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• We present an innovative parallel algorithm to calculate approximations for initial or boundary value problems.
• A Python package AdomianPy is developed for initial or boundary value problems.
• Several examples are given to demonstrate the validity of our software package.
• It is a remarkable fact that the speed of executing our python package can be great improved by multi-core, even the super-linear speedup.
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a b s t r a c t

In themodern era, increasing numbers of cores per chip are applied for decentralized systems, but there is
not any appropriate symbolic computation approach to constructmulticore analytic approximation. Thus,
it is essential to develop an efficient, simple and unified way for decentralized Adomian decomposition
method to increase the potential speed of the multicore systems. In our paper, we present an innovative
parallel algorithm of constructing analytic solutions for nonlinear differential system, which based on the
Adomian–Rach double decompositionmethod and Rach’s Adomian polynomials. Based on our algorithm,
we further developed auser-friendly Python software package to construct analytic approximations of ini-
tial or boundary value problems. Finally, the scope of validity of our Python software package is illustrated
by several different types of nonlinear examples. The obtained results demonstrate the effectiveness of
our package by compared with exact solution and numeric method, the characteristics of each class of
Adomian polynomials and the efficiency of parallel algorithm with multicore processors. We emphasis
that the super-linear speedup may happens for the duration of constructing approximate solutions. So, it
can be considered as a promising alternative algorithm of decentralized Adomian decomposition method
for solving nonlinear problems in science and engineering.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A large number of enigmas in engineering, biology, economics
and other disciplines, e.g. flow and heat transfer problem, the sim-
ulations of the immune system, control and optimization theory,
bound price problem, are often modeled using a system of non-
linear problems [1–5]. In particular, various kinds of decentralized
systems, appeared in economics, medicine etc., are convenient and
cost effective [6,7]. A wide range of analytic methods, like the
Adomian decomposition method (ADM) [1,3], the perturbation-
incremental method [8], the variational iteration method [9], the

∗ Corresponding author.
E-mail address: panzhifang@wmu.edu.cn (Z. Pan).

homotopy perturbationmethod [10], etc., is a reliable and efficient
technique to handle such problems. It should be mentioned that
the ADM is among the most simple and effective analytic methods
to construct approximations of nonlinear differential equations,
and have been modified and improved by Adomian and his collab-
orator, like the Adomian–Rach double decomposition [1,11], etc.
These modifications, in most cases, undoubtedly have provided
higher accuracy and faster convergence in nonlinear differential
equations [1,12]. Furthermore, the ADM, which have been proved
that it works efficiently for a large number of nonlinear problems
including fractional differential equations [13], even stochastic
system [1], is easy to be implemented by various programming
languages, such as Maple [13], Mathematics [14], etc.

It is well known that symbolic computation, like ADM, con-
sumes a large quantity of time and system resources in computing.
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Fig. 1. Plot of transistor counts show that they double approximates every year
follows Moore’s law, and the datas are from the website Wikipedia.

In the past, we always sought the faster computation speed for
obtaining the solution of the given problem from higher clock
frequencies. Although it can seen from Fig. 1 that the number of
transistors on integrated circuits becomes approximately twice
every two year according to the Moore’s law, heat dissipation
has been a big problem for developing higher clock frequencies.
Therefore, due to the balance among performance, power con-
sumption and heat dissipation, chip designers have moved away
from a focus on the high clock frequencies to multicore processors
representing the future of computing. Nowadays researchers have
no choice but to focus on parallel algorithms instead of traditional
algorithms for accelerating the computational speed. More and
more authors found the parallel algorithm can accelerate large-
scale calculations [15]. Consequently, parallel computing for sym-
bolic computation is widely utilized by engineers, experts and
scientists on multicore computers [16].

