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Highlights:

• We propose an architecture that combines a shallow CNN for unsupervised local feature
extraction together with statistical features that encode global characteristics of the
time series.

• We study how time series length affects the recognition accuracy and limit it up to one
second in order to enable real-time activity classification.

• We show that the proposed model outperforms the existing solutions, establishing state-
of-the-art results on both WISDM and UCI HAR datasets.

• To ensure user- and platform-independency of the model, we perform a cross-dataset
evaluation and compare its performance to the alternative approaches. We test the
solution on both desktop and mobile devices to guarantee acceptable running time.

• Finally, we make the source code of the model and the whole pipeline publicly available.
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Real-time human activity recognition from accelerometer data using
Convolutional Neural Networks

Ignatov Andrey

Swiss Federal Institute of Technology in Zurich (ETHZ)

Abstract

With a widespread of various sensors embedded in mobile devices, the analysis of human daily

activities becomes more common and straightforward. This task now arises in a range of applications

such as healthcare monitoring, fitness tracking or user-adaptive systems, where a general model

capable of instantaneous activity recognition of an arbitrary user is needed. In this paper, we

present a user-independent deep learning-based approach for online human activity classification.

We propose using Convolutional Neural Networks for local feature extraction together with simple

statistical features that preserve information about the global form of time series. Furthermore,

we investigate the impact of time series length on the recognition accuracy and limit it up to

one second that makes possible continuous real-time activity classification. The accuracy of the

proposed approach is evaluated on two commonly used WISDM and UCI datasets that contain

labeled accelerometer data from 36 and 30 users respectively, and in cross-dataset experiment. The

results show that the proposed model demonstrates state-of-the-art performance while requiring low

computational cost and no manual feature engineering.

Keywords: activity recognition, deep learning, Convolutional Neural Networks, time series

classification, feature extraction

1. Introduction

The current generation of portable mobile devices, such as smartphones, music players, smart

watches or fitness trackers incorporates a wide variety of sensors that can be used for human activity

and behavior analysis. This opens up new areas of intelligent applications that use this data for

making inferences about different aspects of human life. Among the traditional examples here are5

healthcare monitoring, life logging, fitness tracking and security applications. Another emerged and

rapidly evolving field is an unobtrusive user activity recognition in adaptive mobile applications
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that adjust their behavior and setup to the current mode of use. One common property of these

applications is that they usually need to work out of box for an arbitrary user in an arbitrary envi-

ronment, since in most cases there is no way of asking the user for training data. Another common10

challenge is a real-time activity recognition that is especially crucial for security and adaptive apps.

The task of human activity recognition can be generally divided into two main steps. The first

step is time series segmentation, and the basic approach to this problem is to use a sliding window

of a fixed length and split each time series into equal segments. The question that can arise here

is how the recognition accuracy depends on the window length, however it was not covered in15

previous works. Particularly, for WISDM dataset a sliding window of size 10 seconds was used in

all studies [1, 2, 3, 4, 5] except for [6], where an adaptive time series segmentation technique was

proposed.

The second step is to extract effective features from the obtained raw segments and then perform

their classification. This task is extremely crucial in HAR problem since the quality of the features20

primarily determines the overall system accuracy. One approach widely used in existing works

is to rely on various hand-crafted measures such spectral entropy, energy of different frequency

bands, auto-regressive and FFT coefficients, etc. Though in practice this approach often shows

good performance, it relies on domain-specific knowledge and its generalization to new data sources

and experimental setups is usually mediocre. A different approach is based on deep learning, and25

the main idea behind it is to automatically learn the required feature representation directly from

the data. Besides high accuracy and good generalization, one main advantage of this approach is

that after a deep learning model is created, it is trained in an end-to-end fashion, thus completely

removing the need of manual feature engineering.

In our problem we are dealing with quasi-periodic accelerometer time series, where the form and30

size of the periods is determined by the activity type. These periods contain essential information

about the corresponding activity and thus the structure of the considered data is primarily local.

