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Abstract  

Action recognition is a challenging research area in which several convolutional neural networks (CNN) based 

action recognition methods are recently presented. However, such methods are inefficient for real-time online data 

stream processing with satisfied accuracy. Therefore, in this paper we propose an efficient and optimized CNN 

based system to process data streams in real-time, acquired from visual sensor of non-stationary surveillance 

environment. Firstly, frame level deep features are extracted using a pre-trained CNN model. Next, an optimized 

deep autoencoder (DAE) is introduced to learn temporal changes of the actions in the surveillance stream. 

Furthermore, a non-linear learning approach, quadratic SVM is trained for the classification of human actions. 

Finally, an iterative fine-tuning process is added in the testing phase that can update the parameters of trained model 

using the newly accumulated data of non-stationary environment. Experiments are conducted on benchmark 

datasets and results reveal the better performance of our system in terms of accuracy and running time compared 

to state-of-the-art methods. We believe that our proposed system is a suitable candidate for action recognition in 

surveillance data stream of non-stationary environments. 
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1. Introduction 

Human action recognition encompasses many important domains of real-life such as intelligent videos surveillance, 

detection of abnormal and suspicious actions, video retrieval based on different actions, video semantic recognition, 

and patients monitoring in healthcare centers [1-3]. There are numerous applications of action recognition using 

online data stream such as monitoring through visual sensors in surveillance, videos from websites, and social 

media feeds, that can lead to detect initiated anomaly, fraud or any abnormal situations [4]. In the context of videos, 

human actions can be recognized by the movement of different body parts such as hands and legs. A single still 

image cannot convey the whole idea of an action [5]. For example, jumping for a head-shot in football and skipping 

rope have the same action pose in the initial frame. The discrimination of both actions can be captured in a sequence 

of frames. Analyzing the movements of a human body in frame sequence and interaction with surrounding leads to 

recognizing the perfect actions in the video data stream [6, 7]. 

In non-stationary data streams whenever variation in new data is encountered, the trained model over the previous 

data cannot be considered effective enough. The reason is its adaptability issue over the new distribution of data 
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which needs diversity for non-stationary environment [8]. To overcome this issue, Lobo et al. [9] considered it as 

an optimization problem, which is solved by a bio-inspired algorithm to validate the heterogeneity of drifts and 

achieved high diversity through self-learning optimization technique. Another novel approach is proposed by 

Krawczyk et al. [10] modified weighted one-class SVM and improved it for the non-stationary streaming data 

analysis. They claimed that one-class classifier can adapt its decision boundary according to new data streams along 

with forgetting mechanism which helps the model to re-learn the parameters. Similarly, Bartosz et al. [11] presented 

an efficient ensemble learning technique for recognizing activities in real-time. The system iteratively modifies the 

weights of Naïve Bayes classifier and make it smoothly adaptable to current situation of stream even without an 

external drift detector. Abdallah et al. [12] presented a detailed survey about activity recognition in online data 

stream mining.  Moreover, recognizing human actions accurately in real-time from online surveillance data stream 

is a highly challenging task due to computation of high-dimensional features, variation in viewpoint, motion, 

cluttered backgrounds, occlusion, and different illumination conditions [13-15]. 

To address these problems, numerous handcrafted local feature descriptors were used in the domain of recognizing 

human actions since the last decade [16-18] in which the number of spatial-temporal based approaches were 

significant [18-20]. Such schemes are based on the analysis of motion information and can be improved in 

performance by Bag-of-Words (BoW) [21-23] but developing BoW is computationally expensive and requires hard 

engineering. Dalal et al. [24] presented motion boundary histogram (MBH), where edges motion are captured in 

HOG descriptor. Local gradients in horizontal and vertical components of the optical flow are calculated separately. 

The corresponding magnitude and orientation in both components are used as weighted votes for local orientation 

histograms. The extended version of HOG feature descriptor named HOG3D is presented by Klaser et al. [17] in 

which 3D gradients orientation computed from integral video representation are binned into polyhedrons to analyze 

appearance and motion information. This scheme has expensive quantization cost due to high dimensionality 

structure. To handle this problem, Shi et al.[25] introduced Gradient Boundary Histograms (GBH). They used time-

derivatives of image gradients instead of simple gradients to highlight the moving edge boundaries. Klaser et al. 