With the rapid development of numbers of cores per chip,
there is a vast literature on symbolic computation or decentralized
system [17–20], but very little of relative literature focuses on
our goal: A general parallel algorithm of ADM on multicore archi-
tecture. It is well known that the Adomian–Rach decomposition
method, to a certain extent, can provide higher precision than
numeric method. Inspired by the parallel algorithm, we present a
new parallel algorithm for decentralized system. Furthermore, we
develop the package AdomianPy based on Python, which is open
source and powerful programming language, and demonstrate its
effectiveness by comparing approximations with exact solutions
in nonlinear examples. It should be mentioned that a parallel
implementation by multi-core clusters is developed for the ADM.
Moreover, our parallel algorithm on high performance computing
architectures has potential to accelerate decentralized systems
beyond real time, like large power system.

The paper has been organized as follows. In next section, we
give the description of our innovative parallel algorithm to con-
struct decentralized analytic approximations of nonlinear differ-
ential system. In Section 3, our Python software AdomianPy is
outlined. Subsequently, we demonstrate the validity of AdomianPy
by several typical nonlinear differential systems, and illustrate the
effectiveness of AdomianPy by comparing their exact solutions.
Sections 4 and 5 are several conclusions as well as our findings and
future work.

2. Key parallel algorithms

A great variety of natural enigmas of science and engineering
aremodeled by nonlinear differential systems, especially the initial
or boundary value problems. It is well known that analytic solu-
tions are of fundamental significance for these initial or boundary
value problems. The ADM is simple and effective analytic method
for construction analytic approximations of initial or boundary
value problems. In this section, based on theAdomian–Rachdouble
decomposition method [1,11] and Rach’s the Adomian polynomi-
als [21], a parallel algorithm, for simplicity, is just described with
the following single nonlinear differential equation

Lu + Ru + f (u) = g, (1)

to construct analytic approximate solutions, but it is easily gener-
alized to a system of nonlinear problems [13,22].

We recast Eq. (1) as

Lu = g − Ru − f (u). (2)

For unifying the initial value problemand boundary value problem,
we define the inverse operator L−1 of L = dn/dtn as a pure two-fold
integration. For convenience of explanation, we adopt the L−1

=∫ ∫
(·)dxdx, and apply on both sides of Eq. (2), and then obtain the

equivalent equation

u = −L−1f (u) − L−1Ru + Φx + L−1g. (3)

The general solution u is decomposed by the ADM as

u =

∞∑
s=0

λsus. (4)

Similarly, the analytic nonlinear term f (u) will be decomposed into
a parameterized series:

f (u) =

∞∑
s=0

λsAs, (5)

where the grouping parameter λ, can be a function as λ = λ(x), but
always be setting the convenient form λ = 1 for computation. The
Rach’s AdomianpolynomialsAm canbe inducedbydetermining the
parameterized partial sums Θs =

r∑
∞

i=0 Ai

z

i≥s
and

Θs =

u

v

u

v
∞∑
i=0

u

v1
i!

(
∞∑

v=0

uv − u0

)i

×
∂ i

∂ui
0
N(u0)

}

~

v≥p1i (s)

}

~

n≥p2i (s)

}

~∑
jvj≥p3i (s)

,

inwhich the double brackets indicate the truncation operators, and
pji(s) represents their respective cut-off frequencies [21]. Therefore,
wewill choose the different values of pji(s) to define Class I, II, III and
IV Adomian polynomials:

A(i)
0 ≡ Θ

(i)
1 ,

A(i)
s ≡ Θ

(i)
s+1 − Θ (i)

s , s ≥ 1.
(6)

Here the Alg. 1 is given to calculate the Adomian polynomials, and
theΘ

(i)
s , i =will be obtained by the following formula respectively.

In addition, we also note that a collection of works about Adomian
polynomials have demonstrated the convergence of them, and
presented the proofs [1,21].

https://en.wikipedia.org/wiki/Transistor_count
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Algorithm 1 The algorithm of Adomian polynomials

Require: s, type represents the Class I, II, III and IV;
1: if type=1 then
2: Calculate Θ

(I)
s+1;

3: else if type=2 then
4: Calculate Θ

(II)
s+1;

5: else if type=3 then
6: Calculate Θ

(III)
s+1;

7: else if type=4 then
8: Calculate Θ

(IV)
s+1;

9: end if
10: Access the previous obtained data Θ

(type)
s , if necessary;

11: if s=1 then
12: A(type)

0 = Θ
(type)
1 ,

13: else
14: A(type)

s = Θ
(type)
s+1 − Θ

(type)
s ,

15: end if
16: return A(type)

s

2.1. Class I Adomian polynomials

When p1I (s) = s, p2I (s) = s and p3I (s) = ∞, the partial
sum can be induced by applying the truncation operator with the
corresponding decomposition parameters as

Θ (I)
s =

∞∑
k=0

1
k!

