
Applied Soft Computing Journal 76 (2019) 1–15

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

A near Pareto optimal approach to student–supervisor allocation with
two sided preferences and workload balance
Victor Sanchez-Anguix a,c,b,∗, Rithin Chalumuri c, Reyhan Aydoğan d,e, Vicente Julian f

a Florida Universitaria, Carrer del Rei en Jaume I, 2, 46470, Catarroja, Valencia, Spain
b Universidad Isabel I, Calle de Fernán González 76, 09003, Burgos, Spain
c Coventry University, School of Computing, Electronics and Mathematics, Gulson Rd, CV1 2JH, Coventry, United Kingdom
d Özyeğin University, Department of Computer Science, Istanbul, Turkey
e Delft University of Technology, Interactive Intelligence Group, Delft, The Netherlands
f Universitat Politècnica de València, Departamento de Sistemas Informáticos y Computación, Camí de Vera s/n, 46022, Valencia, Spain

h i g h l i g h t s

• We propose a multiobjective genetic approach for the student–supervisor allocation.
• We consider both the students and supervisors’ preferences with regards to project topics.
• The algorithm attempts to provide a balanced workload allocation for lecturers.
• We introduce novel crossover operators designed for the student–project allocation problem.
• The performance of the designed genetic algorithm is close to the optimal solutions and outperforms classic approaches.

a r t i c l e i n f o

Article history:
Received 6 April 2018
Received in revised form 27November 2018
Accepted 29 November 2018
Available online 12 December 2018

Keywords:
Genetic algorithms
student–project allocation
Matching
Pareto optimal
Artificial intelligence

a b s t r a c t

The problem of allocating students to supervisors for the development of a personal project or a
dissertation is a crucial activity in the higher education environment, as it enables students to get feedback
on their work from an expert and improve their personal, academic, and professional abilities. In this
article, we propose a multi-objective and near Pareto optimal genetic algorithm for the allocation of
students to supervisors. The allocation takes into consideration the students and supervisors’ preferences
on research/project topics, the lower and upper supervision quotas of supervisors, aswell as theworkload
balance amongst supervisors. We introduce novel mutation and crossover operators for the student–
supervisor allocation problem. The experiments carried out show that the components of the genetic
algorithm aremore apt for the problem than classic components, and that the genetic algorithm is capable
of producing allocations that are near Pareto optimal in a reasonable time.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Every year in higher education (HE) institutions, students un-
dertake individual projects that are supervised by a tutor that
offers academic advice and guidance, either as an undergradu-
ate or master dissertation, as part of their coursework, or simply
as a summer research project. Students are usually allocated to
supervisors for their projects by means of a centralized human
decision maker or by means of interactions between students and
staffmembers. The decisionmakers have to take into consideration

∗ Corresponding author at: Florida Universitaria, Carrer del Rei en Jaume I,
2, 46470, Catarroja, Valencia, Spain.

E-mail addresses: vsanchez@florida-uni.es, ac0872@coventry.ac.uk,
victor.sanchez.anguix@ui1.es (V. Sanchez-Anguix),
chalumuriv@uni.coventry.ac.uk (R. Chalumuri), reyhan.aydogan@ozyegin.edu.tr
(R. Aydoğan), vinglada@dsic.upv.es (V. Julian).

the preferences of both students and supervisors with respect to
the conduct of the project, as well as departmental constraints
such as minimum and maximum levels of workload (in terms
of supervision) for each supervisor. This situation results in an
extremely time consuming process, and a suboptimal allocation
due to a large and complex search space faced by human decision
makers. Automating this process by applying artificial intelligence
techniques may enhance the process in terms of satisfaction and
performance of students with these individual projects.

In this article, we present a genetic algorithm for matching stu-
dents to supervisors according to both students’ and supervisors’
preferences and the constraints of the department. The rationale
behind this problem is matching an appropriate student with a su-
pervisor for the development of an individual project. The problem
ofmatching students to supervisors, or students to projects [1–13],
is a subclass of the wider problem of matching between two sets,

https://doi.org/10.1016/j.asoc.2018.11.049
1568-4946/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2018.11.049
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.11.049&domain=pdf
mailto:vsanchez@florida-uni.es
mailto:ac0872@coventry.ac.uk
mailto:victor.sanchez.anguix@ui1.es
mailto:chalumuriv@uni.coventry.ac.uk
mailto:reyhan.aydogan@ozyegin.edu.tr
mailto:vinglada@dsic.upv.es
https://doi.org/10.1016/j.asoc.2018.11.049

2 V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15

one of the most studied fields in computer science due to its appli-
cations to a wide range of domains such as the hospital/residents
(HR) or the college admission (CA) problem [14–16]. Particularly,
the student–supervisor allocation problem solved in this article
can be considered as an instance of the CA problem with lower
and upper quotas, where the colleges are the supervisors, both
colleges and students (i.e., supervisors and students in our case)
have some representation of preferences on each other for the
conduct of a project, and the minimum and maximum quotas are
the minimum and maximum number of students to be supervised
by staff members. In this situation, it has been shown that there is
no guarantee for a stable allocation to exist1 and even looking for
a near-stable allocation is a NP-hard complex problem [15,16].

In order to tackle the complexity mentioned above, in this
article we propose a multi-objective and Pareto optimal genetic
algorithm (GA). The main highlights of the GA proposed in this
article are: (i) it takes into consideration both the preferences of
the students and the supervisors with respect to type of project
to undertake/supervise; (ii) it considers the constraints on the
individual minimum and maximum supervision workload of each
supervisor; (iii) it aims to provide a fair and balanced allocation in
terms of theworkload for each supervisor; (iv) it providesmultiple
near-optimal solutions considering both the students’ preferences
and the preferences of the supervisors; (v) it providesmultiple near
Pareto optimal solutions that can be used by decision makers to
trade-off between the multiple objectives optimized; (vi) and the
GA employs novelmutation and crossover operators in the context
of the student–supervisor allocationproblem, specifically designed
for allocation problems with lower and upper bound supervision
quotas.

The algorithm has been tested using real preferences elicited
from students and supervisors, and it has been compared with
classic GA components, with the proposed operators outperform-
ing classic ones for the problem at hand. The rest of the article is
organized as follows. First, we highlight the differences between
the problem tackled in this article and the work carried out by
relevant studies in Section 2. Then, we elaborate on problem de-
scription in Section 3. Once the problemhas been formally defined,
the proposed genetic algorithm for student–supervisor allocation
is explained in Section 4. Section 5 provides empirical evaluation of
the proposed approach. Lastly, we conclude our work with future
work directions in Section 6.

2. Related work

The problem of allocating the students to supervisor is a one-
to-many matching where we allocate only one supervisor to each
student while more than one student can be assigned to a supervi-
sor. As mentioned above, this particularity makes it similar to the
college admission (CA) and the hospital/residents (HR) problem,
two well-known one-to-many matching problems from the point
of view of theoretical computer science. In the HR problem, each
resident has a ranked list of preferences on the hospitals they
may be assigned to, and hospitals also have ranked preferences
on the residents they may accept. Similarly, in the CA problem,
each student has ranked preferences on the colleges they may be
accepted, and each college has ranked preferences on the students
that theymay accept. Both colleges and hospitals may acceptmore
than one student/resident, making it a one-to-many matching.

Our student–supervisor matching problem involves a one-to-
many matching where supervisors have both lower and upper
supervision quotas, and both sides have preferences on each other.
Biro et al. [14] studied the problem of the CA problem with both

1 Stability defined as the lack of incentive for any pair of student and college to
change their current allocation in favor of one that allocates them together.

lower and upper quotas from a theoretical perspective. Differently
to our setting, the work presented in [14] allows for colleges to
be closed in case that their minimum acceptance quota is not
reached. The authors found that, in the presence of both lower and
upper quotas, there may not exist a stable matching. A matching
is considered stable if for every pair of student and college not
included in thematching, either the student ismatched to a college
that he/she prefers, or the college quota is full with applicants
that the university prefers. In addition to this, determining if a
stable matching exists in this setting is a NP problem. Biro et al.
showed that a student oriented polynomial algorithmand a college
oriented polynomial algorithm can be provided in the case that
colleges are organized in nested sets and have common quotas.
In our work, the minimum supervision quota for each supervisor
must be achieved, and all specified staffmembers participate in the
allocation.

Later on, Hamada et al. [15,16] further studied the problem
of matching with lower and upper quotas, focusing on scenarios
where all colleges/hospitals should reach their minimum quota
in the allocation. In this particular scenario, it is proved that the
problem of providing a matching that is as close as possible to be
stable is still a NP-hard problem, but a polynomial time algorithm
approximation algorithm exists with an approximation guarantee
equal to the sum of the number of hospitals and residents. This ap-
proximationmay not be appropriate for large numbers of hospitals
and residents or student and supervisors, as the problem faced in
our proposal.

The previous findings provide the readerwith somebackground
on the complexity of the matching problem presented in this
article. This complexity, and the need to appropriately tackle
large problems motivated the choice of a metaheuristic instead
of a global optimization technique. In the next few lines, we dis-
cuss how our present work compares to other student–project or
student–supervisor allocation schemes proposed in the literature.

