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Abstract

This paper proposes a multi-swarm particle swarm optimization (MSPSO) that

consists of three novel strategies to balance the exploration and exploitation

abilities. The new proposed MSPSO in this work is based on multiple swarms

framework cooperating with the dynamic sub-swarm number strategy (DNS),

sub-swarm regrouping strategy (SRS), and purposeful detecting strategy (PDS).

Firstly, the DNS divides the entire population into many sub-swarms in the ear-

ly stage and periodically reduces the number of sub-swarms (i.e., increase the

size of each sub-swarm) along with the evolutionary process. This is helpful for

balancing the exploration ability early and the exploitation ability late, respec-

tively. Secondly, in each DNS period with special number of sub-swarms, the

SRS is to regroup these sub-swarms based on the stagnancy information of the

global best position. This is helpful for diffusing and sharing the search informa-

tion among different sub-swarms to enhance the exploitation ability. Thirdly,

the PDS is relying on some historical information of the search process to detect

whether the population has been trapped into a potential local optimum, so as

to help the population jump out of the current local optimum for better explo-

ration ability. The comparisons among MSPSO and other 13 peer algorithms
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on the CEC2013 test suite and 4 real applications suggest that MSPSO is a

very reliable and highly competitive optimization algorithm for solving different

types of functions. Furthermore, the extensive experimental results illustrate

the effectiveness and efficiency of the three proposed strategies used in MSPSO.

Keywords: Particle swarm optimization, Dynamic sub-swarm number,

Sub-swarm regrouping, Purposeful detecting, Local-searching

1. Introduction

Particle swarm optimization algorithm (PSO) is a widely known evolution-

ary algorithm proposed by Kennedy and Eberhart in 1995 [1, 2]. During the

optimization process, each particle adjusts its flight direction and step-size re-

lying on the information extracted from the past experience of itself and its5

neighbors. Although the search pattern of each particle is quite simple, the

search behavior of the entire population is very complex, and the population

shows great intelligence owing to the cooperative behavior among particles. Due

to the simplicity of implementation, PSO has been applied for many academic

and real-world applications [3, 4, 5].10

Extensive studies reveal that PSO’s performance mainly depends upon its

two characteristics [6, 7]: exploration and exploitation. However, there is a

contradiction between the two capabilities. In order to be successful, PSO

needs to establish a good ratio between exploration and exploitation. A common

belief is that PSO should start with exploration and then gradually change into15

exploitation. Hence, many time-varying strategies are proposed to regulate the

parameters and neighbor topology involved in PSO.

For example, in the most ubiquitous update rules of parameters introduced

in [8, 9], three parameters involved in PSO are adjusted based on the iteration

numbers aiming to meet different search requirements of different evolutionary20

stages. The fundament thought of these modifications is tuning particles’ learn-

ing weights for their exemplars. Moreover, different neighbor topologies display

various characteristics because the way and the speed of knowledge diffusion
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among the population are different. For instance, many studies indicate that

PSO with a sparse neighbor topology yields favorable results on complicated25

multimodal problems, while PSO with a dense neighbor topology offers promis-

ing solutions on simple unimodal problems [10, 11]. To take advantages of the

merits of different neighbor topologies, many dynamic neighbor topologies are

proposed in accordance with particles’ search performance [12, 13, 14]. The

main motivations of the dynamic topologies are adjusting particles’ neighbors,30

and then changing the speed of information diffusion among the population. In

addition, to layout a more satisfactory performance for PSO, various adaptive

methods utilizing the feedback of evolution processes are introduced to control

the parameters [15, 16] and adjust the neighbor topologies [17]. Furthermore, di-

recting an evolution process towards exploration or exploitation is also possible35

by population resizing [18].

Inspired by the idea that information from very different types of trade-offs

could be combined to yield other kinds of good trade-offs, we propose a nov-

el multi-swarm PSO (MSPSO) in this paper. In the new proposed MSPSO,

three novel strategies are introduced to balance the exploration and exploita-40

tion. The first strategy, named as dynamic sub-swarm number strategy (DNS),

divides the entire population into many small-sized sub-swarms in the early

stage and periodically reduces the number of sub-swarms (i.e., increase the size

of each sub-swarm) along with the evolutionary process. In this case, more

sub-swarms with smaller size in the early evolutionary stage urge the search45

towards more exploration. On the contrary, less sub-swarms with greater size

in the later evolutionary stage push the search towards more exploitation. The

second strategy is sub-swarm regrouping strategy (SRS), based on which the

sub-swarms are regrouped in each DNS period based on the stagnancy infor-

mation of the global best position. After the regroup operator, much superior50

information acquired by each sub-swarm can be shared by other sub-swarms,

which is beneficial for exploitation. The last strategy is purposeful detecting

strategy (PDS), in which much historical information of the search process is

applied to help the population jump out of the current local optimum for better

3
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exploration ability.55

The rest of this paper is organized as follows. Section 2 presents the frame-

work of the canonical PSO and reviews some enhanced PSOs. The details of

MSPSO are described in Section 3. The experimental verifications and compar-

isons using the CEC2013 test suite are presented in Section 4. Furthermore, the

discussion of the results is also included in this section. Finally, conclusions are60

provided in Section 5.

2. Related works

2.1. Canonical PSO

In PSO, each particle i is associated with two vectors, i.e., a position vector

Xi = [xi,1, xi,2, ..., xi,D] and a velocity vector Vi = [vi,1, vi,2, ..., vi,D], where D65

represents the dimensions of a problem under study. The vector Xi is regarded

as a candidate solution to the problem while Vi is treated as a searching di-

rection and step size of the ith particle. During the evolutionary process, each

particle adjusts its flight trajectory based on two vectors, named as personal

historical best position Pbi = [pbi,1, pbi,1, ..., pbi,D] and the neighbor’s best-so-70

far position Nbi = [nbi,1, nbi,1, ..., nbi,D], respectively. The update rules of Vi

and Xi are defined as (1) and (2), respectively.

vi,j(t+ 1) = w · vi,j(t) + c1 · r1,j · (pbi,j − xi,j(t)) + c2 · r2,j · (nbi,j − xi,j(t)) (1)

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1) (2)

where w represents an inertia weight determining how much the previous veloc-

ity is preserved; c1 and c2 are two acceleration coefficients deciding the relative

learning weight for Pbi and Nbi, respectively; r1,j and r2,j are two random75

numbers uniformly distributed in the interval [0, 1]; xi,j(t) and vi,j(t) represent

the position and velocity on the jth dimension of the ith particle at generation

t, respectively.

4
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2.2. Variants of PSO

PSO has been popularly studied since it is proposed due to its effectiveness80

and simplicity, and numerous PSO variants have been developed. According

to the different objectives to be dealt with, these improvements can general-

ly be categorized into three cases, including parameter adjustments, topology

adjustments, and hybridization strategies.

2.2.1. Parameter adjustments85

Given that a larger w facilitates the exploration while a smaller one is benefi-

cial for the exploitation, it seems natural to adopt a time-varying w to offset the

contradiction between them. The most ubiquitous update rule of w, introduced

by Shi and Eberhart [8] in 1998, is linearly decreasing from 0.9 to 0.4 over the

optimization process, which is still applied in many PSOs now. Furthermore,90

motivated by the iteration-based w, Ratnaweera et al. [9] further advocated a

PSO with time-varying acceleration coefficients (HPSO-TVAC). However, con-

sidering that the search process of PSO is nonlinear and complicated, many

nonlinearly-varying strategies [19, 20] introduced to tune the parameters.

Although these parameters adjustments offer relatively reliable performances,95

the common feature of them, i.e., iteration-based strategy, does not take enough

advantages of evolutionary information of individuals. Thus, to take full use of

the historical information of the evolutionary and layout a more satisfactory

tuning method for the parameters, different adaptive strategies are proposed

in recent years [15, 16, 21, 22]. For example, Zhan et al. [15] proposed an100

adaptive PSO (APSO), in which w, c1 and c2 are relied on the evolutionary

state estimation (ESE), which relies on the distribution of population and the

fitness of particles rather than the iteration number. In [21], a new adaptive w

based on Bayesian techniques is used to enhance PSO’s exploitation capability.

The common feature in these improvements is that particles regulate their own105

parameters according to their own characteristics or/and population’s perfor-

mance, and then adjust their search behaviors. The adaptive strategies cause

different particles to play different roles on exploration and exploitation dur-

5
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ing the search process, and then to achieve a balance between exploration and

exploitation.110

2.2.2. Topology adjustments

Global version PSO (GPSO) and local version PSO (LPSO) are two com-

mon neighbor topologies. Some researches manifest that LPSO is conductive

to exploration while GPSO is beneficial for exploitation [10]. Moreover, many

different neighbor topologies are introduced to give particles more diversified115

learning models [23, 24], and then improve the comprehensive performance of

PSO. For instance, Zhan introduces the orthogonal test, which is a black box

testing technique that has been successfully applied in [25], into PSO to help a

particle construct a more favorable and efficient guidance exemplar, and then

to achieve a reliable performance [26].120

However, it is unrealistic to fix a proper neighbor topology for a specific prob-

lem beforehand since many real applications are black-box problems as well as

the optimization process is a dynamic course. Thus, many dynamic topologies

are proposed to balance the exploration and exploitation during the evolution

process [27, 28, 29, 30]. The main motivation of this type improvements is that125

different topologies are allocated to different particles or different evolution-

ary stages according to various characteristics of the particles and population,

typically fitness and diversity. The heterogeneous topologies of individuals en-

able them to cope with different fitness landscape resulting in a better balance

between exploration and exploitation.130

Furthermore, multi-swarm mechanisms also capture many researchers’ atten-

tion during the last decade [20, 27, 31, 32, 33, 34, 35]. During the sub-swarms’

independent evolution period, a particle only exchanges information with those

particles who belong the same sub-swarm as itself, which is beneficial for ex-

ploration. In addition, to improve convergence speed and achieve a balance be-135

tween exploration and exploitation, different PSOs introduce different exchange

strategies among different sub-swarms. For instance, in [31], a food chain mod-

el is adopted to control the information exchange among different sub-swarms.

6
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While the fitness difference between two species is larger, much more informa-

tion is exchanged between the species. In [34], the entire population is divided140

into an exploration-subpopulation and an exploitation-subpopulation. During

the evolutionary process, the exploration-subpopulation does not take advan-

tage of information from the exploitation-subpopulation aiming to retain the

diversity. On the contrary, the exploitation-subpopulation extracts much useful

information from the exploration-subpopulation to enhance its exploitation.145

Although it has been testified by many researches that the multi-swarm

mechanism is an efficient method for keeping population diversity, a static multi-

swarm strategy may harmful for convergence speed [31, 32] while a dynamical

multi-swarm mechanism may introduce some new parameters and operators,

which cause PSO more complicated [31] and time-consuming [27, 34]. Thus,150

proposing a simple PSO variant with a higher efficiency is a challenging work

in PSO community.

