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Abstract

Credit scoring is without a doubt one of the oldest applications of analytics. In recent years, a multi-

tude of sophisticated classification techniques have been developed to improve the statistical perfor-

mance of credit scoring models. Instead of focusing on the techniques themselves, this paper lever-

ages alternative data sources to enhance both statistical and economic model performance. The study

demonstrates how including call networks, in the context of positive credit information, as a new Big

Data source has added value in terms of profit by applying a profit measure and profit-based feature

selection. A unique combination of datasets, including call-detail records, credit and debit account

information of customers is used to create scorecards for credit card applicants. Call-detail records are

used to build call networks and advanced social network analytics techniques are applied to propagate

influence from prior defaulters throughout the network to produce influence scores. The results show

that combining call-detail records with traditional data in credit scoring models significantly increases

their performance when measured in AUC. In terms of profit, the best model is the one built with only

calling behavior features. In addition, the calling behavior features are the most predictive in other

models, both in terms of statistical and economic performance. The results have an impact in terms of

ethical use of call-detail records, regulatory implications, financial inclusion, as well as data sharing

and privacy.
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1. Introduction

Credit scoring is undoubtedly one of the oldest applications of analytics where lenders and finan-

cial institutions perform statistical analysis to assess the creditworthiness of potential borrowers to

help them decide whether or not to grant credit [1]. Fair Isaac was founded in 1956 as one of the

first analytical companies offering retail credit scoring services in the US. Its well-known FICO score

(ranging between 300 and 850) has been used as a key decision instrument by financial institutions,

insurers, utilities companies and even employers [2]. The first corporate credit scoring models date

back to the late sixties with Edward Altman developing his well-known z-score model for bankruptcy

prediction, which is still used to this day in Bloomberg reports as a default risk benchmark [3]. Orig-

inally, these models were built using limited data–consisting of only a few hundred observations–and

were based on simple classification techniques such as linear programming, discriminant analysis and

logistic regression, which is the current industry standard given its high interpretability [2]. The im-

portance of these retail and corporate credit scoring models further increased due to various regulatory

compliance guidelines such as the Basel Accords and IFRS 9 which clearly stipulate the inputs and

outputs of a credit scoring model together with how these models can be used to calculate provisions

and capital buffers.

The emergence of more sophisticated classification techniques such as neural networks, support

vector machines and random forests led to various extensive benchmarking studies aimed at improving

credit scoring models in terms of their statistical performance (e.g., in terms of area under the ROC

curve or classification accuracy) [4, 5]. Many of these studies concluded that traditional credit scoring

models based on, e.g., simple logistic regression models, performed very well and newer classification

techniques could only offer marginal performance gains. In other words, research on developing high-

performing credit scoring models has more or less stalled. We believe the best investment in better

credit scoring models is not to turn the attention to newer classification techniques but to leverage

innovative Big Data sources instead.

While these new sources of data present the opportunity to profile potential borrowers using a

wider representation of behavior, they also present an ethical challenge. Mobile phone data, e.g., in the

form of call-detail records (CDR), allows constructing a very detailed social network, and using this

information to profile repayment behavior can be seen as unfair to borrowers that could be punished
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for their mobile cell phone behavior. Recently, the use of positive information has been put forward

as a necessary source of data that should be included in scoring models [6]. Positive information is

defined as all information that represents the good financial behavior, providing a clearer definition

of the factors that make a good borrower. Barron and Staten [7] show, for example, that not using

positive information leads to a decrease of up to 47.5% in credit availability.

This paper introduces mobile phone data as a new Big Data source for credit scoring and shows

that while it is a powerful source of information, it should be used strictly in a positive framework to

increase the access to financing to borrowers who would otherwise be out of options until a much later

stage. To motivate the use of this information in financial institutions, its potential is studied in both

statistical and profit terms.

Big Data is typically defined in terms of its 5 Vs: Volume, Variety, Velocity, Veracity and Value.

Recent special issues of Information Systems Research [8] and MIS Quarterly [9] indicate the explo-

sion of interest in Big Data within the IS community. The use of mobile phone data for credit scoring

is a fitting example of this since it comes in huge volumes (Volume), has not been explored before (Va-

riety), is generated on a continuous daily basis (Velocity) and is usually stored using a well-defined

call-detail record log format (Veracity). In this paper, its Value is also quantified by focusing both on

its statistical performance (e.g., in terms of area under the ROC curve) and on its bottom line impact

in terms of profit. Additionally, an evaluation of the qualitative performance of the data in terms of

positive information for enhanced financial inclusion is provided. This study is based on a unique data

set combining banking, sociodemographic and CDR data. CDR are logs of all phone calls between

the customers of a telecommunications provider (telco), see Table 1. More specifically, the data set

includes all CDR of the bank’s customers, the CDR of the people they are in contact with and the

banking history of these customers. Overall, it adds up to a year and a half of banking history of

over two million bank customers and the calling activity of almost 90 million unique phone numbers

spanning five months. This unique combination of data gives the opportunity to explore the potential

of enriching traditional credit scoring models with social network effects reflecting calling behavior.

The three key research questions are:

Q1 What is the added value (in terms of both AUC and profit) of including call data for credit

scoring?

Q2 Can call data replace traditional data used for credit scoring?
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Q3 How does default behavior propagate in the call network?

To the best of our knowledge, these questions have not been researched before. Each of the ques-

tions will be answered from both a statistical as well as a profit perspective, which is another key

contribution of this paper. Furthermore, the implications for financial inclusion are evaluated.

The impact of this research is manifold. A successful application of boosting the performance

of credit scoring models using call data would improve credit decision-making and pricing. The

insights could also facilitate access to credit for borrowers with little or no credit history. This is

the case for young borrowers, lenders exploring new markets or in developing countries with young

credit markets. In all these cases, the borrowers are not expected to have a credit history, but they

do have mobile phone records. Knowing how default behavior propagates in a call network also has

regulatory implications. For example, the Basel Accords try to capture default correlation in order to

better protect a financial institution against unexpected losses [2]. The research can shed new light

on how default behavior is correlated. This could lead to better provisioning and capital buffering

strategies, thereby improving the resilience of the financial system against shocks and macroeconomic

downturns. Knowing how default behavior propagates in a call network also has other regulatory

implications. If CDR data is indeed useful for credit prediction, then banks and credit bureaus have

a strong economic incentive to collaborate with telecommunications companies to share data in order

to perform this type of analyses.