Anwar et al. [1] were one of the pioneering authors in pro-
viding a computational solution to the student–project allocation
problem. The article introduces twodifferent integer programming
models: one to allocate students to projects while minimizing the
projects supervised by staff members, and another to maximize
the students’ satisfaction according to their preferences on group
projects to be allocated and to be undertaken. In this setting, staff
members propose a list of projects and students provide a rank
of four projects to be allocated on. Both integer programming
models were tested on a real dataset consisting of 60 projects,
22 staff members, and 39 students. Similarly, [2] introduces the
use of genetic algorithms for solving the student–project allocation
problem. In their setting, students provide a ranked list with their
most preferred projects, and each student is allocated a project
from the provided list, with projects being carried out individ-
ually. The algorithm was tested with real data consisting of 25
students and 34 projects, and alsowith problems created fromdata
provided from the OR-library [17]. These models only take into
consideration the students preferences, but they do not consider
the staff preferences with regards to projects and students and the
workload of supervisors. In addition to this, they can only optimize
a single objective function which precludes decision makers from
trading-off between the students’ and the staff preferences.

Abraham et al. [3] focus on solving the student–project allo-
cation problem from an optimal perspective. The authors assume
that a list of projects is provided by staff members. The students
provide a ranked list of their most preferred projects, while staff
members explicitly rank students that desire to be allocated to
the staff member’s projects. Under this assumption, the authors
provide two linear algorithms to find stable matching: one from

V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15 3

the perspective of the students’ preferences, and another from the
perspective of the lecturers’ preferences.While an optimal solution
can be guaranteed employing these algorithms, they either provide
the optimal solution for the students or the optimal solution for
the staff members, but no trade-off opportunity is provided to
decisionmakers. In addition to this, the algorithms do not take into
consideration the workload of supervisors, with the possibility of
producing unbalanced solutions. Finally, it should also be consid-
ered that supervisors explicitly rank students which may not be
feasible if supervisors do not know students, or it may be unfair
for students with lower marks as many will end up in the last rank
positions in lecturers’ preferences.

Later on, Manlove & O’Malley [4] study the student–project
allocation problem in a scenario where students and supervisors
have preferences over a set of projects. Both projects and supervi-
sors have capacity constraints. Under these conditions, the authors
prove that stable matchings can have different cardinalities, and
thus the objective is that of finding the stable matching with a
maximum cardinality. Solving this problem is NP hard, but the
authors provide a student oriented approximation algorithm with
a performance guarantee of 2 (i.e., only guaranteeing half of the
cardinality of themaximumstablematching) andpolynomial com-
plexity. Iwama et al. [8] further narrowed down this bound to a
range between 1.5 and 1.10. The proposed algorithms focus on op-
timizing the students’ preferences, with no explicit consideration
of the staff members’ preferences, the workload of supervisors, or
lower quota constraints.

Another genetic approach to the student–project allocation
problem was provided by Srinivasan & Rachmawati [5]. The de-
scribed scenario consists of students providing a ranked list of
projects from a list published every year by lecturers. The problem
is tackled as multiobjective optimization problem where both
the preferences of the students and the departments are taken
into consideration. In order to compute the preferences of the
department, the academic performance of the students and the
workload of supervisors/departments are taken into consideration.
As mentioned, assigning projects on merit may lead to undesir-
able situations whereby low performing students end up in less
attractive projects. In addition to this, the model does not support
lower and maximum supervision quotas for lecturers. Finally, it
should be highlighted that despite the fact that multiple objec-
tives are considered, these are aggregated into a single and final
objective function. This requires to compute the GA every time that
the human decision maker desires to trade-off between different
objectives.

The work presented on [6] proposes the use of goal program-
ming to tackle the student–project allocation as a hierarchical
multiobjective problem. The maximum priority of the model is
maximizing the number of allocated students, and then it attempts
to maximize the students’ preferences and then the academic
performance of allocated students. Again, the model employs aca-
demic performance to prioritize the departments’ choice, which
may be discriminatory. Moreover, the model does not allow to
execute trade-offs between the different objectives, and it does not
guarantee any degree of optimality for each of them.

The authors in [7] present an artificial immune system opti-
mization algorithm for the student–project allocation problem.
More specifically, the authors model a problem where a set of
students and projects exist, and students have preferences on
the projects to undertake. In their framework, students must be
matched a project, and a project can be matched at most once. The
authors study the performance of several mutation operators on
the problem, although they focus on swapping projects between
students based on different criteria like time. As it will be appre-
ciated, our proposed mutation operator takes into consideration
both swapping (students between supervisors) and transferring

operations (giving a student to another supervisor) and they con-
sider the minimum and maximum supervision quota of each su-
pervisor.

In [9], the authors focus on solving the student–project al-
location problem where only students’ preferences are present,
but supervisors have both lower and upper supervision quotas.
In the article, the authors provide efficient algorithms that aim
to provide optimal solutions in the context of a single side opti-
mization (i.e., students’ preferences). For that, their proposed algo-
rithms guarantee finding greedymaximummatchings or generous
maximum matchings. The first aims to find the largest matching
in terms of the number of students allocated, and maximizing
the number of students allocated their first and most preferred
choices. The second aims the largest matching that minimizes
the number of students allocated their least preferred choices.
The work presented by the authors does not support lecturers’
preferences, and thus optimizes a single objective criteria, and
matchings found do not necessarily guarantee matching all of the
students to projects/supervisors, something that we have consid-
ered fundamental in our present work.

Salami and Mamman propose another genetic algorithm for
scenarios where students have complete preferences on super-
visors, and supervisors have a maximum supervision quota [11].
However, there is no consideration on supervisors’ preferences or
the workload balance for supervisors.

In [13] the authors present mixed integer programming mod-
els for solving the student–project allocation problem with one-
sided preferences (i.e., students). Differently to other approaches,
students apply for projects in teams and the maximum capacity
of projects is defined in number of teams rather than the number
of individuals. The main focus of the article consists of analyzing
different fairness metrics from the point of view of the students’
allocation.

Recently, Cooper and Manlove [12] have revisited the problem
of allocating students to projects, where both students and lectur-
ers have preferences over each other, and lecturers and projects
have upper capacity constraints. The authors have provided a 3/2-
approximation algorithm capable of calculating maximum stable
matchings in linear time. It should be considered that this work
does not include lower quotas and neither introduces fair balanc-
ing for the supervisors’ workload.

Our approach is based on students’ and supervisors’ prefer-
ences on project topics rather than projects. This is an advan-
tage as it does not require lecturers to propose projects prior to
the allocation and they can be negotiated with students accord-
ing to their research interests. Furthermore, it does not discrimi-
nate students according to their performance as staff preferences’
are based on topics rather than students. Most analyzed works
only take into consideration the students’ preferences [1,2,7,9,11,
13], or they base the department preferences on pure academic
merit/opinion [3,5,6]. We consider both the students’ and the
departments’ preferences by adopting a multiobjective approach
that provides decisionmakers with flexibility to trade-off between
objectives as it estimates Pareto optimal solutions. The works
analyzed in this section are either single objective (sided) [1,2,4,
7,9,11,13] or they adopt a multiobjective stance by aggregating
or prioritizing objectives [5,6] or by focusing on finding efficient
matchings with no lower quotas [4,8,12]. In addition to this, we
aim to provide a balanced allocation that takes into consideration
theworkload of lecturers, a characteristic that is only present in [5].
Therefore, the proposedmodel should bemore apt for the student–
project allocation problem described in this article.

4 V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15

3. Problem definition

In this section we describe the problem of allocating students
to supervisors from a formal perspective. Let S = {s1, . . . , sn}
and R = {r1, . . . , rm} represent a set of students and a set of
supervisors where n and m denote the number of students and
number of supervisors respectively.

3.1. Matching definition

A matching2 M is an assignment of students to supervisors,
where each student is assigned exactly one supervisor. Without
loss of generality, we say that M(si) represents the supervisor
assigned to student si inM , andM(rj) represents the set of students
assigned to supervisor rj in M . Each supervisor rj has an upper
bound supervision quota cj,max, which is normally established by
the head of the department or school. Similarly, each supervisor
rj has a lower supervision quota cj,min, set by the department or
school, that determines the minimum number of students that
he/she should supervise. This is the case in many higher education
institutions, where supervisors have different teaching loads and
therefore, theymay bemore or less available to supervise students’
projects.

Given amatching,we say that a supervisor rj is under-subscribed
iff cj,min ≤ |M(rj)| < cj,max, he/she is full iff |M(rj)| = cj,max,
and he/she is over-subscribed iff |M(rj)| > cj,max. We say that a
matching M is feasible iff ∀rj ∈ R, cj,min ≤ |M(rj)| ≤ cj,max, i.e. for
every supervisor he/she is full or under-subscribed.

3.2. Workload definition

As mentioned in the article, we aim to consider the balance of
the workload for supervisors when constructing a proper alloca-
tion with our GA. Therefore, we must provide a formal definition
for what we consider workload and how tomeasure the balance of
theworkload in amatchingM . Theworkload level of a supervisor rj
in M as lj =

|M(rj)|
cj,max

. Namely, that is the ratio of students supervised
in the matching M over the maximum number of students that
can be supervised by rj. Analogously, we can define and LM =

{l1, . . . , lm} as a vector that contains the workload levels for all
supervisors in the matchingM , and we define σLM as the standard
deviation of the workload levels of supervisors in the vector LM .

3.3. Evaluation of a student–supervisor assignment

The first step towards evaluating the quality of a matching
M is that of evaluating the individual allocation of student si to
supervisor rj. We define Vi,j, as the value given by a student si to
being allocated a supervisor rj, and V ′

j,i as the value given by a
supervisor rj to being allocated a student si.