[26] proposed Optical Flow Co-occurrence Matric (OFCM) to extract a set of statistical measures captured using 

the magnitude and orientation of optical flow. The key motivation to design OFCM was on assumption that the 

spatial relationship can be found in the local neighborhoods of the flow field, which has a major contribution in the 

representation of motions.  

Handcrafted features extraction mechanisms involve hard engineering, represents low-level semantic of visual data, 

and high complexity for extraction and classification. Therefore, automatic features learning methods are initiated 

by researchers. For instance, neural networks-based methods can directly extract features from raw inputs based on 

its trained weights and biases. CNN learns features in a hierarchical way where initial layers acquire local features 

from visual data and the final layers extract global features representing high-level semantics [27]. Recently, 

researchers have tried to develop a variety of CNN architectures for sequence learning of action recognition. For 

instance, a CNN framework based on spatio-temporal information is proposed by Karpathy et al. [28] to learn the 
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motion features. Several temporal information fusion schemes are analyzed to fuse local motion direction with 

global features. However, the recognition rate is 63.3% on UCF 101 dataset [29], indicating that their CNN 

architecture is unable to effectively represents human actions in the video stream. In another work, Park et al. [30] 

extracted motion information for a specific part of the image using a spatial network, that captures highly activated 

features from magnitude information of the optical flow. Features maps of the last convolutional layer of spatial 

network are analyzed to compute optical flow magnitudes. Another similar work presented by Simonyan and 

Zisserman [31] is based on a two-stream network. The first stream involves spatial network which extracts temporal 

information from the sequence of frames. In the second stream, temporal network is utilized to compute dense 

optical flow displacements across multiple frames. Finally, the average scores from both streams are used for 

prediction. Majority of the deep CNN frameworks are for 2D images without keeping time information. Ji et al [32] 

presented a 3D CNN for end to end action recognition. Their model extracts features from both the spatial and 

temporal dimensions to get motion information from multiple adjacent frames. This method is based on analyzing 

consecutive segments of human subjects in video frames.  

Deep CNN based methods can learn influential weights to discriminate between different actions present in visual 

data [33]. However, action recognition models are not trained on a large-scale dataset such as ImageNet. Many 

studies [6, 27, 34] have concluded that the activations of pre-trained CNN models achieved impressive success for 

image retrieval, fire detection, and video summarization. Therefore, we have extensively investigated the deep 

features of various pre-trained CNN models for action recognition. Furthermore, existing CNN models are 

computationally expensive and their recognition accuracy is not satisfied for all environments such as online data 

streams of non-stationary environment. Therefore, we conduct this study to address these issues with the following 

key contributions: 

1. We propose an efficient and optimized action recognition system to process data streams acquired from 

visual surveillance of non-stationary environment. Our system uses the activations of fully connected layer 

of a pre-trained VGG-16 CNN model for frame level representation of an action in video streams. 

2. Actions are sequence of motion patterns in consecutive frames, and the frame level features are high-

dimensional raw data to recognize actions precisely. Therefore, we have trained an optimized DAE to 

squeeze those features and make it able to associate frame to frame hidden changes in low-dimensional 

feature plane. This enables our system in effective sequence learning for action recognition compared to 

complex learning approaches such as long short-term memory (LSTM). 

3.  We have investigated a non-linear learning approach and trained an efficient quadratic SVM to recognize 

actions from low-dimensional features plane. 

4. The video data in non-stationary environments are very diverse in nature due to changing overtime, where 

one-time trained models are not effective enough for precise predictions. Therefore, we introduce an 

iterative fine-tuning module that collects new data of high confidence prediction for actions and iteratively 
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fine-tune the recognition model with this data. This process makes our system capable of updating itself 

according to the variations in the underlying non-stationary environment.  

5. Our system is tested on benchmark datasets from different perspectives and results are encouraging 

compared to state-of-the-art, making it suitable for real-time surveillance monitoring in general and data 

streams of non-stationary environment in particular. 

The remaining paper is organized as follows: Section 2 highlights various aspects of the proposed framework. 