2.2.3. Hybridization strategies

In recent years, it has captured many researchers’ attention that how to

take full advantages of different algorithms and strategies through a proper155

hybrid mechanism. For instance, genetic operators [21, 22, 36, 37] are very

popular auxiliaries for balancing the exploration and exploitation. Generally,

the selection and crossover operators are adopted to enhance the exploitation

capability while the the mutation operator injects diverse information into the

population, and then enhance the exploration ability.160

Another class of hybridization method is using some searching strategies [13,

38, 39, 40] to improve the population diversity or/and speed up the convergence

rate. For example, the Levy flight and detecting operator are adopted in [39]

and [40, 41, 42] respectively to help the population get rid of local minimal and

improve global search capability.165

In addition, hybridizing PSO with other evolutionary algorithms (EAs) is

another popular strategy in recent years. For instance, different hybrid algo-

rithms based on PSO have been proposed in the last decade together with

7
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differential evolution (DE) [43, 44], artificial bee colony (ABC) [45, 46], and es-

timate distribute algorithm (EDA) [47] have been proposed in the last decade.170

No matter which hybrid mechanism is adopted in these PSO variants, the main

idea is using different search behaviors of the cooperated algorithms to improve

exploration capability as well as sharing helpful information of the algorithms

to enhance exploitation capability.

3. MSPSO175

The topology of population plays an important role in balancing the explo-

ration and exploitation since it determines the speed of knowledge dissemina-

tion among the population. Inspired by the aforementioned researches of PSO,

a novel MSPSO is proposed in this research. In MSPSO, the entire population

is divided into many equal small-sized sub-swarms at the initial evolutionary180

stage. Each sub-swarm uses its own members to search for better area in par-

allel according to Eq. (1) and Eq. (2). The LPSO topological structure is

applied in each sub-swarm. This mechanism urges the search towards more

exploration. Along with the evolutionary process, the DNS is carried out, by

which the number of sub-swarms is decrease aiming to meet the exploitation185

requirement. Furthermore, to share each sub-swarm’s helpful information, the

simple strategy named SRS is conducted during the search process aiming to

further improve exploitation. While the population has been trapped into a

potential local optimum, the PDS is carried out to help the population jump

out of the current local optimum for better exploration ability. The details of190

the new introduced strategies and the framework of MSPSO are presented as

follows.

3.1. Dynamic sub-swarm number strategy (DNS)

At the beginning of evolutionary process, the entire population is divided

into many smaller sub-swarms, typically each sub-swarm only contains two in-195

dividuals. The number of the sub-swarms is reduced accordingly while the size

8
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of each sub-swarm is gradually increased along with the evolutionary process.

At the final stage of evolutionary, the number of the sub-swarms is reduced to

one, which means that all the sub-swarms is merged into one population.

Based on the DNS, many small-sized sub-swarms are conductive to keeping200

population diversity at the initial evolutionary stage since the information slowly

diffuses within a smaller range, as well as many parallel evolved sub-swarms are

beneficial for exploration. On the contrary, the gradually decreased number of

sub-swarms makes the knowledge flow become more quickly and wider, which

is beneficial for exploitation at the later evolutionary stage. Thus, the DNS205

pushes the search from exploration towards more exploitation along with the

evolution process.

Note that, to rationally utilize the merits of DNS, there are two issues need

to be carefully considered. One issue is how to determine the number of sub-

swarms, and another issue is when to adjust the number of sub-swarms.210

For the first issue, we define an ordered set of integers N = {n1, n2, . . . , nk−1, nk}

where n1 > n2 > . . . > nk−1 > nk. Each element in N denotes a candidate

number of sub-swarms. In this research, to facilitate program, all the sub-

swarms have the same size in each generation which means that the number

of sub-swarms must be a factor of the population size. For example, if the215

population size is N=30, the number of sub-swarms (Nsub) is selected from

N = {15, 10, 6, 5, 3, 2, 1}, each element in which is a factor of N . Thus, the size

of each sub-swarm (Ssub) at the initial stage is Ssub=N /Nsub=2. In the final

stage of evolution, Nsub and Ssub are 1 and 30 respectively, which means that

all the sub-swarms have been amalgamated into single one swarm.220

For the second issue, we adjust the number of sub-swarms in each Cgen fitness

evaluations (FEs) (with Cgen = MaxGens/∥ N ∥ ), where∥ N ∥ is the number of

elements in N, Cgen denotes the adjustment period, MaxGens is the predefined

maximum generations of the evolution. In this case, the entire population at

different evolutionary periods (i.e., in different numbers of sub-swarms cases) is225

assigned to the same generations except the final stage. The motivation of this

scheme is to keep a smooth adjusting process for the number of sub-swarms.

9
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However, we believe our methods for the two issues may not be optimal choices

since they do not consider different characteristics in different problems. Given

it is a profoundly difficult task that precise extracting useful characteristics for230

a black-box problem during the optimizing process, we will study the issues in

our future works.

Furthermore, we regard that the global best solution GBEST obtained by

the entire population carries out a local-searching operator periodically can help

MSPSO achieve a more accurate solution. In this research, GBEST is refined235

by BFGS Quasi-Newton method, which has been applied in many PSO variants

[13, 14], after the number of sub-swarms has been adjusted. For each time that

GBEST performs the local-searching operator, we assign [0.10 ∗ fes] fitness

evaluations to the operator, where fes is the number of fitness evaluations that

the population has consumed. In this case, more fitness evaluations will be240

assigned to the local-searching operator in the later evolution stage since we

regard that strengthening the local-searching ability is helpful for improving

solutions accuracy if the population has found a promising region.

The details of DNS can be viewed in Algorithm 1, in which Xk
i , V

k
i , and

Pbk
i are the position, velocity, and personal historical best solution of the ith245

particle in the kth sub-swarm, respectively.

Algorithm 1. DNS( )

Input: fes, t, Cgen, N, Nsub, Ssub, m, N, Xk
i , V

k
i , Pbk

i (1≤k≤Nsub, 1≤i≤Ssub), GBEST;

01:If mod(t, Cgen)==0 and m<∥ N ∥

02: m=m+1;

03: Nsub = {nm|nm ∈ N}; Ssub=N/Nsub;

04: Random divide the whole population into Nsub sub-swarms, including Xk
i , V

k
i , and Pbk

i ;

05: Assign [0.1∗fes] fitness evaluations to GBEST to carry out BFGS Quasi-Newton method;

06: fes=fes+0.1∗fes;

07:End If

Output: fes, Nsub, Ssub, m, Xk
i , V

k
i , Pbk

i (1≤k≤Nsub, 1≤i≤Ssub), GBEST.

3.2. Sub-swarms regrouping strategy (SRS)

In dynamic multi-swarm PSO (DMSPSO) [13, 14], a randomized regrouping

schedule endows particles with a mutable neighborhood structure. Moreover,

10
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the population of DMSPSO is randomly regrouped after every R generations,250

which is called regrouping period, and then restarts the search process in the

new configuration of sub-swarms. However, it is very hard for us to choose

a fixed R since different problems have their own various characteristics. For

example, a smaller R may frequently disturb the correct searching direction of

the population, on the contrary, a greater R cannot enable the population to be255

timely regrouped when it has stagnated.

In MSPSO, the consecutive generations-stagnancy of GBEST, denoted by

Stagbest, is selected as a sub-swarms regrouping criteria in MSPSO. In this

case, the entire population can be timely regrouped into Nsub sub-swarms while

GBEST has stagnated more than a threshold, without having to wait for a260

predefined regrouping period. Since the neighbor topology of each sub-swarm

is ring model, each particle, including the best one, in a larger sub-swarm may

need more generations to thoroughly extract helpful information from other

particles. In other words, the degree of information diffusion depends on the

size of a sub-swarm. Thus, we set Stagbest = ⌊Ssub/2⌋ as the threshold. For265

example, if the number of particles in each sub-swarm is 10, the population will

be regrouped if Stagbest is more than 5. The process of information diffusion

among the ring topological structure can be described as Figure 1.

Based on the above mentioned ,the details of SRS can be described as Al-

gorithm 2.270

Algorithm 2. SRS( )

Input: Stagbest, Nsub, Ssub, X
k
i , V

k
i , Pbk

i (1≤k≤Nsub, 1≤i≤Ssub);

01:If Stagbest ≥ Ssub/2

02: Random regroup the whole population into Nsub sub-swarms;

03: Stagbest=0;

04:End If

Output:Stagbest, X
k
i , V

k
i , Pbk

i (1≤k≤Nsub, 1≤i≤Ssub).

3.3. Purposeful detecting strategy (PDS)

Although DNS and SRS are included as techniques to balance the exploration-

exploitation behavior, it is inevitable that the population may fall into a local

11
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Figure 1: The process of information diffusion among ring topological structure.

optimum when optimizing complicated multimodal problems. Although the

mutation strategy [37] applied in individuals increases the population diversity275

to some extent, the random disturbance cannot help GBEST purposefully ex-

plore promising regions. In recent years, extracting much useful knowledge from

historical experience displays very favorable performance in different researches

[48, 49]. Thus, in this research, some historical information of individuals is

applied to guide GBEST to carry out a purposeful detecting operator which280

has been applied in [41, 42], and then to help the population jump out of the

local optimum.

The first issue need to be considered in PDS is how to select some useful

information. To easily collect information and carry out the detecting operator,

each dimensional search space of a problem is divided into many small-sized285

segments, which can be described as Figure 2.

In Figure 2, lbi and ubi are the lower and upper boundaries of the ith di-

mension. Then the whole search space of the ith dimension Si is divided into

Rn equal segments, denoted as si1, s
i
2, ..., s

i
Rn.

After the segmentation, the times that elites falling into a specific segment290

is an index to evaluate the segment. Specifically, more times that Pbi falls into

a segment indicates the segment has a higher merit value. Thus, the merit value

12
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Figure 2: Segmentation of the ith dimension.

of each segment sij is described as (3).

Mi
j = Mi

j + 1, if pbi,k lies within sij (3)

The second issue is when GBEST carries out the detecting operator. Con-295

sidering that the population may display different statistic characteristics for

the distinct fitness landscape in different evolution stages, a periodic detecting

operator is carried out in this work. Specifically, Mi
j (1 ≤ j ≤ Rn) of the ith

dimension is used to help GBEST find out a promising position in each Ssub

generations. In this case, a smaller Ssub causes GBEST to carry out the de-300

tecting operator more frequently in the early stage in favorable for exploration.

On the contrast, a larger Ssub enables the detecting operator to be conduct-

ed infrequently in the later evolution stage since the main task at the stage is

exploitation.

The last issue is how to carry out the detecting operator based on the merit305

values. In this work, for a fixed value of i, Rn segments are divided into su-

perior sub-regions, inferior sub-regions, and moderate sub-regions, which have

the largest, the smallest, and the medium values of Mi
j , respectively. When

Gbesti denoting the ith dimension value of the GBEST lies within a superior

sub-region of the ith dimension, GBEST will detect an inferior sub-region on310

ith dimension. And Gbesti will be replaced by the detected position only if the

new position improves the performance of the original GBEST. In other two

cases, i.e., Gbesti falling into an inferior sub-region or a moderate sub-region,

13
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GBEST will not carry out the detecting operator since we believe other parti-

cles can help it fly towards a promising region.315

In order to avoid Gbesti detecting a same segment in different periods, which

is harmful for exploration, a tabu strategy is applied in the detecting operator.