In this work we assume that students cannot explicitly provide
a complete list of preferences for supervisors. Even if they could
provide a partial list of supervisors in rank of preference, the list
would be biased to the supervisors that they like or the ones that
they have met. It is not possible for the students to know all of
the staff members in a relatively large school or department. There
are different reasons for this. Additionally, students may hesitate
to specify their preferences on their supervisors/teachers directly
due to academic reasons and privacy issues. However, it is easy
for them to specify which topics they would like to work on more.
Therefore, we consider that students are able to provide a ranked
list of k topics to represent their preferences in the problem. Again,

2 Please note that the definition of matching employed in this paper aligns with
the definition employed in the student–project allocation problem. It should be
highlighted that this is different to the classic definition of matching in a graph.

we assume that only k explicit preferences can be given as the
number of potential topics may be extremely large in some areas
and that may result in a too costly elicitation process. Similarly, we
can state the same about supervisors. They cannot explicitly rank
all of the students as they may not know them. In addition to this,
bymaking supervisors express their preferences in terms of project
topics rather than students, we avoid discrimination according to
academic performance.

In order to evaluate both the students’ and supervisors’ pref-
erences on topics, we assume that the topics are represented in
a tree-like and hierarchical structure with a common root. In this
structure, topics may be further divided into subtopics and so
on, but it is always possible to relate how similar two topics are
by analyzing the tree structure [18]. An example of this tree-like
structure can be observed in Fig. 1. In the example, let us assume
that a student has stated that his preferred topic is kw5. Given the
tree structure, one can easily compare how similar or related other
keywords are based on the number of common nodes in the tree
structure. This is the case, despite the fact that the student may
have not explicitly provided preferences for other keywords. We
assume that each supervisor/student preferences are represented
by a list of k different topics from a tree-like and hierarchical
structure. A student or supervisor i describes his preferenceswith a
ranked listKW i = {kw1, . . . , kwk} of k topics where ∀j < k, kwj ≻

kwk.
We consider that the similarity between a student’s and a

supervisor’s preferences depends on two factors: the similarity of
the keywords provided by both in their lists, and the position of
those keywords in their ranked lists. First, we define the similarity
between two keywords, and thenwe define the similarity between
the positions occupied by two keywords in two ranked lists.

• Keyword similarity: Let us consider that there is a tree de-
fined by T = (KW, E) where KW = {kw1, . . . , kwl} is a
group of l different nodes that represent topics in an area of
knowledge, and E is a group of edges in the form (kwi, kwj)
indicating that kwj specializes the topic in kwi. The similarity
of kwj to kwi topics in T is defined as:

ST (kwi, kwj) =
|path(kwi, T) ∩ path(kwj, T)|

|path(kwi, T)|
(1)

where path : KW × T → 2KW is a function that retrieves
the path defined from the root of the tree T to the node
kw (included). As a consequence, we define the similarity
of kwj to kwi as the number of common nodes in the path
defined from the root to both topics. Please, the reader should
bear in mind that this similarity metric is not symmetric,
to consider the fact that more specific topics are only fully
matched by topics of greater or the same specificity. Lastly, if
we assume two lists of preferencesKW i andKW j, and a topic
kwi ∈ KW i, we define its best matching topic kw∗

i ∈ KW j as
arg max
kwj∈KW j

ST (kwi, kwj).

• Rank similarity: We define Srnk as the rank similarity be-
tween two keywords in two ranked lists of preferences KW i
and KW j. This similarity metric represents the fact that the
order of the topics in both the student and supervisor’s pref-
erences should matter as it denotes the degree of interest
of expertise in the topic. For instance, let us assume that
the topic artificial intelligence is defined as the most pre-
ferred topic for a student, and the best matching keyword
in a supervisor’s list is machine learning. However, this topic
appears as the last in the list of preferences for the supervisor.
The student should prefer matching supervisors that have a
closely related topic higher in their rank of preferences as it is

V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15 5

Fig. 1. Topics organized in a tree-like structure.

the most preferred topic for the student. This fact is reflected
by the definition of the rank similarity:

Srnk(kwi, kwj,KW i,KW j)

=
1

1 + |pos(kwi,KW i) − pos(kwj,KW j)|
(2)

where the function pos returns the position of a keyword in a
ranked list of preferences, with lower positions representing
choices higher in rank. This similarity metric reflects the fact
that the positions of the keyword and bestmatching keyword
in both supervisors and students is important.

From this point on, we define the evaluation given by a student
si to a supervisor rj: Vi,j. The evaluation given by si to rj is defined
as:

Vi,j =

∑
kwi,r∈KW i

wr × Srnk(kwi,r , kw∗

i,r ,KW i,KW j)

× ST (kwi,r , kw∗

i,r) (3)

where, as mentioned, we define kw∗

i,r ∈ KW j as the best matching
topic to kwi, andwr is aweight indicating the importance ofmatch-
ing the rth most important preference for the student. This way,
we take into consideration that students may prefer to bematched
according to their most preferred topic rather than topics further
down in their ranked list of preferences. It should be highlighted
that the evaluation given by a supervisor rj to the student si, V ′

j,i,
can be defined in an analogous way.

3.4. Optimization problem

As we have mentioned in the previous section, in this article
we consider both the preferences of the students and supervisors.
This means that there are two objectives to be maximized and
this is a multi-objective optimization problem. We describe this
optimization problem first from the point of view of students and
then from the point of view of the supervisors.

3.4.1. Optimization: Student perspective
From the point of view of the students, the optimization prob-

lem is to maximize the overall satisfaction of the students from
their assigned supervisors. Next, we define the associated opti-
mization problem:

max
1

|S|

∑
si∈S

∑
rj∈R

xi,j × Vi,j

subject to

∀rj ∈ R, cj,min ≤

∑
si∈S

xi,j ≤ cj,max (4)

∀si ∈ S,
∑
rj∈R

xi,j = 1

0 ≤ xi,j ≤ 1

where xi,j is a binary variable that indicates if the student si has
been allocated to supervisor rj in matching M . The optimization
function, which we aim to maximize, is defined as the mean of
the valuation given by students for their assigned supervisors in
matching M . The first constraint forces the optimization problem
to find a solution where no supervisor rj is over his/her upper
bound supervision quota cj,max, and that a minimum of cj,min stu-
dents are allocated to rj. This latter value represents situations
where the department establishes a minimum supervision work-
load for supervisors. The next constraint forces the optimization
problem to assign a student si to just one supervisor. Finally, the
last constraint defines the domain for the binary variables.

3.4.2. Optimization: Supervisors’ perspective
Asmentioned above, the other optimization problem is defined

by the interests of the supervisors. In this article, we assume that
the interests of the department are (i) to make supervisors more
comfortable with their work by assigning a student who is willing
to work in areas related to the supervisor’s expertise; (ii) and to
avoid unbalanced solutions where well-known supervisors have
a much higher supervision load than other staff members, as this
could cause friction and envy amongst coworkers. Given these
assumptions, we define the optimization problem faced by the
department as follows:

max
1

(1 + σLM)α
×

1
|R|

∑
rj∈R

1
|M(rj)|

∑
si∈S

xi,j × V ′

j,i

subject to

∀rj ∈ R, cj,min ≤

∑
si∈S

xi,j ≤ cj,max (5)

∀si ∈ S,
∑
rj∈R

xi,j = 1

0 ≤ xi,j ≤ 1

The optimization problem is similar to that defined for the
students. In fact, the constraints of the problem are identical to
the ones defined for the student problem. The objective function
evaluates the satisfaction of a supervisor as the average evaluation
value given by the supervisor for the students allocated to him/her.
Then, the overall satisfaction of supervisors is taken as the average
satisfaction of all supervisors.

Additionally, the objective function is penalized by an external
factor that depends on the standard deviation of the workload
levels σLM in M . The greater the standard deviation, the greater
becomes the penalization factor and the more is reduced the value
of the objective function. As a result, given two allocationswith the
same value stemming from the value given by students assigned
to supervisors, the optimization problem prefers solutions with a

6 V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15

more balanced workload level. This avoids situations like the one
mentioned above,where popular supervisors are highly subscribed
while others have a very low workload level. The effect of this
parameter can be further expanded by the coefficient α, which
should penalize allocations with a higher workload unbalance
when α > 1.

4. A Pareto optimal genetic algorithm for the student–
supervisor allocation problem

Due to the ability of dealing with large search spaces and pro-
viding good solutions in a reasonable amount of time, we decide to
use genetic algorithms to solve the student–supervisor allocation
problem. In this section, we describe the design and implementa-
tion of the proposed genetic algorithm. In addition to this, meta-
heuristics tend to provide a good solution in a reasonable amount
of time. Exactmethods for non-linear, or even linear problems such
as the one presented in Section 3 are known to be costly in time
for large search spaces. Thus, we select genetic algorithms as the
method for solving the problem presented in this work.

As the readermay have observed, there are two different objec-
tive functions for the problem. Therefore, in this article we opt for
a Pareto optimal genetic algorithm. Pareto optimal methods allow
to retrieve a variety of non-dominated solutions which can later
be analyzed by a decisionmaker to trade-off between the different
objective functions. In this case, the staff entitled with the task of
allocating students to supervisors can select from a wide range of
allocations to better reflect the priorities of the students and the
supervisors. More specifically, due to the fact that the problem is
composed by just two objective functions, we employ a schema
inspired by NSGA-II [19], a well-known GA schema for estimating
Pareto optimal solutions in multi-objective problems.

Next, we define the specific details of the proposed genetic
algorithm. First, we explain how chromosome (solutions) are rep-
resented in our GA. Next, we define the main operators of the
proposed GA: crossover operators, and mutation operator. Finally,
we describe the selection mechanism employed and the outline of
the GA.