Among different deep learning models especially attractive in this context are Convolutional Neural

Networks due to their specific architecture. CNNs learn filters that are applied to small sub-regions

of the data, and therefore they are able to capture local data patterns and their variations. This35

unsupervised feature learning is performed inherently in the convolutional layers, and the produced

features are then passed to the fully-connected layers where the classification takes place. There is

no need to train convolutional layers separately – since they contribute to the CNN’s output, they

can be optimized with a standard backpropagation algorithm, thus the CNN is trained as a whole to

minimize the overall prediction error. Additionally, due to a small number of connections and high40

parallelism the amount of computations and running time of CNNs is significantly lower compared

2
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to other deep learning algorithms. The only weakness of these networks is that they fall behind in

capturing global properties of the signal, and in this work we eliminate this problem by augmenting

CNNs with some basic statistical features that comprise these aspects of the data.

The main contributions of this paper are as follows:45

• We propose an architecture that combines a shallow CNN for unsupervised local feature ex-

traction together with statistical features that encode global characteristics of the time series.

• We study how time series length affects the recognition accuracy and limit it up to one second

in order to enable real-time activity classification.

• We show that the proposed model outperforms the existing solutions, establishing state-of-50

the-art results on both WISDM and UCI HAR datasets.

• To ensure user- and platform-independency of the model, we perform a cross-dataset evaluation

and compare its performance to the alternative approaches. We test the solution on both

desktop and mobile devices to guarantee acceptable running time.

• Finally, we make the source code of the model and the whole pipeline publicly available1.55

The rest of the paper is arranged as follows. Section 2 introduces related works on human ac-

tivity recognition and deep learning methods. Section 3 gives an overview of Convolutional Neural

Networks and presents an architecture of the proposed system. Section 4 provides the detailed exper-

imental results obtained on two HAR datasets and in cross-dataset experiment, and compares them

to the existing solutions. Section 5 gives an information about system computational performance60

and section 6 summarizes our conclusions.

2. Related work

The task of human activity recognition using smartphone’s built-in accelerometer has been well

addressed in literature. When it comes to practical applications, one challenge that arises here is

real-time classification of user activity. Though a number of papers proposed online HAR systems,65

they used recognition intervals that are generally quite long for online classification. In particular,

the existing works considered time segments of size 128 [7], 200 [2], 250 [8], 300 [9] and 512 [10],

which corresponds to interval duration of 2.56 – 10 seconds. Smaller time intervals were used

in [11], and while this work shows quite good performance, a very small private dataset obtained

1https://github.com/aiff22/HAR
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Table 1: Classification results of HAR methods proposed for WISDM and UCI datasets

Paper Dataset Method Testing technique Accuracy

[5] WISDM Handcrafted features + Random Forest Leave-one-out 83.46

[5] WISDM Handcrafted features + Dropout Leave-one-out 85.36

[5] UCI Handcrafted features + Dropout Leave-one-out 76.26

[5] UCI Handcrafted features + Random Forest Leave-one-out 77.81

[19] UCI Hidden Markov Models 21 training / 9 testing 83.51

[20] UCI Dynamic Time Warping 21 training / 9 testing 89.00

[21] UCI Handcrafted features + SVM 21 training / 9 testing 89.00

[16] UCI Convolutional Neural Network 21 training / 9 testing 90.89

[22] UCI Hidden Markov Models 21 training / 9 testing 91.76

[23] UCI PCA + SVM 21 training / 9 testing 91.82

[23] UCI Stacked Autoencoders + SVM 21 training / 9 testing 92.16

[18] UCI Hierarchical Continuous HMM 21 training / 9 testing 93.18

[17] UCI Convolutional Neural Network 21 training / 9 testing 94.79

[24] UCI Recurrent Neural Network 3
4
training / 1

4
testing 95.03

[15] UCI Convolutional Neural Network 21 training / 9 testing 95.18

[17] UCI FFT + CNN features 21 training / 9 testing 95.75

[7] UCI Handcrafted features + SVM 21 training / 9 testing 96.37

from 4 users and a limited range of activities makes its results incomparable to any existing solution.70

Furthermore, all mentioned systems were based on hand-designed features.