For instance, if sij has been detected by Gbesti, a tabu flag tabui
j for the segment

is set to ‘1’. Under this condition, Gbesti does not detect s
i
j until tabui

j is reset

to ‘0’. While Gbesti has detected all segments, i.e., all the tabu flags tabui
j320

are ‘1’, these flags will be reset to ‘0’, and then a new statistical information is

recorded.

According to the aforementioned introduction, the PDS of GBEST is de-

tailed as Algorithm 3.

Algorithm 3. PDS( )

Input: fes, GBEST, Mi
j , tabu

i
j ( 1≤ i≤ D, 1≤ j≤Rn ) ;

01: TmpGB = GBEST;

02: For i=1 to D

03: If tmpgbi ∈ {sij |M
i
j is greater or equal to other Mi

k(1 ≤ k ≤ Rn)}

/*tmpgbi is the ith value of TmpGB*/

04: tmpgbi is replaced by a random value within an inferior segment sik where tabui
k = 0;

05: Evaluate TmpGB; fes=fes+1;

06: If TmpGB is better than GBEST

07: GBEST=TmpGB;

08: End If

09: tabui
k = 1;

10: If all tabui
k (1 ≤ k ≤ Rn) are equal to 1

11: Set each tabui
k to 0;

12: End If

13: End If

14: End For i

Output: fes, GBEST, tabui
j ( 1≤ i≤ D, 1≤ j≤Rn ).

3.4. Framework of MSPSO325

By incorporating the aforementioned components into a multi-swarm PSO

framework, the details of MSPSO can be described as Algorithm 4. Note that,

although there are many new parameters in MSPSO, including Cfes, Nsub, Ssub,

and Rn, the majority of the new introduced parameters except Rn depend on
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the entire population size. Thus, from this perspective, we regard the new in-330

troduced strategies do not greatly raise the complexity of the canonical PSO. In

addition, the adaptive multi-swarm mechanism provides a more comprehensive

cooperating mechanism for all sub-swarms, and then helps MSPSO take full

advantages of each sub-swarm.

Algorithm 4. MSPSO ( )

01: Initialization: D, N,MaxFEs, MaxGens, fes=0, t=0, Rn=10, Stagbest = 0;

02: N = {n1, n2, . . . , np}, m=1, Cfes = MaxGens/|N| ;

03: Divide each dimension search space into Rn same sized sub-regions;

04: Nsub = nm, Ssub = N/Nsub, Mi
j=0, tabui

k=0 (1≤i≤N, 1≤j≤D, 1≤k≤Rn);

05: Randomly initialize Xns
ss , V

ns
ss , Pbns

ss (1≤ss≤Ssub, 1≤ns≤Nsub);

06: While not meet stop conditions

07: t=t+1;

08: For k= 1 to ns in parallel /* ns denotes the number of sub-swarms */

09: For i= 1 to ss in parallel /* ss denotes the size of each sub-swarm */

10: Update Vk
i and Xk

i according to (1) and (2), respectively;

11: Update Pbk
i ;

12: End For i

13: End For k

14: Update MER according to (3);

15: Update GBEST and Stagbest;

16: DNS( );

17: SRS( );

18: PDS( );

19: End While

4. Experimental verification and comparisons335

4.1. Experimental setup

4.1.1. Benchmark functions

To verify how MSPSO performs in different environments, we carry out dif-

ferent sets of experiments on CEC2013 test suite. According to characteristics,

28 benchmark functions in CEC2013 test suite are divided into three groups:340

• 5 unimodal functions (f1-f5);

• 15 basic multimodal functions (f6-f20); and

• 8 composition functions (f21-f28);

15
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In this study, acceptable errors are all set as 100 for all the test problems

except f1, f3, and f5. For the two easy problems, i.e., f1 and f5, a smaller345

acceptable error (10−6) is selected while a larger acceptable error (10+7) is

chosen for the difficult problem f3. It should be noted that the acceptable

errors are not in favor of any peer algorithm. More detailed information of the

functions can refer to the literature [50].

4.1.2. Peer algorithms350

For a comparative analysis, experiments are conducted to compare MSP-

SO with 9 PSO variants proposed in the last decade and 4 outstanding EAs,

including JADE, SaDE, CoDE, and CMA-ES. In the experiments, the dimen-

sionality of the test problems and the maximum number of function evaluations

(MaxFEs) are set to be 30 and 300 000, respectively. The parameters settings of355

all peer algorithms, which are the same as the corresponding papers, are listed

in Table 1. All the experiments are conducted on the following system:

• OS: Windows 7

• CPU: Intel Core i5-4200, 2.30GHz

• RAM: 4GB360

• Language: Matlab R2014a

4.1.3. Performance metrics

Results of 100 independent runs on the test functions are collected for statis-

tical analysis. In this study, mean value (Mean), standard deviation (Std.Dev.),

median value (Median), success ratio (SR), and success performance (SP) are365

5 performance metrics for each algorithm. The SR is defined as (4).

SR = No. of successful runs/total # of runs. (4)

where a successful run is that an algorithm achieves the acceptable error within

the maximum number of function evaluations.

16
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Table 1: Parameters settings of the 14 peer algorithms

algorithm parameters settings

MSPSO χ=0.7298, c1=c2=1.49445, Rn=10, N=30

DMSPSO [14] χ = 0.7298,c1=c2=1.49445,

R=10,L=100,L FEs=200

∗F-PSO [12] w=0.9∼0.4, Tmax = 3 ∗ N2, K = 4 ∗ N

OLPSO [26] w=0.9∼0.4,c=2.0,G=5

SLPSO [28] w = 0.9 − 0.5 ∗ gen/MaxGen,η=1.496,γ=0.01

PSODDS [51] χ=0.7298, c1=c2=2.05

SL PSO [30] M=100, α=0.5, β=0.01

HCLPSO [34] w=0.9∼0.4, c=1.49445

SSS-APSO [20] wmax=0.7,wmin=0.2, ∆w=0.1, ϕ1=ϕ1=2.0, p=4

SopPSO [41] w=0.9∼0.4, c1=2.5∼0.5, c1=0.5∼2.5, Rn=10,

MaxStagind=13, MaxStagbest=5, Cycle=3

JADE [52] “current-to-pbest/1”, µCR = 0.5, µF =0.5

SaDE [53] “rand/1/bin”, “rand-to-best/2/bin”, “rand/2/bin”, “current-to-rand/1”

[F ∈ N(0.5, 0.3), Cr ∈ N(CRm, 0.1)]

CoDE [54] “rand/1/bin”, “rand/2/bin”, “current-to-rand/1”

[F=1.0,Cr = 0.1], [F=1.0,Cr = 0.9], [F=0.8,Cr = 0.2]

#CMA-ES [55] –

* To describe simply, Frankenstein’s PSO is renamed as F-PSO in this research.

# There are too many parameters in CMA-ES. To describe simply, the parameters’

settings can refer to the literature [55].

The SP is the number of function evaluations (fes) for an algorithm to reach

the acceptable error. As an evaluation index for convergence speed, the mean370

of SP defined in [56] is detailed as (5).

mean(SP ) = ((1− SR)/SR) ∗MaxFEs+mean(fes for successful runs) (5)

Furthermore, to compare the performance of two algorithms at the statisti-

cal level, the Friedman-test and two-tailed t-test of freedom at a 0.05 level of

significance are conducted between MSPSO and other peer algorithms.375

4.2. Experimental results

In the experiments, the population sizes of all the peer algorithms for 30D

problems are the same as that applied in the corresponding lectures. For all

the test functions, each algorithm carries out 100 independent runs on them.

Among the results listed in Table 2 - Table 4, the best results of Mean, Median,380

and SP on each problem among all algorithms are shown in bold.
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4.2.1. Unimodal functions

In the first set of experiments, 5 unimodal functions are studied. The com-

parison results are summarized in Table 2. For f1 and f5, all the algorithms

show very promising performance, and there are 3 algorithms besides MSPSO385

achieve the global optima result on f1 on the 100 runs. Furthermore, MSPSO

also offers the best result on f2, in terms of Mean value. However, it yields

adverse result on f3. On the contrary, CMA-ES attains significantly favorable

performance on f3 and f4. When considering the Median results, DMSPSO

manifests the best results since it offers the most accurate solutions on 3 out of390

the 5 unimodal functions which is slightly better than CMA-ES and SaDE.

There are only 4 algorithms, i.e., MSPSO, DMSPSO, CMA-ES, and SopP-

SO, satisfy the acceptable error at least one time in the independent 100 runs for

each unimodal function. The values of SR demonstrate that CMS-ES has the

best reliable performance on this class problems, followed by MSPSO, DEMSP-395

SO, and SopPSO.

Although MSPSO shares a same characteristic with DMSPSO, i.e., multi-

swarm structure, MSPSO performs weaker than DMSPSO on f1 and f5. The

reason is that the larger population and the detecting operator in MSPSO waste

too many evaluations since there is no local optima in the two simple problems.400

On the contrary, MSPSO offers more favorable performance than DMSPSO on

f2, f3, and f4, in terms of Mean(SP), since the 3 benchmark problems have a

common feature, i.e., smooth local irregularities. The comparison results verify

the effectiveness of the detecting operator on this type fitness landscape.

4.2.2. Multimodal functions405

From the comparison results summarized in Table 3 among the 15 multi-

modal problems, it can be observed that MSPSO and JADE achieve the most

pleasurable result since they both achieve the best results on 6 out of the 15

multimodal functions contributing to the Mean values, followed by SL PSO,

SLPSO, and DMSPSO.410

Moreover, the Mean(SP) results manifest that MSPSO, CoDE, and JADE

18
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Table 2: Comparison results on the 5 unimodal functions (f1-f5).

DMSPSO F-PSO OLPSO SLPSO PSODDS SL PSO HCLPSO SSS-APSO SopPSO JADE SaDE CoDE CMA-ES MSPSO

f1

Mean
Std.Dev
Median
SR
Mean(SP)

0.00E+00
0.00E+00
0.00E+00
100
2581

1.48E-13
1.09E-13
2.27E-13
100
28666

8.60E-09
1.12E-09
8.93E-09
100
164230

5.23E-13
1.43E-13
4.55E-13
100
91684

3.57E+01
2.08E+02
9.43E-09
97
32605

1.11E-13
1.14E-13
0.00E+00
100
22145

3.27E-13
1.13E-13
2.27E-13
100
96925

5.91E-13
1.39E-13
6.82E-13
100
33142

4.73E-13
7.53E-14
4.55E-13
100
3592

0.00E+00
0.00E+00
0.00E+00
100
14510

0.00E+00
0.00E+00
0.00E+00
100
24450

1.11E-13
1.14E-13
0.00E+00
100
90228

4.27E-13
1.78E-13
4.55E-13
100
6859

0.00E+00
0.00E+00
0.00E+00
100
25028

f2

Mean
Std.Dev
Median
SR
Mean(SP)

9.47E-02
3.35E-01
1.99E-03
100
296250

3.58E+06
2.22E+06
3.36E+06
0
-

4.10E+07
1.46E+07
4.01E+07
0
-

3.01E+06
2.09E+06
2.23E+06
0
-

1.10E+06
2.83E+06
3.16E+05
0
-

5.45E+05
2.73E+05
4.57E+05
0
-

1.36E+06
7.10E+05
1.27E+06
0
-

2.06E+06
2.00E+06
1.30E+06
0
-

9.68E-02
9.86E-02
3.17E-02
100
167400

7.39E+03
5.96E+03
6.05E+03
0
-

3.91E+05
1.97E+05
3.44E+05
0
-

1.07E+05
5.29E+04
1.00E+05
0
-

4.43E-03
1.56E-13
4.56E-13
100
50694

2.20E-03
4.78E-03
9.20E-04
100
80618

f3

Mean
Std.Dev
Median
SR
Mean(SP)

