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a b s t r a c t 

The set of Pareto nondominated solutions obtained in some practical cases of multiobjective optimization 

problems can be huge, rendering decision making difficult. Applying Lorenz dominance instead of Pareto 

dominance during the optimization process can help to alleviate this difficulty. Lorenz dominance is a 

refinement of Pareto dominance that integrates fairness in multiobjective optimization when objectives 

are considered equal and can help select only the well located solutions. By introducing a partial order 

among a set of Pareto-nondominated solutions, Lorenz dominance reduces the size of the nondominated 

front by keeping only fair solutions. In this work, we investigate the use of the infinite order Lorenz 

dominance within three new methods to solve a practical case of the multiobjective knapsack problem, 

which involves elaborating efficient action plans in social and medico-social structures. We assess the 

proposed methods on large problem instances with up to 8 objectives and 500 candidate actions and 

show their effectiveness in comparison with four leading reference algorithms. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

We are interested in a practical action planning problem in

ocial and medico-social structures in France. This problem is a

ritical step to increase the efficiency of social and medico-social

tructures. Since the French law No. 2002-2 renovating social and

edico-social actions, the social and medico-social sector has

een experiencing fast evolutions due to several reasons ( The Min-

stry of Social Affairs and Health, 2012 ). First, this law considers

ctions (e.g., planning, resource allocation, structure evaluation

nd coordination) as a fundamental basis for the management of

hese structures. Second, the services offered by these structures

more than 34 0 0 0 in 2017) become more and more diverse,

omplexifying the task of action planning. Third, the decline of

udgets allocated to the structures in recent years, on the one

and, and the increase of aging population, on the other hand,

ush decision makers of these structures to find suitable ways

o optimize their financial, human and material resources. So,

ecision makers are now faced to a challenging task of elaborating

fficient multiobjective action plans with strong constraints like
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 tight budget. Even if the social and medico-social sector is

ncreasingly computerized in recent years, the use of computing

ystems is often limited to daily managing tasks and there is

o true decision support system able to assist the managers to

ake the best choices for the short-term and long-term action

lans. In the context of resource restriction and lack of advanced

ptimization tools, decision making becomes extremely difficult. In

his work, we present a multiobjective decision support system to

ssist managers to optimize their action plans. This work is a part

f the ”MSQualité” toolkit developed by the company GePI , 1 which

s specialized in the social and medico-social sector in France. 

The action planning problem involves elaborating optimized ac-

ion plans in order to improve the overall management efficiency

f a structure and its quality of service (social and medico-social

tructures should elaborate at least one action plan every five

ears). The aim is to identify a subset of actions among many

andidate actions while optimizing many objectives and satisfying

ome imperative constraints (e.g., limited budget). Each action has

 realization cost and can influence, positively or negatively, some

r all the objectives. The global cost of the final solution (i.e., an

ction plan) should not exceed a predefined budget. Also, a thresh-

ld constraint could be added to each objective indicating the min-

mal objective value that a solution must attain. 
1 http://www.gepi-conseil.com 
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As we explain in Section 2 , the action planning problem can

be considered as a practical case of the multiobjective knapsack

problem (MOKP), where actions represent items (objects) to be

added in a knapsack constrained by its capacity (i.e., budget) while

optimizing the given objectives. In the practical setting, we may

need to consider up to eight objectives simultaneously. The lit-

erature offers, in addition to the Indicator-based methods dis-

cussed in Section 3.2 , a large number of general methods for solv-

ing multiple and many objective optimization problems including

the MOKP ( Alves and Almeida, 2007; Barichard and Hao, 2003;

Bazgan et al., 2009; Deb, 2001; Deb and Jain, 2014; Jaszkiewicz,

20 02, 20 04; Wang et al., 2015; Zhang and Li, 2007; Zitzler and

Thiele, 1999 ). Among these methods, MOEA/D ( Ishibuchi et al.,

2015; Zhang and Li, 2007 ), MOGLS ( Ishibuchi and Murata, 1998;

Jaszkiewicz, 2001 ), and PICEA ( Wang et al., 2015 ) are known to be

relevant and strong representative methods. Considering the spe-

cific features of our practical action planning problem, our previ-

ous study ( Chabane et al., 2017 ) focused on using the Indicator-

based Multiobjective Local Search (IBMOLS) algorithm ( Basseur and

Burke, 2007; Basseur et al., 2012 ) combined with the R 2 indica-

tor ( Brockhoff et al., 2012 ). Indeed, compared to many evolution-

ary multiobjective methods, IBMOLS has several interesting char-

acteristics that make it suitable for our action planning problem.

First, contrary to methods employing the Pareto dominance rela-

tion for solution assessment, IBMOLS uses a quality indicator for

fitness assignment, and as such does not require any specific diver-

sity preservation mechanism. Second, the decision maker can in-

clude preferences in the indicator definition to guide the search to

generate relevant solutions for the decision maker. Third, IBMOLS

requires only a small number of parameters (i.e., three), making it

easy to use in the practical setting. Finally, as a population-based

local search algorithm, IBMOLS is particular suitable for large-scale

problems and has shown its capacity of solving different multiob-

jective problems (see Chabane et al., 2017 for application exam-

ples). 

The study of Chabane et al. (2017) showed that IBMOLS coupled

with R 2 performs well for the considered action planning problem

even on large size problem instances (up to 8 objectives and 500

actions). Also, the R 2 indicator offers two ways for the decision

maker to incorporate preferences easily: a reference point and a

set of weight vectors. Indeed, we can use the position of the ref-

erence point and the weight vector directions of the R 2 indicator

to shrink the search space and guide the search process towards

regions of interest in the objective space ( Chabane et al., 2017 ).

However, the R 2-IBMOLS method suffers from two inconveniences

for its use in practice: i) the number of nondominated solutions

it generates can be very high (several thousands for a large size

instance), making it difficult for the decision maker to choose the

solution to be implemented; ii) the average runtime of R 2-IBMOLS

can become very high since it critically depends on the number of

weight vectors of the R 2 indicator being consider ed. Moreover, in

the practical setting, the objectives of the action plan could have

the same importance for the decision maker. In such a case, ob-

taining equitable solutions becomes, for the decision maker, as im-

portant as the optimization of the action plan. Unfortunately, this

aspect is not considered in the R 2-IBMOLS method. In this work,

we aim to mitigate these problems and improve the R 2-IBMOLS

method in order to: 

• generate only equitable nondominated solutions of the Pareto

front by disqualifying unfair solutions. 
• reduce the number of nondominated solutions generated by the

method. 
• reduce the runtime of the method. 

The ultimate goal is to develop a decision support system to

assiss managers of social and medico-social structures to elaborate
ffectively efficient action plans to continually improve the quality

f their structures. We summarize the contributions of the work as

ollows. 

First, we investigate three new methods relying on the in-

nite Lorenz dominance principle ( Golden and Perny, 2010 ) to

ake into account fairness during the optimization process. We

how that by using Lorenz dominance (L-dominance for short)

ithin R 2-IBMOLS, instead of Pareto dominance (P-dominance for

hort), we can significantly reduce the number of nondominated

olutions and the runtime, without sacrificing efficiency. Indeed,

-dominance (also called equitable dominance) is a refinement

f P-dominance, which considers only the well located solutions

nd leads to a reduced set of nondominated solutions (a Lorenz-

ptimal front) by selecting only the most equitable solutions. By

well located solutions”, we mean the closest solutions to the

eference point when decision maker’s preferences are given and

he solutions located in the center of the objective space when all

he objective have the same importance. Indeed, in this study we

onsider two cases: (i) the decision maker has some preferences

bout the importance of the objectives. These preferences are ex-

ressed by the placement of the reference point in the objective

pace. In this case, the best solutions are those that are the clos-

st to the reference point. (ii) The objectives have the same im-

ortance for the decision maker, in which case the best solutions

re those guaranteeing equity of the objectives. These solutions

re those situated in the center of the objective space ( Fig. 2 of

ection 6.2 shows such an example). 

Second, the methods investigated in this work are integrated

n the MSQualité toolkit, which provides the decision maker of a

ocial and medico-social structure with an useful decision support

ool to optimize their action plans. 

Finally, one notices that studies related to fair optimization with

-dominance are limited compared to the huge body of research

n Pareto optimization. This work comes to enrich the field of fair

ptimization while the proposed techniques can be advantageously

ntegrated into other multiobjective optimization methods such as

hose mentioned above. 

The remainder of the paper is organized as follow.

ection 2 presents a formal model of the action planning

roblem. Section 3 recalls basic definitions about multiobjec-

ive optimization, the binary indicator search principle and the

BMOLS algorithm. Section 4 introduces the Lorenz dominance

rinciple and related studies. Section 5 is dedicated to the pro-

osed L-dominance based algorithms for the considered problem.

ection 6 shows computational results, followed by concluding

omments and perspectives. 

. Action plan optimization problem 

This section presents the action plan optimization problem and

ives a mathematical formulation of the problem. More details can

e found in Chabane et al. (2017) . 