In the next section, a review on the literature on Big Data in credit scoring as well as previous

research on call networks is provided. In section 3, the theoretical background and methodology

applied in the case study is described, with the experimental setup detailed in section 4. The results

are presented in section 5, followed by a discussion on their various implications in sections 6 and 7.

The paper concludes with a summary of the contributions and discussion on possibilities for future

work.

2. Related Work

Many analytical modeling exercises start from a flat data set, build a predictive model for a target

measure of interest (e.g., churn, fraud, default) and evaluate it on an independent out-of-sample data

set. An assumption which is (oftentimes) tacitly made is that the data is independent and identically

distributed. Recent research questioned this assumption and analyzed how customers can influence
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each other through the different social networks that connect them [10]. Various types of social behav-

ior can be observed. One is homophily, which states that people have a strong tendency to associate

with others whom they perceive as being similar to themselves in some way. Social influence occurs

when people’s behavior is affected by others with whom they interact [11, 12]. Some of the social

behavior can also be attributed to other (e.g., external) confounding factors [13]. The idea of net-

work learning is to embed social behavior patterns in the predictive models to successfully leverage

the impact of joint customer actions [14]. A key input to any social network learning exercise is the

network itself, which consist of nodes and edges. In certain settings, the definition of these networks

is relatively straightforward. As an example, consider churn prediction in telco where the network can

obviously be constructed based upon data stored in the CDR. Earlier research found significant social

network effects for predicting churn in telco [15]. Another example is credit card fraud detection

where a network can be defined by connecting credit cards to merchants. Also in this setting, strong

social network effects have been found [16].

In credit scoring, there is a firm belief amongst both researchers and practitioners that default

behavior of borrowers is correlated. To illustrate this, the Basel Accord models default correlation

by means of an asset correlation term, which is set to 15% for residential mortgages and 4% for

qualifying revolving exposures. However, both these numbers have been set in a rather arbitrary

way, or based upon some empirical but not published procedure [17]. This interdependency has been

proven to be a significant factor amongst small and medium-sized enterprises [18]. One of the key

challenges in understanding network effects or default propagation in credit scoring concerns the

definition of the network itself. Preliminary attempts have been made to build networks between

customers in online peer-to-peer lending. For example, Lin et al. [19] illustrated that online friendships

with non-defaulters increases the credit score. These findings were also confirmed by Freedman and

Jin [20], with an additional caution that online ties on their own may not reveal true information

about creditworthiness and may also be manipulated [21]. De Cnudde et al. [22] developed credit

scoring models for microfinance using social media network information extracted from Facebook

accounts. Their results suggest that explicit networks of friends who interact are more predictive

than of friends who do not, but implicit networks of people with similar behavior are better than

both explicit friendship networks. In industry, social networks are already being exploited to assess

creditworthiness, by technology companies such as Lenddo, that make use of social media connections

to analyse people’s default risk [23].

5



More recently, the interest in using call networks as a new Big Data source for credit scoring has

gained traction, e.g., with Wei et al. [21] formulating the potential value of credit scores obtained with

networks–for example, based on social media or calls–and how strategic tie-formation might affect

these scores. Although especially interesting in relation to the Chinese government’s plan for a social

credit system [24], the study is only theoretical and is missing an important empirical evaluation of the

proposed models [21]. Moreover, recent press coverage on specialized smartphone applications that

evaluate people’s creditworthiness using the huge amount of data generated by their handsets indicates

the potential of call networks as an alternative data source for credit scoring [25, 23]. Most of these

studies have focused on the use of social networks in the context of social media, or have discussed

the potential of CDR-induced social networks in credit scoring.

The literature on the analysis of CDR is rich [26]. The idea of using CDR data for credit scoring

stems from the fact that the way people use their phone is assumed to be a good proxy for their lifestyle

and economic activity. Previous research confirmed that using CDR data to build call networks by

linking together individuals who are in contact with each other, results in social networks that can be

used in both descriptive and predictive studies on age, gender, ethnicity, language, economic factors,

geography, urbanization, and epidemics [27, 28, 29, 30, 31]. For example, Leo et al. [31] confirm

the presence of homophily in terms of economic behavior using call networks. More specifically, they

show that wealth and debt are unevenly distributed and that people are better connected with those that

share their socioeconomic class. Furthermore, Haenlein [32] investigated the distribution of customer

revenue within a call network and demonstrated that high revenue customers are primarily related to

other high revenue customers and the same for low revenue customers.

3. Methodology

This paper contributes to the literature by investigating the use of CDR data for credit scoring in

terms of value. Here, the proposed methodology for extracting appropriate information from the CDR

data by means of social networks and influence propagation is detailed. Furthermore, techniques for

evaluating model and feature performance in terms of profit are presented.

3.1. Call Networks: Featurization and Propagation

A call network is a network where the nodes V = {v1, . . .vn} are people present in a CDR log.

These logs are kept for billing purposes and include information about every phone call made by the
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Table 1: An example of a CDR log. In the actual dataset the phone numbers are encrypted.
Call Start Date Call Start Time Call Duration (sec) From Number To Number

01MAY2017 14:51:14 715 (202) 555-0116 (701) 555-0191

02MAY2017 14:34:37 29 (803) 555-0129 (202) 555-0116

01MAY2017 20:34:14 9 (803) 555-0117 (406) 555-0137

02MAY2017 20:03:38 89 (701) 555-0148 (803) 555-0129

customers of a telecommunications operator, including the encrypted phone numbers of the customers

that made and received the phone call as well as timing and length. An example of such a log can

be seen in Table 1. Information from CDR about time and duration of phone calls (or text messages)

can be used to connect the people in the network to create the edges, ei, j ∈ E . The edges are either

undirected, such as when two customers share a phone call but it is irrelevant which customer made

the call; or directed, in which case we distinguish between outgoing and incoming edges (i.e., all

phone calls made by and received by a person, respectively). The edges are represented by an n by

n binary matrix, called adjacency matrix A, where a non-zero entry denotes an existing edge between

node vi and v j in an undirected network and from/to vi to/from v j in a directed network with out-

going/incoming edges. The edges can also carry weights to indicate the intensity of the relationship

between two people, for example the number or duration of phone calls they share in a given time

period. The weights are denoted by the weight matrix W = (wi, j), where wi, j ∈ R+ ∪{0}. The first

order neighborhood of a node vi is the collection of nodes v j that share an edge with vi, that is

N1
i = {v j|ei, j ∈ E , j = 1, . . . ,n}.