9.53E+06
3.35E-01
1.99E-03
68
124797

3.58E+06
1.40E+09
1.18E+07
47
299070

3.32E+10
1.48E+10
3.12E+10
0
-

2.51E+09
2.61E+09
1.77E+09
1
577659

4.76E+09
5.80E+09
2.86E+09
3
371740

2.17E+07
2.14E+07
1.62E+07
38
281983

3.61E+07
4.54E+07
2.31E+07
28
302795

3.13E+09
2.95E+09
2.02E+09
0
-

1.07E+08
1.09E+08
4.46E+07
16
1373400

3.91E+05
1.75E+06
2.24E-01
99
48825

2.18E+07
3.25E+07
7.39E+06
56
244560

2.39E+06
7.28E+06
2.49E+04
93
135240

3.56E+02
2.54E+03
2.25E-02
100
28039

1.21E+07
2.03E+07
5.68E+06
69
208831

f4

Mean
Std.Dev
Median
SR
Mean(SP)

9.26E-01
4.90E+00
1.56E-02
100
162754

2.31E+03
8.17E+02
2.18E+03
0
-

1.31E+05
1.99E+04
1.31E+05
0
-

4.73E+04
1.07E+04
4.59E+04
0
-

3.20E+03
2.76E+03
2.42E+03
0
-

5.95E+03
2.13E+03
5.74E+03
0
-

2.45E+03
1.05E+03
2.22E+03
0
-

2.46E+02
8.08E+01
1.89E+02
0
-

1.33E-02
8.85E-03
8.35E-03
100
30882

8.01E+03
1.49E+04
3.04E-07
77
156093

2.70E+03
1.43E+03
2.50E+03
0
-

1.13E+00
3.92E+00
2.63E-01
100
250626

4.07E-13
1.49E-13
4.55E-13
100
61683

1.79E-02
3.20E-02
8.40E-03
100
26372

f5

Mean
Std.Dev
Median
SR
Mean(SP)

7.96E-15
2.92E-14
0.00E+00
100
35975

1.14E-13
1.62E-14
1.14E-13
100
34606

9.32E-09
6.51E-10
9.51E-09
100
211018

4.71E-11
3.59E-10
8.36E-12
100
121800

3.54E+01
5.55E+01
5.46E-08
64
277375

1.15E-13
1.14E-14
1.14E-13
100
30020

4.07E-13
9.72E-14
3.98E-13
100
111030

1.45E+02
2.64E+02
3.12E+01
57
317347

1.60E-12
9.71E-13
1.14E-12
100
105390

1.03E-13
3.27E-14
1.14E-13
100
21195

0.00E+00
0.00E+00
0.00E+00
100
43615

7.50E-14
6.90E-14
1.14E-13
100
118362

8.19E-13
1.67E-12
4.55E-13
100
91977

9.21E-14
4.48E-14
1.14E-13
100
56343

have very reliable performance on the multimodal functions since the 3 algo-

rithms offer the promising results on all the multimodal functions except f15, on

which there is no algorithm reaches the acceptable error at least one run. For

f8, f9, f16, and f20, the Mean(SP) values of most algorithms are less than 300.415

Thus, we regard majority of the algorithms have almost the same performance

on these multimodal problems, in terms of Mean(SP). On the other problems,

DMSPSO, MSPSO, SLPSO, and JADE offer more outstanding comprehensive

performance.

4.2.3. Composition functions420

The comparison results on the 8 composition functions are summarized in

Table 4, from which we can see that MSPSO yields the most pleasurable per-

formance on 3 out of the 8 composition functions, followed by DMSPSO which

achieves the most favorable results on 2 composition problems. Thus, we can

draw a conservative conclusion that the sub-swarm mechanism applied in MSP-425

SO and DMSPSO has a positive effect on the composition problems. Comparing

with the results between the unimodal functions and the multimodal functions,

we find out that CMA-ES offers poor performance on the composition function-

s, in terms of Mean values. On the contrary, MSPSO manifests more reliable

characteristics on this type functions. For f22, f24, f25, f26, and f28, there is430
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Table 3: Comparison results on the 15 multimodal functions (f6-f20).

DMSPSO F-PSO OLPSO SLPSO PSODDS SL PSO HCLPSO SSS-APSO SopPSO JADE SaDE CoDE CMA-ES MSPSO

f6

Mean
Std.Dev
Median
SR
Mean(SP)

1.59E-01
7.85E-01
4.48E-11
100
3692

1.98E+01
1.89E+01
1.38E+01
100
13372

4.76E+01
6.53E+00
4.87E+01
100
71426

2.71E+01
2.12E+01
1.64E+01
100
15752

5.91E+01
3.15E+01
5.45E+01
90
41760

1.64E+01
7.65E+00
1.41E+01
100
5397

1.62E+01
2.96E+00
1.57E+01
100
29393

8.34E+01
3.51E+01
8.05E+01
93
34244

4.47E-10
6.59E-10
4.68E-11
100
3671

1.85E+00
6.77E+00
1.14E-13
100
4400

2.95E+01
2.76E+01
1.52E+01
100
11545

4.73E+00
7.37E+00
2.26E+00
100
25716

1.62E+00
6.31E+00
2.27E-11
100
9215

7.29E-11
9.06E-11
5.53E-11
100
5544

f7

Mean
Std.Dev
Median
SR
Mean(SP)

1.47E+01
8.50E+00
1.35E+01
100
7818

3.74E+01
1.89E+01
3.23E+01
100
14420

1.66E+02
3.70E+01
1.65E+02
5
389424

9.81E+01
2.19E+01
9.53E+01
56
146485

1.08E+02
2.57E+01
1.09E+02
37
217710

4.81E+00
3.52E+00
3.63E+00
100
4356

2.31E+01
9.53E+00
2.10E+01
100
12288

4.74E+01
3.04E+01
3.41E+01
97
11263

3.99E+01
9.17E+00
3.84E+01
100
38786

3.53E+00
4.42E+00
2.04E+00
100
5375

2.89E+01
1.36E+01
2.66E+01
100
13965

9.78E+00
7.29E+00
7.71E+00
100
51042

1.41E+01
8.82E+00
1.31E+01
100
11725

1.28E+01
4.31E+00
1.21E+01
100
10937

f8

Mean
Std.Dev
Median
SR
Mean(SP)

2.09E+01
5.56E-02
2.09E+01
100
40

2.09E+01
5.06E-02
2.10E+01
100
40

2.10E+01
5.66E-02
2.11E+01
100
1700

2.09E+01
4.88E-01
2.10E+01
100
496

2.09E+01
4.85E-02
2.10E+01
100
1050

2.09E+01
4.85E-02
2.10E+01
100
205

2.09E+01
4.52E-02
2.10E+01
100
48

2.10E+01
4.80E-02
2.09E+01
100
200

2.09E+01
5.48E-02
2.09E+01
100
50

2.09E+01
6.82E-02
2.09E+01
100
50

2.09E+01
5.24E-02
2.10E+01
100
100

2.15E+01
1.25E-01
2.16E01
100
210

2.15E+01
9.97E-02
2.15E+01
100
14

2.09E+01
4.50E-02
2.09E+01
100
120

f9

Mean
Std.Dev
Median
SR
Mean(SP)

1.78E+01
4.37E+00
1.72E+01
100
43

1.59E+01
3.25E+00
1.56E+01
100
40

2.38E+01
2.83E+00
2.36E+01
100
1360

3.02E+01
2.26E+00
3.03E+01
100
472

2.60E+01
3.95E+00
2.64E+01
100
1050

1.01E+01
2.52E+00
1.02E+01
100
205

2.03E+01
3.82E+00
2.08E+01
100
48

1.26E+01
3.05E+00
1.26E+01
100
200

2.41E+01
3.13E+00
2.44E+01
100
50

2.65E+01
1.76E+00
2.68E+01
100
50

1.73E+01
2.73E+00
1.71E+01
100
100

1.36E+01
2.67E+00
1.36E+01
100
210

4.26E+01
8.25E+00
4.32E+01
100
14

1.18E+01
3.29E+00
1.14E+01
100
120

f10

Mean
Std.Dev
Median
SR
Mean(SP)

9.50E-02
4.62E-02
8.87E-02
100
2685

2.46E-01
8.64E-02
2.34E-01
100
13722

1.14E+02
6.06E+01
1.15E+02
45
309220

4.22E-01
2.17E-01
3.91E-01
100
8432

6.05E+01
7.73E+01
4.40E+01
77
86240

2.62E-01
1.28E-01
2.36E-01
100
6519

2.63E-01
1.51E-01
2.32E-01
100
36199

8.86E+01
8.95E+01
7.77E+01
77
82486

1.04E-01
6.76E-02
7.89E-02
100
4730

4.11E-02
2.06E-02
3.94E-02
100
3870

2.98E-01
1.51E-01
2.92E-01
100
8215

3.47E-02
2.07E-02
2.96E-02
100
23808

3.32E-02
2.23E-02
2.46E-02
100
4115

3.30E-02
2.83E-02
2.96E-02
100
4033

f11

Mean
Std.Dev
Median
SR
Mean(SP)

3.92E+01
1.12E+01
3.78E+01
100
16941

4.16E+01
1.25E+01
4.06E+01
100
39286

1.05E+00
3.21E+00
9.10E-09
100
75454

1.52E-13
4.56E-14
1.71E-13
100
1181

7.20E+01
2.44E+01
7.00E+01
88
46530

1.48E+01
4.70E+00
1.39E+01
100
27980

1.10E-13
3.16E-14
1.14E-13
100
47347

3.81E+01
1.69E+01
4.28E+01
100
10153

2.54E-14
2.71E-14
1.68E-14
100
1215

0.00E+00
0.00E+00
0.00E+00
100
9605

2.49E-01
6.06E-01
0.00E+00
100
13535

1.99E-02
1.40E-01
5.68E-14
100
74316

9.39E+01
2.67E+02
4.88E+01
97
13837

0.00E+00
0.00E+00
0.00E+00
100
1772

f12

Mean
Std.Dev
Median
SR
Mean(SP)

4.14E+01
8.85E+00
4.08E+01
100
14461

1.70E+02
1.08E+01
1.70E+02
0
-

1.37E+02
4.56E+01
1.28E+02
24
396280

1.09E+02
3.23E+01
1.06E+02
40
314356

1.57E+02
4.79E+01
1.44E+02
9
281550

1.62E+02
9.09E+00
1.62E+02
0
-

6.05E+01
1.84E+01
5.77E+01
96
88091

7.56E+01
2.66E+01
5.64E+01
97
74844

1.08E+02
4.57E+01
9.65E+01
55
501150

2.37E+01
4.80E+00
2.36E+01
100
21680

4.86E+01
1.23E+01
4.78E+01
100
53670

3.71E+01
1.21E+01
3.48E+01
100
82560

6.57E+02
9.74E+02
5.17E+01
70
96286

6.24E+01
2.02E+01
5.67E+01
99
63650

f13

Mean
Std.Dev
Median
SR
Mean(SP)