4.1. Chromosome representation

For this GA, we employ a graph to represent a solution. For-
mally, a matching M can be represented by means of a bipartite
graph GM = (S,R, E) where E = {(si, rj)|M(si) = rj} is the set
of edges that determine the assignment of students to supervisors
(i.e., an edge is present if a student is matched to a supervisor in
M).

Fig. 2 show an example of how an allocation of 5 students to 3
supervisors is represented by a bipartite graph. More specifically,
in the example provided, the supervisor r1 supervises student
s3, supervisor r2 supervises students s2 and s5, and supervisor r3
supervises students s1 and s4.

In the bipartite graph GM representing an allocation, we define
the structure of the allocation as stGM = (|N(r1,GM)|, . . . , |N
(rm,GM)|) as the number of neighbors of each supervisor in the
bipartite graph (i.e., the number of students that each supervisor
supervises in the allocation). For instance, in the example in Fig. 2,
the structure of the allocation is (1, 2, 2). As the reader may have
guessed by now, the structure of the allocation is important as it is
related to the workload level of the supervisors and, therefore, to
the objective function of the supervisors.

Fig. 2. An example of a matching of 5 students to 3 supervisors represented by a
bipartite graph.

4.2. Mutation operator

We introduce amutation operator in the context of the student–
supervisor allocation problem that employs two actions: swap and
transfer. Our swap action is inspired by the mutation operator in
bin packing problems [20]. Similarly, the transfer action is inspired
on the similar intuition proposed in [21] for bin packing problems.

The mutation operator is applied over a single parent and it
generates a single child. For this problem we have designed a
special mutation operator that applies a series of operations on
a parent allocation: swapping of students between supervisors,
and transferring of a student from one supervisor to another. The
former operation does not change the structure of the allocation
(i.e., the workload of any supervisor), while the latter does by
reducing the workload of a supervisor by one and increasing the
load of another supervisor by one.

The extent to which a parent changes by a single mutation
operation is defined by the mutation ratio pmt , that represents the
probability of mutating an edge in a graph GM . The type of opera-
tion that is applied over an edge that is to be mutated is controlled
by psw , which controls the probability of applying a swapping
operation between two supervisors. An outline of the mutation
operator can be found in Algorithm 1. The operator iterates over
edges in the bipartite graph and attempts to perform an operation
over an edge in the graph with a probability of pmt . In case that a
transfer operation is possible for the edge (i.e., the supervisor has
more than the minimum quota established by the department),
it selects a random supervisor that can take students (i.e., under-
subscribed) and performs the operation with a probability of 1 −

psw (lines 1 to 9). Otherwise, the operation selected is a swap
between supervisors (lines 10 to 15), which is always possible in
feasible solution as the structure of the solution does not change.

4.3. Crossover operators

As the structure of the allocation is important for the objective
function of the supervisors, we have devised two crossover op-
erators for matching problems that preserve the allocation struc-
ture of the parents as much as possible. More specifically, these
two crossover operators take two parents as input and produce a
child as a result. Both operators preserve the original allocation
structure of one of the parents; however, the second approach
may end up adding new genetic material not present in any of
the parents whereas the first one does not. As a result, the latter
crossover operation may induce in additional exploration as new
assignments of students to supervisors. We call the first genetic
operator as the Hopcroft–Karp genetic operator as it is based on
the popular algorithm to find maximum cardinality matchings

V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15 7

Algorithm 1: Outline of the mutation operator
Input: GM = (S,R, E) : A bipartite graph representing a feasible

allocation
Output: GM ′ = (S,R, E ′) : A new bipartite graph representing a

feasible allocation
1 GM ′ = GM ;
2 U = under-subscribed(GM ′);
3 for (si, rj) ∈ E ′ do
4 if random() ≤ pmt then
5 if random() > psw ∧ N(rj,GM ′) > cj,min ∧ U ̸= ∅ then
6 /*Transfer operation*/;
7 rq = random_choice(U);
8 E ′

= (E ′
∪ {(si, rq)}) − {(si, rj)};

9 U = under-subscribed(GM ′);
10 else
11 /*Swap operation*/;
12 rq = random_choice(R);
13 sp = random_choice(N(rq,GM ′));
14 E ′

= (E ′
∪ {(si, rq), (sp, rj)}) − {(si, rj), (sp, rq)};

15 end
16 end
17 end

in bipartite graphs [22], while the second receives the name of
greedy structural preservation crossover due to its greedy nature
for selecting genetic material from parents. Next, we define both
in detail.

4.3.1. Hopcroft–Karp genetic operator
Aswementioned, this crossover operator generates a new child

from two parents. In order to do so, the new solution inherits
the allocation structure of one of the parents, and it exclusively
employs genetic material from the two parents to generate the
child.

The outline of this genetic operator is as follows. An example of
the application of this genetic operator to two parents can be found
in Fig. 3, while the formalization of the operator can be found in
Algorithm 2:

• Merging parents: This step can be found in Fig. 3(a) and lines
1–10 of Algorithm 2. First of all, we generate a new graph as a
result of merging both graphs by keeping the set of students
and supervisors. The selection of this structure is proportional
to its impact in the objective function of the supervisors. In
addition to this, the structure of one of the two parents is
inherited as a goal for the new bipartite graph. In the example
in Fig. 3, the structure of the first parent is chosen.

• Transforming graph: The description of this step can be
found in lines 11–14 of Algorithm 2 and an example can
be found in Fig. 3(b). The merged graph is transformed into
a new bipartite graph whose set of supervisors contains a
copy of each original supervisor for each student that he/she
should supervise according to the inherited structure. For
instance, in the example in Fig. 3(b), there are two copies of
the original supervisor r2 (r2,1 and r2,2) because two students
should be assigned to the second supervisor in the new al-
location. Similarly, the same happens for supervisor r3 (r3,1,
r3,2).

• Hopcroft–Karp: Lines 15–16 of Algorithm 2 and Fig. 3(c) rep-
resent this step. The Hopcroft–Karp algorithm [22] is applied
on the transformed graph to find a maximum cardinality
matching. As the merged graph contains at least a perfect
matching (i.e., one of the two original parents), then the
maximum cardinality matching is a perfect matching.

Algorithm 2: The Hopcroft–Karp crossover operator
Input: GM1 = (S,R, E1) : A bipartite graph representing a feasible

allocation; GM2 = (S,R, E2) : A bipartite graph representing
a feasible allocation;

Output: GM ′ = (S,R, E ′) : A new bipartite graph representing a
feasible allocation

1 /* Merge graphs */ ;
2 G = (S,R, E = E1 ∪ E2);
3 /* Inherit one of the structures */;
4 p1 =

1
(1+σM1)

α ;

5 p2 =
1

(1+σM2)
α ;

6 if random() ≤
p1

p1+p2
then

7 stGM′ = {|N(r1,GM1)|, . . . , |N(rm,GM1)|};
8 else
9 stGM′ = {|N(r1,GM2)|, . . . , |N(rm,GM2)|};

10 end
11 /* Transform graph */ ;
12 Rtr = {rj,l | rj ∈ R ∧ l ≤ stGM′ (rj)};
13 Etr = {(si, rj,l) | ((si, rj) ∈ E1 ∪ E2) ∧ rj,l ∈ Rtr } ;
14 Gtr = (S,Rtr , Etr) ;
15 /* Apply Hopcroft–Karp algorithm */ ;
16 Ehp = hopcroft_karp(Gtr);
17 /* Transform back to original representation */;
18 E ′

= {(si, rj) | ∃(si, rj,l) ∈ Ehp};
19 G′

= (S,R, E ′)

• Transforming back: Finally, the perfect matching is trans-
formed back to the original supervisor set by merging those
nodes that represent the same supervisor. As a result of this
process, a new child is generated that inherits the structure
of one of the two parents and it introduces no new genetic
material. This can be found in lines 17–19 of Algorithm 2 and
Fig. 3(d). Note that the structure of the allocation is the same
with one of the parents; however, it does not mean that the
allocation is exactly the samewith the chosen parent’s alloca-
tion. As seen from the given example, the resulted allocation
is different than the parent allocations (e.g. s3 is assigned to
r1 in the chosen parent allocation while it is assigned to r2 in
the child allocation).

The theoretical complexity of this crossover operator is deter-
mined by the complexity of each of its individual steps. In order
to merge both parents, a new set of edges must be created which
consists of all the edges in both parents. As the number of edges in
each parent is exactly |S| then the cost of this step isO(|S|). Trans-
forming the graph requires to create a new set of supervisors that
has exactly as many supervisors as students (O(|S|)) and creating
a new set of edges that is at most O(|S|). The most expensive step
is applying the Hopcroft–Karp algorithm which has a complexity
of O(|S|

√
|S|) in the worst case. However, some recent studies

show that in the average case the Hopcroft–Karp algorithm has a
complexity ofΘ(|S|log|S|) for randomsparse bipartite graphs [23].
The bipartite graphs generated by the merge operation will result
in graphs where students have at most two neighbors (i.e., the
student has a different supervisor in both parents). Therefore,
we expect that in practice the cost of this step will be closer to
the Θ(|S|log|S|) complexity. The final step requires iterating over
resulting edges in the perfect matching which is exactly O(|S|).
Therefore, the complexity of this operator is O(|S|

√
|S|) in the

worst case and we expect it to be Θ(|S|log|S|) in the average case.
In both cases, the complexity is quasi-linear.