In some networks, the nodes can be labelled, or assigned to a class that is later used in a predictive

analytics framework. In this application, there are two types of labels. The first type of label regards

default, in which case the customers in the call network belong to one of two classes: they are either

defaulters, who have been in arrears for more than 90 days within a twelve month period (bad cus-

tomers); or they are non-defaulters (good customers). 1 When building a credit scoring model, the

goal is to assign one of these two classes to each customer of interest and it is the target variable of

the classification problem in this study. In the call network there are also customers who, during the

timespan of the network, have run into payment arrears for one or two months in addition to defaulters

with three months of payment arrears. For clarity, all these customers are referred to as delinquent

1We use the Basel definition of default. [2]
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customers and it is the second type of label. The delinquent customers have the possibility to influence

others in the network to also run into payment arrears–also referred to as default influence–and they

are used when generating features as explained below.

In order to use the information that is contained in the call networks for building credit scoring

models, network features are extracted for each node in the network by aggregating information about

its position within the network and connectivity to other nodes. As in similar studies, a distinction is

made between direct network features, which are derived from the node’s first order neighborhood,

and indirect network features that take into account the whole network structure [33]. As stated earlier,

the aim is to study how delinquent customers may influence others with whom they are connected.

Therefore, by assuming there is prior knowledge about some delinquent customers in the network

(i.e., having a subset of nodes with known labels) that knowledge can be incorporated in the network

features by exploiting social ties. To this end, both direct and indirect network features are extracted

as illustrated in Figure 1. The direct network features represent the presence and number of delinquent

customers in a node’s first order neighborhood. They are easy to extract and provide a representative

overview of people’s social connections [34]. However, the influence of payment arrears is likely to

reach further than just the first order neighborhood. This effect is modeled using two distinct prop-

agation methods that have been effective in previous research and are designed to simulate real-life

behavior: Personalized PageRank (PR) and Spreading Activation (SPA). The results of both methods

are exposure scores which are categorized as indirect network features. Although other propagation

methods exist, such as Gibbs sampling and relaxation labelling, these were not applied here because

they have been shown to be less effective for prediction in call networks [35], are less scalable and as

such did not fulfil the requirements of this study. The features resulting from these three approaches

will be used as input features when building credit scoring models, but first a more detailed explanation

is provided.

3.1.1. Link-Based Features

Lu and Getoor [34] presented a framework for inferring labels for nodes in a network based on

labels of neighboring nodes. They defined three features that can be extracted from the neighborhood

of a node: count-link, mode-link and binary-link. These represent, respectively, the frequency of

classes in the neighborhood, their mode, and a binary indicator for each class. Futhermore, using a

logistic regression model, Lu and Getoor [34] showed that these features are very predictive for the
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Figure 1: The figure demonstrates the computation of link-based measures, before and after a propa-

gation method is applied to the network. The figure on the left shows a network with one black node

and eight white nodes. The link-based features of the node to which the arrow points are summarized,

where B means black and W means white. The figure in the middle demonstrates the application of

the propagation method with the resulting exposure scores shown for each node in the figure on the

right. After the exposure scores have been computed, a cut-off point is set at 0.5 and nodes with a

score that is higher than the threshold are labelled black (B), and white (W) otherwise. Subsequently,

link-based exposure features are extracted for the node to which the arrow points.

class of the node itself.

Extraction of link-based features is based on the presence of delinquent customers with varying

number of payment arrears.

3.1.2. Personalized PageRank

The propagation method Personalized PageRank (PR) was developed for search engines (e.g.,

Google) to rank webpages while also taking into account an initial source of information, such as

frequently visited web pages [36] but can also be used for different kinds of linked data [16, 33]. For

the nodes in a network with weight matrix W , the method iteratively computes exposure scores ξk+1

based on the exposure scores in the node’s neighborhood ξk and a random jump to other nodes in the

network, determined by the information source z – also called restart vector – using the equation

ξk+1 = αWξk +(1−α)z,

where 1−α, the damping factor, denotes the probability of a random jump and k is the iteration step.

As a result of the initial information source, exposure scores of nodes closer to the source nodes are

higher. Here, the delinquent customers are the information source.
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3.1.3. Spreading Activation

The propagation method Spreading Activation (SPA) originates from cognitive psychology and

simulates how information, or energy, spreads through the network from a set of source nodes. It is

used to model a ‘word-of-mouth’ scenario, where influence–in this case from delinquent customers–

spreads through the network. ‘Word-of-mouth’ has been shown to be effective in social networks

[37, 38]. Before the method begins, a set of active nodes V A ⊂ V possesses the energy E0(VA). In

each step k of this iterative method, a part d of an active node’s energy Ek(VA) is spread to the nodes

in its neighborhood while the rest of the energy remains. The part that is transferred, is distributed

according to the relative weights of the links to neighboring nodes, expressed by the transfer function

Etrans f er =
d ·wi, j

∑wi,s∈N1
i

wi,s
Ek(V A

i ).

The method stops when no more nodes are being affected and the changes in energy of the already

affected nodes are smaller than a given threshold value. The total energy always remains the same,

but spreads throughout the network.

3.1.4. Link-Based Exposure Features

After a propagation method, such as PR or SPA, has been applied to a network, each node pos-

sesses an exposure score that can be viewed as the relative ranking of the node compared to the rest

of the network. The score can be used as a feature directly or by determining a cut-off value. Nodes

with an exposure score lower than the cut-off are defined as low-risk nodes and those with an exposure

score above the cut-off as high-risk nodes [33]. Then, based on this re-labelling of the network, new

link-based features can be extracted. This is demonstrated in Figure 1.

3.2. The Expected Maximum Profit Measure

Model selection highly depends on how the performance is measured. Traditional measures for

credit scoring models include AUC, Gini coefficient and the KS statistic that either assess the discrimi-

native ability of the models or the correctness of the categorical predictions [5]. The recently proposed

Expected Maximum Profit (EMP) measure has an advantage over these traditional measures because

it considers the expected losses and operational income generated by the loan, and is tailored towards

the business goal of credit scoring [39]. Most importantly, when applied to credit scoring models it

facilitates computing the models’ value, the fifth V of Big Data. The measure is based on the expected
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maximum profit measure, originally developed for customer churn prediction [40], and is expressed

for credit scoring by

EMP =
∫

b0

∫

c1

P(T (Θ);b0,c1,c∗) ·h(b0,c1)dc1db0

where

P(t;b0,c1,c∗) = (b0− c∗)π0F0(t)− (c1 + c∗)π1F1(t)

is the average classification profit per borrower given the prior probabilities of being a defaulter (non-

defaulter), π0 (π1), and the cumulative density functions of defaulters (non-defaulters), F0(s) (F1(s)).