8.63E+01
1.61E+01
8.67E+01
80
95039

1.71E+02
1.09E+01
1.71E+02
0
-

2.04E+02
3.05E+01
2.12E+02
0
-

1.74E+02
3.22E+01
1.76E+02
1
577419

2.58E+02
4.95E+01
2.60E+02
0
-

1.60E+02
9.67E+00
1.61E+02
0
-

1.27E+02
2.50E+01
1.30E+02
19
338405

1.10E+02
2.09E+01
1.16E+02
27
275221

1.56E+02
2.41E+01
1.56E+02
0
-

4.41E+01
1.21E+01
4.23E+01
100
48472

9.84E+01
2.32E+01
9.75E+01
56
211217

7.79E+01
2.49E+01
7.52E+01
82
181690

1.75E+03
1.76E+03
1.74E+03
19
249678

1.24E+02
2.68E+01
1.32E+02
23
343630

f14

Mean
Std.Dev
Median
SR
Mean(SP)

2.36E+03
4.58E+02
2.41E+03
0
-

2.40E+03
5.46E+02
2.40E+03
0
-

3.85E+01
5.68E+01
7.28E+00
86
215320

6.32E-02
3.00E-02
6.25E-02
100
7190

2.00E+03
6.18E+02
1.92E+03
0
-

7.14E+02
2.44E+02
7.04E+02
0
-

1.04E+01
3.23E+01
2.65E-01
92
199970

1.33E+03
3.39E+02
1.46E+03
0
-

5.89E-02
2.54E-02
6.25E-02
100
5448

2.60E-02
2.14E-02
2.08E-02
100
45370

9.40E-01
1.30E+00
1.46E-01
100
151810

8.69E+02
9.83E+02
5.79E+02
26
636012

5.39E+03
7.90E+02
5.36E+03
0
-

1.21E+00
1.11E+00
1.30E+00
100
52223

f15

Mean
Std.Dev
Median
SR
Mean(SP)

2.94E+03
3.91E+02
2.97E+03
0
-

6.31E+03
3.59E+02
6.32E+03
0
-

7.46E+03
1.07E+03
7.89E+03
0
-

4.28E+03
5.38E+02
4.25E+03
0
-

4.09E+03
6.74E+02
4.10E+03
0
-

4.74E+03
2.38E+03
6.20E+03
0
-

3.43E+03
5.79E+02
3.47E+03
0
-

3.21E+03
1.09E+03
2.96E+03
0
-

4.62E+03
4.26E+02
4.47E+03
0
-

3.26E+03
2.74E+02
3.25E+03
0
-

4.66E+03
1.02E+03
5.07E+03
0
-

3.47E+03
5.12E+02
3.52E+03
0
-

5.14E+03
6.57E+02
5.00E+03
0
-

4.07E+03
6.72E+02
3.98E+03
0
-

f16

Mean
Std.Dev
Median
SR
Mean(SP)

1.08E+00
2.37E-01
1.08E+00
100
43

2.48E+00
2.68E-01
2.52E+00
100
40

3.34E+00
4.50E-01
3.39E+00
100
1700

1.09E+00
2.92E-01
1.10E+00
100
473

7.03E-01
3.63E-01
6.26E-01
100
1050

2.47E+00
2.65E-01
2.46E+00
100
205

1.35E+00
2.56E-01
1.35E+00
100
48

2.35E+00
2.96E-01
2.56E+00
100
120

1.33E+00
2.69E-01
1.37E+00
100
50

1.91E+00
6.47E-01
2.04E+00
100
50

2.22E+00
2.92E-01
2.23E+00
100
100

3.56E-01
1.86E-01
2.88E-01
100
210

8.72E-02
6.20E-02
6.70E-02
100
14

1.28E+00
3.99E-01
1.28E+00
100
120

f17

Mean
Std.Dev
Median
SR
SP

6.94E+01
9.71E+00
6.90E+01
99
48261

1.64E+02
1.10E+01
1.65E+02
0
-

3.07E+01
1.93E-01
3.07E+01
100
104150

3.01E+01
3.04E+00
3.04E+01
100
3002

1.01E+02
1.89E+01
1.01E+02
47
192742

1.61E+02
1.32E+01
1.62E+02
0
-

3.06E+01
9.62E-02
3.06E+01
100
122650

6.54E+01
7.25E+00
6.36E+01
100
98816

3.04E+01
8.56E-03
3.04E+01
100
2629

3.04E+01
5.00E-14
3.04E+01
100
13025

3.05E+01
1.36E-01
3.04E+01
100
23345

3.47E+01
7.39E+00
3.14E+01
100
123726

4.07E+03
9.61E+02
4.19E+03
2
303933

3.06E+01
9.53E-02
3.06E+01
100
2509

f18

Mean
Std.Dev
Median
SR
Mean(SP)

7.35E+01
1.31E+01
7.06E+01
94
77602

1.97E+02
1.03E+01
1.98E+02
0
-

2.29E+02
2.54E+01
2.36E+02
0
-

1.44E+02
2.89E+01
1.37E+02
6
397329

1.59E+02
3.74E+01
1.55E+02
5
310367

1.92E+02
9.93E+00
1.93E+02
0
-

9.74E+01
2.70E+01
9.21E+01
66
300050

2.10E+02
1.09E+01
2.03E+02
0
-

1.48E+02
5.02E+01
1.32E+02
32
827812

7.71E+01
6.70E+00
7.70E+01
100
83850

1.29E+02
4.26E+01
1.48E+02
27
479775

6.40E+01
1.06E+01
6.34E+01
100
219576

4.17E+03
9.24E+02
4.20E+03
1
313352

1.26E+02
3.10E+01
1.18E+02
23
337555

f19

Mean
Std.Dev
Median
SR
Mean(SP)

3.07E+00
7.92E-01
3.05E+00
100
3118

1.13E+01
1.20E+00
1.14E+01
100
3156

2.54E+00
4.65E-01
2.57E+00
100
42232

1.02E+00
3.09E-01
1.00E+00
100
942

8.08E+00
7.02E+00
5.11E+00
100
2850

3.43E+00
5.25E-01
3.43E+00
100
2714

1.42E+00
2.45E-01
1.44E+00
100
13713

6.31E+00
1.83E+02
3.32E+00
100
3637

8.30E-01
2.26E-01
8.41E-01
100
1030

1.47E+00
9.94E-02
1.48E+00
100
2230

4.07E+00
8.50E-01
4.09E+00
100
5015

2.32E+00
2.17E+00
1.70E+00
100
15042

3.53E+00
9.43E-01
3.33E+00
100
2512

8.58E-01
2.31E-01
8.45E-01
100
1677

f20

Mean
Std.Dev
Median
SR
Mean(SP)

1.38E+01
1.92E+00
1.50E+01
100
41

1.31E+01
1.13E+00
1.28E+01
100
40

1.44E+01
5.89E-01
1.45E+01
100
1700

1.19E+01
8.12E-01
1.18E+01
100
140

1.42E+01
1.01E+00
1.45E+01
100
1050

1.38E+01
1.34E+00
1.50E+01
100
205

1.10E+01
7.39E-01
1.10E+01
100
48

1.32E+01
1.46E+00
1.50E+01
100
200

1.05E+01
9.97E-01
1.05E+01
100
50

1.07E+01
6.10E-01
1.06E+01
100
50

1.07E+01
7.38E-01
1.08E+01
100
100

1.06E+01
6.48E-01
1.06E+01
100
210

1.27E+01
8.98E-01
1.27E+01
100
14

1.05E+01
6.54E-01
1.05E+01
100
120

no significant difference between MSPSO and other outstanding algorithms, in

terms of Median values. However, OLPSO, PSODDS, and MSPSO offer very

favorable performance on f21, f23, and f27 respectively, contributing to Median

value. Moreover, MSPSO attains the most promising results, in terms of SR
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and Mean(SP), since it is the only one that reaches the acceptable errors at435

least one run on the 3 composition problems.

Table 4: Comparison results on the 8 composition functions (f21-f28).

DMSPSO F-PSO OLPSO SLPSO PSODDS SL PSO HCLPSO SSS-APSO SopPSO JADE SaDE CoDE CMA-ES MSPSO

f21

Mean
Std.Dev
Median
SR
Mean(SP)

3.39E+02
9.48E+01
3.00E+02
0
-

3.23E+02
8.21E+01
3.00E+02
0
-

2.19E+02
5.13E+01
2.00E+02
0
-

2.96E+02
8.21E+01
3.00E+02
0
-

3.00E+02
9.53E+01
3.00E+02
0
-

2.97E+02
8.15E+01
3.00E+02
0
-

2.28E+02
4.18E+01
2.01E+02
0
-

2.94E+02
7.63E+01
3.00E+02
0
-

3.27E+02
7.65E+01
3.00E+02
0
-

2.93E+02
7.47E+01
3.00E+02
0
-

3.15E+02
8.83E+01
3.00E+02
0
-

2.81E+02
8.67E+01
3.00E+02
0
-

3.11E+02
9.22E+01
3.00E+02
0
-

2.73E+02
8.43E+01
3.00E+02
8
423277

f22

Mean
Std.Dev
Median
SR
Mean(SP)

2.00E+03
5.92E+02
2.04E+03
0
-

1.70E+03
6.48E+02
1.59E+03
0
-

3.00E+02
1.83E+02
2.79E+02
2
462682

1.08E+02
6.38E+01
1.00E+02
17
256648

2.32E+03
6.37E+02
2.35E+03
0
-

6.05E+02
2.64E+02
5.59E+02
0
-

1.12E+02
1.60E+01
1.15E+02
7
499980

1.80E+03
5.44E+02
1.67E+03
7
425661

1.09E+02
6.43E+01
1.11E+02
15
404624

1.04E+02
1.72E+01
1.06E+02
3
-

1.24E+02
5.32E+01
1.15E+02
0
-

7.56E+02
8.18E+02
4.86E+02
0
-

7.18E+03
8.73E+02
7.26E+03
0
-

1.01E+02
5.15E+01
1.08E+02
17
278162

f23

Mean
Std.Dev
Median
SR
Mean(SP)

3.32E+03
4.92E+02
3.33E+03
0
-

6.87E+03
5.22E+02
6.86E+03
0
-

7.47E+03
1.24E+03
8.00E+03
0
-

4.93E+03
6.53E+02
4.94E+03
0
-

4.87E+03
9.48E+02
4.90E+02
0
-

3.93E+03
2.49E+03
2.83E+03
0
-

3.99E+03
5.37E+02
4.03E+03
0
-

3.45E+03
1.26E+03
3.39E+03
0
-

5.89E+03
9.71E+02
6.02E+03
0
-

3.64E+03
3.87E+03
3.61E+03
0
-

4.84E+03
1.06E+03
5.20E+03
0
-

3.60E+03
6.36E+02
3.58E+03
0
-

6.74E+03
8.65E+02
6.89E+03
0
-

4.28E+03
7.96E+02
4.42E+03
0
-

f24

Mean
Std.Dev
Median
SR
Mean(SP)