A different approach to feature extraction task is based on deep learning / CNNs, and several

works have been conducted to adapt it to HAR problem. The first difference between the proposed

solutions is how the input signals are treated. In [12, 13, 14] the authors were focused on using

multiple sensors and proposed to stack signals from them row-by-row into one ”sensor image” that75

is further passed to a Convolutional Neural Network. In [15], instead of dealing with a raw sensor

image, a Discrete Fourier Transform was applied to this image and the obtained features were

used for the classification. In [4, 16, 17], where human activity recognition was performed using

accelerometer data from one device, the authors learned feature maps for x-, y- and z- accelerometer

channels separately that is similar to how an RGB image is typically processed by CNN.80

The architecture of CNNs also varied among the studies. In [4] one convolutional and two

fully-connected layers were considered, in [12, 15, 14] - two and one respectively. In [16, 17, 13]

the authors have proposed even deeper architectures that consisted of three and four convolutional

layers. Though deeper architectures are theoretically able to learn more abstract features, they

4
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often lead to data overfitting and therefore an appropriate balance should be maintained here. In85

this work we will show that appropriately tuned shallow CNN can yield an accurate classification

while requiring less computational resources.

Nowadays smartphones became an integral part of our daily lives and go with us everywhere,

becoming a perfect tool for the analysis of human daily activities. For this reason we have chosen

open WISDM [25] and UCI [26] datasets for training and performance evaluation of our model.90

These datasets contain accelerometer data from Android cell phones that was collected while users

were performing a set of different activities, such as walking, jogging, stair climbing, sitting, lying

and standing.

Another advantage of these datasets is that they were already used in several research works.

For WISDM dataset all previous works developed user-specific solutions, and only [5] considered a95

user-independent model and proposed using a combination of hand-crafted features and Random

Forest or Dropout classifiers on top of them. UCI dataset has a version that is already split into

training and test sets that contain data from different participants, therefore user-independent

solution was dominant in this case. For UCI dataset, manual feature engineering was the prevailing

approach [5, 19, 20, 21, 22, 23, 7], though several deep learning methods were also proposed [15, 16,100

17, 23, 24]. In [23] Deep Boltzmann Machines were adapted for unsupervised feature extraction, and

though they are not targeted on capturing local data structure their performance was superior to the

other hand-crafted solutions. In [16] the authors used deep CNNs with three convolutional layers,

but according to the experiments this caused significant data overfitting. A better performance was

obtained with two-layered CNNs at the expense of using FFT features instead [15] or in addition [17]105

to the raw time series data. Another promising solution with low computational cost [24] is based on

Recurrent Neural Networks, though it is difficult to compare its accuracy to the previous solutions

since a custom split of the dataset into training and test parts was used. The best results for UCI

dataset were achieved using 561 hand-designed features proposed in [7] and various classifiers on

top of them. Further experimental results obtained on WISDM and UCI datasets are presented in110

the table 1.

3. Algorithms

In this section, we describe the structure of Convolutional Neural Networks and present the

system architecture proposed in this paper.

3.1 Convolutional Neural Networks. CNN is a hierarchical feed-forward neural network115

which structure is inspired by the biological visual system. Its principal difference from standard

5
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Fully
connected

6

Figure 1: The architecture of the proposed system

neural networks is that apart from fully-connected layers it has a number of convolutional layers,

where it learns filters that are sliding along the input data and applied to its sub-regions. The

overall structure of CNNs is described below:

• Convolutional layer. In one-dimensional case, a convolution between two vectors x ∈ Rn and120

f ∈ Rm is a vector c ∈ Rn−m+1, where each element ci = fTx[i:i+m−1] is computed as a scalar

product between the vector f and the corresponding subsegment of x. In other words, a vector f ,

which is also called a convolutional filter, is sliding along vector x, a dot product is computed at

each step and the obtained values form the outputs of the convolutional layer.