Furthermore, b0 is the benefit of correctly identifying a defaulter, c1 the cost of incorrectly classifying

a non-defaulter as a defaulter, c∗ the cost of the action, Θ = c1+c∗
b0−c∗ the cost/benefit ratio and h(b0,c1)

the joint probability density function of the classification costs [39]. The maximum profit is achieved

by optimizing the cut-off dependent average classification profit where the optimal cut-off value is

T = argmax∀T P(t;b0,c1,c∗).

As a result, the measure clearly defines an optimal fraction, expressed as

η̄EMP =
∫

b0

∫

c1

[π0F0(T (Θ))+π1F1(T (Θ))] ·h(b0,c1)dc1db0,

representing the fraction of applications that should be rejected to receive maximum profit. Verbraken

et al. [40] showed that the EMP corresponds to integrating over the range of the ROC curve that would

be considered in a real application, discarding the segment that has a very high, unreasonable cost, and

that it is an upper bound of the profit a company could achieve by applying the respective classifier.

When deriving the parameters b0,c1 and c∗ and the probability distribution h(c1,b0), Verbraken

et al. [39] rely on the profit framework discussed in Bravo et al. [41]. Thus, b0 is specified as the

fraction of the loan amount that is lost after default or

b0 =
LGD ·EAD

A
=: λ, (1)

where LGD is the loss given default, EAD is the exposure at default and A the loan amount. Fur-

thermore, c1 equals the return on investment (ROI) of the loan and c∗ = 0 since rejecting a customer

does not generate any costs. It only remains to determine h(b0,c1) where ROI(c1) is assumed to be

constant but λ(b0) needs to be estimated for each dataset because it is more uncertain with a multitude

of possible distributions.
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Table 2: Confusion matrix for computing model profit
Predicted class

Non-default Default

Actual class
Non-default ROI ·A −ROI ·A
Default −LGD ·EAD 0

3.2.1. Model Profit

The EMP fraction can subsequently be used to compute the profit of a given model. First, it is

translated into a cut-off value, which depends on the number of instances in the test set. The instances

are labelled as defaulters or non-defaulters depending on whether their predicted score is higher or

lower than the cut-off. Then for each customer in the test set, the confusion matrix in Table 2 is

used to compute the loss or gain produced by the customer. The model profit is finally computed by

aggregating the profit of all customers.

3.2.2. Feature Importance in Terms of Profit

When a credit scoring model is built using the random forest algorithm, its properties can be used

to measure the profit impact of each feature in the model. Assuming a random forest model RF was

built using N trees (Ti)
N
i=1 and M features (Fj)

M
j=1, the feature importance in terms of profit can be

computed in the following way.

1. Apply the random forest model RF to the test set and extract class predictions for each tree

Ti ∈ RF .

2. For each tree Ti compute the profit P(Ti) using the confusion matrix in Table 2.

3. For each feature Fj in the test set, compute the mean decrease in profit. This is defined as the

difference between the average profit of trees where Fj ∈ Ti and the average profit of trees where

Fj /∈ Ti, given by the equation

P(Fj) =

∑
i,Fj∈Ti

P(Ti)

|{Ti : Fj ∈ Ti}|
−

∑
i,Fj /∈Ti

P(Ti)

|{Ti : Fj /∈ Ti}|

where Fj ∈ Ti means that feature Fj is in tree Ti.

4. Sort P(Fj): the features with the highest values are those with the greatest mean decrease in

profit.
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The result of this method is a ranking of the features in terms of the importance with respect to profit.

4. Experimental Design

4.1. Data Description

The data used in this study originates from a telecommunications operator and a commercial bank

that both operate in the same country. The datasets are anonymized, and do not contain personal infor-

mation such as the name and address of customers. The telco data contains five consecutive months

of CDR data of almost 90 million unique cell phone numbers as described in Table 1. The data from

the bank includes over two million customers and it consists of three parts, namely sociodemographic

information, such as age, marital status and postcode; debit account activity, including timing and

amount of payments; and credit card activity. Both sociodemographic and debit account activity span

three months and conform the historic part of the dataset. For the credit card activity, there is infor-

mation about when the cards were issued, the total credit limit, monthly values of how much of the

credit remains and how often the customers have failed to repay their debt until twelve months after

receiving the card. The credit card transactions serve as the key input to the credit scoring application

because the data provides information about monthly payment arrears. This is used to predict the

creditworthiness of the customers. The knowledge about the credit limit and remaining credit on the

cards also allows the computation of the EMP.

4.2. Experimental Setup

The credit scoring models are built for customers who received a credit card within a three-month

period in 2015 and they are referred to as subjects. An overview of the experimental setup can be seen

in Figure 2. The credit card data contains information which enables the labeling of the subjects as

defaulters or non-defaulters by counting how many late payments they have in the year after signing

up for the card. As previously noted, the Basel definition is used where having three or more late

payments implies default. The label or target vector is denoted by yDe f ault .

To create the bank component of the dataset, both the sociodemographic and debit account data is

used. More precisely, sociodemographic features such as age, marital status and residency as reported

at the time of the credit card application are extracted. Furthermore, debit account activity in the month

prior to receiving the credit card is considered and used to extract features representing spending be-

havior, as can be seen in Table 3. Based on Singh et al. [42], two types of temporal-behavioral features
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Figure 2: Experimental setup for one timeframe.

that have been shown to correlate with financial well-being and consumption are included. The first

one, diversity, measures how customers spread their transactions over various bins, represented by the

days of the week in this case. For each customer i and each bin j, the fraction of transactions pi j that

fall within bin j is computed. The temporal diversity of customer i is then defined as the normalized

entropy of all transactions counted in all seven bins with M being the number of non-empty bins, or

Di =
−∑7

j=1 pi j log pi j

logM
.

In addition, the loyalty of a customer is defined as

Li =
fi

∑7
j=1 pi j

where fi is the fraction of all transactions of customer i that happen in their k most frequently used bins.

In this case, loyalty characterizes the percentage of transactions that take place during a customer’s

three most active days. The collection of both sociodemographic and debit account features is called

‘sociodemographic’ features and denoted with xSD.