Experimental setup and discussion on results are given in Section 3. Conclusion, strengths, weaknesses, and future 

directions of this work are discussed in Section 4. 

2. Proposed framework 

In this section, the mechanism of the proposed system is discussed in detail. The system includes representation of 

actions in online video data stream using deep CNN features, sequence learning using DAE, and classification of 

actions with a quadratic SVM. First, deep features are extracted from selected frames of online data stream using a 

pre-trained VGG-16 CNN model. Second, the high dimensional features are squeezed and the temporal changes 

between features are learned in a low dimensional feature plane using DAE. Finally, a quadratic SVM is trained to 

classify the squeezed features of processed duration of online video stream.  Furthermore, we accumulate the data 

stream with high confidence scores of different actions and iteratively fine-tune our recognition model with new 

data to adopt variations of non-stationary environment. The proposed framework is shown in Fig. 1 whereas each 

phase of the system is described in a different section and the implementation steps are given in Algorithm 1. 

 
Figure 1: The proposed framework for human action recognition system. An online video data stream is forward 

propagated to a pre-trained CNN model to extract features from a fully connected layer. This is followed by a deep 

autoencoder which learns the temporal changes of a human action in low dimensional features plane. Finally, a 

quadratic SVM is used to classify human actions. 
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2.1) Deep features extraction and preparation 

Video data contain a large amount of hidden visual contents including temporal changes of texture, motion, edges, 

and colors. An efficient representation and analysis of these contents allow us to make automatic timely decisions 

such as human actions recognition, fire detection, contextual information analysis, and event detection. Deep neural 

networks have shown its effectiveness in images [35], sounds, and videos analysis [36] because of its remarkable 

representational abilities [37]. Training a deep CNN model requires a huge amount of data and high-cost 

computational resources. The solution to this problem is to use pre-trained CNN models for different problems as 

their parameters are trained on enormous datasets such as ImageNet [38]. In the proposed system, a fully connected 

“FC8” layer of a pre-trained VGG16 [39] CNN model is used to extract features from video frames. The fully 

connected layer extracts generic global descriptors from an image [34]. Therefore, we argue that these features are 

highly dominant and capable of representing visual contents which can help us for learning the complex sequences 

in the video frames. The pre-trained CNN model process one frame at a time, where the video data contains a 

sequence of frames. We have fed 15 frames to the employed CNN model taken from online video data stream of 

one-second with one frame skip. It gives a high dimensional features vector representing human action in a raw 

form. The temporal sequences between these features are squeezed through an efficient DAE and learned it using 

a quadratic SVM for human action recognition. 

 

2.2) VGG-16 CNN model 

In the proposed framework a VGG-16 [39] CNN architecture is chosen for deep features extraction from video 

frames. Because it is noticed in our experiments, that it can achieve sensible stability between the accuracy and 

time efficiency for action recognition problem. The architecture of VGG-16 is given in Table 1. The architecture 

of VGG-16 is different from previous state-of-the-art CNN models [40-43] where initial layers are convolved with 

11x11or 7x7 kernels with 4 to 5 strides. This type of setup increases the number of parameters in a CNN model. 

Furthermore, with wide stride, it can miss important patterns in the image. On the other hand, VGG-16 contains 

3x3 kernels for all convolutional layers with 1 stride, helping to reduce the number of parameters in layers and 

convolve each pixel of the image due to 1 stride. It can be seen from Table 1 that two consecutive 3x3 convolution 

layers are applied without a pooling layer in between. This combination of two-layer results in effect of 7x7 kernels. 

Assembling consecutive three convolutional layers are followed by a “relu” activation, where multiple non-linear 

functions make it more discriminative.  