∂ (k)f (u0)
∂λs

(
s−1∑
i=1

ui

)k

. (7)

According Eq. (7), the Alg. 2 of Class I Adomian polynomials is
presented. We remark that Class I Adomian polynomials [14,21]
is available for some simple nonlinearities, like f (u) = u2, and can
be recasted as

As = f

(
s∑

i=0

ui

)
− f

(
s−1∑
i=0

ui

)
. (8)

Algorithm 2 Class I Adomian polynomials

Require: f , s, ui, i = 0, · · · , s;
1: Θ

(I)
s = N(

∑s−1
n=0 un).

2: return Θ
(I)
s

2.2. Class II Adomian polynomials

When p1II (s) = s, p2II (s) = ∞ and p3II (s) = ∞, the partial
sum can be induced by applying the truncation operator with the
corresponding decomposition parameters as

Θ (II)
s =

s−1∑
i=0

1
i!

∂ (i)f (u0)
∂λm

(
λ

s−1∑
n=1

un

)i
⏐⏐⏐⏐⏐⏐
λ=1

. (9)

We note that the Eq. (9) can be calculated by built-in Taylor
expansions function in various symbolic computation packages
or platforms, such as Taylor function in Maple, series function in
Python package SymPy [23]. The Taylor expansions, most times,
can help us to accelerate the computational speed and reduce the
complexity of nonlinear problems. Here, we give the Alg. 3 to
obtain the Θm.

From Eq. (6) and Alg. 3, we derive the Class II Adomian poly-
nomials [21,24]. For the convenience of comparison, we list the

Algorithm 3 Class II Adomian polynomials

Require: f , s, ui, i = 0, · · · , s;
1: Θ

(II)
s = N(u0 +

∑s−1
n=1 λun).series(λ, 0, s).removeO()

2: Θ
(II)
s = Θs.subs(λ=1)

3: return Θ
(II)
s

Adomian polynomials Ai, i = 0, . . . , 2 as following.
A0 = Θ

(II)
1 = f (u0),

A1 = Θ
(II)
2 − Θ

(II)
1 =

(
2∑

i=1

ui

)
f ′(u0),

A2 = Θ
(II)
3 − Θ

(II)
2 =

(
2∑

i=0

ui

)2
f ′(u0)
2!

+ u2f ′(u0).

We remark that the Class II Adomian polynomials may be advan-
tageous for computation on some nonlinear term.

2.3. Class III Adomian polynomials

When p1III (s) = s−n+1, p2III (s) = ∞ and p3III (s) = ∞, the partial
sum can be induced by applying the truncation operator with the
corresponding decomposition parameters as

Θ (III)
s =

s−1∑
k=0

1
k!

∂ (k)f (u0)
∂λs

(
λ

s−k∑
n=1

un

)k
⏐⏐⏐⏐⏐⏐
λ=1

. (10)

It is not easy that the Eq. (10) can be induced directly by Taylor
expansion function. The Alg. 4 which we present as follows is a bit
of complexity comparing with the Alg. 3.

Algorithm 4 Class III Adomian polynomials

Require: f (u), s, ui, i = 0, · · · ,m
1: Θ

(III)
s = 0

2: for k = 1 to s do
3: temp = f (u0 +

∑s−k+1
n=1 λun).series(λ, 0, k).removeO()

4: Θ
(III)
s = Θ

(III)
s + temp.coeff(λ, k-1)

5: end for
6: return Θ

(III)
s

According to Eq. (6) and Alg. 3, we derive the Class III Adomian
polynomials. For the convenience of comparison, Class III Adomian
polynomials Ai, i = 0, . . . , 2, are calculated as

A0 = Θ
(III)
1 = f (u0),

A1 = Θ
(III)
2 − Θ

(III)
1 = u1f ′(u0),

A2 = Θ
(III)
3 − Θ

(III)
2 =

u2
1

2!
f ′′(u0) + u2f ′(u0).