The telco data is used as the key input for the social network part of the analysis. As mentioned

before, the subjects received their credit cards within a period of three months and the subjects are

considered in each month separately, which results in three timeframes t1, t2 and t3. To build a call

network for each timeframe, the CDR of three whole months prior to the card acquisition month

is aggregated and people that have shared a phone call during this period are linked together after

discarding any phone calls lasting less than five seconds. Thus, there are three call networks spanning

three months each. Each network consists of all subjects that received a credit card in the month

succeeding the last month in the network, everyone they shared a phone call with and all phone calls

between everyone in the network. In addition to the subjects, there are also other types of people in the
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Figure 3: The figure demonstrates the various types of people that are present in the call network.

network, as Figure 3 shows. The people-shaped entities are the subjects, whereas the diamond-shaped

entities denote other bank customers (i.e., people who did not receive a credit card during the three

months). They may, however, already possess a card, and those that are known to have had payments

arrears are colored black. These are the delinquent customers in the network, as described in section

3.1. Bank customers without payment arrears are colored white. The circular entities in the network

are people who are customers of the telco but not of the bank.

For all subjects in each of the three timeframes, four types of network features, both direct and

indirect, are extracted. First, features representing the calling behavior of the subjects. Thus, the

number and duration of incoming, outgoing and undirected phone calls taking place during the day and

night and on different days of the week are computed. These features are denoted by xCB. As described

in subsection 3.1, information about delinquent customers in the network–the black diamonds–is used

and they are labeled with respect to three distinct criteria: having one or more late payments, having

two or more late payments and, having three or more late payments. This gives the opportunity to

distinguish the severity of their financial situation in relation to the influence they spread. These

three label vectors serve as the information source z and active nodes V A when applying PR and

SPA, respectively. Based on these labellings the extraction of link-based features, computation of PR

and SPA exposure scores together with link-based exposure features as described in subsection 3.1 is
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performed. To construct the weight matrix W , edges in all networks are weighted by the number of

phone calls and both incoming and outgoing edges as well as undirected networks are considered. The

parameters in the propagation algorithms are set to the default values α = 0.85 (for PR) and d = 0.85

(for SPA), based on exploration of the data which showed robust results. For the link-based exposure

features, the cut-off point is defined as the minimum exposure score of the delinquent customers with

at least three late payments, since having at least three late payments defines default. All the link-

based features are viewed as one group of features denoted by xLB. Finally, the feature groups xPR and

xSPA are respectively composed of the exposure scores of PR and SPA together with the corresponding

link-based exposure features.

The result of the featurization process is a dataset of the form

x = {xSD,xCB,xLB,xPR,xSPA}, y = {yDe f ault}

Table 3 describes some of these features. After combining the two data sources, extracting all the fea-

tures described above and cleaning up the dataset, 22,000 observations remain and over 300 features.

The fraction of defaulters is 0.0449 or just under 5% default rate.

With the datasets featurized, credit scoring models are built using binary classifiers with a 70%/30%

split into training and test set. Before building the models, highly correlated variables are removed

and undersampling of the training set conducted to reduce class imbalance, as is common when ap-

plying analytics techniques [43]. Final model performance is evaluated using the test set. The binary

classifiers logistic regression, decision trees and random forests are used for the empirical analysis.

Logistic regression is the industry standard for building credit scoring models [2]. Decision trees are

included since they are more powerful than logistic regression, while at the same time guaranteeing

interpretability of the model. They are implemented using recursive partitioning with ten-fold cross

validation on the training set to tune and prune the trees. Both the logistic regression and decision tree

models are compared against random forests which are an ensemble method that constructs multiple

decision trees that jointly decide upon the credit score. Random forests are considered to be a very

powerful, black-box analytical modeling technique. As a result of parameter tuning, 500 trees were

used to build each forest.
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Table 3: Descriptions of some of the features that were extracted from the data sources. In the table

IN, OUT and UD stand for networks with incoming, outgoing and undirected edges, respectively.

The number in the brackets (x) indicates how delinquent customers were defnined with respect to the

number of payment arrears in each case.
Feature

Group
Notation Number Feature Description

Socio

demo

graphic

SD 35

Age Current age of the customer

Amount Spent Total amount spent in the month before receiving the credit card

Mean Spent p. Day Average amount spent per day during the month before receiving the credit card

Diversity-NE Value Diversity of value spent over non-empty bins during the month prior to receiving the credit card

Diversity-ALL Number Diversity of number of purchases over all seven bins during the month prior to receiving the credit card

Loyalty-Number Loyalty of number of purchases in the top three bins during the month prior to receiving a credit card

Calling

Behavior
CB 72

Count IN Total number of phone calls received during the three months of the social network

Weekend Duration OUT Aggregated duration of all phone calls made on weekends during the three months of the social network

Tuesday Duration UD Aggregated duration of all phone calls made and received on Tuesdays during the three months of the social network

Link-

Based
LB 36

Binary (0) IN Binary indicator of having neighbors with no late payments, in a network with incoming edges

Binary (1) OUT Binary indicator of having neighbors with one late payment, in a network with outgoing edges

Binary (2) UD Binary indicator of having neighbors with two late payments, in a network with undirected edges

Binary (3) UD Binary indicator of having neighbors with three late payments, in a network with undirected edges

Count (0) IN Number of neighbors with no late payments, in a network with incoming edges

Count (1) OUT Number of neighbors with one late payment, in a network with outgoing edges

Count (2) OUT Number of neighbors with two late payments, in a network with outgoing edges

Count (3) UD Number of neighbors with three late payments, in a network with undirected edges

Persona-

lized

PageRank

PR 54

Exposure (1) IN Exposure score after applying PR on a network with incoming edges and delinquent customers with one or more late

payments.

Exposure (2) OUT Exposure score after applying PR on a network with outgoing edges and delinquent customers with two or more late

payments.

Exposure (3) UD Exposure score after applying PR on a network with undirected edges and delinquent customers with three or more

late payments.

Binary High Risk (1) IN Binary indicator of having neighbors with high exposure scores after applying PR on a network with incoming edges

and delinquent customers with one or more late payments.

Binary High Risk (2) OUT Binary indicator of having neighbors with high exposure scores after applying PR on a network with outgoing edges

and delinquent customers with two or more late payments.

Count High Risk (3) IN Number of neighbors with high exposure scores after applying PR on a network with incoming edges and delinquent

customers with three or more late payments.

Spreading

Activation
SPA 54

Exposure (1) IN Exposure score after applying SPA on a network with incoming edges and delinquent customers with one or more late

payments.

Exposure (2) OUT Exposure score after applying SPA on a network with outgoing edges and delinquent customers with two or more late

payments.