Table 1: The Architecture of a pre-trained VGG-16 CNN model. 
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2.3) Deep autoencoder 

Deep autoencoder is an effective unsupervised feature representation technique with multiple hidden layers. The 

motivation behind the neural concept of data learning is that the parameters of hidden layers are not manually 

constructed [44, 45], but they are learned according to the given data automatically. This idea encouraged us to 

learn time axis features of video sequences using DAE. The high dimensional deep features are squeezed to low 

dimensions with a negligible error during transformation. Deep features from the sequence of frames are extracted 

and learned its hidden patterns and frame to frame changes using an efficient architecture of four layers stacked 

autoencoder as shown in Fig. 2. The first layer encodes 15000-dimensional feature vector to 8000 neurons, pursued 

by 4000, 2000, and 1000 dimensions reduction, respectively. The reason behind reduction of high dimensional data 

with half factor is to reduce time complexity of the autoencoder. Squeezing high dimensional data with small steps 

and multiple deep layers results in high computational complexity. The DAE learns "hierarchical grouping" or 

"part-whole decomposition" in the input data [46]. The initial layers of the stacked autoencoder capture the first 

order features and changes in the raw input data. On the other hand, the intermediate layers learn the second-order 

feature corresponding to the patterns that come in the first-order features. Therefore, we argue that the proposed 

DAE learns the changes and patterns of human action in video sequence effectively. 

 

Figure 2: The architecture of the stacked four autoencoders squeezing high-dimensional features to low-

dimensional features. 

The autoencoder is comprised of two phases: First is encoding where data is multiplied by weights, biases are added, 

and followed by some non-linearity function such as sigmoid and relu given in Eq. 1. Secondly, the encoded data 

is decoded to the same number of inputs as shown in Eq. 2. The weights are adjusted using a backpropagation to 

reduce the mean squared error near to zero.  

ℎ(𝑥) = 𝑠𝑖𝑔𝑚(𝑊𝑥 + 𝑏)      (1) 

𝑥̂ = 𝑠𝑖𝑔𝑚(𝑊(ℎ(𝑥) + 𝑏)      (2) 

In the stacked autoencoder, the first hidden layer takes input x, while the other gets input from the previous hidden 

layer in the network as shown in Eq. 3 and Eq. 4. Herein, “n” is the number of layers for encoding, 𝑥𝑙 , 𝑊𝑙 , 𝑎𝑛𝑑 𝑏𝑙 

are the data, weights, and biases of the concerned layer, respectively.  

ℎ(𝑥)(𝑙+1) = 𝑠𝑖𝑔𝑚(𝑊𝑙𝑥𝑙 + 𝑏𝑙)     (3) 

𝑥̂(𝑛+𝑙+1) = 𝑠𝑖𝑔𝑚(𝑊(𝑛−𝑙)ℎ(𝑥)(𝑛+𝑙) + 𝑏(𝑛−𝑙))    (4) 

The proposed DAE is trained up to 400 epochs. The L2 weights regularization is applied to diminish the over-fitting 

problem and “falling into local minima” problem. The Sparsity regularization is also applied with sigma α of value 
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0.05 which means that each neuron in the hidden layer takes an average output of 0.5 over the training samples. 

Finally, mean squared error (MSE) with L2 regularization and sparsity regularization is used as a cost function for 

fine-tuning the weights of the DAE. The error is reduced up to 10-2 in 300 epochs, which was 0.0077 for the last 

epoch of the training phase. Fig. 3(a) shows performance graph of the training phase, where we can see that the 

error is reduced smoothly without going into overfitting problem. Fig. 3(b) represents the comparison between the 

encoded data with some portion of the original data. It can be noted that data having low activation, are caught by 

the sparsity regularization and high values have got the same graph pattern as the original data. 

 
Figure 3: Performance of the feature transformation from high-dimension to low- dimensions. (a) Mean square 

error graph of DAE decreasing with training epoch. (b) Comparison between the encoded features with some part 

of the original features. 

2.4) Learning actions using quadratic SVM 

Learning with linear SVM is not effective in a high dimensional features plane when substantial class overlapping 

comes in the training data as the hyperplane separating two different classes, is always a straight line [47] as shown 

in Fig. 4. In such case, a non-linear SVM is effective which can separate the data with wide hyperplane between 

two class data. In training SVM for multiple classes, we get the imbalance data problem and we need to train one 

category data against all categories, because SVM is originally for binary class classification. In the non-linear 

SVM, increasing the polynomial function may give an optimum hyperplane between the two classes, but it increases 

the computation time of the system [48]. In our system, we have used a non-linear quadratic SVM through which 

we have achieved stability between accuracy and time efficiency.  