We note that the advantage of the Class III Adomian polynomials
for computation, to be extent, is similar with Class II Adomian
polynomials.

2.4. Class IV Adomian polynomials

Adomian and his collaborator extensively investigated the Class
IV Adomian polynomials alias the classic Adomian polynomials [1,
14,21,25]. The algorithm of the classic Adomian polynomials can
be given in the formula

Θ (IV)
s =

s−1∑
k=0

1
k!

∂ (k)f (u0)
∂λs λk

⏐⏐⏐⏐⏐
λ=1

. (11)
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We note that the Eq. (11) can be directly calculated by series
function in Python package Sympy. Therefore, we present the Alg.
5 to derive the Θm.

Algorithm 5 Class IV Adomian polynomials

Require: f (u), s, ui, i = 0, · · · , s;
1: Θ

(IV)
s = f (

∑s−1
n=0 λsun).series(λ, 0, s).removeO()

2: Θ
(IV)
s = Θs.subs(λ=1)

3: return Θ
(IV)
s

Using Eqs. (6) and (11) , we derive the Class IV Adomian poly-
nomials

As = Θ
(IV)
s+1 − Θ (IV)

s

=

s∑
k=0

1
k!

∂ (k)f (
∑s

n=0 λsun)
∂λs

⏐⏐⏐⏐⏐
λ=0

.
(12)

We list the Class IV Adomian polynomials Ai, i = 0, . . . , 2, as
follows:

A0 = Θ
(IV)
1 = f (u0),

A1 = Θ
(IV)
2 − Θ

(IV)
1 = u1f ′(u0),

A2 = Θ
(IV)
3 − Θ

(IV)
2 = u2f ′(u0) +

u2
1

2!
f ′′(u0).

We remark that because of deriving Class IV Adomian polynomials
from the Taylor serious, the algorithm is suitable for programming.
To sum up, the algorithms of the Class II, III and IV Adomian
polynomials are easy to be programmed in any algebra system,
such as Maple, Mathematics, etc., even Python. The strengths and
weaknesses of four known class of Adomian polynomials will be
further discussed by some example in next section.

By these algorithm of four classes Adomian polynomials, we
obtain the special series for nonlinear term f (u). Then we continue
to decompose the Φx by Adomian–Rach decomposition method
given as

Φx =

∞∑
s=0

Φx,s. (13)

Furthermore, we substitute Eqs. (4), (5) and (13) into (3), and get
the following result

∞∑
s=0

λsus = L−1g+

∞∑
s=0

Φx,s − L−1R
∞∑
s=0

λsus − L−1
∞∑
s=0

λsAs.

(14)

Letting λ = 1 is simplified to Eq. (14). Therefore, we easily
determine the matching coefficients Φx,s = c0,s + xc1,s from the
initial or boundary conditions. For the initial conditions

gj+1 = u →
∂ ju
∂xj

⏐⏐⏐⏐
x=bj+1

− pj+1, j = 0, 1, (15)

or the exact Dirichlet boundary conditions

gj = u → u|x=bj−pj, j = 1, 2, (16)

upon substitution Eq. (15) or (16) and solving for the matching
coefficients c0,s and c1,s, we have

gj(ξ1) = 0, j = 1, 2,
gj(ξs+2) = 0, j = 1, 2.

According to the initial or boundary formulae, the Alg. 6 is given to
unify the initial conditions and boundary conditions.