4.3.2. Greedy structural preservation genetic operator
The greedy approach preserves the structure of one of the

two parents, which is randomly inherited based on the impact

8 V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15

Fig. 3. Steps of the Hopcroft–Karp crossover operator (in separate boxes). The order of the steps is read left to right.

of the structure on the fitness of the supervisors. Differently to
the Hopcroft–Karp crossover operator, this crossover operator may
introduce new genes that are not present in any of the two parents.
Nevertheless, the operator aims to keep original geneticmaterial as
much as possible. As a trade-off, the computational complexity of
this operator is lower than that of the Hopcroft–Karp as it takes a
greedy approach. The general idea behind this method is locking
edges that will be part of the resulting matching, and removing
those that are to be discarded.

Next, we describe the outline of this genetic operator in more
detail. Fig. 4 shows how the operator is applied over a particular
example, while Algorithm 3 depicts the specific details of the
operator inmore detail. The general steps of the crossover operator
are:

• Merging parents: This step can be found in the top left box
of Fig. 4(a) and lines 1–11 of Algorithm 3. It is equivalent
to the merging steps in Hopcroft–Karp crossover operator. In
addition to inheriting the structure of one of the two solu-
tions, themethod initializes a counter for each supervisor that
contains the number of edges that have been locked for the
final allocation so far in the process. In Fig. 4(a), the allocation
structure inherited is that from the first parent.

• Simplify: The details of this step can be found in Algorithm
3 from lines 12 to 20, and an example applied over a real
graph is observable in Fig. 4(b). The merged bipartite graph is
simplified. The simplification process locks those edges that
have a student with a single possible supervisor. For instance,
in Fig. 4(b), this corresponds to edges starting from students
s4 and s5. The locked edges will be part of the final allocation
and counters are updated for supervisors whose edges have
been locked (r2 and r3). In case that one of the supervisors
reaches the desired workload level, all other unlocked edges
involving that supervisor will be removed from the merged
graph. This step is repeated until the graph cannot be further
simplified by this method.

• Locking and removing edges: This step corresponds to lines
21 to 30 in Algorithm 3, and Fig. 4(c). An unlocked edge is
randomly chosen from the current graph (e.g., edge (s1, r1)
in Fig. 4(c)) and it is locked to be part of the final allocation.
As the edge has been locked, the number of locked edges
for the supervisor is increased. Any other edges incident in
the selected student are removed from the merged graph
(e.g., edge (s1, r3) in Fig. 4(c)). In case that the supervisor has
reached the desired workload level, unlocked edges incident

in the supervisor are removed from the graph (e.g., edges
(s2, r1) and (s3, r1) in Fig. 4(c)). This step is repeated while
there are no more unlocked edges.

• Adding edges: This last step is represented in lines 31 to 39
of Algorithm 3 and Fig. 4(e). Once there are nomore unlocked
edges, the operator checks if there are any unmatched stu-
dents and supervisors. If there are unmatched vertex, then
the operator randomly assigns students to supervisors while
following the desired workload level in the allocation, and
considering the number of locked edges for each supervisor.
The process of adding edges is repeated until there are no
more unmatched students.

The process described above ends up with a feasible allocation
which has inherited the structure of one of the two parents. The
complexity of the operator is straightforward. As discussed, the
merging process has a complexity proportional to O(|S|). In the
worst case, the simplify step will be applied as many times as
students in the problem (i.e., merging the same parents) which
gives a worst case cost of O(|S|). The lock and remove step will
be applied as any times as edges in the merged graph, which will
be O(|S|) in the worst case. Then, the final step adds one edge per
remaining unassigned student. This last step will never be more
costly thanO(|S|). Therefore, the cost of this operator is linearwith
the number of students in the problem.

4.4. Selection mechanism

The selection mechanism in this GA is employed to determine
the parents that will take part in the crossover operation. More
specifically, we run random tournaments [24] between solutions
in the population until we have selected a number of pairs that is
equal to half of the current population.

As this is a multi-objective optimization problem, the com-
parison carried out in the tournament is determined by the so-
lution that has a lower nondominated rank or the one that has
a higher crowding distance in case of both solutions having the
same nondominated rank. The nondominated rank of a solution
is determined when calculating the different Pareto frontiers in
the population, and it is related to the number of solutions that
dominate the specific solution. On the other hand, the crowding
distance makes sure that the solutions are well-spread on the
Pareto frontier. The details of these metrics can be found in [19].

V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15 9

Fig. 4. Steps of the greedy structural preservation crossover operator (in separate boxes). The order of the steps is read left to right.

4.5. Evolution schema

Asmentioned, the outline of the genetic algorithm is inspired by
NSGA-II [19]. The details of the GA can be found in Algorithm4. The
genetic algorithm initializes a population of popmax random feasi-
ble solutions (line 1). Then, the main loop of the genetic algorithm
runs for a fixed number of iterations (lines 4–20), determined by
the parameter itmax.

In themain loop, the genetic algorithmcalculates the successive
Pareto optimal frontiers in the current population (P , line 6): calcu-
lating the first Pareto optimal frontier, removing the Pareto frontier
from the set and calculating a new one following this process
until no more frontiers can be calculated. The genetic algorithm
limits the number of solutions in the population by filling the new
population (Pnew) with solutions from the first to the latest Pareto
optimal frontiers (lines 8–15). Then, each solution in the resulting
population is mutated, and the crossover operator is applied over
solutions selected by tournament selection (lines 16–19). Lines
21 and 22 calculate the resulting frontiers after applying genetic
operators in the last iteration.

5. Experiments

In order to validate the performance of the proposed genetic
algorithm, we carry out a series of practical experiments. These
experiments aim to study the impact of the different elements of
the genetic algorithm, as well as the overall performance of the
genetic proposal. First, we provide a brief analysis of the real data
collected from the student–supervisor allocation process at Coven-
try University, as this data is employed to create real allocation
problems that will be employed to validate the performance of
the genetic proposal. Then, we empirically analyze the impact of
the mutation operator on the performance of the GA by study-
ing the appropriate degree of mutation rate and the importance
given to exploring the structure of the allocation rather than the

allocation itself. After that, we analyze the empirical complexity of
the Hopcroft–Karp and the greedy structural preservation crossover
operator, and we compare their optimization performance with
classic crossover operators. Finally, we compare the performance
of the proposed genetic algorithm with that of global optimal
optimization methods to assess the quality of the solutions found
by the GA.

5.1. Dataset

In order to test the genetic algorithm in a realistic setting, we
collected real data from undergraduate students and staff mem-
bers that participate in the undergraduate dissertation module for
computing related degrees at Coventry University. The preferences
of students and staff members were elicited by allowing individu-
als to specify, in order, their k = 5most preferred topics in the 2012
ACM Computing Classification System.3 This taxonomy provides a
tree-like and hierarchical classification of areas in computing, as
needed by our fitness functions, and it is a well-known system
employed to categorize research papers in computing.

A total of 195 students’ preferences and 33 supervisors’ pref-
erences were collected. This dataset4 contains real preferences of
students on computing areas for their undergraduate dissertations,
as well as the preferences of staff members on research areas
where they would like to supervise students on.

By analyzing the preferences of both students and supervisors,
one can observe that there are some differences. For instance,
Fig. 5 analyzes the distribution of the top 10 topics selected by
students and supervisors when focusing on the third level of the
path defined by the topics selected by both populations. As one
can observe, some topics that are popular amongst students like
Software creation and management are not as popular for supervi-
sors, while some popular topics amongst students like Electronic
commerce are not even present in the top 10 third level topics for
supervisors. Therefore, there is conflict between the students’ and
supervisors’ preferences with respect to dissertation areas.

3 https://www.acm.org/publications/class-2012.
4 The dataset is available at http://sanchez-anguix.com/index.php/research/.

https://www.acm.org/publications/class-2012
http://sanchez-anguix.com/index.php/research/

10 V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15

Fig. 5. Distribution of the top 10 third level topics in the 2012 ACM Computing Classification System for the topics selected by students (left) and supervisors (right).

Algorithm 3: The greedy structural preservation crossover op-
erator

Input: GM1 = (S,R, E1) : A bipartite graph representing a feasible
allocation; GM2 = (S,R, E2) : A bipartite graph representing
a feasible allocation;

Output: GM ′ = (S,R, E ′) : A new bipartite graph representing a
feasible allocation

1 /* Merge graphs */ ;
2 G′

= (S ′
= S,R′

= R, E ′
= E1 ∪ E2);

3 /* Inherit one of the structures */;
4 p1 =

1
(1+σM1)

α ;

5 p2 =
1

(1+σM2)
α ;

6 if random() ≤
p1

p1+p2
then

7 stGM′ = {|N(r1,GM1)|, . . . , |N(rm,GM1)|};
8 else
9 stGM′ = {|N(r1,GM2)|, . . . , |N(rm,GM2)|};

10 end
11 L = ∅ /* Initializing locked edges */ ;
12 /* Simplify graph */ ;
13 foreach {(si, rj) | |N(si,GM ′)|= 1} do
14 L = L ∪ {(si, rj)};
15 lj = lj + 1 /* Update locked edges counter for supervisor j */ ;
16 /* If supervisor has desired workload level, then remove non-locked

edges */;
17 if lj = stGM′ (j) then
18 E ′

= E ′
− {(su, rj) | (su, rj) /∈ L}

19 end
20 end
21 /* Locking and removing edges */ ;
22 while E ′

− L ̸= ∅ do
23 (si, rj) = random_choice(E ′

− L);
24 E ′

= E ′
− {(si, rl) |rl ̸= rj} /* Remove other edges incident in the

student */ ;
25 L = L ∪ {(si, rj)};
26 lj = lj + 1;
27 if lj = stGM′ (j) then
28 E ′