Exposure (3) UD Exposure score after applying SPA on a network with undirected edges and delinquent customers with three or more

late payments.

Binary High Risk (1) IN Binary indicator of having neighbors with high exposure scores after applying SPA on a network with incoming edges

and delinquent customers with one or more late payments.

Count High Risk (1) UD Number of neighbors with high exposure scores after applying SPA on a network with undirected edges and delinquent

customers with one or more late payments.

Count High Risk (3) IN Number of neighbors with high exposure scores after applying SPA on a network with incoming edges and delinquent

customers with three or more late payments.

17



Table 4: Statistical Model Performance (AUC).
Model Classifier

Model ID Feature Groups Logistic Regression Decision Trees Random Forest

A SD 0.5869 0.7004 0.8993

B CB 0.5351 0.7043 0.8700

C LB 0.5485 0.7429 0.7697

D PR 0.5163 0.7611 0.8339

E SPA 0.5281 0.7188 0.8063

F SD,CB 0.6115 0.7127 0.9227

G CB,LB,PR,SPA 0.5182 0.7307 0.9154

H SD,CB,LB,PR,SPA 0.6121 0.7263 0.9224

5. Results

The results are organized in three parts starting with empirical tests to establish the networks’

relational dependency. Subsequently, the results of the proposed methodology are detailed, first in

terms of statistical performance and then in terms of economic performance.

5.1. Homophily amongst Defaulters

A network is homophilic if nodes with a certain label are to a larger extent connected to other nodes

with the same label. In the default networks, homophily is present if the fraction of edges between

defaulters and non-defaulters is significantly smaller than the expected fraction of such edges in the

network. A one-tailed proportion test with a normal approximation for homophily amongst defaulters

resulted in a p-value of less than 0.0001, which means that there is evidence of homophily [44].

Furthermore, homophily in networks can also be measured with dyadicity and heterophilicity, that is,

the connectedness between nodes with the same label and of different labels, respectively, compared

to what is expected in a random network [44]. The networks analyzed here, have a dyadicity amongst

defaulters of 0.8689 while the heterophilicity is 0.8137. This means that the networks are not dyadic,

as defaulters are not more connected amongst themselves, but they are heterophilic, i.e., there are less

connections between defaulters and non-defaulters. Based on these results, there is foundation for

applying social network analytic techniques to predict default in the call networks.
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Figure 4: Domination graphs.

5.2. Statistical Model Performance

Credit scoring models are built with the features in each feature group separately, as well as three

models with a combination of feature groups, as seen in Table 4. The first five models A, B, C, D and

E study the main effects of each feature group. Model F combines the sociodemographic features

with the calling behavior features, model G includes all feature groups except the sociodemographic

features and in model H we consider all feature groups. Other combinations of feature groups were

tried, but they did not provide more significant results than the ones shown. As is common practice

in credit scoring, statistical model performance is measured by the area under the receiver operating

curve (AUC). The AUC summarizes the trade-off between model sensitivity and specificity in a single

number between 0 and 1 with higher values meaning better performance.

From Table 4, it is clear that the performance with respect to the three classifiers varies substan-

tially. Overall, the logistic regression models perform the worst, of which models including sociode-

mographic features (models A, F , H) perform best. Logistic regression models do not yield a better

performance when using network-related features. This hints at a non-linear behavior that cannot be

properly captured by a generalized linear model.

The random forests produce the best-performing models and the remaining discussion will there-

fore be focus on them. First, the test of DeLong et al. [45] is applied to the receiver operating curves
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Figure 5: Feature importance: Mean decrease in accuracy.

(ROC) of each pair of random forest models to compare their performance. The results can be seen in

the domination graphs in Figure 4. The best performing models are at the top and models that perform

worse are lower down. The arrows indicate a significant improvement in statistical performance at

95% and 99% confidence level on the left and right, respectively. The figure on the left demonstrates

that there is not a significant difference in the performance of the three models with a combination of

features (F , G, H), but models with only one type of features (A, B, C, D, E) perform significantly

worse with the link-based features (C) performing worst overall. Secondly, the importance of the fea-

tures in model H is explored to determine their ability to predict default and rank the usefulness of the

features. This is displayed in Figure 5 for the mean decrease in accuracy for the 20 most important

variables. The mean decrease in accuracy of a particular feature measures how much the accuracy of

the resulting model decreases when that feature is left out of the model, and as a result, gives a score

of how important it is in the model. Figure 5 demonstrates that the calling behavior features are ranked

the highest, followed by PR features and SPA features, and a single LB feature.

5.3. Economic Model Performance

The previous subsection showed that the statistical performance of more complex credit scoring

models with a combination of feature groups is significantly better than models with only one feature
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Figure 6: Sensitivity Analysis for ROI.

group, and even better than that of models with sociodemographic features alone. Here the economic

performance of the models is evaluated and the importance of features in terms of profit by applying

the EMP to the random forest models. For the EMP (see section 3.2) various parameters need to be

specified. To compute the benefit of correctly identifying a defaulter, λ (see Equation 1), the credit card

limit is used as the principal (A) and the drawn amount on the card at the time of default as exposure

at default (EAD). The two remaining parameters: loss given default (LGD) and return on investment

(ROI), are domain specific and not obtainable from the data directly. Therefore, an exploration of

their effect on the EMP is provided. An analysis of the variation in EMP as a function of LGD shows

substantial robustness, which means that the economic performance of the models does not greatly

depend on LGD. Considering this, and based on expert judgement, this parameter is set to 0.8. In

contrast, EMP decreases when ROI increases as is evident from Figure 6, which shows the EMP and

its implied cutoff (EMP fraction) as a function of ROI when LGD is set at 0.8. The value for ROI

is determined based on the ‘elbow’ in these figures and set to 0.05. The inflection point is the point

where the ROI becomes the biggest influence (thus the linear behavior) and so it is appropriate to

choose a value that balances profits for the rest of the analyses. Subsequently, the distribution of λ

can be estimated, see Figure 7. As in Verbraken et al. [39] there are two peaks in the distribution,

one at each end of the unit interval and with the assumption that λ follows a uniform distribution in
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Figure 8: Economic Model Performance.

between. The peak at 0 represents credit card holders who have had payment arrears and have paid

back fully, whereas the peak at 1 indicates those that never paid back their debt. This distribution is

used to determine the values for p0 and p1, see Verbraken et al. [39].