The action plan optimization problem studied in this work is a

ractical case of the MOKP, which is a well-known mathematical

odel with many applications. As mentioned in Section 1 , since

he law No. 2002-2, social and medico-social structures in France

re constrained to continuously elaborate improvement projects.

hey should carry out at least one self-assessment every 5 years

nd one external assessment (assessment done by a person outside

he structure) every 7 years. This assessment aims to evaluate the

perating structure, its improvement project and the quality of ser-

ice offered to the persons entering in the structure. At the end of

he evaluation process, recommendations are given to the decision

aker to elaborate a new project for the next period. For the new

roject, the decision maker defines the objectives to achieve, the

esources to use, the constraints and the action plan to implement.
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2

he origins of the actions are either issued from existing action

lans in the structure or other similar structures, or are decided by

he managers for continuous improvements. The objectives can be

iverse, namely qualitative (such as ”improve resident’s quality of

ife”) or quantitative (such as ”increase the resident’s autonomy”).

sually, structures do not have the required resources (especially

he budget) to realize all feasible and desirable actions. Thus, de-

ision makers must choose, within the available budget, a set of

ctions in order to maximize the overall quality of the structure

hile attaining the predefined objectives of the project.We note

hat, in the real case, we may need to consider up to eight ob-

ectives. 

An action plan p can be defined as a subset of actions se-

ected among a set of candidate actions A , in order to optimize

 set F of conflicting objectives. p can be represented by a vec-

or p = (a 1 , a 2 , . . . , a n ) with n equal to the size of A. a i = 1 if the

ction a i is selected to be implemented with the action plan and

 i = 0 otherwise. The set of the possible action plans (solutions) is

enoted by P . Each objective is represented by a function f j that

ssociates to every action a i ∈ A its impact on the objective j . The

mpact that an action plan p = (a 1 , a 2 , . . . , a n ) ∈ { 0 , 1 } n has on an

bjective j is obtained by: 

f j (p) = 

n ∑ 

i =1 

a i f j (a i ) (1)

An objective j could have a constraint c j determining the min-

mal threshold accepted for f j , this value is fixed by the decision

aker. In this work, we consider that all the objectives must be

mproved (i.e., f j ( p ) ≥ c j > 0). 

An additional constraint concerns the realization cost W of the

olution that can not exceed some budget β fixed by the decision

aker. Indeed, each action a i has a realization cost ω i which can

ake negative values since there may be actions with negative cost

hen it is about selling of objects or services for instance. Actions

ith no cost are also to be taken into account. The global cost of a

olution p corresponds to the following cost sum of the actions of

 : 

W (p) = 

∑ n 
i =1 a i ω i 

W (p) ≤ β
(2) 

o, the optimization goal aims to find p ∗ ∈ arg max p∈ P F(p) verify-

ng: 
 

 

 

p ∗ ∈ { 0 , 1 } n 
∀ j ∈ { 1 , m } , f j (p ∗) ≥ c j ∑ n 

i =1 a i ω i ≤ β

(3) 

However, p ∗ is not unique since we deal with a multiobjective

ase. Instead, we obtain a set of nondominated solutions whose

ize could be huge and increases with the problem size and the

umber of objectives. So, it is important in practice to approximate

nly the optimal solutions that are the most interesting ones for

he decision maker. 

. Binary quality indicator based multiobjective optimization 

This section is dedicated to the optimization with binary quality

ndicators. First, we introduce the binary quality indicator principle

ollowed by a focus on the R 2 indicator. Then, we present the IB-

OLS ( Basseur and Burke, 2007 ) and R 2-IBMOLS ( Chabane et al.,

017 ) methods, which are the base of two of the three proposed

ethods in this work. Before describing the binary quality indica-

or, we give some useful definitions. 

Let X denote the decision space of a general optimiza-

ion problem, Y the corresponding objective space, and m

he number of objective functions f , f , . . . , f m 

that assign to
1 2 
ach decision vector x ∈ X a corresponding objective vector y =
 f 1 (x ) , f 2 (x ) , . . . , f m 

(x ) } ∈ Y . We consider through this section that

he m objective functions have to be minimized. 

efinition 1. The Pareto dominance relation on objective vectors

f Y is defined for all y, z by: y ≺P z ⇐⇒ [ ∀ j ∈ { 1 , . . . , m } , y j ≤ z j 

nd ∃ k ∈ { 1 , . . . , m } , y k < z k ] 

The relation y ≺P z means that, according to the P-dominance

elation ≺P , the corresponding solution x 2 to the vector z is P-

ominated by the corresponding solution x 1 to the vector y ( x 1 is

preferable to” or ”better than” x 2 ). 

efinition 2. x ∈ X is said to be Pareto optimal (P-optimal for

hort) if and only if it does not exist another solution x ′ ∈ X domi-

ating x . 

The P-optimal set denoted by X P contains all the P-optimal so-

utions. The image f ( x ) of a P-optimal solution x in the objec-

ive space Y is called a Pareto-nondominated point . The image Y P =
f (X P ) of the P-optimal set X P in Y is called the Pareto front . Finding

he real Pareto front is not an easy task, especially on large size

roblems, but approximating this front is usually possible, particu-

arly with metaheuristics. 

.1. Binary quality indicator 

The concept of binary quality indicators ( Zitzler and Kün-

li, 2004 ) is a natural extension of the P-dominance relation on

ets of objective vectors. To quantify the difference in quality be-

ween two approximation sets A and B in the space of Pareto set

pproximations �, a function I : � × � −→ R assigns to a pair

f approximation sets a real value quantifying their difference in

uality. The function I can also be used to compare one approx-

mation set A against a fixed reference (e.g., the set of P-optimal

olutions). In this case, I represents a unary quality indicator that

ssigns to each approximation set a real number representing its

istance to the reference which has to be minimized. Thus, the op-

imization goal is transformed to the identification of a set of ap-

roximations that minimizes I . Moreover, a quality indicator could

e used to evaluate the difference in quality of two single solu-

ions or a single solution against a population of solutions. This

valuation is usually used in the selection process of evolutionary

lgorithms. Indeed, during the selection process, the solution for

eletion from the population should be the one with the worst

alue of the indicator being used with respect to the rest of the

opulation. 

Furthermore, in real word applications, the decision maker is

ot interested by all nondominated solutions since usually the fi-

al decision concerns a unique solution or a small number of solu-

ions. So, several methods integrating decision maker preferences

ere developed ( Bechikh et al., 2015; Wang et al., 2015 ). In ad-

ition to being an effective means for the optimization process,

he quality indicator could be defined by the decision maker, ac-

ording to his (her) preferences. There are several quality indica-

ors in the literature, such as Epsilon indicator ( Zitzler and Kün-

li, 2004 ), Hypervolume indicator ( Lacour et al., 2017; Zitzler and

hiele, 1999 ) and R 2 indicator ( Brockhoff et al., 2012 ). As men-

ioned in Section 1 , the R 2 indicator is interesting because it offers

wo mechanisms to integrate decision maker preferences: a refer-

nce point and a set of weight vectors. Brockhoff et al. showed

n Wagner et al. (2013) that the optimal distribution of the solu-

ions can be affected by moving the reference point, restricting the

eight space or skewing the weight vectors distribution. The R 2

ndicator is defined below (for more details about the R 2 indica-

or and its properties, see Brockhoff et al., 2012; Brockhoff et al.,

014 ). 
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∀ y, z ∈ Y, y ≺ z ⇔ L ( y ) ≺ L ( z ). 
The R indicator family is based on utility functions which map

a vector � y ∈ R m to a scalar utility value u ∈ R for assessing the rela-

tive quality of two Pareto front approximation sets ( Brockhoff et al.,

2012 ). 

Definition 3. For a discrete and finite set U of utility functions, a

uniform distribution p over U , and a reference set R , the R 2 indica-

tor value of a Pareto set approximation A is defined by: 

R 2(R, A, U ) = 

1 

| U | 
∑ 

u ∈ U 

(
max 

r∈ R 
{ u (r) } − max 

a ∈ A 
{ u (a ) } 

)
(4)

When R is constant, the R 2 indicator can be defined as a unary

indicator: 

R 2(A, U) = − 1 

| U| 
∑ 

u ∈ U 
max 

a ∈ A 
{ u (a ) } (5)

We use, throughout this paper, the standard weighted Tcheby-

cheff function u (z) = u λ( � z ) = − max j∈{ 1 , ... ,m } λ j | z ∗j − z j | within the

R 2 indicator as defined in Eq. (5) , where λ = (λ1 , . . . , λm 

) ∈ � is a

given weight vector and z ∗ is an utopian point. 

3.2. Indicator-based multiobjective local search (IBMOLS) 

Since the publication of the indicator-based evolutionary al-

gorithm (IBEA) proposed by Zitzler and Künzli (2004) , the use

of indicator-based algorithms in evolutionary multiobjective op-

timization field is continuously increasing. Several methods and

studies using quality indicators were proposed. Among them, we

mention the following studies: an EMO algorithm using the hy-

pervolume measure as selection criterion ( Emmerich et al., 2005 ),

improving hypervolume-based EMO algorithms by using objective

reduction methods ( Brockhoff and Zitzler, 2007 ), the HypE algo-

rithm ( Bader and Zitzler, 2011 ), R 2-IBEA ( Phan and Suzuki, 2013 ),

R 2-EMOA ( Trautmann et al., 2013 ) and R 2 indicator-based multi-

objective search ( Brockhoff et al., 2014 ). More recently, a simple

and fast hypervolume indicator-based multiobjective evolutionary

algorithm (FV-MOEA) was presented in Jiang et al. (2015) . A R 2-

based multiobjective particle swarm optimizer ( R 2-MOPSO) was

introduced in Li et al. (2015) . 

IBMOLS ( Basseur and Burke, 2007 ) is another multiobjective al-

gorithm combining a quality indicator and a local search mech-

anism. Indeed, local search is known to be efficient for many

real-world applications, especially on large-scale problems. How-

ever, most of these algorithms are usually based either on the P-

dominance relation or on aggregation methods. By contrast, IB-

MOLS uses the quality indicator principle for the fitness assign-

ment without requiring any specific diversity preservation mecha-

nism (this aspect should be considered in the indicator definition).