= E ′
− {(su, rj) | (su, rj) /∈ L}

29 end
30 end
31 /* Adding edges to complete graph */ ;
32 Sre = {si | |N(si,GM ′)|= 0};
33 Rre = {rj | lj ̸= stGM′ (rj)};
34 while Sre ̸= ∅ do
35 si = random_choice(Sre);
36 rj = random_choice(Rre);
37 L = L ∪ {(si, rj)};
38 update(Sre,Rre);
39 end

In Fig. 6, we analyze the level or depth of thetopics provided
by supervisors and students. As we can see, there are divergences
with respect to the specificity of topics. The reader can observe that
while supervisors were more generic with their provided topics,
students were more prone to provide a fine-grained topic for their

Algorithm 4: The proposed Pareto optimal genetic algorithm
1 P = Pnew = initialize(popmax);
2 it = 0;
3 Poff = ∅;
4 while it < itmax do
5 P = Pnew ∪ Poff ;
6 F = calculate_frontiers(P);
7 Pnew = ∅;
8 foreach f ∈ F do
9 if |Pnew|+|f |≤ popmax then

10 Pnew = Pnew ∪ f ;
11 else
12 Pnew = Pnew ∪ select(popmax − |Pnew|, f);
13 break;
14 end
15 end
16 Pmut = mutation(P);
17 P ′

= tournament_selection(P);
18 Pcr = crossover(P ′);
19 Poff = Pmut ∪ Pcr ;
20 end
21 P = Pnew ∪ Poff ;
22 F = calculate_frontiers(P);

dissertations. Therefore, we can conclude again that the optimiza-
tion problem is complex due to the diversity of preferences.

It should be highlighted that the preferences contained in this
dataset were employed to generate the student and supervisor
profiles in the subsequent experiments.

5.2. Optimizing the mutation operator

As a first step to analyze the performance of the proposed
genetic algorithm, we studied the impact of the mutation operator
and its parameters on the problem. To be specific, we studied
what the impact of the parameters psw and pmt is on the general
performance of the GA. For this matter, we created a experiment
as follows:

• We created 5 problems consisting of 150 students and 30 su-
pervisors from the collected dataset. Theminimumworkload
of supervisors cj,min was set to 1 student (i.e., a supervisor will
advise at least one student) and the upper bound supervision
quota cj,max of each supervisor was generated from a uniform
distribution U(4, 10), guaranteeing that the sum of all the
supervisors upper bounds exceeded in 20% the total number
of students (i.e., 180 students of capacity).

• We set α = 2 to highly penalize solutions with a high
standard deviation for the workload level of supervisors.

• The weights of topics’ ranks in Vi,j were set to (0.561, 0.258,
0.129, 0.064, 0.032) respectively, following an exponential
decreasing function. This way, we take into consideration
the fact that the disappointment of being matched on the
second topic over the first topic is not linearly related to the

V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15 11

Fig. 6. Level of the topics selected by students (left) and supervisors (right) from the 2012 ACM Computing Classification System.

difference of being matched on the last topic over the second
last topic, as it was suggested by [2].

• The crossover operation was deactivated to isolate the effect
of the mutation operation on the performance of the genetic
algorithm.

• The initial population size was set to 128 solution, and the
initial population was shared amongst different runs of the
same case in order to compare results on a fair basis.

• The maximum number of iterations itmax was set to 250
iterations.

• The values tested for pmt ranged from 0.05 to 0.5 with incre-
ments of 0.05. On the other hand, the values tested for psw
ranged from 0.1 to 0.9 with increments of 0.1.

Themetrics employed to study the quality of the Pareto optimal
frontier obtained by the different configurations are:

• The S metric [25]. This metric takes a reference point above
the real Pareto optimal frontier provided by the researcher,
and it calculates the hypervolume between the estimated
Pareto optimal frontier and the reference point. The closest
the estimated Pareto optimal frontier is to the real frontier,
the lower the volume will be between the estimated fron-
tier and the reference point. Fig. 7 shows the hypervolume
between a reference point and the estimated Pareto optimal
frontier (left), and the hypervolume between the reference
point and the real frontier. As it can be observed, the closest
the estimated frontier is to the real frontier, the lower the
hypervolume will be between the frontier and the reference
point, with the lowest being when the estimated Pareto op-
timal frontier is equal to the real one. In the experiments, we
take (1.0, 1.0) as the reference point.

• The maximum fitness found for the students.
• The maximum fitness found for the supervisors.

In order to decide on the best set of parameters for the mutation
operator, we followed a grid search strategy on all the possible
combinations of pmt and psw .

The results of this experiment can be seen in Fig. 8. The left
heatmap shows the average maximum fitness for the students,
while the right heatmap contains the averagemaximum fitness for
the supervisors. Finally, the bottom heatmap contains the average
hypervolume defined by the reference point and the estimated
Pareto optimal frontiers. All of the three heatmaps show a similar
trend. In general, the mutation operator is more effective when
a small ratio of the genes are mutated (i.e., pmt = 0.05), thus
obtaining a mutated solution on the close neighborhood of the
parent. Moreover, apart from remaining in the close neighborhood
of the parent, the GA benefits from transferring students from
one supervisor to another rather than swapping students between
supervisors. As a consequence, the best values for psw tend to
be low and between 0.1 and 0.2. Another way to interpret this

result is that the mutation operator is more suited to the problem
when it explores new allocation structures instead of remaining
on the same allocation structure. This result is important, as both
proposed crossover operators do not explore solutions with a
new allocation structure and, therefore, the goal of the mutation
operator will be that of introducing new allocation structures into
the population.

5.3. Studying the Hopcroft–Karp and Greedy structural preservation
crossover

As part of the design of our genetic proposal, we have proposed
two new crossover operators that are specifically designed for the
problemof allocating students to supervisors. Next, we study some
of the practical properties of those operators. More specifically,
we will focus on studying the experimental temporal cost of both
crossover operators, as well as identifying the ratio of new genetic
material introduced by the greedy structural preservation crossover
operator.

In Section 4.3we studied theworst case temporal complexity of
both genetic operators, with the greedy structural preservation op-
erator having a complexity of O(|S|), and the Hopcroft–Karp oper-
ator having a worst case complexity ofO(|S|

√
|S|) and an expected

average complexity of Θ(|S|log|S|). In the following experiment
we study the experimental time complexity of both operators and
corroborate their adherence to their expected complexities.

In this experiment, we ranged the number of students from
50 to 500 with steps of 50. The number of supervisors was set to
one tenth of the number of students. The minimum andmaximum
supervision quotas of supervisors were set as described in the
previous experiment. We generated one problem for each number
of students. For each problem,we generated 1000pairs of solutions
that would become parents for the crossover operations. Then, for
each number of students, we measured the average time taken by
both crossover operators over the available pairs of solutions.

The results of this experiment can be found in the left graph in
Fig. 9. The graph shows the average time spent by the Hopcroft–
Karp (blue dots) and the greedy structural preservation (red dots)
operators over allocations with different number of students. The
dot markers represent the experimental data collected from the
experiment, while the lines show the best fitting functions for the
experimental points. One can observe that the greedy structural
preservation operator is generally faster than the Hopcroft–Karp
operator, with the differences being greater as the number of
students increases. This results is aligned with our initial expec-
tations and the suggested temporal complexity for both operators,
as the Hopcroft–Karp crossover was expected to behave at most
as an O(|S|log|S|) algorithm. The best fitting function by least
squares approximation for the Hopcroft–Karp operator is a nlogn
linearithmic function, and the best fitting function for greedy struc-
tural preservation operator is, as expected, a linear function. This

12 V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15

Fig. 7. An example of the hypervolume between a reference point and the estimated Pareto optimal frontier (left) and the real Pareto optimal frontier (right).

Fig. 8. Average maximum fitness for the students (left), for the supervisors (right), and the average hypervolume (bottom) on the different combinations of the mutation
rate (pmt) and the probability of swapping supervisors (psw) when mutating a gene.

Fig. 9. Average time spent by the Hopcroft–Karp and the greedy structural preservation crossover operators (left), and the average ratio of new genetic material (right)
introduced by the greedy structural preservation operator with different number of students supervisors.

confirms our initial hypothesis with regards to the Hopcroft–Karp
operator, with the average time being close to the case when the
underlying graph is random and sparse bipartite. As a result, the
operator can tackle larger problem sizes with a reasonable time,
making it more applicable in a realistic context.

The next experiment that we carried out over our crossover
operators has the aim of studying the ratio of new genetic material
introduced by the greedy structural preservation operator. As it was
mentioned, the operator preserves the structure of one of the two
parents (i.e., the number of students allocated to each supervisor)

V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15 13

but there may be some new genetic material that is not present in
any of the two parents.

For this experiment, we ranged the number of students from
50 to 500 with steps of 50, and the number of supervisors was
set to be either one eighth, one tenth, or one twelfth of the num-
ber of students. Again, the minimum and maximum capacities of
supervisors were set as described in the other experiments. For
each combination of number of students and number of super-
visors we generated a random problem. Then, for each problem
we generated again 1000 pairs of solutions to act as parents for
the greedy structural preservation operator. For each combination
of number of students and supervisors we measured the average
ratio of new genetic material (i.e., number of new genes over the
total number of genes) introduced by the operator over the 1000
crossover operations carried out.