Algorithm 6 Handling initial or boundary conditions

Require: IBCs (the initial or boundary conditions), func (the de-
pendent variables);

1: boundary = dict()
2: for ics in IBCs do
3: if Shaped like u|x=b= p then
4: We convert the mathematical expression u|x=b= p to the

Python function u− > sub(u, x, b) − p
5: else if Shaped like ∂ ju

∂xj

⏐⏐⏐
x=b

= p then
6: We convert the mathematical expression

∂ ju
∂xj

⏐⏐⏐
x=b

= p to the Python function u− >

Derivative(u, x, x, · · · , x  
j

).subs(x, b) − p

7: end if
8: end for
9: Inserts the specified Python function in the boundary collection

10: return boundary

The components us are given from the our modified recursion
scheme

u0 = c0,0 + xc1,0 + L−1g,

us+1 = c0,s+1 + xc1,s+1 − L−1Rus − L−1As.
(17)

The inverse operator L−1 usually, but not always, cost too much
time and computer resource to obtain the solution us+1. For L−1 is
linear, that is to say, L−1(Rus)+ L−1(As) = L−1(Rus +As). Moreover,
Rus + As always can be expressed as

∑M
i=1 aifi(x). Therefore, we

have

L−1(Rus) + L−1(As) = L−1

(
M∑
i=1

aifi(x)

)
=

M∑
i=1

L−1 (aifi(x)) .

(18)

In this situation, as the computation usually costs much CPU re-
source, the Alg. 7 with Python package multiprocessing is applied
to accelerate the computation speed. In addition, as reducing the
time overhead to call processes, we used one process in our algo-
rithm to do the computation for small-scale expressions.

Algorithm 7 The parallel algorithm of the inverse operator

Require: coreNumber , L−1, Rus + As
1: if For large-scale expressions then
2: p = Pool(coreNumber)
3: Rus + As =

∑M
i=1 aifi(x)

4: temp = [a1f2(x), a2f2(x), · · · , aM fM (x)]
5: p.map(L−1, temp)
6: p.close
7: else
8: L−1(Rus + As)
9: end if

According to our modified recursion scheme described as the
Alg. 8, we easily determine the analytic approximate solution

ξr =

r−1∑
s=0

us(x). (19)
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Algorithm8 The succinct description of the algorithm for Adomian
decomposition method.
Require: boundary, n (the necessary highest order of approxima-

tions)
1: for eq_no, L′ in enumerate(L) do
2: ueq_no

0 = Φ
eq_no
x,s + L′−1geq_no

3: end for
4: for i in range(n) do
5: According the previous stated each class of Adomian polyno-

mials, theAdomianpolynomialsAi
j, j = 1, · · · , k (the number

of equations), are obtained.
6: for eq_no, L′ in enumerate(L) do
7: We obtain the ueq_no

i by the formula ueq_no
i = −L′−1Req_no −

L′−1Ai
eq_no, and also apply the parallel algorithm for it to

accelerate the computation speed.
8: Solve for the Φ

eq_no
x from initial conditions or boundary

conditions
9: ueq_no

i = ueq_no
i + Φ

eq_no
x

10: end for
11: end for
12: For each of differential equations, we can obtain the analytic

approximation ξr =
∑r−1

s=0 us(x)
13: return ξ

3. The application of the package AdomianPy

This sectionwill give the application of the package AdomianPy,
which is the implementation of our parallel algorithm described
in the above section. We will give some examples to illustrate
the effectiveness of our package AdomianPy, and demonstrate the
score of that including a system of ordinal or partial differential
equation, initial value problems and boundary value problems.
what is more, by comparing other numeric method, symbolic
computation can provide higher precision. Finally, the interface
and usage of AdomianPy are described in Appendix.

Example 1. Consider the single nonlinear partial differential equa-
tion [14]

∂φ

∂t
− φ

∂φ

∂x
= 0, φ(x, 0) = x, (20)

with the exact solution

φ∗(t, x) =
x

1 − t
. (21)

Our package plots the curves of 7-term approximations ξ
(j)
7 , j =

I, II, III and IV which derived from the four classes Adomian poly-
nomials respectively at x = 1 in Fig. 2. They have the same
characteristics at x equals other values.