Moreover, IBMOLS presents two main advantages: (i) a fixed popu-

lation size is used during the local search enabling the algorithm to

find multiple nondominated solutions in a single run, without any

specific mechanism dedicated to control the number of nondom-

inated solutions (problem encountered with the classical Pareto-

based multiobjective local search ( Paquete and Stützle, 2004 )); (ii)

IBMOLS requires only a small number of parameters: the popula-

tion size and the quality indicator. 

In Chabane et al. (2017) , the IBMOLS approach is combined with

the ε and R 2 indicators to solve the multiobjective action plan

problem and assessed on simulated data with 50 to 500 actions

and 2 to 8 objectives. It was showed that R 2-IBMOLS is efficient

to solve the action plan optimization problem. Unfortunately, R 2-

IBMOLS is time consuming, especially on the large instances, and

can generate a high number of solutions, which makes it difficult

to use in practice. In this paper, we show that by fixing the size of

R 2-IBMOLS archive and using L-dominance instead of P-dominance
o select the solutions to be archived, we obtain high-quality com-

romises on the one hand, and reduce the runtime and the num-

er of generated nondominated solutions, on the other hand. Also,

e propose two other alternative L-dominance-based algorithms to

olve the problem with objectives having the same importance. 

. Lorenz dominance 

The notion of Lorenz dominance (L-dominance) was first pro-

osed in economics to measure the inequalities in income dis-

ributions. Then, in recent years, some L-dominance-based ap-

roaches integrating the concept of equity were proposed in the

ultiobjective optimization field (we talk about fair optimization).

-dominance refines P-dominance by selecting only the well lo-

ated solutions. Moreover, the set of P-optimal solutions obtained

n some multiobjective problems can be huge, making it difficult

or the decision maker to evaluate the alternative choices. Apply-

ng L-dominance instead of P-dominance would be a suitable ap-

roach to alleviate this problem. L-dominance introduces a par-

ial order relation among P-nondominated solutions to reduce the

ize of the output. Fig. 1 shows, for one solution y of a mini-

ization problem, the difference between P-dominated area and

-dominated area (gray color). Since the resulting search space

s reduced by the (Pigou-Dalton) transfer principle and the Lorenz

ransformation operated on the objective vectors ( Definitions 5 and

 below), L-dominance allows finding more efficient and well lo-

ated solutions than P-dominance. This fact is well described in

ugardin et al. (2010) . 

As reported in Golden and Perny (2010) , in order to choose be-

ween two nondominated solutions, we have to define a preference

elation � on cost vectors, such that y � z means that the corre-

ponding solution to the cost vector y is preferable to the corre-

ponding solution to the cost vector z . Also, to formalize the fact

hat all the objectives are treated equivalently, we define the fol-

owing axiom: 

efinition 4. For a cost vector y ∈ Y and any permutation π of {1,...

m}, ( y π(1) , . . . , y π(m ) ) ∼ ( y 1 , . . . , y m 

), where ∼ is the indifference

elation defined as the symmetric part of � . 

Furthermore, fair optimization should satisfy the (Pigou-Dalton)

ransfer principle ( Sen, 1973 ) which states that a transfer of any

mall amount from one cost vector to any other relatively worse-

ff, while preserving the mean of the costs, could produce more

istributed cost vector. As a property of the preference relation � ,

he transfer principle is defined by the following axiom: 

efinition 5. For a cost vector y ∈ Y such that y i > y j and for all

such that 0 < ε < y i − y j , y − εe i + εe j ≺ y where e i and e j are

espectively the i th and the j th unit vectors. 

For example, y = (7 , 3 , 4) and z = (5 , 3 , 6) are both P-

ondominated vectors, but the transfer principle implies that z is

referable to y ( z � y ) because there exists a transfer of size ε = 2

o pass from z to y . 

In order to identify those vectors that can be compared using

he transfer principle, we recall the definition of the generalized

orenz vector , on which L-dominance is based. 

efinition 6. For any cost vector y ∈ Y , the generalized Lorenz vec-

or of y is the vector L (y ) = (y 1 , y 1 + y 2 , . . . , y 1 + y 2 + . . . + y m 

) ,

here y 1 ≥ y 2 ≥ . . . ≥ y m 

represent the components of y sorted in

on-increasing order. The j th component of L ( y ) is L (y ) = 

∑ j 
i =1 

y i . 

Now, the generalized L-dominance is defined as follow: 

efinition 7. The L-dominance relation is defined by: 
L P 
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Fig. 1. P-dominated area (left). L-dominated area (right). 

Fig. 2. Target region of the bi-objective space (gray area). 
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.1. State of the art on Lorenz dominance based optimization 

Lorenz dominance was defined in Kostreva and

gryczak (1999b) to solve the linear multiple criteria opti-

ization problem, and then was applied to location problems

 Kostreva and Ogryczak, 1999a; Ogryczak, 20 0 0a ) and portfolio

ptimization problem ( Ogryczak, 20 0 0b ). L-dominance was also

pplied to multiobjective optimization as we review below. 

Kostreva et al. (2004) used ordered weighted averaging aggre-

ations to derive equitably efficient solutions to both linear and

onlinear multiobjective problems. Perny et al. (2006) introduced a

ormal framework to define robustness in combinatorial problems

sing L-dominance to compare solutions according to multiple sce-

arios. They also proposed a new approach to find Lorenz-efficient

olutions for two robust optimization problems and introduced,

ithin L-dominance, the ordered weighted average as an axiomat-

cally founded measure of robustness. Dugardin et al. (2010) used

-dominance with NSGA-II ( Deb et al., 2002 ) in an algorithm

alled L-NSGA-II and assessed its performance against other al-

orithms. Golden and Perny (2010) introduced the notion of infi-

ite order Lorenz dominance (IOLD) and showed that, using an or-

ered weighted average, it is possible to formulate the search of

ondominated solutions as a single-objective optimization prob-

em. Our work is based on IOLD, so we provide more description

f this notion in the next section. Moghaddam et al. (2011) ap-

lied L-dominance to an adapted bi-objective simulated anneal-

ng algorithm (to solve a single machine scheduling problem)

nd showed significant improvements over a Pareto-based mul-

iobjective simulated annealing algorithm. More recently, Galand

nd Lust (2015) proposed an adaptation of the classic two-phase
ethod to generate Lorenz optimal solutions and evaluated exper-

mentally their method on two bi-objective problems. 

.2. Infinite order Lorenz dominance (IOLD) 

When two objective vectors y and z cannot be compared in

erms of P-dominance, we perform the corresponding generalized

orenz vectors L ( y ) and L ( z ) and compare instead L ( y ) to L ( z ). But,

here may be no P-dominance between L ( y ) and L ( z ). In this case,

he indetermination might be solved by comparing L 2 (y ) = L (L (y ))

o L 2 (z) = L (L (z)) . To reduce the incomparability, this process can

e iterated to higher levels. Golden and Perny (2010) introduced

he k th order Lorenz vector L k ( y ) defined as follows: 

 

k (y ) = 

{
y i f k = 0 

L (L k −1 (y )) i f k ≥ 1 

(6) 

nd the k th order L-dominance is defined by: 

 y, z ∈ Y, y ≺k 
L z ⇔ L k (y ) ≺P L k (z) (7)

From these two last definitions, the authors defined a strict in-

nite order dominance (strict L ∞ -dominance) as follows: 

∞ 

L = 

⋃ 

k ≥1 

≺k 
L (8) 

nd proposed Algorithm 1 to compute ≺∞ 

L 
for any two vectors y, z .

lgorithm 1 Strict L ∞ -dominance. 

y ′ ← y 

z ′ ← z

while not( y ′ ≺P z ′ or z ′ ≺P y ′ ) do 

y ′ ← L (y ′ ) 
z ′ ← L (z ′ ) 

end while 

if ( y ′ ≺P z ′ ) then 

y ≺∞ 

L z 

end if 

if ( z ′ ≺P y ′ ) then 

z ≺∞ 

L 
y 

end if 

Algorithm 1 tries to select between vectors that are not dis-

riminated by L-dominance. However, nothing proves that it ter-

inates for any pair of vectors. To solve this problem, Perny and

olden formulated the search of nondominated solutions as a

ingle-objective optimization problem and provided a direct math-

matical definition of L ∞ -dominance ( Definition 8 ), making possi-

le the comparison of any pair of vectors. 
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Algorithm 2 IOLD − R 2 -IBMOLS algorithm. 

Input : P (initial population of size N), T (size of the archive) 

Output : E (approximation set ( | E| ≤ T )) 

E ← − infiniteOrderLorenzNonDominatedSolutions( P, T ) 

/* Compute fitness values of individual x in P */ 

for all x ∈ P do 

f it(x ) = R 2(P, �, z ∗) − R 2(P \{ x } , �, z ∗) 
end for

/* Local search step */ 

for all x ∈ P do 

for all j ∈ { 1 , ., m } do 

updateMinMax( j) /* Update minimal m j and maximal M j (for 

objective functions normalization) */ 

end for

repeat 

x ∗ ← − one unexplored neighbor of x 

P ← − P ∪ x ∗

f it(x ∗) = R 2(P, �, z ∗) − R 2(P \{ x ∗} , �, z ∗) /* Compute x ∗ fit- 

ness */ 

Update all z ∈ P fitness values 

w ← − the worst individual in P 

remove w from P 

Update all z ∈ P fitness values 

until all neighbors are explored or w � = x ∗

end for

E ← − infiniteOrderLorenzNonDominatedSolutions( E ∪ P, T ) 

if E does not change then 

return E 

else 

perform another local search step 

end if 
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Definition 8. The strict L ∞ -dominance has a strict numerical rep-

resentation using the following ordered weighted average: 

W(y ) = 

m ∑ 

k =1 

sin 

(
(m + 1 − k ) π

2 m + 1 

)
y k (9)

This representation is given by the following property: ∀ y, z ∈
, y ≺∞ 

L z ⇐⇒ W(y ) < W(z) (see the proof of this property and Eq.