The results of this experiment can be found in the right graph in
Fig. 9. The first observation that can be made is that, regardless of
the proportion between the number of students and supervisors,
the trend appreciated is similar and so is the average ratio of new
geneticmaterial introduced in the three scenarios. The ratio of new
geneticmaterial tends to become smaller as the size of the problem
becomes larger, with the highest ratios found at small number of
students. Despite these ratios being higher with smaller problems,
they should not be considered as disruptive with respect to the
original parents. In fact, the average ratio of newgeneticmaterial in
the experiments ranges from approximately 9% to approximately
12% of the genes. Therefore, the new genetic material introduced
by the operator only explores the close neighborhoodof the genetic
material of both parents. If the two parents have a good fitness, one
can expect that the childwill yield a similar or better fitness as only
a small disruption is introduced in the original genetic material.

5.4. Optimizing the crossover operator

Once we carried out an initial study on the behavior of the
crossover operators introduced in this article, we carried out an
experiment to select the best crossover operator for the problem
from the ones proposed in this work and some classic and well-
known crossover operators. With that goal in mind, we devise the
following experiment:

• We ranged the number of students from 50 to 150 with steps
of 50, and we ranged the number of supervisors from 5 to 30
with steps of 5. All of the student and supervisor profileswere
selected from the collected dataset. The minimum workload
of supervisors cj,min was set to 1 student (i.e., a supervisor
will advise at least one student) and the upper bound super-
vision quota cj,max of each supervisor was generated from a
uniform distribution U(4, 10), guaranteeing that the sum of
all supervisors upper bound quotas exceeded in 10, 15, or
20% the total number of students. For each combination of
number of students, number of supervisors, and upper bound
supervision quotas we generated 5 different problems. This
gives a total of 3 × 6 × 3 × 5 = 270 different problems.

• The mutation operator was set with a mutation ratio pmt =

0.05 and the probability of carrying out a swap operation in a
gene to be mutated was set to psw = 0.2. These values were
found to be one of the best performing in the first experiment.

• We tested the performance of the Hopcroft–Karp, the greedy
structural preservation, the uniform [26], and the 8-point5 [27]
crossover operators.

• The rest of the parameters were adjusted in the same way
as defined in the experiment carried out to optimize the
mutation operator.

5 This value of k was found to perform the best for the problems at hand.

Similarly to the first experiment, we employed the S-metric,
the best fitness found for the students, and the best fitness found
for the supervisors as metrics to assess the quality of the different
configurations. The results of this experiment can be observed in
Table 1. This table contains 4 sub-tables that describe the perfor-
mance of the different crossover operators on the problem set.

The first subtable in Table 1 summarizes the performance of
the genetic algorithm configured with the proposed crossover
operators plus the uniform and 8-point crossover operator. At a
first glance, one can observe that the greedy structural preservation
operator tends to outperform the rest of crossover operators for
all of the metrics. A one-sided Mann–Whitney test6 comparing
the performance of the aforementioned crossover operator with
the individual performance of each of the other three crossover
operators was carried out to assess the statistical significance of
the results. The test suggests that the greedy structural preservation
operator outperforms the rest of the crossover operators for the
S-Metric (i.e., the quality of the estimated Pareto frontier, to be
minimized), and the best utility found for the supervisors. With
regards to the best utility found for the students, the greedy struc-
tural preservation operator was also the best performing operator,
although this time we could not find statistical differences with
the uniform crossover. Another interesting point that should be
raised is that the Hopcroft–Karp crossover tends to be amongst the
worst performing operators from the set. Despite the similarities
between the greedy structural preservation and the Hopcroft–Karp
operator, the results suggest that the ratio of new genetic material
introduced by the greedy structural preservation crossover is bene-
ficial for the problemat hand. In addition to this, the temporal com-
plexity of the operator is lower than the Hopcroft–Karp operator,
making it more appropriate for this problem.

The other three subtables offer a more detailed view on the
performance of the crossover operators with problems of different
size. Each cell represents the performance of a given crossover
operators with the problems of a given size. The performance is
summarized in the form of the average over the different problems
of that size, and the percentage of the problems of that size for
which the crossover operator outperform the other operators. A
closer look at the three subtables suggests that for the smaller
problem instances (i.e., 50 students) the four crossover operators
tends to perform similarly. As the problem size increases, so does
the difference between the greedy structural preservation crossover
and the rest of the operators. For the larger problem instances, the
proposed crossover operator is the best performing operator for
all of the metrics. It should be highlighted that this is particularly
true for the S-Metric and the best fitness found for the supervisors,
as the operator was found to outperform the other three for 89%
and 99% of the cases respectively. This indicates that the greedy
structural preservation operator is more suited for larger problem
instances, making it the best choice overall from the studied set.

5.5. Studying the optimality of the genetic algorithm

In the previous subsection we have studied the individual per-
formance of each of the configurable components of the GA. These
studies only aimed at selecting the best possible configuration, but
they did not focus on studying whether or not obtained solutions
could be considered as good for the problem at hand. In this section
we focus on comparing the quality of the solutions found with the
optimal solution found by global optimal optimization methods.
More specifically, we analyze the optimality of the best fitness
found for the students, and the optimality of the best fitness found
for the supervisors in the genetic algorithm. In this experiment,

6 α = 0.05, with the alpha values adjusted with the Bonferroni–Holm correc-
tion.

14 V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15

Fig. 10. Convergence of the GA for an optimization problem with 180 students and 30 supervisors. The left graph shows the convergence of the best solution found for
the students, the middle graph depicts the convergence of the best solution found for the supervisors, while the right graph shows the convergence of the S-Metric for the
estimated Pareto optimal frontier.

Table 1
The performance of the crossover operators on the S-Metric, the best fitness found
for the students, and the best fitness found for the supervisors over all of the
problem sets (top), and detailed over different problem sets (middle and bottom).

Hopcroft Greedy Uniform 8-point
S-Metric 0.620 0.604 0.614 0.620
Best F. Stu 0.238 0.245 0.244 0.239
Best F. Sup. 0.230 0.242 0.231 0.227

S-Metric Hopcroft Greedy Uniform 8-point

|S|= 50 22% 30% 30% 17%
0.626 0.624 0.625 0.626

|S|= 100 12% 62% 15% 10%
0.613 0.600 0.608 0.613

|S|= 150 7% 89% 4% 0%
0.621 0.588 0.607 0.620

F. Stu Hopcroft Greedy Uniform 8-point
|S|= 50 19% 19% 33% 29%

0.248 0.248 0.249 0.248

|S|= 100 3% 45% 44% 7%
0.240 0.247 0.246 0.242

|S|= 150 1% 60% 38% 1%
0.226 0.239 0.236 0.227

F. Sup Hopcroft Greedy Uniform 8-point
|S|= 50 20% 69% 5% 5%

0.228 0.230 0.226 0.226

|S|= 100 4% 96% 0% 0%
0.233 0.243 0.232 0.229

|S|= 150 1% 99% 0% 0%
0.230 0.251 0.234 0.226

we focus on the largest problem instances, as metaheuristics tend
to degrade their performance with the size of the problem. More
specifically, the experiments were designed as follows:

• The number of students was set at 150, and the number of
supervisors was set at 30. All of the student and supervisor
profiles were selected from the collected dataset. The mini-
mumworkload of supervisors cj,min was set to 1 student (i.e., a
supervisor will advise at least one student) and the upper
bound supervision quota cj,max of each supervisor was gener-
ated from a uniform distribution U(4, 10), guaranteeing that
the sum of all supervisors upper bound supervision quotas
exceeded in 10, 15, or 20% the total number of students. For
each combination of number of students, number of super-
visors, and maximum upper bound we generated 5 different
problems. This gives a total of 3× 5 = 15 different problems.

• Weselected the greedy structural preservation as the crossover
operator for the GA.

• The stop criteria was changed to keep running iterations in
the GA unless the S-Metric of the estimated Pareto optimal
frontier has not improved in 20 iterations. At that point, we
consider that the GA has converged.

Table 2
Average percentage of optimality obtained by the proposed genetic algorithm for
the best fitness of the students, and the best fitness of the supervisors.

F. Students F. Supervisors
Supervision capacity 89.5% 93.4%165

Supervision capacity 88.3% 93.2%172

Supervision capacity 88.1% 94.9%180

• Given a particular problem instance, the best possible so-
lution for the students and for the supervisors were cal-
culated executing two different optimization problems on
BARON [28]. BARON is a state-of-the-art global non-convex
optimization algorithm that supports constrained and pure
integer optimization problems.

• The rest of the parameters were adjusted in the same way as
defined in the previous experiment.

Themain results of this experiment can be found in Table 2. The
table depicts the average percentage of optimality obtained for the
best solution found for the students, and the best solution found for
the supervisors by the GA. As it can be observed, the average per-
centage of optimality of the best solution for the students ranges
from 88 to 89% of the best fitness, while it ranges from 93 to 94%
for the best solution for the supervisors. These results indicate that
the Pareto optimal frontier obtained by the GA contains solutions
that are close to both the optimal solution for the students and
the optimal solution for the supervisors. The gradual convergence
of the GA for a particular problem can be observed in Fig. 10. As
it is observable, the initial population of the GA is far from the
optimal solutions (i.e., optimal solution for the students, optimal
solution for the supervisors, and the distance to the reference point
(1, 1) in the S-Metric). As several iterations are undertaken, the
GA gradually converges towards solutions that are closer to the
optimal values.

Moreover, it should be highlighted that the Python implemen-
tation of the GA obtained these estimations in an average of 247 s,
while BARON took approximately 1020 s per non-linear optimiza-
tion problem and only obtaining a single solution each time. Not
only the estimated frontier contains solutions that are close to
the optimal one for both the students and the supervisors, but
these are obtained in a reasonable amount of time compared to
the exact method. Nevertheless, it should be considered that our
approach aims for obtaining a Pareto optimal frontier, and the
exact method computes a single solution. The former is preferred
from the point of view of a human decision maker with possibly
uncertain preferences. In addition, the GAwas capable of providing
an average of 27 solutions in the estimated Pareto optimal frontier,
which also provides with diversity to the human decision maker.