• Nonlinearity. To learn non-linear decision boundaries, convolutional layer is typically followed by125

non-linear activation function that is applied point-wise to its outputs. Three commonly used acti-

vation functions are sigmoidal, hyperbolic tangent and ReLU. The third one is defined as ReLU(x) =

max(0, x), which is a simple thresholding operation.

• Pooling layer. This layer usually follows a convolutional layer and its goal is to reduce and

summarize the obtained representation. Two conventional choices to do this is to take an average130

or maximum of small rectangular blocks of the data.

• Fully-connected layer. After several convolutional and max-pooling layers, the output of these

layers is flattened into a one-dimensional vector and used for the classification. At this stage ad-

ditional features can be stacked together with this vector. To learn non-linear dependencies, CNN

has one or more fully-connected layers on top of it that perform the classification.135

• Soft-max layer. Finally, the output of the last layer is passed to a soft-max layer that computes

probability distribution over the predicted classes.

6
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All mentioned layers are stacked together and form one Convolutional Neural Network, that

can be trained as a whole. One common way do this is to use a back propagation algorithm and

optimize training parameters with stochastic gradient descent.140

3.2 System Architecture. In this work, we propose a CNN architecture that is presented

in figure 1. The processing of the centered accelerometer data begins in the convolutional layer

with 196 convolutional filters that are learned in parallel to create a rich feature representation of

the data. The size of each filter is 1 × 16, and the step of the convolution is 1. Then, after ReLU

function is applied to the resulting 196 feature maps, max-pooling of size 1 × 4 is used to reduce145

feature representation by 4 times. The output of the max-pooling layer is then flattened and stacked

together with additional statistical features: mean, variance, sum of the absolute values and the

histogram of each input data channel. The joint vector is subsequently passed to a fully-connected

layer that consists of 1024 neurons. We use a dropout technique in this layer with dropout rate 0.05

to avoid overfitting. Finally, the outputs of the fully-connected layer are passed to a soft-max layer150

that computes probability distribution over six activity classes. The model is trained to minimize

cross-entropy loss function which is augmented with l2-norm regularization of CNN weights. The

parameters of the network are optimized with Adam [27] modification of stochastic gradient descent

using backpropagation algorithm to compute the gradients.

4. Experiments and evaluation155

To evaluate the performance of the proposed model, we carried out a set of experiments described

in this section. Experiments were performed on WISDM [25] and UCI [26] datasets that contain

accelerometer time series data obtained from Android smartphones. These data were collected from

36 and 30 different users respectively while they were performing a specific set of six activities:
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Table 2: Classification results on WISDM dataset for recognition interval of size 50

Activity type Basic features + RF PCA + RF Segments + KNN CNN + stat. features

Jogging 94.03 93.64 86.49 97.58

Walking 80.64 88.08 89.23 97.05

Upstairs 62.38 57.57 51.45 62.89

Downstairs 42.87 25.28 30.94 76.68

Sitting 84.97 81.96 73.95 82.32

Standing 94.28 91.42 93.45 95.71

Overall 79.85 79.86 77.76 90.42

walking, jogging, stair climbing, sitting, lying and standing. The results obtained on these datasets160

are summarized in the following sections.

4.1. WISDM dataset

The only work that developed a user-independent solution for this dataset is [5], where leave-

one-out validation technique was applied to test the model. Using this technique for performance

evaluation of CNN is rather computationally expensive, and therefore we decided to split this dataset165

into training part with data from users 1-26 and test part with data from the rest 10 users. Our

preliminary experiments have shown that the number and the users used in the training dataset

greatly affect the recognition accuracy, and after trying several different splits we have chosen one

with the highest test error to see to what extent CNN will improve the results in this case.