(9) in Golden and Perny (2010) ). 

Now, to compare any pair of vectors y and z according to a

strict L ∞ -dominance, it is not necessary to run Algorithm 1 , we

have just to compute and compare W (y ) and W (z) . When W (y ) � =
W(z) , the vector having the smallest score for W strictly L ∞ -

dominates the other. Hence, Algorithm 1 would stop after a suf-

ficiently large number of iterations. And when W(y ) = W(z) , there

is no strict dominance at any order of L-dominance application,

and Algorithm 1 would never terminates in this case. 

Eq. (9) presents two main advantages. First, it is easy to inte-

grate W into an evolutionary algorithm. Indeed, with few param-

eters, it makes it possible to select individuals at a high level of

comparison, and detect dominance relation, even when the differ-

ence is minimal between individuals. Second, using W in the se-

lection process of an evolutionary algorithm significantly reduces

the runtime of the algorithm, because it is no more necessary to

check the dominance between the individuals of the population.

Dominance verification is directly integrated in the definition of

the equation. 

5. Proposed approaches 

In this section, we use the strict L ∞ -dominance within three

new algorithms dedicated to solve the action plan optimiza-

tion problem. Nevertheless, ideas presented here could be easily

adapted to solve other problems. 

In the following, P denotes the current population of solutions

and it is assumed that objective values of all solutions are normal-

ized. To achieve this, the minimum m j and maximum M j values of

each objective function f j in the population P are computed first: {
m j = min x ∈ P ( f j (x )) 
M j = max x ∈ P ( f j (x )) 

(10)

Then each objective function j of each individual x of P is nor-

malized as follows: 

NF j (x ) = 

f j (x ) − m j 

M j − m j 

(11)

where NF j ( x ) is the normalized j th objective function of the indi-

vidual x . 

Note that extreme values are updated after each local search

step and only when a new solution is introduced in the current

population. Each time the maximum value M j or the minimum

value m j is changed for some objective function j , the normalized

objective values of each solution x ∈ P is updated. 

5.1. The IOLD-R2-IBMOLS algorithm 

The IOLD − R 2 -IBMOLS algorithm ( Algorithm 2 ) combines the

performance of R 2-IBMOLS ( Chabane et al., 2017 ), which offers two

means to integrate decision maker preferences (reference point

and set of weight vectors), with the infinite order Lorenz domi-

nance that allows a comparison between nondominated solutions

at a high level of L-dominance (see Section 4.2 ). 

The algorithm begins by selecting nondominated solu-

tions of a given initial population P . For this, we use the

infinite Orde rLor enzN onDo mina tedS olut ions function (having two

parameters P and T ). According to the values of W for all solutions
f P , this function selects, at most, the T first L-nondominated

olutions of P (see Algorithm 3 ). To select the closest solutions to

lgorithm 3 infiniteOrderLorenzNonDominatedSolutions( P, T ) pro-

edure. 

Input : P (set of solutions); T (number of L-nondominated solutions to

be selected) 

Output : S (set of L-nondominated solutions ( | S| ≤ T )) 

for all x ∈ P do 

Compute W(x ) 

end for

Sort solutions of P in increasing order of W values /* for maximization

problem, sort in non-increasing order */ 

S ′ ← − T first solutions in P 

S ← − L-nondominated solutions in S ′ 

he reference point, W is used with the same weights as those

sed to fix the reference point (these weights are given by the

ecision maker). The parameter T allows the decision maker to

ontrol the number of solutions stored in the archive and the

umber of solutions returned by the algorithm. In this work, we

se the same value of T for both, but one could use two different

alues. After that, the fitness of each solution x in P is evaluated

s follows. 

 2(x, �, z ∗) = R 2(P, �, z ∗) − R 2(P \{ x } , �, z ∗) (12)

Then, the IOLD − R 2 -IBMOLS algorithm applies a local search

tep to improve each solution x in P . A neighbor is accepted if

ts R 2 indicator value is better than the worst solution in P . The

eighborhood generation stops when the entire neighborhood of

 considered solution is explored or once an improving solution

s found (first neighboring solution that improves the quality of
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Algorithm 5 IOLD-BMOLS algorithm. 

Input : P (initial population of size N); T (size of the archive) 

Output : E (Pareto approximation set ( | E| ≤ T )) 

E ← − infiniteOrderLorenzNonDominatedSolutions( P, T ) 

/* Calculate fitness values of individual x in P */ 

for all x ∈ P do 

f it(x ) = W(x ) 

end for

/* Local search step */ 

for all x ∈ P do 

for all j ∈ { 1 , ., m } do 

updateMinMax( j) /* Update minimal m j and maximal M j (for 

objective functions normalization)*/ 

end for

repeat 

x ∗ ← − one unexplored neighbor of x 

P ← − P ∪ x ∗

f it(x ∗) = W(x ∗) /* Compute x ∗ fitness */ 

w ← − the worst individual in P /* Individual with the smallest 

value of W */ 

remove w from P 

until all neighbors are explored or w � = x ∗

end for

E ← − infiniteOrderLorenzNonDominatedSolutions( E ∪ P, T ) 

if E does not change then 

return E 

else 

perform another local search step 

end if 
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 with respect to the R 2 indicator). The neighborhood is not ex-

lored entirely for seeking the best neighbor for two main reasons:

) it often enables to speed up the convergence of the population,

ince most of the time only a small part of the neighborhood is

enerated. ii) Contrary to the selection of the best neighbor which

eads to more deterministic local search steps, the selection of a

rst improving move allows us to reach different local optima (in

he sense of multiobjective optimization) from a single initial so-

ution. The entire local search is terminated when the archive E of

-nondominated solutions has not received any new solution dur-

ng a complete local search step. We note that the extreme objec-

ive values within the population are computed after the initializa-

ion process as well as after each local search step. To compute the

 2 indicator value of a solution x , the normalized values of objec-

ive functions NF j ( x ) are employed. Moreover, all fitness values of

embers of current population P are updated after every change

f P (when a new neighbor is added to P and when an individual

s deleted from P ). 

The main difference between IOLD − R 2 -IBMOLS and R 2-

BMOLS is the introduction of the infiniteOrderLorenzNonDominat-

dSolutions function ( Algorithm 3 ). Indeed, on the one hand, this

unction allows us to reduce the number of nondominated solu-

ions to be presented to the decision maker by introducing the pa-

ameter T , ensuring that the selected solutions are the most prefer-

ble (with the use of W). On the other hand, fixing the size of the

rchive allows reducing significantly the algorithm runtime, which

s shown in the next section. 

In the iterated version of IOLD − R 2 -IBMOLS ( Algorithm 4 ), a

lgorithm 4 Iterated IOLD − R 2 -IBMOLS algorithm. 

Input : N (population size) ; T (size of the archive) 

Output : AS (approximation set) 

AS ← − ∅ 

while stopping condition not achieved do 

P ← − initW alk (AS, N) 

E ← − IOLD − R 2 -IBMOLS (P, T ) /* Local search step */ 

AS ← − in f initeOrderLorenzNonDominatedSolutions (AS ∪ E, T ) 

end while 

Return AS 

urrent approximation set AS is maintained and updated. After

ach local search, a new initial population is created for the next

OLD − R 2 -IBMOLS execution, using the initWalk function. 

Even if the initial population is entirely created randomly for

he first iteration, when we iterate the local search process, the

nitWalk function generates a new population P for the next iter-

tion using information about good solutions obtained during the

revious iterations. Indeed, the initWalk function applies random

utations on N randomly selected solutions of AS (each solution

f AS can only be selected at most once). To each selected solu-

ion, the mutation is applied with a probability of 1/ n (where n is

he number of actions) and the mutated solution is added to the

opulation if it is not present in the population and if it addition-

lly verifies the budget constraint β and the objective thresholds.

hen | AS | < N , all solutions of AS are selected and the missing in-

ividuals of P are filled with new random solutions. 

.2. The IOLD-BMOLS algorithm 

As mentioned in Section 4.2 , we can use Eq. (9) to compare two

olutions x 1 and x 2 at high level of L-dominance and the solution

aving the smallest score (the highest in the maximization case)

or W is preferable to the other one. So, in the IOLD -BMOLS al-

orithm ( Algorithm 5 ), we use W to compute the fitness of each

olution x of the current population P , which is also applied in the

election process. 
Like IOLD − R 2 -IBMOL S, IOLD -BMOL S uses the

nfinite Ordr edLo renz NonD omin ated Solu tions function ( Algorithm 3 ) 

o select all nondominated solutions of a given initial population

 . Then it computes the fitness of each solution x in P with

he formula of W given in Eq. (9) . A local search step is ap-

lied in IOLD -BMOLS, like in IOLD − R 2 -IBMOLS, except that the

orst individual from the population P is chosen for deletion. In

OLD − R 2 -IBMOLS, the worst individual is selected in relation to

ts value of the R 2 indicator, but in IOLD -BMOLS, the R 2 indicator

s replaced with W, so the worst individual is selected in relation

o its W score. 