2.20E+02
1.12E+01
2.18E+02
0
-

2.40E+02
1.47E+01
2.39E+02
0
-

2.73E+02
5.44E+00
2.73E+02
0
-

2.75E+02
9.58E+00
2.76E+02
0
-

2.72E+02
1.03E+01
2.73E+02
0
-

2.24E+02
1.18E+01
2.24E+02
0
-

2.30E+02
8.21E+00
2.30E+02
0
-

2.57E+02
1.21E+01
2.62E+02
0
-

2.65E+02
9.50E+00
2.67E+02
0
-

2.13E+02
1.35E+01
2.09E+02
0
-

2.27E+02
6.80E+00
2.27E+02
0
-

2.23E+02
9.31E+00
2.23E+02
0
-

6.74E+02
5.86E+02
2.40E+02
0
-

2.28E+02
7.95E+00
2.29E+02
0
-

f25

Mean
Std.Dev
Median
SR
Mean(SP)

2.53E+02
3.25E+01
2.67E+02
0
-

2.63E+02
2.33E+01
2.71E+02
0
-

2.83E+02
5.49E+00
2.84E+02
0
-

2.93E+02
7.96E+00
2.95E+02
0
-

2.96E+02
1.10E+01
2.97E+02
0
-

2.53E+02
5.93E+00
2.53E+02
0
-

2.71E+02
1.84E+01
2.75E+02
0
-

2.92E+02
1.67E+01
2.91E+02
0
-

2.49E+02
6.39E+01
2.85E+02
0
-

2.75E+02
9.76E+00
2.77E+02
0
-

2.65E+02
1.29E+01
2.69E+02
0
-

2.56E+02
7.37E+00
2.57E+02
0
-

3.27E+02
1.76E+02
2.53E+02
0
-

2.60E+02
6.92E+00
2.61E+02
0
-

f26

Mean
Std.Dev
Median
SR
Mean(SP)

2.14E+02
4.05E+01
2.00E+02
0
-

3.13E+02
4.83E+01
3.30E+02
0
-

2.28E+02
5.35E+01
2.06E+02
0
-

2.32E+02
6.74E+01
2.00E+02
0
-

2.41E+02
7.00E+01
2.00E+02
0
-

2.44E+02
5.35E+01
2.00E+02
0
-

2.00E+02
2.69E-02
2.00E+02
0
-

2.56E+02
6.85E+01
3.30E+02
0
-

2.00E+02
4.06E-03
2.00E+02
0
-

2.19E+02
4.64E+01
2.00E+02
0
-

2.03E+02
1.80E+01
2.00E+02
0
-

2.04E+02
2.22E+01
2.00E+02
0
-

5.10E+02
4.84E+02
3.32E+02
0
-

2.10E+02
3.30E+01
2.00E+02
0
-

f27

Mean
Std.Dev
Median
SR
Mean(SP)

5.69E+02
1.23E+02
5.49E+02
0
-

6.56E+02
1.27E+02
6.59E+02
0
-

9.44E+02
5.96E+02
9.47E+02
0
-

1.07E+03
7.91E+01
1.08E+03
0
-

9.60E+02
1.07E+02
9.52E+02
0
-

4.84E+02
1.21E+02
5.16E+02
0
-

5.95E+02
1.58E+02
5.73E+02
0
-

7.66E+02
1.29E+02
7.43E+02
0
-

9.49E+02
6.05E+01
9.59E+02
0
-

6.99E+02
2.21E+02
7.46E+02
0
-

6.10E+02
7.60E+01
6.14E+02
0
-

6.13E+02
1.05E+02
6.37E+02
0
-

5.61E+02
1.27E+02
5.45E+02
0
-

4.47E+02
3.94E+01
4.43E+02
0
-

f28

Mean
Std.Dev
Median
SR
Mean(SP)

2.84E+02
5.45E+01
3.00E+02
7
435723

3.12E+02
2.67E+02
3.00E+02
0
-

1.26E+03
2.63E+02
1.20E+03
0
-

5.78E+02
5.67E+02
3.00E+02
0
-

1.05E+03
6.36E+02
1.16E+03
0
-

3.11E+02
1.05E+05
3.00E+02
0
-

2.96E+02
2.76E+01
3.00E+02
0
-

1.05E+03
4.72E+02
1.09E+03
0
-

2.88E+02
2.26E+01
3.00E+02
0
-

3.00E+02
0.00E+00
3.00E+00
0
-

3.00E+02
0.00E+00
3.00E+02
0
-

3.00E+02
0.00E+00
3.00E+02
0
-

1.14E+03
3.26E+03
3.00E+02
0
-

2.74E+02
6.76E+01
3.00E+02
13
429556

4.2.4. Test of significance

1) Comparison on t-test : To investigate whether MSPSO is significantly

better or worse than the other 13 peer algorithms on the 28 test functions, a

two-tailed t-test is carried out in this section. The results of t-test are presented440

in Table 5 in which the symbols “Sum(+)”, “Sum(-)” and “Sum(=)” denote

the number that MSPSO are significantly better than, significantly worse than,

and almost the same as the corresponding competitor algorithms, respectively.

The comprehensive performance (CP) is equal to “Sum(+)” minus “Sum(-)”.

There are three integers in each cell of the table, which mean the number of445

t-test results on unimodal functions, multimodal functions, and composition

functions, respectively. For example, three integers “2, 8, 3” in the second

row and the second column denote the number of functions that MSPSO is
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significantly better than DMSPSO on the three types functions are 2, 8, and 3,

respectively.450

The values of CP in Table 5 manifest that MSPSO significantly outper-

forms 9 peer algorithms (i.e., F-PSO, OLPSO, SLPSO, PSODDS, SL PSO,

SSS-APSO, SopPSO SaDE, and CMA-ES) on all the three classes function-

s. Although sharing the same characteristic with DMSPSO, i.e., dynamical

regrouping for sub-swarms, MSPSO attains more competitive results than DM-455

SPSO on the unimodal functions and the multimodal functions as well as offers

the same performance on the composition functions as DMSPSO. Moreover, the

t-test results manifest that JADE is the only algorithm that dominates MSP-

SO on a class of problems. The comparison results demonstrate that MSPSO

performs slightly weaker than JADE on the multimodal functions.460

Table 5: t-results between MSPSO and other 13 peer algorithms

DMSPSO F-PSO OLPSO SLPSO PSODDS SL PSO HCLPSO SSS-APSO SopPSO JADE SaDE CoDE CMA-ES

Sum(+) 2, 8, 3 3, 15, 6 5, 15, 8 4, 12, 8 5, 14, 8 5, 13, 5 4, 10, 4 5, 10, 6 4, 8, 4 3, 5, 3 3, 9, 6 4, 6, 3 3, 12, 8

Sum(-) 1, 5, 3 1, 0, 0 0, 0, 0 0, 2, 0 0, 0, 0 0, 2, 2 1, 2, 4 0, 1, 0 1, 4, 2 1, 7, 2 1, 3, 1 1, 6, 3 2, 1, 0

Sum(=) 2, 2, 2 1, 0, 2 0, 0, 0 1, 1, 0 0, 1, 0 0, 0, 1 0, 3, 0 0, 4, 2 0, 3, 2 1, 3, 3 1, 3, 1 0, 3, 2 0, 2, 0

CP 1, 3, 0 2, 15, 6 5, 15, 8 4, 10, 8 5, 14, 8 5, 11, 3 3, 8, 0 5, 9, 6 3, 4, 2 2, -2, 1 2, 6, 5 3, 0, 0 1, 11, 8

2) Comparison on Friedman-test : The Friedman-test results of Mean value

and Median value are listed in Table 6 and Table 7 respectively, in which al-

gorithms are listed in ascending order based on their ranking values (the lower

the better). Furthermore, we also separately carry out the Friedman-test of all

peer algorithms on the three types functions in terms of Mean value and Median465

value, the results of which are also listed in Table 6 and Table 7, respectively.

The statistics and the corresponding p values are shown at the bottom of the

tables.

It can be observed from Table 6 that MSPSO achieves the best comprehen-

sive performance on all the 28 test functions, followed by JADE, CoDE, and470

DMSPSO. Furthermore, DMSPSO attains the most promising performance on

the unimodal functions while DMSPSO achieves the best result on the multi-

modal and composition functions. In addition, as a variant of CLPSO, HCLP-
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Table 6: Friedman-test results on the mean results

Average

Rank
Algorithm Ranking

Unimodal Functions Multimodal Functions Composition Functions

Algorithm Ranking Algorithm Ranking Algorithm Ranking

1 MSPSO 3.70 DMSPSO 3.10 MSPSO 3.87 MSPSO 3.63

2 JADE 4.61 MSPSO 3.30 JADE 3.93 HCLPSO 4.81

3 CoDE 4.88 CMA-ES 4.20 CoDE 4.90 CoDE 5.06

4 DMSPSO 5.39 CoDE 4.50 SopPSO 5.57 DMSPSO 5.44

5 HCLPSO 6.09 JADE 5.30 HCLPSO 6.00 JADE 5.44

6 SopPSO 6.21 SADE 5.30 DMSPSO 6.13 SL SPO 6.06

7 SADE 6.52 SopPSO 7.00 SADE 7.00 SADE 6.38

8 SL PSO 7.64 SL PSO 7.50 SLPSO 7.37 SopPSO 6.94

9 SLPSO 8.80 HCLPSO 8.40 SL PSO 8.53 SSS-APSO 9.06

10 SSS-APSO 9.57 F-PSO 8.60 SSS-APSO 9.37 OLPSO 9.63

11 CMA-ES 9.59 SSS-APSO 11.00 CMA-ES 10.23 SLPSO 9.75

12 F-PSO 9.95 SLPSO 11.60 F-PSO 10.43 F-PSO 9.88

13 PSODDS 10.96 PSODDS 11.80 PSODDS 10.57 PSODDS 11.19

14 OLPSO 11.09 OLPSO 13.40 OLPSO 11.10 CMA-ES 11.75

Statistic 129.948 43.410 73.695 41.031

p value <0.001 <0.001 <0.001 <0.001

Table 7: Friedman-test results on the median results

Average

Rank
Algorithm Ranking

Unimodal Functions Multimodal Functions Composition Functions

Algorithm Ranking Algorithm Ranking Algorithm Ranking

1 JADE 4.16 DMSPSO 3.40 JADE 3.47 SL PSO 4.69

2 MSPSO 4.46 JADE 3.50 MSPSO 4.30 MSPSO 5.13

3 CoDE 5.02 MSPSO 3.90 CoDE 4.80 CoDE 5.63

4 DMSPSO 5.54 CMA-ES 4.40 SopPSO 5.63 DMSPSO 5.63

5 HCLPSO 6.59 CoDE 4.70 DMSPSO 5.87 HCLPSO 5.63

6 SADE 6.66 SADE 6.00 HCLPSO 6.20 JADE 5.88

7 SopPSO 6.84 SopPSO 7.40 SADE 6.93 SADE 6.56

8 SL PSO 7.59 SL PSO 7.50 SLPSO 7.90 CMA-ES 8.63

9 CMA-ES 8.18 F-PSO 8.10 SSS-APSO 8.87 SopPSO 8.75

10 SLPSO 8.80 HCLPSO 8.70 SL PSO 9.17 SLPSO 8.88

11 SSS-APSO 9.54 SSS-APSO 11.20 CMA-ES 9.20 F-PSO 9.00

12 F-PSO 9.61 PSODDS 11.40 F-PSO 10.43 SSS-APSO 9.75

13 PSODDS 10.88 SLPSO 11.40 PSODDS 10.73 OLPSO 10.06

14 OLPSO 11.14 OLPSO 13.40 OLPSO 10.97 PSODDS 10.81

Statistic 115.841 42.922 68.746 32.094

p value <0.001 <0.001 <0.001 0.005

SO demonstrates more favorable performance on the multimodal functions and

composition functions than that on the unimodal problems.475

The Friedman-test results in Table 7 demonstrate that JADE offers the most

favorable characteristic among all the test functions, in terms of median values,

followed by MSPSO, CoDE, and DMSPSO. Note that MSPSO performs slightly

weaker than JADE and SL PSO on the multimodal and composition functions,

respectively, although it offers the best performance on the unimodal functions.480