To establish some baseline results we have implemented three different methods for HAR problem170

and applied them to this dataset. The first method was based on 40 statistical features described

in [2] and Random Forest classifier (RF) on top of them. The second method used 26 features that

were generated using PCA analysis, and the third one was based on the plain accelerometer time

Table 3: Classification results on WISDM dataset for recognition interval of size 200

Activity type Basic features + RF PCA + RF Segments + KNN CNN + stat. features

Jogging 94.72 95.99 72.38 97.87

Walking 83.56 87.71 85.88 98.50

Upstairs 66.67 29.19 12.42 72.22

Downstairs 49.82 14.97 2.72 87.00

Sitting 82.47 82.47 74.23 82.63

Standing 95.76 61.18 96.47 93.33

Overall 82.66 75.28 66.19 93.32

8
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Table 4: Classification results on UCI dataset for recognition intervals of size 50 and 128

Activity type CNN + stat. features, intervals of size 50 CNN + stat. features, intervals of size 128

Accuracy F1-score Accuracy F1-score

Walking 92.71 94.90 99.40 99.60

Upstairs 97.31 95.95 100.00 99.47

Downstairs 96.63 95.41 98.81 99.04

Sitting 86.24 89.23 90.04 93.61

Standing 93.49 90.77 98.20 94.71

Lying 99.66 99.83 100.00 99.82

Overall 94.35 94.29 97.63 97.62

series classification using k-nearest neighbor method.

The first question that we were interested in was how the size of the recognition interval affects175

the performance of the classifiers. For this purpose we varied this size between 20 and 200 (1 and

10 seconds respectively) with a step size of 20, and for each value the accuracy of all methods was

estimated. The results of this experiment are presented in figure 2, and they reveal two interesting

findings. The first one is that larger segments do not necessarily lead to better recognition results.

While the increase of the recognition interval from 20 to 40 – 60 gains significant performance boost180

for all methods, its further growth introduces only moderate improvements for CNN and Random

Forest, whereas the accuracy of PCA- and KNN-based methods degrades. Since the conventional

segment length for this dataset is 200, it may be reasonable considering smaller recognition intervals

along with the standard one. Secondly, CNN demonstrates a strong advantage over the baseline

methods for all segment lengths.185

The detailed classification results for recognition intervals of size 50 and 200 are presented in

tables 2 and 3 respectively. As one can see, CNN achieves an accuracy of 90.42% and 93.32%,

outperforming the baselines (p-value < 0.0001) by more than 10% in both cases. These results are

Table 5: UCI classification results for various data preprocessing approaches

Method Accuracy, %

CNN + stat. features + data centering 97.63

CNN + stat. features 96.06

CNN + stat. features + data normalization 95.48

CNN 95.31

CNN + data centering 92.35

CNN + data normalization 90.77

9
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convolutional filters

also 1.5% higher (p-value = 0.0009) compared to the original paper [2] that develops a user-specific

model for this dataset. Per-class analysis shows that CNN introduces considerable improvements190

for the first four dynamic activities, while the results for static activities are comparable to the

baselines. The reason for this is that the local shape of accelerometer time series corresponding

to sitting and standing activities is very similar, therefore learned convolutional filters cannot add

much information to statistical features.

4.2. UCI dataset195

The next set of experiments was conducted on UCI dataset using the same setup as in the

previous section. A conventional partition of the dataset into training and test sets was used unless

stated otherwise. The summary of the obtained results for recognition intervals of size 50 and 128

(1s and 2.56s respectively) is presented in table 4. For 2.56s segments – the standard for this dataset,

– the proposed CNN demonstrates an accuracy of 97.63%, thus outperforming (p-value = 0.0156) by200

1.2% all previously proposed solutions including [7], where 561 complex hand-designed features were

proposed. With a decrease of interval size to 1 second, which allows nearly instantaneous activity

classification, the accuracy lowers to 94.35% that is still in the line with other CNN-based methods.