 

𝑀 =
𝑁(𝑁−1)

2
       (5) 

Two strategies have been used for multi-class SVM: one-vs-one (OvO) and one-vs-all (OvA). In “OvO”, we need 

to train “M” classifiers for “N” classes as given in Eq. 5 where the nth class is trained against all N-1 classes. This 

is computationally expensive when the number of classes increases. In case of the proposed system, it is trained on 

UCF101 [29], HMDB51, and UCF50 datasets, which has 101, 51, and 50 categories, respectively. This lead to 5050 

classifiers for 101 categories of data, 1275 and 1225 classifiers for 51 and 50 classes, respectively. This type of 

setup is not efficient in real-time applications such as surveillance stream. On the other hand, in “OvA” we need 
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only “N-1” classifiers. It requires training of single classifier per-class, with the training data of the class as positive 

samples and all other classes data as negatives samples. In such case, the classification gets into imbalance data 

problem due to samples of one class data against samples of all classes. In the proposed system, we have used a 

highly powerful feature which is discriminative for each class and we can get high accuracy on “OvA” non-linear 

classifier.  

 
Figure 4: Hyperplane separation between two class data using linear SVM and non-linear SVM classification. 

2.5) Incremental model training for data stream 

Another encouraging feature of our system is its capability to update itself iteratively, grasping the changes in 

surrounding environment. The iterative training process is shown in Fig. 5. The data stream predicted with 

confidence score greater than a certain threshold can be used to re-train the model iteratively, enabling it adaptive 

to different varying conditions. The threshold can be selected considering the requirements of users, environmental 

effects, and deployment settings. The data with high confidence scores is accumulated along with the predicted 

labels. When a certain amount of data is assembled, the same trained model is fine-tuned with new data which 

adapts itself with the variations in the environment. Considering these characteristics, our system can be 

implemented in health care centers for patient activity monitoring and for anomaly, fraud and intruder detection in 

real-time video streams of surveillance. 
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Figure 5: Iterative fine-tuning process of the proposed system.  

 

Algorithm 1: Human actions representation and recognition in online data stream  

Input: Video stream V 

Initialization 

1) Load trained models (m1: VGG-16 model, m2: deep autoencoder, and m3: quadratic SVM) 

2) Select duration Đ (in secs) of online video stream for processing 

3) Set counter=1 

Process 

4) while (V) 

a. Đ← read V [counter] 

b. f1 ← m1 (Đ) 

c. f2 ← m2 (f1) 

d. Pcounter← m3 (f2)  

e. Predicted action in video data stream for duration Đ  Pcounter  

f. If Pcounter > threshold 

    Accumulate data of Đ with Pcounter in new database 

end of If 

g. Increment counter 

h. Output: display label of an action for Đ 

5) end of while 
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3. Experimental evaluation 

In this section, we evaluated the proposed system on several benchmark datasets used for action recognition 

assessment. The datasets include UCF101 [29], UCF50 [49], YouTube Actions [50], and HMDB51 [51]. Sample 

categories from five different datasets are shown in Fig. 6. The proposed system was implemented and assessed 

using MATLAB2017b on Ubuntu16.04 environment, CoreTMi5-6600 set up with 16 GB RAM and 12 GB GeForce-

Titan-X GPU. A deep learning toolbox “MathConvNet” is used for CNN features extraction, neural network 

toolbox is used for DAE, and “classification Learner” toolbox is used for learning quadratic SVM classifier for 

action recognition. The proposed method is assessed using four different accuracy calculation matrix including 

confusion matrix (Fig. 7 and Fig. 8), precision, recall, and the F-measure score given in Table 3. Results of each 

dataset and comparisons with state-of-the-art are given in Table 2 and discussed in separate sections. 

 

Figure 6: Sample action classes form UCF101, UCF50, HMDB51, and YouTube actions datasets. 

3.1) UCF101 dataset 

UCF101 [29] is a popular real-life action videos dataset which contains 13320 videos of 101 action classes collected 

from YouTube in “.avi” format. The number of samples for all categories are balanced, ranging from 100~130 

samples and duration of an action in each sample is 2~7 seconds. UCF101 is relatively a challenging dataset because 

of many action classes where humans are performing actions on different objects, musical instruments, sporting 

goods, and interaction with parts of human body. Results are collected using this dataset and comparison with state-

of-the methods is given in Table 2, where column 4 presents the average accuracy of the proposed system. 