As we can see from Fig. 2, the curves of all 7-term truncated
series and its exact solution agree well at −1 < t < 1, and the
7-term approximation ξ

(I)
7 has the largest effective region. It mean

that our package AdomianPy is valid to construct analytic approxi-
mate solutions for nonlinear problems. In addition, we remark that
the interval of convergence Ω (IV) < Ω (III) < Ω (II) < Ω (I) for four
known class of Adomian polynomials, and also observe that the
computation time of selecting the Class IV Adomian polynomials
is the least than others.

Example 2. Consider the single pendulum equation without uti-
lizing linearization [14]

d2ω
dt2

+ sin(ω) = 0, ω′(0) = 1, ω(0) = 0, (22)

Fig. 2. The 4th-order truncated series ξ
(I)
7 (black solid line), ξ (II)

7 (magenta dashed
line), ξ (III)

7 (cyandash–dot line), ξ (IV)
7 (blue dotted line), and the exact solution z∗(x, y)

(red point marker).

Fig. 3. The 4-term approximation ξ
(II)
4 (magenta dashed line), ξ (III)

4 (cyan dash–dot
line), ξ (IV)

4 (blue dotted line), and the unique solution x∗(t) (red point marker).

which admits the unique solution

ω∗(t) = 2 arcsin
(
1
2
sn
(
t,

1
4

))
. (23)

To show the validity of our algorithm, it takes our program
about a few seconds to deliver (n = 4) Fig. 3, and also can be seen
that the curves of all 4th-order truncated series and exact solution
agree very well on the interval [−1, 1] as shown in Fig. 3.

In addition, to show the improvement of multi-core, we will
compare the elapsed times, which are consuming by calculating
the 9-term approximate solutions ξ

(IV)
9 with multiprocessing tech-

nology, are recorded by running PyPy compiled Python program
in Arch Linux using a laptop with a 4-core CPU processor (I7-
4700MQ) as shown in Fig. 4. It can be seen that the speed of ex-
ecution our program has great been improved within 4 processes
by using Python Package Multiprocessing from Fig. 4.

Example 3. Consider a linear singular differetial systemwith initial
conditions [26]

z ′

1 = −1002z1 + 1000z22 , z1(0) = 1,

z ′

2 = z1 − z2 − z22 , z2(0) = 1.
(24)
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Fig. 4. The relation between elapsed times (seconds) and the number of processing.

For chasing higher accuracy, we compute 200-th truncated
series by selecting Class IV Adomian polynomials, then output the
according figure comparing the following exact solution

z∗

1 (t) = e−2t ,

z∗

2 (t) = e−t ,
(25)

to show the validity of our Python package AdomianPy, as display
in Fig. 5. We note that the interval of convergence can be enlarge
by computing higher order truncated series for this example.

Example 4. Consider a multi-order and product nonlinear equa-
tion with multi-point boundary condition [27]

x(4)(t) + x(t)x′(t) − 4t7 − 24 = 0, (26)

with four-different-point boundary conditions,

x(3)
(
1
4

)
= 6, x′′

(
1
2

)
= 3, x(1) = 1, x(0) = 0. (27)

Its exact solution is

x∗(t) = t4. (28)

By selecting type = 2, 3, 4 respectively, the graphs of the 7th-
order approximations and its exact solution can be outputted (by
n = 7) by AdomianPy as display in Fig. 6. We remark that the

Fig. 6. The 7-term approximate solutions ξ
(II)
7 (magenta dashed line), ξ

(III)
7 (cyan

dash–dot line), ξ
(IV)
7 (blue dotted line), and the exact solution x∗(t) (red point

marker).

curves of the 7-term truncated series ξ
(II)
7 , ξ (III)

7 and ξ
(IV)
7 as well as

the exact solution agree very well because of error of solution is
less than 10−7 from Fig. 7. It mean that our package is effective to
construct approximations of nonlinear equation. We observe that
the approximate solution ξ

(II)
7 converges in a larger convergence

region, but consumes more time than the approximate solution
ξ
(III)
7 and ξ

(IV)
7 .