V. Sanchez-Anguix, R. Chalumuri, R. Aydoğan et al. / Applied Soft Computing Journal 76 (2019) 1–15 15

6. Conclusions

In this article we have proposed a multiobjective genetic ap-
proach for the student–supervisor allocation. This optimization
problem is a subclass of the student–project allocation problem.
Given the hardness of the matching problem, we have opted for
a metaheuristic approach with that ability to take multiple objec-
tives into consideration. More specifically, we take into consider-
ation the students’ preferences with regards to research/project
topics, as well as the lecturers’ preferences with regards to topics,
whichdoes not require themassive proposal of projects prior to the
allocation, and it avoids providing explicit preferences on students
as that may be regarded as a discriminatory practice. Furthermore,
the genetic algorithms takes into consideration the constraints
of the department in the form of lower and upper supervision
quotas for lecturers, and attempts to provide a balanced workload
allocation for lecturers.

For this purpose,wehave taken a Pareto optimal genetic scheme
that aims to provide human decisionmakers with trade-off oppor-
tunities. The genetic algorithm employs a new mutation operator
that can offer either explore the structure of the allocation (i.e., the
number of students supervised by each lecturer) and the allocation
itself. In addition, two new crossover operators have been specif-
ically designed for the student–supervisor allocation problem:
the Hopcroft–Karp crossover operator, and the greedy structural
preservation operator. Both aim to preserve the allocation structure
of one of the parents, the difference being that the Hopcroft–Karp
crossover preserves also the original geneticmaterial fromparents,
while the greedy structural preservation crossover may introduce
new genetic material. The theoretical and empirical complexity
of both operators has been studied, with the complexity of the
former operator being linearithmic, and the complexity of the
latter being linear. The genetic algorithm has been tested with
real data collected from the student–supervisor allocation process
at Coventry University. The results show that (i) the mutation
operator benefits from giving more importance to exploring the
structure of the allocation; (ii) the greedy structural preservation
operator outperforms classic crossover operators for the problem
at hand; (iii) and that the genetic algorithm is capable of providing
solutions that are very close to the optimal solutions in a limited
span of time, even for large problem instances.

Acknowledgments

This work is partially supported by funds of the Faculty of En-
gineering and Computing at Coventry University, United Kingdom,
and funds from EU ICT-20-2015 Project SlideWiki granted by the
European Commission.

References

[1] A.A. Anwar, A. Bahaj, Student project allocation using integer programming,
IEEE Trans. Educ. 46 (3) (2003) 359–367.

[2] P.R. Harper, V. de Senna, I.T. Vieira, A.K. Shahani, A genetic algorithm for the
project assignment problem, Comput. Oper. Res. 32 (5) (2005) 1255–1265.

[3] D.J. Abraham, R.W. Irving, D.F. Manlove, Two algorithms for the student-
project allocation problem, J. Discrete Algorithms 5 (1) (2007) 73–90.

[4] D.F. Manlove, G. O’Malley, Student-project allocation with preferences over
projects, J. Discrete Algorithms 6 (4) (2008) 553–560.

[5] D. Srinivasan, L. Rachmawati, Efficient fuzzy evolutionary algorithm-based
approach for solving the student project allocation problem, IEEE Trans. Educ.
51 (4) (2008) 439–447.

[6] L. Pan, S. Chu, G. Han, J.Z. Huang, Multi-criteria student project allocation: a
case study of goal programming formulationwith dss implementation, in: 8th
International Symposium on Operations Research and Its Applications, 2009,
pp. 75–82.

[7] M.M. El-Sherbiny, Y.M. Ibrahim, An artificial immune algorithmwith alterna-
tive mutation methods: applied to the student project assignment problem,
in: International Conference on Innovation and Information Management,
ICIIM2012, Chengdu, China, 2012.

[8] K. Iwama, S. Miyazaki, H. Yanagisawa, Improved approximation bounds
for the student-project allocation problem with preferences over projects,
J. Discrete Algorithms 13 (2012) 59–66.

[9] A. Kwanashie, R.W. Irving, D.F. Manlove, C.T. Sng, Profile-based optimal
matchings in the student/project allocation problem, in: International Work-
shop on Combinatorial Algorithms, Springer, 2014, pp. 213–225.

[10] A. Kwanashie, Efficient algorithms for optimal matching problems under
preferences, (Ph.D. thesis), University of Glasgow, 2015.

[11] H.O. Salami, E.Y. Mamman, A genetic algorithm for allocating project super-
visors to students, Int. J. Intell. Syst. Appl. 8 (10) (2016) 51.

[12] F. Cooper, D.Manlove, A 3/2-approximation algorithm for the student-project
allocation problem, in: LIPIcs-Leibniz International Proceedings in Informat-
ics, vol. 103, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[13] M. Chiarandini, R. Fagerberg, S. Gualandi, Handling preferences in student-
project allocation, Ann. Oper. Res. (2018) 1–40.

[14] P. Biró, T. Fleiner, R.W. Irving, D.F. Manlove, The college admissions problem
with lower and common quotas, Theoret. Comput. Sci. 411 (34–36) (2010)
3136–3153.

[15] K. Hamada, K. Iwama, S. Miyazaki, The hospitals/residents problem with
quota lower bounds, in: European Symposium on Algorithms, Springer, 2011,
pp. 180–191.

[16] K. Hamada, K. Iwama, S. Miyazaki, The hospitals/residents problem with
lower quotas, Algorithmica 74 (1) (2016) 440–465.

[17] J.E. Beasley, OR-Library: distributing test problems by electronic mail, J. Oper.
Res. Soc. 41 (11) (1990) 1069–1072.

[18] R. Aydoğan, P. Yolum, Learning consumer preferences using semantic similar-
ity, in: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, in: AAMAS ’07, ACM, New York, NY, USA,
2007, pp. 1293–1300, http://dx.doi.org/10.1145/1329125.1329401.

[19] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[20] G. Syswerda, Schedule optimization using genetic algorithms, in: L. Davis
(Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
1991, pp. 332–349.

[21] E. Falkenauer, A. Delchambre, A genetic algorithm for bin packing and line
balancing, in: Proceedings of the 1992 IEEE International Conference on
Robotics and Automation, 1992, pp. 1186–1192.

[22] J.E. Hopcroft, R.M. Karp, An nˆ5/2 algorithm for maximum matchings in
bipartite graphs, SIAM J. Comput. 2 (4) (1973) 225–231.

[23] H. Bast, K. Mehlhorn, G. Schafer, H. Tamaki, Matching algorithms are fast in
sparse random graphs, Theory Comput. Syst. 39 (1) (2006) 3–14.

[24] D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in
genetic algorithms, in: Foundations of Genetic Algorithms, vol. 1, Elsevier,
1991, pp. 69–93.

[25] J. Knowles, D. Corne, On metrics for comparing nondominated sets, in:
Proc. of the 2002 Congress on Evolutionary Computation, vol. 1, IEEE, 2002,
pp. 711–716.

[26] G. Syswerda, Uniform crossover in genetic algorithms, in: Proc. of the Third
International Conference on Genetic Algorithms, Morgan Kaufmann Publish-
ers, 1989, pp. 2–9.

[27] K.A. De Jong, W.M. Spears, A formal analysis of the role of multi-point
crossover in genetic algorithms, Ann. Math. Artif. Intel. 5 (1) (1992) 1–26.

[28] M. Tawarmalani, N.V. Sahinidis, A polyhedral branch-and-cut approach to
global optimization, Math. Program. 103 (2005) 225–249.

http://refhub.elsevier.com/S1568-4946(18)30681-1/sb1
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb1
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb1
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb2
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb2
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb2
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb3
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb3
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb3
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb4
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb4
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb4
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb5
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb5
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb5
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb5
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb5
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb8
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb8
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb8
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb8
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb8
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb9
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb9
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb9
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb9
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb9
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb10
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb10
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb10
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb11
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb11
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb11
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb12
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb12
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb12
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb12
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb12
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb13
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb13
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb13
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb14
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb14
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb14
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb14
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb14
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb15
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb15
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb15
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb15
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb15
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb16
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb16
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb16
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb17
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb17
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb17
http://dx.doi.org/10.1145/1329125.1329401
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb19
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb19
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb19
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb20
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb20
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb20
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb20
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb20
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb22
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb22
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb22
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb23
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb23
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb23
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb24
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb24
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb24
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb24
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb24
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb25
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb25
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb25
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb25
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb25
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb26
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb26
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb26
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb26
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb26
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb27
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb27
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb27
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb28
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb28
http://refhub.elsevier.com/S1568-4946(18)30681-1/sb28

	A near Pareto optimal approach to student–supervisor allocation with two sided preferences and workload balance
	Introduction
	Related work
	Problem definition
	Matching definition
	Workload definition
	Evaluation of a student–supervisor assignment
	Optimization problem
	Optimization: Student perspective
	Optimization: Supervisors' perspective

	A Pareto optimal genetic algorithm for the student–supervisor allocation problem
	Chromosome representation
	Mutation operator
	Crossover operators
	Hopcroft–Karpgenetic operator
	Greedy structural preservation genetic operator

	Selection mechanism
	Evolution schema

	Experiments
	Dataset
	Optimizing the mutation operator
	Studying the Hopcroft–Karp and Greedy structural preservation crossover
	Optimizing the crossover operator
	Studying the optimality of the genetic algorithm

	Conclusions
	Acknowledgments
	References