Confusion matrix for the test set on this dataset is shown in Fig. 7 where we have achieved an average accuracy of 

94.33%. We compared the proposed system with the histograms of oriented gradient and optical flow (HOG-HOF) 

+ fisher vector (FV) [13], oriented histogram flow (OHF) + bag of words (BoW [15], gradient boundary histograms 

(GBH) + motion boundary histogram (MBH) [25], improved dense trajectories (IDT) hybrid approach [21], and 

multi-view super vector [52] hand-crafted features. The IDT [52] shows the best accuracy of 87.9% on UCF101 

dataset among all hand-crafted features based methods. We have outperformed these methods by 6.43% increase 
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in accuracy, which is evident from column 4 of Table 2. The performance of the proposed system beat neural 

network-based methods [28, 31, 53-57] with 1.23% improvement in the accuracy. The precision, recall, and F1-

measure score for the UCF101 dataset is given in Table 3, where we have achieved positive prediction score 0. 

8932, 0. 9035 sensitivity score, and 0. 8983 F1-measure scores. These statistics show the effectiveness of the 

proposed system for human action recognition on the UCF101 dataset. 

Table 2: Comparison of the proposed system with state-of-the-art hand-crafted and CNN based action 

recognition methods. 

 

 

Datasets 

 

Methods 

(Accuracy %) 

UCF50 

 

UCF101 HMDB51 YouTube 

Action 

Hand crafted 

features-based 

methods 

HOG-HOF + FV [58, 59] - 75.4 45.6 - 

OHF + BoW [24, 59] - 77.1 51.5 - 

GBH + MBH [25] - 86.6 62.2 - 

Improved dense trajectories hybrid 

approach [21] 
92.3 87.9 61.1 - 

Multi-view super vector [52] - 83.5 55.9 - 

Neural 

network-

based 

methods 

LSVC with CNN [28] - 65.4  - 

Composite LSTM [53] - 75.8 44.1 - 

Hierarchical clustering [54]  93.2 76.3 51.4 89.7 

key-volume mining deep CNN [55] - 93.1 63.3 - 

FSTCN (SCI fusion) [56] - 88.1 59.1 - 

Fusion (S: VGG-16, T:VGG-16) [57] - 92.5 65.4 - 

Single stream CNN [60] - - - 93.1 

Two-stream model (fusion by SVM) [31] - 88.0 59.4 - 

Proposed system  96.4 94.33 70.3 96.21 

 

Table 3: The effectiveness of the proposed system using precision, recall, and F1-measuere scores. 

Dataset Precision Recall F1-measure 

UCF50 [49] 0.9321 0.9124 0.9221 

UCF101 [29] 0.8932 0.9035 0.8983 

HMDB51 [51] 0.6906 0.6234 0.6553 

YouTube Actions [50] 0.9541 0.9387 0.9463 
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3.2) UCF50 dataset 

UCF50 is a diverse collection of human actions due to high diversity in camera motion, object appearance and pose, 

object scale, viewpoint, cluttered background, and different illumination in surroundings [49]. It has fifty action 

classes, wherein videos of each category are divided into different groups that share some common features 

variations such as in one group a piano is played by a person four times but with a different viewpoint. The 

comparison with state-of-the-art methods on this dataset is given in Table 2. It is evident from column 3 of Table 2 

that the proposed system has achieved higher accuracy compared to both hand-crafted features and deep features-

based methods. Confusion matrix of the test set for UCF50 dataset is shown in Fig. 7 where we have achieved an 

average accuracy of 96.4%. The proposed system has reported an improvement of 4% in results to hand-crafted 

features-based method (IDT) [21] and 3% to CNN features based hierarchical clustering [54] method. The precision, 

recall, and F1-measure scores for the UCF50 dataset are shown in Table 3. The proposed method has achieved 

higher true positive, sensitivity and effectiveness scores 0.9321, 0.9124, and 0.9221, respectively. 

 

Figure 7: Confusion matrixes of UCF50 and UCF101 action recognition datasets. 
 