With all parameters estimated, the next step is to compute the expected maximum profit, the

profit maximizing fraction of rejected loans and the model profit (as described in Section 3.2.1) for

the random forest models in Table 4. The results can be seen in Figures 8. The value for EMP

is expressed as a percentage of the total loan amount and measures the incremental profit relative

to not building a credit scoring model. The ranking of the values for the expected maximum profit

is consistent with the ranking of the AUC values in Table 4, and again models A, F , G and H are

considered best and C the worst. The EMP fraction values vary, however, and therefore so do the

model profits. The profit maximizing fraction represents the fraction of credit card applications that

should be rejected in order to obtain the maximum profit. The fact that the fraction for model G is
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Figure 9: Feature Importance: Mean decrease in Profit.

so much higher than the rest with the profit remaining the same, indicates that the model focuses on

the most profitable customers. Regarding the model profits, there is a substantial increase compared

to not using a model. Model B has the highest profit, followed by models A and D. Models F and H

also produce decent profits, whereas G does not, at least not when compared to the rest. Again, model

C performs the worst. Of the models with only one data source, model B (built with calling behavior

variables) brings the higher singular results. As no history is available for these borrowers, a possible

explanation is that their socioeconomic standing can be deduced from their immediate network. Note

however that this difference is marginal, as model A (sociodemographic variables) follows it. Of the

combined models, models F (with both sociodemographic variables and calling behavior) and H, with

all available variables, produce the best results in terms of profits.

Figure 9 shows the mean decrease in profit for the 20 most important features in model H com-

puted using the technique described Section 3.2.2. This profit perspective shows more variation in

groups of features than the statistical one. As for mean decrease in accuracy, more than half of the

features are calling behavior features, but in contrast to Figure 5, a quarter of the features are sociode-

mographic features, which in this case are features that measure consumption. This is consistent with

the result indicating that, of the combined models, model F was associated to a larger profit. To test

for correlation among the ranking of features according to the two measures we computed the Spear-

man’s ρ, Kendall’s τ and Goodman and Kruskal’s γ correlation coefficients. The resulting values did
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not indicate a correlation among the rankings.

It is interesting to see that having only network features allows us to discriminate potentially

better customers. That would mean that we can look, using the network connections, beyond simple

socioeconomic and sociodemographic traits, and actually profile more profitable customers. In the

models, network features help discriminate different customers, who cannot be captured by common

features, and it happens that these customers bring a lot of profit.

6. Discussion

Based on these results, the three research questions in section 1 can be addressed.

The first research question Q1 assesses the value that call data adds to credit scoring models in

term of AUC and profit. For statistical performance, models including all features performed best, with

the AUC value increasing by 0.023 points in the best model when compared to the sociodemographic

model A. The economic performance of the models in terms of EMP, EMP fraction and profit can

be seen in Figure 8. The model with the highest profit is model B and it is slightly better than the

traditional model A. Models with a combination of feature groups (F ,G and H) produce lower profit

but their EMP values are the highest. The reason for the lower profit is the high EMP fraction, which

indicates that these models are more conservative and exclude a higher proportion of the defaulters.

These results indicate that the CDR data complements the conventional data and there is added value

when including the CDR data in credit scoring models and even when used without the traditional

features.

The results also provide an answer to the second research question Q2: Can call data replace

traditional data used for credit scoring? In terms of both statistical and economic performance, the

results indicate that the predictive power of call data is just as good or might be even better than

traditional data for these borrowers. This is clear from the high performance of model B. In addition,

the importance of the calling behavior features shows that these are very predictive, much more so than

the traditional features. This result demonstrates the merit of this research. Given the high predictive

power of the call data, borrowers without enough bank information can benefit from the approach by

giving access to their call records to obtain credit.

Finally, the last research question Q3 about how default behavior propagates in the network, can

be addressed. The results of the homophily test in section 5.1 showed a lower fraction of connec-

tions amongst defaulters and also between defaulters and non-defaulters. This might partially be a
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consequence of the low number of defaulters in the network overall. Furthermore, insights about

the propagation of default behavior can be obtained from the importance of the features. Firstly,

for mean decrease in accuracy, see Figure 5, a few PageRank and Spreading Activation features are

important. These are predominantly ‘Count Low Exposure’ features which represent the number of

neighbors with low exposure score. This indicates that not having a high-risk neighbor is predictive

of non-default. The PageRank feature ‘Exposure (2)’ is also among the 20 most important features.

It represents the PageRank exposure score when the influence comes from delinquent customers with

two or more late payments and indicates a propagation effect of default behavior. Second, for the

mean decrease in profit in Figure 9 there are two PageRank exposure scores, based on one and three

late payments of delinquent customers. From these observations we can say that, in terms of propaga-

tion of default influence, Personalized PageRank is more effective than Spreading Activation. A more

thorough analysis of how default propagates is needed to better understand the effect of each of these

features.

7. Impact of Research

The research findings presented in this paper have possible impact at various levels. This section

identifies three different levels and provides a discussion of the implications of each one.

7.1. Regulatory Impact

The Basel Accords model unexpected losses using a Merton single-factor model where the asset

value of an obligor depends upon a systematic (e.g., the macroeconomy) and an idiosyncratic (e.g.,

obligor-specific) risk component [2]. Asset correlations are then also factored in to see how default

behavior is correlated and, as such, model system risk. A key concern relates to the exact values of

these asset correlations. For corporates, the assets can be quantified by inspecting balance sheets, and

various financial models have been introduced to quantify corporate asset correlations.

For retail exposures (e.g., credit cards, mortgages, installment loans), it becomes considerably

more difficult as the assets are less tangible. Retail asset correlations have been specified in the Basel

Accords using some empirical, but not published, procedure reflecting a combination of supervisory

judgment and empirical evidence. As such, they are fixed at 4% for qualifying revolving exposures

(e.g., credit cards) and 15% for mortgages. Given their impact on capital calculation, it would be

desirable that these asset correlations are sustained by a solid theoretical framework and accompanying
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empirical validation. In this research, we illustrated how default behavior on credit cards propagates

in a call network. These insights pave the way for additional research aimed at quantifying asset and

default correlation for retail exposures in a more sound and solid way. This can then lead to better

regulatory asset correlation values which in turn leads to a better protection of the financial system.

7.2. Financial Inclusion

The results may also have a societal impact that affect borrowers in developed and developing

countries in different ways. In the former case, people who are joining the financial market for the

first time, such as young people and immigrants, face troubles when applying for loans because they

do not have a credit history. Instead, they need to spend time and effort to build their credit history

before financial institutions can assess whether they are creditworthy.