In addition, to show the validity of our parallel algorithm, we
will compare the elapsed times, which are consuming by calculat-
ing the 9-term approximate solutions ξ

(IV)
9 with multiprocessing

technology, are recorded by running PyPy compiled Python pro-
gram in Arch Linux using a laptop with a 4-core CPU processor
(I7-4700MQ) as display in Fig. 8. We lay emphasis on the super-
linear speedup as we use 2 processes to compute the approximate
solutions, and also note the consuming time to calculate the ap-
proximate solutions may grows as more than 4 processes is used
to run our program.

Example 5. Consider a problem of deflections of an elastic loaded
string with Dirichlet boundary conditions [28]

x′′
= −

(
1 + a2(x′)2

)
, x(0) = 0, x(1) = 0, t ∈ [0, 1]. (29)

Fig. 5. The approximate solutions of Eq. (24) and the exact solution of Eq. (25) for 0 ≤ t ≤ 35 and −2 ≤ z1, z2 ≤ 2.
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Fig. 7. The error ξ
(II)
7 − x∗(t) (magenta dashed line), ξ (III)

7 − x∗(t) (cyan dash–dot
line), ξ (IV)

7 − x∗(t) (blue dotted line).

Fig. 8. The relation between elapsed times (seconds) and the number of processing.

Fig. 9. The 11-term approximate solutions ξ
(IV)
11 (blue dotted line), and the exact

solution x∗(t) (red point marker).

For physical parameter a = 1/7, Cuomo and Marasco proposed a
numerical approach to obtain the solution of Eq. (29) in [28]. By us-
ing our package AdomianPy for the Class IV Adomian polynomials,

we experimentally calculate the truncated solution ξ11 comparing
exact solution

x∗(t) =
1
a2

ln

(
cos a(t −

1
2 )

cos a
2

)
, (30)

as shown in Fig. 9, and the absolute error comparing with that of
Cuomo’s numerical approach by using the finite differencemethod
as shown in Fig. 10. It can be seen from Fig. 10 that symbolic
method can obtain higher precision than numeric method for
nonlinear problem. It can be obtain higher precision if someone
overcome the limit of float point types in Python platforms which
is approximately 15 decimal digits.

Example 6. Consider a 12th-order ordinary differential equation
[13]

x(12)(t) = −132 sin(t) − 23t cos(t) + x(t), (31)

with two-point boundary conditions

x(k)(−1) = ak, x(k)(1) = bk, k = 0, . . . , 5, (32)

where
a0 = b0 = 0,

a1 = b1 = 2 sin(1),

a2 = −b2 = 4 cos(1) + 2 sin(1),

a3 = b3 = 6 cos(1) − 6 sin(1),

a4 = −b4 = −8 cos(1) − 12 sin(1),

a5 = b5 = −20 cos(1) + 10 sin(1).

(33)

For the 12th-order boundary value problem, by selecting the
Class IV Adomian Polynomials, we calculate the truncated series
solution which can be displayed as shown in Fig. 11. As shown in
Fig. 11, the curves of the 10-term approximate solution ξ

(IV)
10 and

its exact solution agrees very well to show the effectiveness of our
package AdomianPy.

In short, the effectiveness of our package AdomianPy are
demonstrated by these examples. Applying Python package Ado-
mianPy, one can solve initial value problems by deriving the
analytic approximate solutions automatically, but also boundary
value problems. It is a remarkable fact that the speed of executing
our python package can be great improved by multi-core, even
the super-linear speedup such as Example 4. Besides, from these
example, we know that selecting different Class of Adomian poly-
nomials may be important for given nonlinear problems, and the
characteristic of four known Class of Adomian polynomials will be
discussed in next section.

4. Discussions

In this paper, combined the Adomian–Rach double decomposi-
tionmethodwith the Rach’s Adomian polynomials, a parallel algo-
rithm is given to construct truncated series for initial or boundary
value problems. Some discussions about the four known class of
Adomian polynomials and speedup are given as following. On the
one hand, the class I Adomian polynomials always can be selected
for simple nonlinearities, such as Example 1. Furthermore, due to
the differences in collecting term us, the Class IV Adomian poly-
nomials has the fastest relative rate of convergence in four known
Class of Adomian polynomials [21]. Therefore, we compute highest
order of approximations of nonlinear problems by selecting Class
IV Adomian polynomials, such as Example 3. It always consumes
the least computational time among four known Class of Adomian
Polynomials that we obtain the truncated series by selection Class
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Fig. 10. The absolute error of Adomian–Rach decomposition method (left) and the finite difference method (right).