We have additionally performed a 10-fold user-based cross validation to explore the variability
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of results on this dataset. The accuracy was ranging between 95.54% and 99.54% with an average205

value of 97.47% and a standard deviation of 1.17%, which is close to what was observed on the

conventional test subset. It should be noted that this subset was used to measure the results

reported in table 1, except for work [5] that also applied a cross-validation technique.

4.3. CNN analysis

To analyze how the proposed combination of CNN with statistical features and how various data210

preprocessing mechanisms influence the classification results, we applied standard and augmented

CNNs to plain, centered and normalized accelerometer data. Table 5 shows the results of this

experiment. The conventional CNN without any data preprocessing demonstrates an accuracy of

95.31%, and performing time series centering or normalization leads in this case to a significant

performance drop. While the structure of accelerometer time series is mainly local, the global form215

of these signals also contains an important information about the activities, which is irretrievably

lost during data preprocessing, causing worse results. In particular, this explains an unusually low

CNN’s accuracy in [16], where the authors performed time series normalization. Augmenting CNN

with statistical features enhances its performance by 0.7%, and performing data centering leads to

a further dramatic increase by 1.5%. The explanation of this effect is that time series centering220
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standardize the input data, making the task for CNN easier, while statistical features preserve all

the lost information. Data normalization does not help in this situation since it significantly distorts

time series shape, removing magnitude information which is critical for activities differentiation.

In addition, we have analyzed how CNN structural parameters affect the classification results.

For this purpose we varied the number and size of the convolutional filters, the number of neurons225

in the hidden layer and the dropout rate to estimate CNN performance in each case. The results

are presented in figures 3 – 6. It can be observed that the accuracy is notably improved when the

number of neurons and filters is increased to 32 and 64 respectively, while further growth causes only

marginal improvements. Particularly, a tiny CNN that consists of 64 convolutional filters and 32

neurons has demonstrated an accuracy of 96.62% on this dataset, which is only 1% lower compared230

to the larger best-performing network. But using considerably smaller amount of filters will not

give sufficient results, that is also supported by [15] – despite having two convolutional layers, the

proposed CNN consisted of only 5 and 10 convolutional filters, which resulted in 95.18% accuracy.

As for the size of the convolutional filters, the network is not very sensitive to this parameter:

while the best accuracy was obtained for filters of size 16, the accuracy does not drop significantly235

till this size becomes smaller than 4 or greater than 30. Another crucial parameter of CNN is

the dropout rate. According to 6, its extreme values between 0.04 and 0.1 turned to be the most

efficient in this task, yielding a performance improvement of 1.5%. We should also note that neither

increasing the number of convolutional layers (97.35%) nor the number of fully-connected layers

(97.11%) gave better results – while theoretically this can give higher performance, in this task240

the network just starts to overfit the data, and additional regularization only leads to a drop in

the accuracy. Changing ReLU activation function to hyperbolic tangent or sigmoid did not lead

to improvements too – 97.26% and 97.33%, respectively. Though the proposed network does not

suffer from the gradient vanishing problem, ReLU gives two main benefits in our case. First, its

Table 6: Classification results for cross-dataset experiment

Activity type Basic features + RF PCA + RF Segments + KNN CNN + stat. features

Walking 50.86 31.08 29.22 84.17

Upstairs 35.55 61.27 44.51 62.45

Downstairs 17.26 0.00 16.61 77.89

Sitting 25.83 96.82 92.62 91.25

Standing 91.84 0.00 7.93 88.45

Overall 46.56 38.26 38.47 82.76

Throughput, segments
s

6700 8900 223 149600

12
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constant non-vanishing gradient leads to significantly faster learning – the accuracy of 96.9% on UCI245

dataset is achieved after 3K iterations, while for sigmoid function this takes almost 26K iterations.