IOLD -BMOLS has also an iterated version ( Algorithm 6 ) with a

lgorithm 6 Iterated IOLD -BMOLS algorithm. 

Input : N (population size) ; T (size of the archive) 

Output : AS (approximation set) 

AS ← − ∅ 

while stopping condition not achieved do 

P ← − initW alk (AS, N) 

E ← − IOLD -BMOLS (P, T ) /* Local search step */ 

AS ← − in f initeOrderLorenzNonDominatedSolutions (AS ∪ E, T ) 

end while 

Return AS 

imilar structure to the iterated version of IOLD − R 2 -IBMOLS. We

ust replace IOLD − R 2 -IBMOL S by IOLD -BMOL S for the local search

tep. 

.3. The IOLD-EA algorithm 

We now propose to use W in the selection process of an IOLD -

ased evolutionary algorithm called: IOLD -EA ( Algorithm 7 ). The

ormula W is used to compute the fitness of the solutions in the

opulation P and to select the members of the next generation.
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Table 1 

Summary of the studied algorithms. 

Method Description 

IOLD − R 2 -IBMOLS IOLD-R2-IBMOLS combines R2-IBMOLS and infinite Orde rLor enzN onDo mina tedS olut ions function ( Algorithm 3 ). One iteration of 

IOLD − R 2 -IBMOLS is composed of: - one iteration of R2-IBMOLS. - selection of the T first L-nondominated solutions generated by the 

iteration of R2-IBMOLS. This selection is mad according to the value of each solution for the metric W . In the iterated version of 

IOLD-R2-IBMOLS only the T first L-nondominated solutions are archived. 

IOLD -BMOLS In the IOLD -BMOLS algorithm, the R 2 indicator of R 2-IBMOLS is replaced with the formula W to compute the fitness of each solution x of the 

current population P . W is also used in the selection process. In the iterated version of IOLD -BMOLS, only the T first L-nondominated 

solutions are archived. 

IOLD -EA In IOLD -EA, the formula W is used to compute the fitness of the solutions in the population P and to select the members of the next 

generation of IOLD -EA algorithm. IOLD -EA has three parameters: an initial population P of size N , a given number of generations to perform 

nbGen , and a number of solutions to return to the decision maker T . The T first L-nondominated solutions to return to the decision maker 

are selected also according to their values for W . 

Algorithm 7 IOLD-EA algorithm. 

1: Input : P (initial population of size N), nbGen (number of genera- 

tions) 

2: Output : E (Pareto approximation set) 

3: t = 1 

4: P t = P 

5: while t ≤ nbGen do 

6: Q t = child( P t ) 

7: R t = P t ∪ Q t 

8: for all x ∈ R t do 

9: f it(x ) = W(x ) 

10: end for

11: t = t + 1 

12: P t ← − infiniteOrdredLorenzSelection( R t , N) 

13: end while 

14: E ← − infiniteOrdredLorenzSelection( P t , T ) 
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2 These instances are available at: http://www.info.univ-angers.fr/ ∼hao/ 

gepiplanning/R2-IBMOLS.zip 
Indeed, contrary to evolutionary algorithms based on calculation

of P-dominance in the selection process, like NSGA-II ( Deb et al.,

2002 ) and NSGA-III ( Deb and Jain, 2014 ), which could be runtime

expensive (especially on large size problems), the use of W in the

selection process allows us to reduce significantly the runtime of

the algorithm (since we do not need to check the dominance be-

tween the individuals of the population). 

IOLD -EA has three parameters: an initial population P of size N ,

a given number of generations to perform nbGen , and a number

of solutions to return to the decision maker T . Then, for a given

t th generation and a parent population P t , the function child(P t )

creates an offspring population Q t of N individuals, by recombina-

tion and mutation of P t . The formula W is used to compute the

fitness of each individual of the combined parents and offspring

population R t = P t ∪ Q t (of size 2 N ). To construct the new popu-

lation P t+1 , the infiniteOrdredLorenzSelection function ( Algorithm 3 )

selects the N best individuals of R t according to their computed

scores for W . In the end, the infiniteOrderLorenzNonDominatedSolu-

tions function returns to the decision maker the T best solutions

of the last population P nbGen . A detailed description of IOLD -EA is

outlined in Algorithm 7 . 

A summary of the proposed algorithms is given in Table 1 . 

6. Experimental setup 

In this section, we present a set of experiments allowing

a comparison of the results obtained with the proposed algo-

rithms ( IOLD − R 2 -IBMOL S, IOLD -BMOL S and IOLD -EA) with four

reference methods: L-NSGA-II ( Dugardin et al., 2010 ), NSGA-III

( Deb and Jain, 2014 ), R 2-IBMOLS ( Chabane et al., 2017 ) and

MOEA/D ( Zhang and Li, 2007 ). With these experiments, we aim

to show that including L-dominance within a multiobjective algo-

rithm allows us to obtain high quality solutions while guaranteeing

fairness between objectives. Moreover, the simplicity of the IOLD
ormulation ( Eq. (9) ) makes it easy to use for the fitness assess-

ent of multiobjective local search algorithms such as IBMOLS as

ell as in the selection process of an evolutionary multiobjective

lgorithm. 

L-NSGA-II ( Dugardin et al., 2010 ) is a L-dominance based ver-

ion of the well-known NSGA-II algorithm ( Deb et al., 2002 ) al-

orithm. The main difference between them is the use of L-

ominance in the fast nondominated sorting procedure of NSGA-

I. NSGA-III (or many-objective NSGA-II) ( Deb and Jain, 2014 ) re-

ains similar to the original NSGA-II algorithm with significant

hanges in its selection mechanism. The maintenance of diver-

ity among population members in NSGA-III is aided by supplying

nd adaptively updating a number of well-spread reference points,

hereas NSGA-II uses a crowding distance operator to select the

olutions of the last front that maximizes its diversity. In NSGA-III,

he crowding operator is replaced by a reference point based ap-

roach (for more details, see Deb and Jain, 2014 ). Finally, MOEA/D

 Zhang and Li, 2007 ) decomposes a multiobjective optimization

roblem into several scalar optimization subproblems, which are

imultaneously optimized by using information from their neigh-

oring subproblems. In Ishibuchi et al. (2015) , it is shown that

OEA/D with the weighted sum approach also works well on the

any-objective knapsack problem. 

.1. Instances generation 

Based on the action plan optimization model given in

ection 2 and a study of ten real action plans, we have generated

everal partially structured instances 2 with different number of ac-

ions, n ∈ {50, 100, 150, 250, 500} and different number of objec-

ives to optimize, m = 2 , 3 , 4 , 5 , 6 , 8 . In our experiments, we limited

he number of the objectives to eight because in practical cases we

ave rarely more. To design instances that are similar to the real

ction plans, for each objective function, an action has a chance of

0% to be neutral, 40% to have a positive impact and 10% to have

 negative impact. Moreover, the cost of 40% of the actions is set

o zero. The non-null action values are uniformly taken from the

nterval [0,100] (positively or negatively). The non-null action costs

re uniformly taken in the interval [ −10 4 , 10 4 ] . 

.2. Experimental protocol 

Using the instances proposed above, we have tested IOLD −
 2 -IBMOL S, IOLD -BMOL S, IOLD -EA, R 2-IBMOL S, L-NSGA-II, NSGA-

II and MOEA/D with the following parameters: for L-NSGA-II,

SGA-III, IOLD -EA and MOEA/D, we have used a population of

ize of 100, a mutation probability of 1/ n (where n is the num-

er of the actions). For IOLD − R 2 -IBMOL S, IOLD -BMOL S and R 2-

BMOLS we have used the iterative version with a fixed popu-

http://www.info.univ-angers.fr/~hao/gepiplanning/R2-IBMOLS.zip


B. Chabane, M. Basseur and J.-K. Hao / Computers and Operations Research 104 (2019) 1–14 9 

l  

t  

i  

a  

r  

i  

e  

o  

A

p

 

d  

l  

I  

B  

e  

 

t  

o  

i  

t  

a

R  

p  

f  

t  

a

 

a  

t  

u  

t  

o  

w  

e  

g  

a  

i  

g  

r  

I  

fi  

t  

o  

n  

t

 

m  

c  

I  

I  

t  

p  

f

6

 

t  

v  

p  

E  

M  

j  

4  

o

 

I  

t  

o  

t  

B  

b  

o  

F  

I  

o  

s  

n

 

r  

d  

t  

o  

I  

I  

s  

t  

p  

i  

o

R  

i  

m  

o  

i  

m  

b  

o  

t  

s  

f  

u  

t  

b  

b  

2

 

r  

f  

m  
ation of size of 10. The choice of a population size of 10 solu-

ions in our experiments is based on the recommendation given

n Basseur et al. (2012) that IBMOLS performs well especially with

 small population (no more than 15 individuals). For each algo-

ithm, the initial population is generated randomly while satisfy-

ng the following constraints: (i) the costs of the individuals do not

xceed the budget β; (ii) each individual x should improve all the

bjectives ( f j (x ) > 0 ∀ j ∈ { 1 , . . . , m } ). Algorithm 8 shows the initial

lgorithm 8 Initial population generation. 

1: Input : N (population size), β (budget) 

2: Output : P (initial population) 

3: P = ∅ 

4: while | P | < N do 

5: x = randomSolution() 

6: while cost( x ) > β do 

7: x = x less one random action with positive cost 

8: end while 

9: for each objective function f j do 

10: while f j (x ) ≤ 0 do 

11: x = x less one random action with negative value for f j 
12: end while 

13: end for

14: P = P ∪ { x } 
15: end while 

16: Return P 

opulation generation procedure. 

