heart rate (HR) == 80-140&&Blood Pressure (BP):Systolic Range (SR) == 75-100&&Blood Pressure (BP):Diastolic 

Range (DR) == 50-70&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

14. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

15. } 

16. elseif(Approximate Age == 1-3 years) 

17. { 

18. Respiratory Rate (RP) == 20-30&& Heart rate (HR) == 80-130&&Blood Pressure (BP):Systolic Range (SR) == 80-110&&Blood Pressure (BP):Diastolic 

Range (DR) == 50-80&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

19. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

20. } 

21. elseif(Approximate Age == 3-5 years) 

22. { 

23. Respiratory Rate (RP) == 20-30&& Heart rate (HR) == 80-120&&Blood Pressure (BP):Systolic Range (SR) == 80-110&&Blood Pressure (BP):Diastolic 

Range (DR) == 50-80&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

24. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

25. } 

26. elseif(Approximate Age == 6-10 years) 

27. { 

28. Respiratory Rate (RP) == 15-30&& Heart rate (HR) == 70-110&&Blood Pressure (BP):Systolic Range (SR) == 85-120&&Blood Pressure (BP):Diastolic 

Range (DR) == 55-80&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

29. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

30. } 

31. elseif(Approximate Age == 11-34 years) 

32. { 

33. Respiratory Rate (RP) == 12-20&& Heart rate (HR) == 60-105&&Blood Pressure (BP):Systolic Range (SR) == 95-140&&Blood Pressure (BP):Diastolic 

Range (DR) == 60-90&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

34. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

35. } 

36. elseif(Approximate Age == 35-100 years) 

37. { 

38. Respiratory Rate (RP) == 12-30&& Heart rate (HR) == 60-100&&Blood Pressure (BP):Systolic Range (SR) == 95-140&&Blood Pressure (BP):Diastolic 

Range (DR) == 60-90&&Body Temperature (BT) == 36.6 -37&&Blood Sugar (BS):Fasting == 70-100&&Blood Sugar (BS):Post Meal == 70-140 

39. Send the RP, HR, BP, SR, BP, DR, BT, and BS values to the Amazon S3 data store 

40. } 

41. else 

42. { 

43. If health parameters is not regular 

44. Send the voice alert “Patient is abnormal” with Clinical value the RP, HR, BP, SR, BP, DR, BT, and BS values to the Doctor as well as Amazon S3 data 

store 

45. } 

Algorithm 2 

Store the IoT wearable sensor devices data into Amazon S3 data store. 

1. Step1: Identify the System Name in the Amazon S3 

2. Step 2: Create the directory in the Amazon S3 

Name_of_the_System $ s3cmd mb s3://health_data 

Bucket ’s3:// health_data/’ created 

3. Step 3: Use put method to store the clinical data into the Amazon S3 directory 

Name_of_the_System $ s3cmd put clinical_data.csv. s3:// health_data 

4. Step 4: Visualize the log file of the clinical data 

sample-syslog.log - > s3:// health_data/clinical_data.csv 



232 P.M. Kumar, U. Devi Gandhi / Computers and Electrical Engineering 65 (2018) 222–235 

Algorithm 3 

Data transformation between the Amazon S3 and Apache HBase. 

1. Data: Clinical data collected from IoT sensor devices which is stored in Amazon S3 

2. Input: Amazon S3 health data Table 

3. Output: Pig Data Load Table query 

4. Step-1: Hadoopdistcp s3n: health_data/clinical_data.csv/user/patient1 

5. Step-2: if (Table_Name � = NULL) then 

6. Step-3:load ’/user/patient/ clinical_data.csv’ using PigStorage(’,’ ) as 

( add field name, field data type); 

7. stored into ’hbase://clinical_data Table’ usingorg.apache.pig.backend.hadoop.hbase.HBaseStorage 

( add column family name patient ID: field column family data type Integer); 

( add column family name Respiratory Rate (RP):field column family data type Integer); 

( add column family name Heart rate (HR):field column family data type Integer); 

( add column family name Blood Pressure (BP):Systolic Range (SR):field column family data type Integer); 

( add column family name Blood Pressure (BP):Diastolic Range (DR):field column family data type Integer); 

( add column family name Body Temperature (BT):field column family data type Double); 

( add column family name Blood Sugar (BS):field column family data type Integer); 

( add column family name Blood Sugar (BS):Post Meal: field column family data type Integer); 

8. Step-4: Return the Pig Data Load Table query 

Fig. 4. True positive and false positive rate. 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

This paper proposes a scalable IoT based three-tier architecture to process the sensor data and identify the most signifi-

cant clinical parameters to get heart disease. The most significant clinical parameters that indicate impending heart disease

are identified with the help of ROC analysis. Blood Sugar (BS)-Fasting and Blood Sugar (BS)-Post Meal are found to have

positive correlation with heart disease. However, Respiratory Rate (RP), Heart rate (HR), Blood Pressure (BP): Systolic Range

(SR), Blood Pressure (BP): Diastolic Range (DR) and Body Temperature (BT) are found to be negatively correlated with heart

disease. The experimental results prove that Respiratory Rate (RP) at around 50 and 12 is highly significant in the indica-

tion of the heart disease. Heart rate 160 is also indication of heart disease. Similarly, Blood Pressure (BP): Systolic Range

and Body Temperature (BT) at 140 and 37 are also considered as a highly significant variable for heart problem indication.

The future work of this study is to propose a continuous health monitoring system with a doctor on the move with an

ambulance. An energy efficient node selection algorithm is identified for future work to choose the best mobile ambulance.
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