Additionally, ReLU function is known to be less prone to overfitting since it induces the sparsity in

the hidden units, which in our case results in slightly better accuracy compared to other activations.

4.4. Cross-dataset evaluation

To test the generalization ability of the proposed solution, a cross-dataset evaluation was per-250

formed: WISDM dataset was used for training the model and UCI dataset for testing. Apart from

data centering, accelerometer signals from UCI dataset were additionally divided by 10 to ensure

the same range of variability. The classification results for this experiment are presented in table 6.

As can be expected, baseline methods have shown a mediocre performance since they rely on

features that are quite sensitive to variations of the signal form. They were able to determine255

whether the activity is passive (sitting, standing) or active (walking, stair climbing), but inside each

class the results were almost random. Whereas CNN learns features that are in general invariant

to signal scaling and small distortions, it has demonstrated substantially better results – 82.16% of

correct predictions, therefore outperforming the baselines not only in this cross-dataset experiment,

but also on the pure WISDM dataset (table 3).260

5. Computational performance

Convolutional Neural Networks have a highly parallelizable architecture, therefore they can

perform data classification in a very efficient way. To estimate the exact velocity of the proposed

solution, we used a pre-trained CNN for continuous time series classification and measured the

throughput of the system. We have additionally measured the throughput of three alternative265

techniques described in previous sections. All algorithms were running on a machine with Intel

Xeon E5-2640 v3 8-Core CPU and Nvidia Titan X GPU. The results are presented in table 6 and

they show the number of segments classified per second for each method. It can be observed that

the performance of CNN is significantly higher compared to other solutions – the throughput almost

reaches 150 thousand segments per second, while in other cases it is less than 10 thousand. The270

difference can be explained as following: during the prediction phase all operations performed by

CNN can be written in terms of matrix multiplications and simple thresholding operations that can

be parallelized on GPUs very efficiently, thus utilizing the full power of thousands CUDA cores of

the graphics card. Other methods are based on non-matrix operations, and though some solutions

for accelerating their performance were proposed in the literature [28, 29], all current common275

implementations rely on CPU only.
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Since Tensorflow machine learning library that was used for our CNN implementation is available

for mobile devices, we have additionally tested the proposed solution in the wild – on a mid-range

Nexus 5X Android smartphone. The architecture of the application was the following. The mea-

surements from smartphone accelerometer and gyroscope were sampled at the rate 50Hz similarly280

to [26], and the last 128 values for each channel were stored in a queue. A CNN pretrained on

UCI dataset was embedded into the system and continuously performed time series classification:

each time the previous prediction was finished, the last 128 values were taken again from the queue,

centered and together with statistical features passed to the CNN for a new inference. The system

was able to classify about 28 samples per second, which should be enough for real-time activity285

recognition where the predictions are updated 1-5 times/s. The throughput of mobile system is sig-

nificantly lower compared to the results observed on the server, since in this case all computations

were performed on a low-power phone CPU which performance is incomparable to both server CPUs

and high-end GPUs. However, we should note that for devices equipped with the latest generation

of Snapdragon mobile SoCs these results should be noticeably increased since they support GPU290

acceleration for Tensorflow models.

6. Conclusion

In this paper we proposed a solution for user-independent human activity recognition problem

that is based on Convolutional Neural Networks augmented with statistical features that embrace

global properties of the accelerometer time series. It has the benefits of using short recognition295

intervals of size up to 1 second and requiring almost no feature engineering and data preprocessing.

Due to a relatively shallow architecture, the proposed algorithm has a small running time and can

be efficiently executed on mobile devices in real time.

To evaluate the performance of the considered approach we tested it on two popular WISDM

and UCI HAR datasets. The obtained results demonstrate that the proposed CNN-based model300

significantly outperforms baseline approaches and establishes state-of-the-art results in both cases.

The cross-dataset experiment has further emphasized a platform-independent architecture that can

be applied not only to different users, but to devices with different accelerometer calibrations.
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