Moreover, the following selection strategy is adopted: one ran-

om neighbor of each individual of the current population is se-

ected to be a member of the child population in L-NSGA-II, NSGA-

I and IOLD -EA or to integrate the current population of IOLD -

MOLS, IOLD − R 2 -IBMOLS and R 2-IBMOLS. The neighborhood gen-

ration remains unchanged: the i th neighbor of the solution x =
(a 1 , a 2 , . . . , a n ) is obtained by flipping the value of a i and only

he neighbors verifying the constraint β and the objective thresh-

lds are considered as candidate (when the cost of the neighbor

s greater than β , another neighbor is generated). For all instances,

he budget constraint β is fixed to one million and the thresholds

re fixed to 1 ( c j ≥ 1 ∀ j ∈ { 1 , . . . , m } ). 
To compute the R 2 indicator value of each solution x of IOLD −

 2 -IBMOL S and R 2-IBMOL S, Eq. (12) is used with the reference

oint z ∗ = (2 , 2 , . . . , 2) and 100 weight vectors ( | �| = 100 ), uni-

ormly distributed in the objective space. The same weight vec-

ors are used in the MOEA/D algorithm with the weighted sum

pproach. 

To generate these vectors, we have used the hypervolume-based

lgorithm proposed in Phan and Suzuki (2013) . This algorithm uses

he hypervolume indicator to produce weight vectors so that they

niformly disperse and maximize their hypervolume in the objec-

ive space. This method is interesting because it does not depend

n the dimension of the objective space and works in the same

ay for both low-dimensional and high-dimensional spaces. How-

ver, this method can be time consuming if the weight vectors are

enerated at each iteration. In our experiments, the weight vectors

re generated once and remain the same throughout each exper-

ment. Also, in Phan and Suzuki (2013) , the first weight vector is

enerated randomly, in our experiments it is fixed according the

eference point. The reference point z ∗ is also used within NSGA-

II. We note that the reference points of NSGA-III could be prede-

ned in a structured manner or supplied by a decision maker and

heir number could be large. In ours experiments, we are focusing

n the region of objective space given by z ∗ ( Fig. 2 ). We have fi-

ally fixed the parameter T of IOLD -BMOLS, IOLD − R 2 -IBMOLS and

he neighborhood size of MOEA/D to 10. 
For the quality assessment, we have performed 30 runs of each

ethod on each instance. The stopping condition for each run

orresponds to 200 ∗n ∗m steps of local search for IOLD -BMOLS,

OLD − R 2 -IBMOL S and R 2-IBMOL S and 200 ∗n ∗m generations for

OLD -EA, L-NSGA-II and NSGA-III (where n is the number of ac-

ions and m is the number of objectives). The experiments were

erformed on an Intel core i5-2400 CPU machine with 2 x 3.10Ghz

requency and 16Gb of RAM. 

.3. Computational results 

In this section, we present the experimental results obtained on

he simulated data with the experimental protocol described pre-

iously. Figs. 3 and 4 show approximation sets obtained with the

roposed algorithms ( IOLD -BMOLS, IOLD − R 2 -IBMOLS and IOLD -

A) over 30 runs compared to NSGA-III, L-NSGA-II, R 2-IBMOLS and

OEA/D on three representative instances: an instance with 2 ob-

ectives and 50 or 500 actions ( Fig. 3 ) and another instance with

 objectives and 500 actions ( Fig. 4 ). Each plot of Fig. 4 shows the

btained results for two objectives. 

These figures show that the solutions obtained by IOLD -BMOLS,

OLD − R 2 -IBMOLS and IOLD -EA are nondominated by those ob-

ained by NSGA-III, L-NSGA-II, R 2-IBMOLS or MOEA/D. More-

ver, according to the preferred direction (gray arrow) given by

he reference point z ∗ = (2 , ., 2) , the solutions obtained by IOLD -

MOLS, IOLD − R 2 -IBMOLS and IOLD -EA are better located in the

i-objective space of Fig. 3 and, also better located for three out

f four objectives of Fig. 4 . Indeed, on the 4 th objective ( f 4 in

ig. 4 ), R 2-IBMOLS obtained better solutions than IOLD -BMOLS,

OLD − R 2 -IBMOLS and IOLD -EA. Also, we note that the blue surface

f Fig. 4 is wide because R 2-IBMOLS generates more nondominated

olutions than the other algorithms (the archive of R 2-IBMOLS was

ot limited in our experiments). 

As our performance metric, we use the Euclidean distance from

eference point z ∗ applied to the obtained approximation sets. In-

eed, in our experiments, we target the central region of the objec-

ive space. This targeting is given by the equality of the component

f the reference point z ∗ = (2 , 2 , . . . , 2) of R 2-IBMOLS, IOLD − R 2 -

BMOLS and NSGA-III and by the L-dominance relation used in

OLD -EA, IOLD -BMOLS. So, the best approximations are formed by

olutions that are the nearest to the reference point. To measure

he distance of the whole approximation sets from the reference

oint, we have computed the minimal, the median and the max-

mal distances from the reference point to the approximation sets

btained by each algorithm. 

Tables 2–4 report the comparison between IOLD -BMOLS, IOLD −
 2 -IBMOLS, IOLD -EA, NSGA-III, L-NSGA-II, R 2-IBMOLS and MOEA/D

n terms of mean values obtained for minimal, median and maxi-

al Euclidean distances over 30 runs, using the set of 30 instances

f different sizes (approximation set with a smaller distance value

s better). The first column shows the instance name, indicating its

ain characteristics: m and n respectively correspond to the num-

er of objectives and the number of actions considered. Each cell

f the table contains the mean value for the corresponding dis-

ance over 30 runs. The values in bold style mean that the corre-

ponding algorithm is better in average than the other algorithms

or the considered instance and corresponding distance. The val-

es in italic style indicate that the corresponding algorithm is bet-

er than the algorithm corresponding to the values in normal style,

ut it is worse than the algorithm corresponding to the values in

old style, for the corresponding instance and distance (i.e., the

 nd best algorithm). 

Using the non-parametric Mann–Whitney test and the Bonfer-

oni correction to adjust the individual significance levels, we per-

orm a pair-wise comparison of the algorithms for the obtained

inimal, median and maximal distances. We obtain the p –value
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Fig. 3. Obtained solutions by the tested algorithms for the instances 2–50 (left) and 2–500 (right). 

Fig. 4. Obtained solutions by the tested algorithms for the instance 4–500. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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corresponding to the lowest significance level for which the null-

hypothesis is rejected. In our experiments, we say that algorithm

A 1 outperforms algorithm A 2 if the Mann–Whitney test provides a

confidence level greater than 95% ( p –value ≤ 0.05). Table 5 reports

the obtained results for each pair of algorithms. Cells containing

“ yes” means that the algorithm in the corresponding line is sta-

tistically better than the algorithm in the correspond column. Cells

containing “no” means that the algorithm in the corresponding line

is not statistically better than the algorithm in the correspond col-

umn. 

From Tables 2–5 , we can conclude that IOLD -BMOLS, IOLD -EA

and IOLD − R 2 -IBMOLS are more efficient than NSGA-III, L-NSGA-
I, R 2-IBMOLS and MOEA/D. Tables 2–4 show that, in general, the

olutions obtained by IOLD -BMOLS, IOLD − R 2 -IBMOLS, IOLD -EA are

loser to the specified region. For example, if we consider the min-

mal distance to the reference point ( Table 2 ), R 2-IBMOLS obtains

est scores only for 4 instances ( ′′ 2 _ 50 ′′ , ′′ 2 _ 100 ′′ , ′′ 2 _ 250 ′′ and
′ 4 _ 100 ′′ ) and L-NSGA-II obtains best scores just for three instances

 

′′ 2 _ 150 ′′ , ′′ 3 _ 250 ′′ and 

′′ 6 _ 50 ′′ ). NSGA-III obtains no best score at

ll and it is less efficient than MOEA/D, which is consistent with

he finding in Ishibuchi et al. (2017) about the weak convergence

bility of this algorithm on many objective problems. Considering

ur proposed algorithms, Table 2 also shows that IOLD -EA is more

fficient than IOLD -BMOLS and IOLD − R 2 -IBMOLS. This conclusion
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Table 2 

Mean of the minimal Euclidean distances from the approximation sets to the reference point z ∗ . 