4.3. Time usage

The experiment of time usage of all the peer algorithms is conducted in this

section. And the results are demonstrated in Table 8. The comparison results of
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average CPU times presented at the bottom in Table 8 indicate that CMA-ES

displays the most promising performance on all the test functions, followed by485

CoDE, JADE, and SL PSO. Although MSPSO yields very promising perfor-

mance, in terms of solutions accuracy, it displays a moderate performance on

time usage. Note that 3 out of the 4 non-PSO algorithms shows more favorable

performance. From the experimental results on the 5 unimodal functions we

can see that MSPSO offers very unsatisfied results. The reason is that there490

is no local optima in these functions, which causes the detecting operator in

MSPSO to wastes too many CPU time. On the contrary, for the 8 compo-

sition functions, MSPSO yields almost the same results as OLPSO, SLPSO,

and SL PSO. The phenomenon verifies that MSPSO is more suitable for the

complicated functions.495

Table 8: Comparison of time usage. (s)

DMSPSO F-PSO OLPSO SLPSO PSODDS SL PSO HCLPSO SSS-APSO SopPSO JADE SaDE CoDE CMA-ES MSPSO

f1 21.78 19.96 11.43 16.28 24.85 11.86 27.42 18.41 16.43 11.21 37.52 10.94 9.79 16.17

f2 29.83 21.88 13.08 10.72 27.26 10.63 30.48 20.49 18.91 13.52 38.01 10.24 9.95 15.84

f3 24.00 22.73 12.73 11.51 25.30 12.61 28.11 22.73 18.76 13.82 40.53 9.72 9.96 15.79

f4 24.34 23.95 11.77 10.15 25.93 11.52 28.62 19.10 15.18 11.93 39.63 9.03 9.17 15.55

f5 18.91 22.06 11.67 13.04 25.37 11.93 27.91 18.95 15.51 10.28 38.40 9.73 8.85 14.26

f6 29.87 21.42 12.42 9.73 25.55 12.02 30.66 19.82 13.34 15.77 34.05 9.15 8.54 14.47

f7 25.46 26.96 16.89 15.26 31.32 15.10 35.95 21.89 20.06 20.10 38.81 14.41 13.23 19.18

f8 24.63 25.34 15.84 14.17 29.75 15.81 34.62 20.37 18.78 13.82 39.31 14.76 11.85 17.78

f9 52.25 58.65 47.19 47.66 64.44 44.53 73.74 51.25 48.51 46.37 67.15 33.22 36.82 45.40

f10 18.86 31.95 13.55 13.77 25.82 12.48 29.13 17.62 19.84 8.30 35.29 12.93 11.31 15.91

f11 20.20 28.06 13.99 14.16 27.10 13.11 32.69 18.26 23.62 9.34 36.07 13.66 12.89 16.62

f12 23.18 23.46 15.20 13.45 27.81 14.89 33.06 19.98 26.81 11.53 37.47 13.16 12.78 17.66

f13 24.12 23.03 15.01 13.37 29.88 14.76 31.85 19.73 24.82 11.45 40.29 13.17 12.75 17.62

f14 22.83 21.62 13.98 12.07 31.78 12.47 35.72 18.31 19.06 9.65 41.60 12.58 11.90 16.53

f15 22.97 22.07 14.27 12.59 29.67 13.94 42.92 19.06 20.32 10.66 37.45 13.45 12.19 17.50

f16 27.36 26.90 19.25 17.86 32.85 18.93 56.26 23.79 23.81 15.93 43.03 17.15 15.77 21.74

f17 18.70 20.17 12.96 10.91 24.93 12.24 43.00 17.05 16.90 8.30 35.32 10.72 9.89 15.72

f18 19.66 21.04 13.57 11.85 26.22 13.24 34.29 18.06 17.03 9.61 35.12 11.13 9.61 16.72

f19 18.71 19.40 12.35 10.05 24.28 11.56 26.06 16.33 16.73 7.69 33.45 10.29 9.38 15.23

f20 51.39 21.69 14.10 13.46 26.40 13.31 30.82 18.31 18.51 9.08 34.74 10.65 9.51 16.56

f21 28.00 28.48 21.19 21.47 34.42 20.44 33.25 25.54 25.41 17.00 42.94 18.44 17.24 23.33

f22 31.72 29.88 22.57 20.30 42.25 21.90 38.64 27.08 27.04 17.54 44.76 19.20 17.92 24.44

f23 34.77 31.15 23.97 22.69 37.94 22.54 40.21 28.50 37.45 19.02 46.59 20.46 18.25 26.22

f24 62.80 62.45 56.56 56.86 72.41 51.68 74.92 61.21 65.63 50.53 75.46 39.62 40.38 53.85

f25 64.68 63.61 57.53 56.98 70.39 53.30 77.49 62.57 63.35 52.36 83.04 40.02 43.20 55.25

f26 71.87 68.73 62.73 62.46 76.45 58.47 81.72 67.13 72.74 64.21 94.12 43.07 47.80 59.95

f27 68.23 67.15 61.69 61.38 75.99 56.41 81.81 65.90 66.79 62.57 115.28 45.37 47.38 58.32

f28 35.74 36.69 29.35 28.21 43.10 27.55 41.97 34.29 33.62 25.65 58.20 25.63 22.12 30.60

Avg. 32.75 31.80 23.10 22.23 37.12 21.76 42.26 28.28 28.75 20.62 47.99 18.28 17.87 24.79
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4.4. Efficiency of involved strategies

To measure how the three components, i.e., DNS, SRS, and PDS, affec-

t the performance of MSPSO, a series of experiments are also carried out in

this research. In the experiment, the performances of MSPSO without DNS,

SRS, and PDS are tested under the same runtime environment. The results500

are listed in Table 9, in terms of the mean and the standard deviation of the

solutions. Furthermore, the two-tailed t-test is conducted to compare the perfor-

mance between MSPSO and the other three algorithms. In Table 9, MSPSO-SP,

MSPSO-DP, and MSPSO-DS indicate removing DNS, SRS, and PDS from M-

SPSO, respectively. Note that the size of each sub-swarm in MSPSO-SP is 3.505

The results of t-test are described as “+”, “-” and “=”, which denote that M-

SPSO is significantly better than, significantly worse than, and almost the same

as the corresponding competitors, respectively.

Table 9: Performance of proposed modules

MSPSO MSPSO-DP MSPSO-DS MSPSO-SP

f1 0.00E+00±0.00E+00 6.37E-13±1.64E-13(+) 0.00E+00±0.00E+00(=) 2.27E-14±4.09E-14(+)

f2 2.20E-03±4.78E-03 1.37E-01±1.08E-01(+) 2.34E-01±1.65E-01(+) 5.58E-01±5.79E-01(+)

f3 1.21E+07±2.03E+07 1.20E+08±1.34E+08(+) 7.43E+06±7.84E+06(-) 5.47E+07±4.89E+07(+)

f4 1.79E-02±3.20E-02 9.28E-03±4.64E-03(-) 7.39E-03±7.55E-03(-) 3.56E-02±3.69E-02(+)

f5 9.21E-14±4.48E-14 6.14E-13±1.91E-13(+) 1.25E-13±2.05E-14(+) 9.09E-14±3.64E-14(=)

f6 7.20E-11±9.06E-11 1.59E+00±1.91E+00(+) 3.99E-01±7.18E-01(+) 7.97E-01±1.28E+00(+)

f7 1.28E+01±4.31E+00 6.09E+01±1.29E+01(+) 1.29E+01±4.54E+00(=) 1.67E+01±3.34E+00(+)

f8 2.09E+01±4.50E-02 2.09E+01±3.08E-02(=) 2.09E+01±5.61E-02(=) 2.09E+01±5.39E-02(=)

f9 1.18E+01±3.29E+00 3.05E+01±1.40E+00(+) 1.67E+01±3.41E+00(+) 1.83E+01±4.11E+00(+)

f10 3.30E-02±2.83E-02 3.69E-02±1.08E-02(=) 2.71E-02±1.28E-02(=) 2.88E-02±1.35E-02(=)

f11 0.00E+00±0.00E+00 2.50E-13±1.18E-13(+) 3.44e+01±6.49e+00(+) 1.14E-14±1.82E-14(+)

f12 6.24E+01±2.02E+01 1.25E+02±2.79E+01(+) 6.49E+01±1.36E+01(=) 6.10E+01±1.90E+01(=)

f13 1.24E+02±2.68E+01 1.63E+02±1.73E+01(+) 1.27E+02±2.29E+01(=) 9.95E+01±1.75E+01(-)

f14 1.21E+00±1.11E+00 2.36E+00±8.46E-01(+) 1.98E+03±2.17E+02(+) 4.65E-01±5.47E-01(-)

f15 4.07E+03±6.72E+02 4.59E+03±2.98E+02(+) 3.71E+03±3.94E+02(-) 4.10E+03±5.11E+02(=)

f16 1.28E+00±3.99E-01 1.24E+00±2.74E-01(=) 1.45E+00±3.25E-01(+) 1.27E+00±2.39E-01(=)

f17 3.06E+01±9.53E-02 1.45E+02±3.26E+01(+) 6.07E+01±4.29E+00(+) 3.05E+01±1.85E-02(-)

f18 1.26E+02±3.10E+01 1.45E+02±3.26E+01(+) 1.13E+02±1.15E+01(-) 1.24E+02±1.96E+01(=)

f19 8.58E-01±2.31E-01 1.06E+00±2.75E-01(+) 3.38E+00±7.87E-01(+) 7.86E-01±2.93E-01(=)

f20 1.05E+01±6.54E-01 1.47E+01±3.58E-01(+) 1.06E+01±3.74E-01(=) 1.08E+01±5.15E-01(+)

f21 2.73E+02±8.43E+01 2.40E+02±4.80E+01(-) 3.23E+02±7.21E+01(+) 3.47E+02±7.67E+01(+)

f22 1.01E+02±5.15E+01 1.10E+02±3.06E+00(=) 2.02E+03±4.93E+02(+) 1.20E+02±6.46E+01(=)

f23 4.28E+03±7.96E+02 4.63E+03±3.56E+02(+) 4.17E+03±4.24E+02(=) 3.33E+03±6.86E+02(-)

f24 2.28E+02±7.95E+00 2.80E+02±1.22E+01(+) 2.24E+02±5.72E+00(-) 2.38E+02±1.21E+01(+)

f25 2.60E+02±6.92E+00 3.06E+02±5.99E+00(+) 2.64E+02±6.93E+00(+) 2.68E+02±6.38E+00(+)

f26 2.10E+02±2.30E+01 2.12E+02±2.56E+01(+) 2.36E+02±5.07E+01(+) 2.51E+02±6.16E+01(+)

f27 4.47E+02±3.94E+01 1.07E+03±1.95E+01(+) 5.66E+02±1.13E+02(+) 5.91E+02±8.17E+01(+)

f28 2.74E+02±6.76E+01 2.71E+02±6.81E+01(=) 5.22E+02±3.56E+02(+) 2.80E+02±3.60E+01(=)
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It can be observed from Table 9 that MSPSO yields the best results on 12 out

of the 28 benchmark functions in terms of the mean solution accuracy, followed510

by MSPSO-DS, MSPSO-SP and MSPSO-DP.