IV Adomian polynomials. Moreover, we have observed the approx-
imations derived by selecting the Class II Adomian polynomials
always have larger effective region than others. On the other hand,
we observe that the computational speed, to a large extend, was
improved when the number of processing is less than 4 in our
laptop from Figs. 4 and 8. Especially, we obtain the super-linear
speedup when the number of processing is used from 1 to 2 as
show in Fig. 4.

5. Conclusion and future work

Based on our parallel algorithm,we developed the Python pack-
age AdomianPy to automatically derive analytic approximations.
Some examples, such a system of ordinary or partial differential
equation, initial value problems, and boundary value problems,
has demonstrated its scope by applying various types of nonlinear
problems, as well as the its effectiveness and speedup. We remark
that the parallel algorithm, for most nonlinear problems, improve
their computational speed. Therefore, our Python package Adomi-
anPy provides an easy-to-extend tool to handle the decentralized
system which is encountered frequently in science and engineer-
ing.

But our package currently does notwork formore complex non-
linear problems including robin boundary value problems, frac-
tional differential equations, and other decentralized system. Fur-
thermore, the optimizing the multicore processors is not enough
for some examples, especially QoS in parallel algorithm. In the
future, we firstly will extend our package to solve more nonlinear
problems, such as stochastic system. Secondly, We will improve
the parallel algorithm to obtain less computational time by the
multicore processors optimizes or GPU computing. Thirdly, it is a
great significance that we can find the interval of convergence for
most nonlinear problems.
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Fig. 11. The 10-term approximate solution ξ
(IV)
10 (blue dotted line), and its exact

solution (red point marker).

Appendix. The interface and usage of our package AdomianPy

The main interface of Python package AdomianPy is asolve(eq,
ics, kwargs), where the parameter eq can be any supported ordi-
nary or partial differential equations, ics is the set of boundary
conditions for the differential equations. The optional parameters
kwargs includes func = None, n = 5, type = 4 and core = 1, where
func is a function of variables whose derivatives in that variables
make up the ordinary or partial differential equations, n represents
the necessary highest order of approximations, type = 1, 2, 3, 4
represents the Class I, II, III, IV Adomian polynomials respectively,
core is the number of processors used for computation, and their
default value is None, 5, 4, 1 respectively.

For partial differential equation
∂φ

∂t
− φ

∂φ

∂x
= 0, φ(x, 0) = x, (34)

we give the following Python program to calculate the truncated
series solution with 2 cores by selecting n = 7 and type = 4.
import numpy as np
from sympy import ∗

import matplotl ib . pyplot as p l t
from adomian import asolve
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def example ( ) :
t , x = symbols ( ’ t x ’ )
phi = Function ( ’ phi ’ )
eq = Eq( phi (x , t ) . d i f f ( t ) − phi (x , t )∗phi (x , t ) . d i f f ( x ) , 0)
i c s = { phi (x , 0 ) : x}
asol = asolve (eq , ics , type= 4 , n=7 , core =2)

t1 = np . arange (−4.0 , 1 .0 , 0 .1 )
x1 = [ ]
for asol_ in asol :

f = Lambda( t , asol_ . subs (x , 1 ) )
temp = map( f , t1 )
temp = map(N, temp)
x1 . append(temp)

f = Lambda( t ,1/(1− t ) )
temp = map( f , t1 )
temp = map(N, temp)
ex_sol = temp
f ig , ax = p l t . subplots ( )
ax . set_ylim(−3, 8)
ax . plot ( t1 , x4 [0 ] , ’ b : ’ , l abe l = ’ C l a s s IV ’ )
p l t . show( )

def main ( ) :
example ( )
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