Instance IOLD -BMOLS IOLD − R 2 -IBMOLS IOLD -EA NSGA-III L-NSGA-II R 2 -IBMOLS MOEA/D 

2_50 2.096 2.050 1.999 2.080 2.049 1.912 2.072 

2_100 2.111 2.078 2.090 2.109 2.018 2.003 2.053 

2_150 2.118 2.080 2.087 2.140 1.911 1.937 2.134 

2_250 2.120 2.104 2.097 2.142 2.034 1.991 2.141 

2_500 2.119 2.097 2.009 2.155 2.097 2.032 2.173 

3_50 2.531 2.394 2.469 2.729 2.540 2.567 2.631 

3_100 2.389 2.459 2.413 2.774 2.493 2.521 2.714 

3_150 2.552 2.377 2.449 2.734 2.486 2.579 2.682 

3_250 2.476 2.472 2.516 2.825 2.462 2.697 2.729 

3_500 2.481 2.482 2.400 2.672 2.429 2.656 2.652 

4_50 2.864 2.849 2.669 3.351 2.981 2.992 3.113 

4_100 2.910 2.884 2.784 3.452 3.101 2.768 2.924 

4_150 2.805 2.895 2.737 3.353 2.763 3.035 3.118 

4_250 3.025 2.664 2.713 3.339 2.969 3.046 3.101 

4_500 3.061 2.926 2.810 3.480 2.994 3.129 3.242 

5_50 3.117 3.208 3.194 3.814 3.237 3.566 3.613 

5_100 3.214 3.158 3.033 3.919 3.416 3.655 3.798 

5_150 3.301 3.106 3.082 3.728 3.246 3.640 3.673 

5_250 3.324 3.171 2.930 3.915 3.533 3.709 3.812 

5_500 3.217 3.149 3.144 3.625 3.243 3.742 3.462 

6_50 3.467 3.598 3.496 4.220 3.378 3.699 3.727 

6_100 3.699 3.582 3.509 4.091 3.610 4.035 4.068 

6_150 3.631 3.569 3.358 4.206 3.767 3.931 4.057 

6_250 3.530 3.591 3.328 4.260 3.535 3.951 4.093 

6_500 3.626 3.517 3.308 3.807 3.649 3.959 3.713 

8_50 4.182 4.127 4.005 5.032 4.181 4.263 4.367 

8_100 4.076 4.175 4.079 5.058 4.121 4.433 4.628 

8_150 4.085 4.024 4.056 4.594 4.139 4.498 4.529 

8_250 4.109 4.079 3.910 4.381 4.347 4.582 4.361 

8_500 4.170 4.051 3.986 4.445 4.272 4.573 4.393 

Table 3 

Mean of the median Euclidean distances from the approximation sets to the reference point z ∗ . 

Instance IOLD -BMOLS IOLD − R 2 -IBMOLS IOLD -EA NSGA-III L-NSGA-II R 2 -IBMOLS MOEA/D 

2_50 2.201 2.070 2.087 2.105 2.088 2.019 2.097 

2_100 2.121 2.105 2.105 2.157 2.065 2.071 2.132 

2_150 2.152 2.121 2.112 2.170 2.054 2.060 2.164 

2_250 2.130 2.153 2.114 2.192 2.075 2.076 2.176 

2_500 2.129 2.139 2.095 2.229 2.112 2.102 2.188 

3_50 2.588 2.4 4 4 2.565 2.975 2.600 2.719 2.823 

3_100 2.452 2.500 2.475 2.916 2.664 2.521 2.871 

3_150 2.631 2.437 2.546 2.917 2.616 2.716 2.892 

3_250 2.520 2.527 2.642 3.043 2.713 2.815 2.995 

3_500 2.527 2.592 2.478 2.787 2.589 2.800 2.754 

4_50 2.932 2.984 2.993 3.519 3.208 3.311 3.403 

4_100 2.984 3.013 2.997 3.642 3.325 3.090 3.448 

4_150 2.913 3.047 2.989 3.596 3.157 3.326 3.501 

4_250 3.075 2.965 2.970 3.721 3.180 3.337 3.599 

4_500 3.118 3.056 3.005 3.793 3.166 3.376 3.666 

5_50 3.384 3.391 3.433 4.001 3.622 3.819 3.868 

5_100 3.376 3.333 3.297 4.100 3.654 3.898 3.893 

5_150 3.503 3.364 3.294 4.116 3.529 3.882 4.002 

5_250 3.504 3.342 3.242 4.091 3.712 4.007 4.046 

5_500 3.312 3.338 3.395 4.089 3.615 4.001 4.075 

6_50 3.554 3.724 3.718 4.394 3.865 4.042 4.111 

6_100 3.757 3.814 3.704 4.529 4.040 4.351 4.407 

6_150 3.703 3.795 3.669 4.479 4.039 4.290 4.378 

6_250 3.688 3.727 3.602 4.4 4 4 3.944 4.266 4.353 

6_500 3.742 3.668 3.542 4.650 3.901 4.411 4.451 

8_50 4.313 4.251 4.164 5.140 4.549 5.408 5.030 

8_100 4.322 4.358 4.281 5.218 4.687 5.623 5.127 

8_150 4.207 4.214 4.269 4.900 4.647 5.580 4.663 

8_250 4.212 4.257 4.137 4.718 4.689 5.599 4.697 

8_500 4.273 4.294 4.170 4.728 4.616 5.698 4.701 

i  

o  

o

 

b  

l  

s  

T  

t  

a  

b  

p  
s confirmed by the Mann-Whitney test in Table 5 . Indeed, IOLD -EA

utperforms all the considered algorithms and IOLD − R 2 -IBMOLS

utperforms all the other algorithms except IOLD -EA. 

In the practical case, it is desirable to present a reduced num-

er of high-quality solutions to the decision maker. Indeed, one so-

ution could have several tens of actions and the decision maker
hould be able to choose the most adequate action plan easily.

able 6 reports the average number of nondominated solutions ob-

ained with each algorithm over 30 runs and the corresponding

verage runtime (respectively nbSol and t ). We note that the num-

er of obtained solutions is highly variable for the algorithms. The

arameter T of the IOLD -BMOLS, IOLD − R 2 -IBMOLS and IOLD -EA
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Table 4 

Mean of the maximal Euclidean distances from the approximation sets to the reference point z ∗ . 

Instance IOLD -BMOLS IOLD − R 2 -IBMOLS IOLD -EA NSGA-III L-NSGA-II R 2 -IBMOLS MOEA/D 

2_50 2.249 2.241 2.238 2.250 2.236 2.247 2.287 

2_100 2.236 2.236 2.245 2.238 2.243 2.247 2.293 

2_150 2.236 2.338 2.236 2.238 2.236 2.244 2.278 

2_250 2.236 2.269 2.236 2.237 2.243 2.251 2.261 

2_500 2.236 2.238 2.238 2.259 2.236 2.241 2.273 

3_50 2.749 2.703 2.812 3.099 2.884 2.928 3.042 

3_100 2.655 2.654 2.690 3.201 2.962 2.997 3.087 

3_150 2.779 2.728 2.860 3.223 2.966 3.003 3.113 

3_250 2.627 2.840 2.856 3.377 2.912 3.013 3.204 

3_500 2.785 2.994 2.743 3.196 2.968 3.007 3.184 

4_50 3.275 3.212 3.263 3.711 3.556 3.578 3.601 

4_100 3.117 3.246 3.236 3.766 3.596 3.439 3.677 

4_150 3.134 3.284 3.221 3.805 3.472 3.595 3.756 

4_250 3.194 3.227 3.241 3.816 3.482 3.589 3.782 

4_500 3.248 3.246 3.282 3.922 3.490 3.600 3.837 

5_50 3.803 3.599 3.719 4.161 4.041 4.100 4.127 

5_100 3.566 3.564 3.648 4.244 4.005 4.115 4.165 

5_150 3.628 3.566 3.555 4.258 3.923 4.124 4.193 

5_250 3.689 3.632 3.525 4.211 4.016 4.245 4.202 

5_500 3.405 3.569 3.683 4.218 3.967 4.219 4.210 

6_50 3.971 3.947 3.956 4.583 4.312 4.483 4.497 

6_100 3.935 4.095 3.912 4.667 4.484 4.580 4.612 

6_150 3.860 4.311 3.927 4.625 4.413 4.563 4.603 

6_250 3.847 3.950 3.866 4.585 4.412 4.554 4.551 

6_500 3.920 3.907 3.840 4.747 4.200 4.665 4.691 

8_50 4.551 4.568 4.445 5.326 5.035 5.656 5.111 

8_100 4.526 4.655 4.510 5.370 5.131 5.656 5.167 

8_150 4.440 4.454 4.531 5.278 5.096 5.656 5.213 

8_250 4.387 4.432 4.418 5.290 4.996 5.656 5.266 

8_500 4.432 4.421 4.415 5.131 4.941 5.743 5.107 

Table 5 

Statistical comparison of the algorithms with the Mann–Whitney test (the results presented in the table are the same for the 

three distances). 

IOLD -BMOLS IOLD -EA IOLD − R 2 -IBMOLS L-NSGA-II NSGA-III R 2 -IBMOLS MOEA/D 

IOLD -BMOLS no no yes yes yes yes 

IOLD -EA yes yes yes yes yes yes 

IOLD − R 2 -BMOLS yes no yes yes yes yes 

L-NSGA-II no no no yes yes yes 

NSGA-III no no no no no no 

R 2 -IBMOLS no no no no yes yes 

MOEA/D no no no no yes no 
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algorithms allows the decision maker to fix the number of desired

solutions. In our experiments, we have fixed the parameter T to

10 solutions ( T = 10 ). The number of nondominated solutions ob-

tained by NSGA-III equals the population size being used (100 so-

lutions in our experiments). This means that all selected solutions

of the last generation are nondominated solutions. Depending on

the size of the instances (especially the number of the actions),

MOEA/D obtains a variable number of nondominated solutions. 

Table 6 also shows that even for the smallest instance (“2_50”),

NSGA-III, L-NSGA-II and R 2-IBMOLS generate a high number of

output solutions, making decision making difficult. However, the

in f initeOrderLorenzNonDominatedSolutions procedure ( Algorithm 3 )

could be used to order the generated nondominated solutions and

select the most interesting one(s) for the decision maker. 