In developing countries where historical financial data is often nonexistent, the impact is even

greater. As reported by the World Bank, over two billion adults worldwide do not have a basic account

which makes up more than 20% of the adult population in some countries [46]. The benefits of

behavior-based microfinance in these countries are evident, as having access to small credits has a

social impact on communities, helping to fight poverty and enhancing economic development [47]. In

contrast to the lack of banking history, the high(er) availability of call data in these countries provides

an alternative for credit scoring, hereby facilitating credit access to a wider segment of the population.

According to the results, features extracted from these untraditional data sources are good predictors

of credit behavior (e.g., models B, G and H). In addition, the numerous smartphone applications that

are already being deployed in some developing countries are a prime example of the success of these

methods. They offer immediate small loans, that are repaid within a short period of between three

weeks and six months and have lower interest rates, ranging between 6% and 12% as opposed to the

25% interest rate in traditional microlending [25].

7.3. Privacy and Ethical Concerns

The results of this study are furthermore affected by privacy regulations because the implementa-

tion of some of the models depends on different parties sharing the data. Since there are no worldwide

applicable standards for data-sharing of that kind, we illustrate how this might occur by studying the

reality of the US and the EU in what follows.

In the US, there is no single federal law regulating data transfer between affiliates. The transfer

of financial information between a bank and a telco is protected under the Gramm-Leach-Bliley Act
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[48]. This legislation allows transfer of personally identifiable information originating from a financial

service provider to a third party if the parties design a contract that disallows disclosure and use of

information outside the project. In general, such a contractual framework should satisfy most other

pieces of regulation that might indirectly apply to the sharing of data in the other direction (i.e., from

the telco to the bank or credit bureau).

In the European Union, in contrast, there is a strong body of legislation regulating data sharing.

Given that CDR data are a form of communication, and the objective of the model is to process it

along with banking data in an automated way, two pieces of legislation apply: Regulation 2016/679

[49] regarding the protection of privacy for natural persons, best known as the General Data Protection

Regulation (GDPR), and the “ePrivacy Regulation” [50] regarding the processing of personal data in

the electronics communications sector.

The ePrivacy Regulation deals with if, and how, communications data at a disaggregated level

can be used. Article 30 in particular mandates that a service such as a financial score, which is not

only for billing or providing the mobile service, is a “value added service”, and thus requires explicit

authorization from the user. This authorization might be given in the contract, for example, or ex post

to the signing of the contract via electronic authorization. In case none of these provisions can be set

in place, then the sharing of CDR data cannot occur unless the data is anonymized.

The key challenge is how to make the data available to the other party, so defaulters can be cor-

rectly identified. Fortunately, there are methods that can provide privacy-preserving data linkage [51]

that can be followed in order to join the data securely without compromising the individual on either

side of the sharing process. Methods such as Privacy Preserving Probabilistic Record Linkage [P3RL

52], that are in use in the medical sciences, allow secure data-sharing between partners. The secure

transfer of data is also very simple to satisfy, following proper encryption and secure access protocols.

The GDPR has additional provisions on data storage, forcing companies to store data only for the time

necessary to provide the service, so the party receiving the linked data only for the purposes of model

development must ensure proper disposal of the data after the model development. Finally, note that

the model itself is considered aggregated data. Article 22 of the GDPR allows the safe use of statistical

models when these are required to establish a contract with the counterparty (the financial institution),

which is the case when a loan is granted.

There is as well an ethical concern in using data that depends on the social network of the borrow-

ers to restrict funding to them. This is of course not a practice that should be recommended from the
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results of this model, as it would constitute unfair discrimination. However, when borrowers do not

have any past behavior information that allows institutions to make a decision, or they have not ac-

cumulated enough additional information to profile them correctly, then CDR information can clearly

contribute to increase financial inclusion. Thus, we propose that the use of this data be done in strict

positive terms. This can be easily done when constructing a credit score: it is common practice to

discretize continuous variables and give a score based on the Weight of Evidence for each of the seg-

ments [2]. An ethical use of this information would simply assign the neutral score to those segment

which would unfairly punish the borrowers, leaving the positive segments that would provide easier

access to funds.

8. Conclusion

This study presents the statistical and economic advantages of exploiting Big Data and social net-

work analytics for credit scoring applications. We use phone call logs are used to build call networks

and social network analytics applied to enhance the performance of models that predict creditworthi-

ness of credit cards applicants. We do this from both a statistical and profit perspective and demon-

strate how incorporating telco data has the potential of increasing the Value of credit scoring models.

Furthermore, we identify which features are most important for this predictive task, both in terms of

statistical performance and profit. According to the results, models that are built with features that

represent calling behavior perform best, both when performance is measured in AUC and profit. We

also show that these features dominate other features in terms of importance. This is an interesting

result because it means that how people use their phones can be used as the sole data source when

deciding whether they should be given a loan or not. Thus we propose that the data should be used

in strict positive terms, to facilitate financial inclusion for people that lack enough information for

correct profiling.

The main limitation of our this is the data itself. The scorecards that were built are for the applica-

tions of credit cards, and it is unclear how the results would generalize for other types of credits such as

microloans or mortgages. In industry, numerous applications for granting microloans via smartphones

by analyzing user’s behavior exist. According to various reports, behavioral features are important in

these applications as well, but that is difficult to verify without published scientific results. Similar

data could be obtained from peer-to-peer lending platforms, or through agreements between telcos

and banks/credit bureaus, where there is access to both default status of users as well as behavioral
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features. Behavioral data similar to the mobile phone data shown in this work could also be gathered

from social media platforms such as Twitter. The data in this study originates from a single country

where a telco and a bank have a special agreement to share the data. Therefore, an analysis of simi-

lar data from other countries or data for other types of credits would strengthen the external validity

of the presented results. In practice, lenders use credit bureau variables, such as FICO scores, when

assessing creditworthiness, and unfortunately they were not available for these analyses, but would be

an interesting extension of our work.

It is already clear that the mobile phone data used in this study is big in the sense of ‘Volume’,

‘Velocity’, ‘Veracity’ and ‘Variety’. Our analysis of the data and the resulting well-performing models

show that it also has a positive effect for financial inclusion and on model profit, and as such is also

important for ‘Value’: the fifth V of Big Data!
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 A novel approach for credit scoring using mobile phone data and social networks 

 Implies enhanced financial inclusion in the context of positive credit information 

 Incorporating mobile phone data increases statistical performance 

 The best model in terms of profit includes only calling behavior features 

 Individual calling behavior is most predictive of creditworthiness 
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