3.3) HMDB51 dataset 

The HMDB51 [51] is considered as a challenging dataset in action recognition society. It contains actions related 

to human facial interaction, motion of the body parts, body dealing with objects, sports, and human exercises. The 

dataset comprises of 6849 action samples taken from YouTube with a variety of different subjects and is divided 

into 51 categories. In each category there are more than one hundred video samples. The dataset is made more 

challenging because of taking samples from a variety of subjects in different illumination and viewpoint changes 

for performing the same actions. On this dataset, the average accuracy of state-of-the-art methods lies under 60%. 

In the proposed system, we represented human action with high-level features using CNN and DAE, which helps 

to recognize the complex action in an efficient way with improved accuracy. The comparison with previous 

techniques reported for HMDB51 is given in Table 2, where the proposed system has dominated [21, 25, 52]. The 
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method [25] shows best performance of 62.2% accuracy on HMDB51 among all hand-crafted features based 

methods. The proposed system is also compared with CNN based methods including composite LSTM [53], 

hierarchical clustering [54], key-volume mining deep CNN [55], FSTCN (SCI fusion) [56], fusion (S: VGG-16, 

T:VGG-16) [57], and two-stream model (fusion by SVM) [31]. The proposed system has improved performance 

of these methods by 8.2% in accuracy of hand-crafted features and 5% for the CNN based approaches. Confusion 

matrix for HMDB51 dataset is show in Fig. 8 where we have achieved an average accuracy of 70.4%. The precision, 

recall, and F1-measure score for HMDB51 dataset is given in Table 3. On this dataset, we have achieved 0.6906 

precision, 0.6234, and 0.6553 for recall and F1-measure score, respectively. The low recall score is due to high 

false positives received for some actions such as Fig. 8 (class 50), which has comparatively many false positives. 

Despite these factors, our system achieved a higher average accuracy of 70.4% on this challenging dataset. 

 

Figure 8: Confusion matrixes of HMDB51 and YouTube action recognition datasets. 

3.4) YouTube actions dataset 

YouTube action is one of the complex and challenging datasets because the actions samples are collected in low 

resolution with moving and still camera in different scales, clustered background, illumination and viewpoint 

changes. It contains 11 action classes collected from sports in which some videos are taken from 25 subjects with 

4 samples for each action and other videos are collected from YouTube. The comparative results using this dataset 

with other methods is given in Table 2. Two CNN based methods including hierarchical clustering [54] and single 

stream CNN [60] achieved 94.3% and 93.1% accuracy, respectively, which is improved by our proposed method 

by almost 2%. Confusion matrix of the test set for YouTube actions dataset is presented in Fig. 8 where we have 

achieved an average accuracy of 96.21%. The proposed system exhibits better precision, recall, and F1-measure 

score of 0.9541, 0.9387, and 0.9463, respectively for this dataset as given in Table 3.  

3.5) Discussion on visual results 
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The proposed system is evaluated on 20% samples from each dataset to obtain the quantitative results. Fig. 9 shows 

correct and incorrect predictions with their maximum confidence scores of our proposed system for a single action 

video. A set of frames of each action are also given for better understanding of readers. It is noted from the 

experiments that the complex actions such as “Horse racing” and “Horse riding” which has minor difference of 

“many horses” and “one horse”, respectively, has more than 95% accuracy. Row 2 and Row 5 of Fig. 9 show 

incorrect predictions. This is due to the common visual contents in the ground truth and predicted classes of the 

dataset. For example, “skateboarding” is predicted as “skiing” and “diving” is miss-classified as “high jump”. 

However, the confidence scores of incorrect predictions of these challenging classes are very low. The predication 

“high jump” is incorrect because when the diver jumps for the dive, changes between the frames, represent high 

jump class for that particular interval of time. 

 

Figure 9: Predicted results along with maximum confidence scores for the overall test video by the proposed action 

recognition system. The underline red text shows in-correct prediction of our system. 