Comparing the results yielded by MSPSO and MSPSO-DP we can see that

the former algorithm dominates the latter one on 24 out of the 28 benchmark

functions, in terms of the mean values. Moreover, the t-test results demonstrate

that MSPSO is significantly better than MSPSO-DP on 21 functions while M-515

SPSO offers almost the same performance as MSPSO-DP on 5 functions. From

the comparison results we know that SRS causes some useful information shared

among various sub-swarms plays a very positive performance for different type

problems.

The comparison results between MSPSO and MSPSO-DS also manifest that520

MSPSO has more favorable performance since it outperforms MSPSO-DS on 15

out of the 28 functions. On the contrary, MSPSO-DS dominates MSPSO only

on 5 test functions. Specifically, MSPSO-DS is significantly better than MSP-

SO on 2 out of the 5 unimodal functions as well as obtains the same result as

MSPSO on 1 unimodal problem. On the contrary, MSPSO offers more promis-525

ing characteristics than MSPSO-DS on the 15 basic multimodal functions. The

results verify that PDS is more conductive to multimodal problems than uni-

modal problems since there is no local optimal solution in unimodal problems

to disturb the search direction of the population. Thus, the PDS may waste too

many evaluations when optimizing unimodal functions. This conclusion is also530

confirmed by the comparison results between DMSPSO and MSPSO, which are

listed in Table 2 - Table 9.

From the experimental results of MSPSO and MSPSO-SP we can see that

MSPSO dominates MSPSO-SP on 14 out of the 28 test functions, including 4

unimodal functions, 5 multimodal functions, and 5 composition functions. It535

can be observed from the comparison results on the 5 unimodal functions and

15 basic multimodal functions that MSPSO has more remarkable advantages

than MSPSO-SP on the unimodal functions rather than multimodal problems.

The results also verify that the multi-swarm technique does much better in
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optimizing multimodal functions while it sacrifices performance on unimodal540

functions.

The parameter Rn is a new introduced parameter in MSPSO representing

the number of sub-regions on each dimension. To illustrate how Rn effects the

performance of MSPSO, the experimental results of MSPSO with different Rn

on the three types problems are listed in Table 10. Due to the space limitation,545

only the t-test results between Rn=10 applied in the above experiments and

other 4 values of Rn are presented in Table 10.

Table 10: t-results between Rn=10 and other 4 values of Rn on three types

problems.

Rn=3 Rn=6 Rn=15 Rn=20

Sum(+) 0, 0, 0 0, 0, 4 0, 0, 0 0, 0, 0

Sum(-) 1, 1, 0 0, 1, 1 0, 1, 1 1, 0, 1

Sum(=) 4, 14, 8 5, 14, 3 5, 14, 7 4, 15, 7

CP -1, -1, 0 0, -1,3 0, -1,-1 -1, 0, -1

The experiment on Rn indicates that the test functions are not very sensitive

to Rn. There are several reasons behind the phenomenon, which are explained

as follows. A larger Rn causes each sub-region to have a smaller space, which en-550

ables GBEST to take a finer detection. However, a larger Rn enables GBEST

to carry out more times of detecting operators before it finds out a promis-

ing sub-region since there are more sub-regions needed to be detected. On the

contrary, a smaller Rn enables GBEST to find out a proper but more coarse

sub-region after fewer detecting operators.555

From the comparison results aforementioned, several conclusions can be

drawn for the new introduced strategies: 1) DNS improves the tradeoff be-

tween population’s diversity and convergence speed to some extend; 2) SRS is

conductive to valuable information diffusion among different sub-swarms, which

is beneficial for both unimodal and multimodal functions optimization; and 3)560

PDS enhances MSPSO’S capability of escaping from local optimum, which is

in favor of multimodal functions optimization, but it sacrifices the performance

on unimodal functions since there is no local optimum needs to be detected.
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4.5. Comparison on four real-world applications

In this part, 4 real-world applications are selected to testify MSPSO’s prac-565

ticability on engineering problems, including 1) F1: parameter estimation for

frequency modulated (FM) sound waves, 2) F2: design of a gear train, 3) F3:

spread spectrum radar polly phase code design, and 4) F4: Lennard-Jones po-

tential problems. Due to the limitation of space, details of the 4 problems are

not included in this paper. One can observe it from the corresponding literatures570

[28, 57].

Parameters of each involved algorithm and experimental setup are the same

as that in the above experiments except MaxFEs is set to 150000 for each run.

The experimental results listed in Table 11 include performance metrics, i.e.,

the mean and the best values of 30 runs. Furthermore, the rank values of the575

two performance metrics, named as rank1 and rank2 respectively, are also listed

in Table 11. The average values of rank1 and rank2 are listed at the bottom of

Table 11.

From the experimental results we can see that, although majority of peer

algorithms yield at least one time of the global optimal solution on F1, SaDE580

displays more favorable performance since it obtains the global optimal solution

on all the 30 runs. Moreover, DMSPSO, PSODDS, SL PSO, and DMPSO also

manifest very promising performance on F2 for their stable and accurate solu-

tions. For the third application, CoDE achieves the best results both on the

mean and the best results, followed by SL PSO and CMA-ES. The comparison585

results on F4 indicate that MSPSO offers the most favorable performance, in

terms of the mean value. Although CMA-ES obtains the best result on F4, in

terms of the value of Rank2 followed by SopPSO, HCLPSO, DMSPSO, MSP-

SO, CoDE, and SaDE, their is no significant different among the best solutions

of them. From the average rank values we can see that SaDE offers the most590

favorable comprehensive performance, followed by MSPSO, DMSPSO, and P-

SODDS.
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Table 11: Comparison results on 4 real applications.

DMSPSO F-PSO OLPSO SLPSO PSODDS SL PSO HCLPSO SSS-APSO SopPSO JADE SaDE CoDE CMA-ES MSPSO

F1

Mean

Rank1

Best

Rank2

7.63E+00

6

0.00E+00

1

1.21E+01

11

8.42E+00

14

1.31E+01

12

1.45E-20

10

9.66E+00

8

4.74E-11

12

1.91E+01

12

0.00E+00

1

1.05e+01

9

0.00E+00

1

3.32E+00

4

0.00E+00

1

1.14e+01

10

0.00E+00

1

8.74E+00

7

0.00E+00

1

1.87E-01

2

1.05E-13

11

0.00E+00

1

0.00E+00

1

1.02E+00

3

0.00E+00

1

2.03E+01

14

8.42E+00

13

7.25E+00

5

0.00E+00

1

F2

Mean

Rank

Best

Rank2

0.00E+00

1

0.00E+00

1

2.85E-14

14

7.51E-17

14

2.85E-21

8

0.00E+00

1

1.86E-29

6

0.00E+00

1

0.00E+00

1

0.00E+00

1

0.00E+00

1

0.00E+00

1

1.49E-15

12

4.75E-21

13

9.45E-15

13

1.32E-22

12

5.18E-25

7

0.00E+00

1

2.39E-17

11

0.00E+00

1

7.67E-18

9

2.39E-29

11

1.94E-17

10

0.00E+00

1

5.91E-34

5

0.00E+00

1

0.00E+00

1

0.00E+00

1

F3

Mean

Rank

Best

Rank2

1.24E+00

9

1.01E+00

9

1.59E+00

13

1.12E+00

13

1.69E+00

14

1.21E+00

14

1.26E+00

10

1.07E+00

11

1.14E+00

6

7.89E-01

6

8.01E-01

2

5.57E-01

4

1.08E+00

5

7.59E-01

5

9.37E-01

4

5.20E-01

2

1.39E+00

12

9.92E-01

8

1.17E+00

7

1.02E+00

10

1.31E+00

11

1.11E+00

12

6.73E-01

1

5.00E-01

1

8.03E-01

3

5.36E-01

3

1.21E+00

8

8.79E-01

7

F4

Mean

Rank

Best

Rank2

-2.52E+01

6

-2.84E+01

2

-1.34E+01

12

-1.47E+01

13

-1.00E+01

14

-1.42E+01

14

-1.80E+01

11

-2.73E+01

11

-1.99E+01

8

-2.72E+01

5

-1.02E+01

13

-2.75E+01

10

-2.67E+01

2

-2.84E+01

2

-2.64E+01

4

-2.84E+01

7

-2.58E+01

5

-2.84E+01

2

-2.30E+01

7

-2.53E+01

12

-2.18E+01

8

-2.84E+01

9

-2.66E+01

3

-2.84E+01

7

-1.99E+01

10

-2.84E+01

1

-2.69E+01

1

-2.84E+01

6

Avg. Rank 4.375 13 10.875 8.75 5 5.125 5.5 6.625 5.375 7.625 7.75 3.375 6.25 3.75

5. Conclusion

This paper presents a variant of PSO named as a multi-swarm particle swarm

optimization based on dynamical topology and purposeful detecting (MSPSO).595

In MSPSO, the entire population is divided into many small-sized sub-swarms.

Furthermore, three modules, i.e., DNS, SRS and PDS, are introduced to improve

the comprehensive performance of MSPSO. The advantages of each proposed

strategy are experimentally verified by extensive experiments.

To testify MSPSO’s comprehensive performance, various experiments have600

been conducted to compare it with other 13 widely accepted EAs, including 9

PSOs, 3 DEs, and 1 ES, on CEC2013 test suite. In addition, 4 real applications

are also adopted to verify the performance of the peer algorithms. From the

experimental results, the following conclusions can be drawn. Firstly, DNS can

offset the contradiction between the exploration and exploitation of PSO to605

some extent. Secondly, SRS also has a positive effect on particles information

sharing behavior, which can improve the convergence speed for both unimodal

and multimodal functions. Lastly, PDS is favorable for multimodal functions

optimization since it can help population escape from a potential local optimum.
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 An entire population is divided into many parallel evolved sub-swarms in the 
early stage. 

 A dynamic sub-swarm number strategy (DNS) periodically reduces the number of 
sub-swarms aiming to balance the exploration and the exploitation ability. 

 A sub-swarm regrouping strategy (SRS) regrouping these sub-swarms based on 
the stagnancy information of the globally best position is adopted to enhance the 
exploitation ability. 

 A purposeful detecting strategy (PDS) relying on some historical information of 
the search process is selected to help the population to jump out of the current 
local optimum for better exploration ability. 

 The strategies proposed in this paper have general applicability. 