Concerning the runtime, Table 6 shows that for all the con-

sidered instances, the proposed algorithms ( IOLD -EA, IOLD -BMOLS

and IOLD − R 2 -IBMOLS) are more time efficient compared to NSGA-

III, L-NSGA-II and R 2-IBMOLS, except MOEA/D. Indeed, MOEA/D is

faster than the proposed algorithms. This gap could be due to the

transformation operated on the objective vectors to get the corre-

sponding Lorenz vectors in the algorithms using IOLD . We also note

that the use of IOLD and the parameter T within R 2-IBMOLS allows

one to reduce greatly the runtime of R 2-IBMOLS (up to a factor
 h  
f 275 for the instance 3 _ 500 and a factor of 106 for the instance

 _ 500 ). 

. Conclusion and perspectives 

Within the context of elaborating practical and efficient action

lans in social and medico-social structures, we have studied the

ontribution of the infinite order Lorenz dominance (IOLD), instead

f the Pareto dominance, within three population-based multiob-

ective algorithms: IOLD -BMOLS, IOLD − R 2 -BMOLS and IOLD -EA.

ased on this work, we draw two main conclusions. First, using

he infinite order Lorenz dominance within indicator-based local

earch-based or evolutionary algorithms provides a viable method

o find high-quality and fair compromise solutions for our ac-

ion planning problem. Second, this approach provides the decision

aker with an effective means to control the number of generated

olutions, while helping to reduce significantly the runtime of the

lgorithm. 

As indicated in the introduction, this work is part of the deci-

ion support system ”MSQualité” developed by the Company GePI

or social and medico-social sector. Integrating IOLD − R 2 -IBMOLS

nd IOLD -EA within ”MSQualité” constitutes a valuable means that

elps managers to elaborate effectively efficient action plans to
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Table 6 

Comparison of average number of generated solutions and average runtime for IOLD -BMOLS, IOLD − R 2 -IBMOLS, IOLD -EA, NSGA-III, L-NSGA-II, R 2-IBMOLS and MOEA/D over 

30 runs. 

Instance IOLD -BMOLS IOLD − R 2 -IBMOLS IOLD -EA NSGA-III L-NSGA-II R 2 -IBMOLS MOEA/D 

nbSol t nbSol t nbSol t nbSol t nbSol t nbSol t nbSol t 

2_50 10 2.35 ×10 −1 10 1.56 ×10 −1 100 6.8 ×10 −2 100 3.16 44 3.74 95 3.22 ×10 −1 10 5.71 ×10 −2 

2_100 10 4.68 ×10 −1 10 5.40 ×10 −1 100 1.85 ×10 −1 100 1.09 × 10 1 64 1.18 × 10 1 151 2.46 10 1.24 ×10 −1 

2_150 10 1.33 10 1.18 100 3.48 ×10 −1 100 2.48 × 10 1 100 2.44 × 10 1 175 6.53 15 1.85 ×10 −1 

2_250 10 5.23 10 3.62 100 7.50 ×10 −1 100 7.04 × 10 1 100 6.64 × 10 1 264 3.35 × 10 1 25 2.60 ×10 −1 

2_500 10 3.81 × 10 1 10 1.88 × 10 1 100 2.48 100 3.11 × 10 2 100 2.70 × 10 2 473 3.51 × 10 2 37 7.17 ×10 −1 

3_50 10 1.61 ×10 −1 10 8.46 ×10 −1 100 1.24 ×10 −1 100 5.76 100 8.52 820 1.30 × 10 1 12 1.99 ×10 −1 

3_100 10 8.48 ×10 −1 10 4.12 100 3.25 ×10 −1 100 1.94 × 10 1 100 2.68 × 10 1 1160 9.38 × 10 1 34 2.66 ×10 −1 

3_150 10 2.6 10 9.45 100 6.41 ×10 −1 100 4.43 × 10 1 100 5.62 × 10 1 1748 4.49 × 10 2 48 3.29 ×10 −1 

3_250 10 1.09 × 10 1 10 5.80 × 10 1 100 1.36 100 1.26 × 10 2 100 1.39 × 10 2 3369 4.17 × 10 3 79 5.07 ×10 −1 

3_500 10 7.42 × 10 1 10 3.21 × 10 2 100 2.83 100 5.37 × 10 2 100 5.98 × 10 2 7635 8.84 × 10 4 128 1.22 

4_50 10 1.15 10 1.19 100 0.34 100 8.91 20 1.61 × 10 1 381 7.48 × 10 1 16 2.54 ×10 −1 

4_100 10 3.01 10 1.77 × 10 1 100 1.12 100 3.31 × 10 1 28 4.96 × 10 1 666 7.99 × 10 1 37 3.63 ×10 −1 

4_150 10 4.47 10 7.44 × 10 1 100 1.16 100 7.06 × 10 1 52 1.02 × 10 2 1551 6.88 × 10 2 91 4.44 ×10 −1 

4_250 10 1.66 × 10 1 10 2.67 × 10 2 100 3.39 100 1.88 × 10 2 50 2.60 × 10 2 2385 3.45 × 10 3 114 7.23 ×10 −1 

4_500 10 1.31 × 10 2 10 2.51 × 10 4 100 1.33 × 10 1 100 7.52 × 10 2 71 1.06 × 10 3 7591 1.03 × 10 5 259 2.13 

5_50 10 2.50 10 1.18 100 9.50 ×10 −1 100 1.37 × 10 1 15 2.68 × 10 1 667 1.84 × 10 1 5 3.03 ×10 −1 

5_100 10 5.57 10 4.22 × 10 1 100 1.12 100 4.21 × 10 1 65 7.78 × 10 1 1992 5.14 × 10 2 110 4.30 ×10 −1 

5_150 10 6.69 10 1.38 × 10 1 100 2.25 100 8.63 × 10 1 73 1.59 × 10 2 3239 2.59 × 10 3 139 6.04 ×10 −1 

5_250 10 1.82 × 10 2 10 5.37 × 10 2 100 9.93 100 3.05 × 10 2 89 3.99 × 10 2 5257 1.58 × 10 4 202 1.10 

5_500 10 2.66 × 10 2 10 4.53 × 10 3 100 2.44 × 10 2 100 1.65 × 10 3 96 1.59 × 10 3 15,898 4.77 × 10 5 384 3.11 

6_50 10 5.51 10 4.49 100 1.01 100 1.52 × 10 1 27 3.71 × 10 1 799 2.45 × 10 1 6 3.24 ×10 −1 

6_100 10 9.99 10 5.66 × 10 1 100 1.16 100 9.16 × 10 2 60 4.81 × 10 2 1860 3.24 × 10 2 13 5.01 ×10 −1 

6_150 10 1.29 × 10 1 10 3.40 × 10 2 100 3.30 100 1.88 × 10 3 96 2.30 × 10 2 4971 5.39 × 10 3 115 8.37 ×10 −1 

6_250 10 4.99 × 10 1 10 1.54 × 10 3 100 1.21 × 10 1 100 6.63 × 10 3 87 1.53 × 10 2 10,658 5.46 × 10 4 130 1.40 

6_500 10 2.46 × 10 2 10 1.23 × 10 4 100 2.96 × 10 1 100 2.06 × 10 4 100 2.38 × 10 3 31,068 1.32 × 10 6 549 4.31 

8_50 10 2.20 × 10 1 10 2.27 × 10 1 100 1.44 100 2.46 × 10 1 87 6.60 × 10 1 2147 2.13 × 10 3 23 5.22 ×10 −1 

8_100 10 8.78 × 10 1 10 1.87 × 10 2 100 1.98 100 1.44 × 10 3 80 1.30 × 10 4 4052 2.19 × 10 4 130 9.09 ×10 −1 

8_150 10 5.56 × 10 1 10 1.38 × 10 3 100 3.63 100 2.88 × 10 3 100 1.31 × 10 5 10,588 3.08 × 10 5 170 1.34 

8_250 10 6.13 × 10 2 10 2.86 × 10 3 100 1.60 × 10 1 100 1.01 × 10 4 100 1.97 × 10 5 40,404 2.12 × 10 6 219 3.37 

8_500 10 4.08 × 10 3 10 2.20 × 10 4 100 3.43 × 10 1 100 3.16 × 10 4 100 2.03 × 10 5 58,413 2.89 × 10 6 1355 1.10 × 10 1 
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ontinually improve the quality of their structures. To further as-

ist the decision maker, we plan to integrate a visualization tool

ike the chord diagram proposed in Koochaksaraei et al. (2017) ,

hich is based on circular layout. This visualization method pro-

ides an interesting way to present large volume of data and en-

bles the decision maker to observe, in the 2-D space, the relations

mong elements of the data and the relations between the opti-

ization objectives. Such a visualization might help the decision

aker to detect harmony or conflicts between objectives/actions,

onsequently, group harmonious objectives or actions. 

Finally, this work shows that the proposed approaches work

ell for the practical problem with many objectives, an interesting

uture study would be to experiment such methods on other many

bjective problems. Also, this work demonstrates that even com-

ared to powerful multiobjective methods like MOEA/D and NSGA-

II, algorithms based on Lorenz dominance (instead of Pareto dom-

nance) compete favorably. Consequently, it would be interesting to

nvestigate the idea of introducing fairness (based on L-dominance)

ithin other popular methods such as MOEA/D ( Zhang and

i, 2007 ), MOGLS ( Ishibuchi and Murata, 1998; Jaszkiewicz, 2001 )

nd PICEA ( Wang et al., 2015 ). Indeed, fairness is an important is-

ue in many multiobjective decision making problems, while stud-

es on multiobjective optimization integrating fairness or equity

re still scarce. As a result, introducing dedicated mechanisms (e.g.,

hose studied in this work) in existing multiobjective methods will

nlarge their applications to numerous situations where fair and

quitable solutions are explicitly sought. 
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