15 
 

3.6) Model behavior Vs Label transitions over time 

The proposed trained model predicts action in the data stream over intervals, and for each interval of time, the 

confidence score changes due to motion of the camera, variation in the viewpoint, and scale of an actor. It is very 

challenging to have adjacent prediction scores for the same action or abrupt change during transition to another 

action. A series of confidence scores and predicted actions over time are visualized in Fig. 10, where scores for the 

same class are approximately similar to each other. However, when there are some overlapping frames of two 

actions in the interval under process, it affects the accuracy of prediction in a negative manner with a low confidence 

score. This situation can be observed from Fig. 10 (Row 3 and Row 4). For instance, in Row 4 the frames of 

“jumping” action are overlapped with frames of “dive” action. Therefore, in the first interval of the concerned 

sequence, high jump is predicted with low confidence score and for rest of the intervals, scores are adjacent and 

predictions are accurate. This problem is tackled by iteratively fine-tuning the recognition model, which makes it 

adoptable to variations between different actions performed in non-stationary environment.  

 

Figure 10: Sample variations in predictions and confidence scores for an action with respect to time. The overall 

accuracy is considered from the predictions of the particular action for all five intervals. 
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3.7) Computational complexity and feasibility analysis 

This section investigates the running time of our system and its feasibility to online data stream understanding and 

mining. The experiments of the proposed system for feature extraction, training, and testing of DAE and quadratic 

SVM for action recognition are performed using GeForce-Titan-X GPU. On this setup, the VGG-16 model takes 

0.12 seconds to extract features from one frame. In the proposed system, we have fed 15 frames at a time from 

video data stream to take advantage of the parallelism in GPU which takes approximately 0.61 seconds for 

extracting features from them. Secondly, the DAE takes 0.52 seconds for squeezing action patterns to low 

dimensional features plane. Finally, the quadratic SVM takes only 0.18 seconds to classify the given set of frames 

into action categories. As a whole, the system takes 1.31 seconds for processing 30 frames from the video stream, 

showing nearly real-time processing. Based on the statistics shown in Fig. 11, the proposed system can process 25 

frames per second in real-time surveillance for human action recognition in non-stationary environments.  

 

Figure 11: Processing time of the proposed system on CPU and GPU taken for 1 second video data stream for 

action recognition. 

4. Conclusion and Future work 

In this paper, we presented an optimized DAE based human actions representation framework that can be 

implemented in real-world dynamic scenarios. The input of our system can be acquired from online surveillance 

video data stream, websites, social media feeds or any other visual content resources. Semantic features of a pre-

trained VGG16 CNN model are used for frame level representation. An optimized DAE is trained to effectively 

represent actions from raw information of video frames. The DAE converts high-dimensional data to low-

dimensional feature plane and learns information variations amongst adjacent frames. Finally, quadratic SVM 

processes the output of DAE to classify the human action performed within the input video data stream at a 

particular time. Our experiments verify that the proposed system can process 25 frames per-second regardless of 

the noisy effects and heterogeneous nature of data streams. The experiments conducted with benchmark datasets 

including UCF50, UCF101, HMDB51, and YouTube Action dataset revealed that it is an efficient and effective 
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system for action recognition in surveillance from non-stationary environment. Lastly, data stream with high 

confidence scores are accumulated for iterative fine-tuning of the proposed action recognition model with new data, 

enabling it to adopt variations in non-stationary environment. 

In future, we plan to analyze multiple actions by detecting and tracking multiple targets in a sequence of online 

video stream. The current available realistic video datasets contain actions performed by a single person, where 

multiple actions need to be recognized in dense situations. Secondly, when there is a situation of overlapping actions 

in a single sequence such as jump and dive in same sequence reduces the accuracy. This limitation will be 

considered in our future work. Furthermore, we have motivation to develop action recognition mechanism based 

on multi view surveillance videos connected in a visual sensor network in different dynamic environments. Finally, 

the proposed system is feasible to be extended for video classification, human activity recognition, violent event 

recognition, and can be implemented for crowed analysis in dense environment.  
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Highlights 

 Action recognition in online data stream acquired from non-stationary surveillance 

 Efficient CNN model is used for frame-level representation 

 An optimized deep autoencoder is presented for learning sequences and squeezing high-

dimensional features 

 Investigated a non-linear learning approach for action recognition 

 Iterative fine-tuning of the trained recognition model for newly accumulated data 

 


