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Streams of Non-Stationary Environments
Amin Ullah*, Khan Muhammad, ljaz Ul Haq, Sung Wook Laik
Intelligent Media Laboratory, College of Electronics and Information Engineer’ 1g, : ejong University, Seoul,
Republic of Korea
Abstract
Action recognition is a challenging research area in which several convolu.'~aal neural networks (CNN) based
action recognition methods are recently presented. However, such methe ds are “nefficient for real-time online data
stream processing with satisfied accuracy. Therefore, in this paper we p, >»~.e an efficient and optimized CNN
based system to process data streams in real-time, acquired from. vi~dal sensor of non-stationary surveillance
environment. Firstly, frame level deep features are extracted using . "re-trained CNN model. Next, an optimized
deep autoencoder (DAE) is introduced to learn temporal cha. "es r{ the actions in the surveillance stream.
Furthermore, a non-linear learning approach, quadratic SVM is ..~ined for the classification of human actions.
Finally, an iterative fine-tuning process is added in the testing p. ~se that can update the parameters of trained model
using the newly accumulated data of non-stationary e ‘/ironment. Experiments are conducted on benchmark
datasets and results reveal the better performance of ¢'n ~vsi.2m in terms of accuracy and running time compared
to state-of-the-art methods. We believe that our . o2~ system is a suitable candidate for action recognition in
surveillance data stream of non-stationary environments.
Keywords
Big data processing, action recognition, c.iline «>'a stream analysis, optimized deep autoencoder, convolutional
neural network, machine learning, and nc ~-< atir aary environment
1. Introduction
Human action recognition encomp~-:~s many important domains of real-life such as intelligent videos surveillance,
detection of abnormal and suspici. s actions, video retrieval based on different actions, video semantic recognition,
and patients monitoring in he .th-are centers [1-3]. There are numerous applications of action recognition using
online data stream such as moi..*ar ng through visual sensors in surveillance, videos from websites, and social
media feeds, that can lead to dete: t initiated anomaly, fraud or any abnormal situations [4]. In the context of videos,
human actions can be .ccogruced by the movement of different body parts such as hands and legs. A single still
image cannot convey he whr le idea of an action [5]. For example, jumping for a head-shot in football and skipping
rope have the sam. ac.. =" nose in the initial frame. The discrimination of both actions can be captured in a sequence
of frames. Analyzing e movements of a human body in frame sequence and interaction with surrounding leads to
recognizing the perfect actions in the video data stream [6, 7].
In non-stationary data streams whenever variation in new data is encountered, the trained model over the previous

data cannot be considered effective enough. The reason is its adaptability issue over the new distribution of data
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which needs diversity for non-stationary environment [8]. To overcome this issue, Lobo et al. [9] considered it as
an optimization problem, which is solved by a bio-inspired algorithm to validate the heterogeneity of drifts and
achieved high diversity through self-learning optimization technique. Another nov s ~nproach is proposed by
Krawczyk et al. [10] modified weighted one-class SVM and improved it for the i 1-stationary streaming data
analysis. They claimed that one-class classifier can adapt its decision boundary acco, ¥ ng to new data streams along
with forgetting mechanism which helps the model to re-learn the parameters. Si~ilar,,;” Bartosz et al. [11] presented
an efficient ensemble learning technique for recognizing activities in real-tir ‘2. 7 ne system iteratively modifies the
weights of Naive Bayes classifier and make it smoothly adaptable to cu ient situation of stream even without an
external drift detector. Abdallah et al. [12] presented a detailed survey ~bout .ctivity recognition in online data
stream mining. Moreover, recognizing human actions accurately in eal-"...>e from online surveillance data stream
is a highly challenging task due to computation of high-dimen.anal f~.tures, variation in viewpoint, motion,
cluttered backgrounds, occlusion, and different illumination coditions 13-15].

To address these problems, numerous handcrafted local feature c~scriptors were used in the domain of recognizing
human actions since the last decade [16-18] in which the "umber of spatial-temporal based approaches were
significant [18-20]. Such schemes are based on the & 'aiy. .= 9f motion information and can be improved in
performance by Bag-of-Words (BoW) [21-23] but de .'npir.» BoW is computationally expensive and requires hard
engineering. Dalal et al. [24] presented motion betindar ,* histogram (MBH), where edges motion are captured in
HOG descriptor. Local gradients in horizontal and veru.~l components of the optical flow are calculated separately.
The corresponding magnitude and orientatior n b *h components are used as weighted votes for local orientation
histograms. The extended version of HOG fea. 're r escriptor named HOG3D is presented by Klaser et al. [17] in
which 3D gradients orientation computer’ fro’.1 in*2gral video representation are binned into polyhedrons to analyze
appearance and motion information. rhis su. 2me has expensive quantization cost due to high dimensionality
structure. To handle this problem, Shi et al., 5] introduced Gradient Boundary Histograms (GBH). They used time-
derivatives of image gradients ir.tear of simple gradients to highlight the moving edge boundaries. Klaser et al.
[26] proposed Optical Flow C.-occur, ~nce Matric (OFCM) to extract a set of statistical measures captured using
the magnitude and orientatior, ~ op’.cal flow. The key motivation to design OFCM was on assumption that the
spatial relationship can be founc *n the local neighborhoods of the flow field, which has a major contribution in the
representation of motions.

Handcrafted features xtracti \n mechanisms involve hard engineering, represents low-level semantic of visual data,
and high complexitv for cawraction and classification. Therefore, automatic features learning methods are initiated
by researchers. For.>.tance, neural networks-based methods can directly extract features from raw inputs based on
its trained weights and biases. CNN learns features in a hierarchical way where initial layers acquire local features
from visual data and the final layers extract global features representing high-level semantics [27]. Recently,
researchers have tried to develop a variety of CNN architectures for sequence learning of action recognition. For

instance, a CNN framework based on spatio-temporal information is proposed by Karpathy et al. [28] to learn the
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motion features. Several temporal information fusion schemes are analyzed to fuse local motion direction with
global features. However, the recognition rate is 63.3% on UCF 101 dataset [29], indicating that their CNN
architecture is unable to effectively represents human actions in the video stream. In 7 ac*her work, Park et al. [30]
extracted motion information for a specific part of the image using a spatial networ’ ., .. at captures highly activated
features from magnitude information of the optical flow. Features maps of the las. - onvolutional layer of spatial
network are analyzed to compute optical flow magnitudes. Another similar *vorn ~resented by Simonyan and
Zisserman [31] is based on a two-stream network. The first stream involves < 'ati7« nework which extracts temporal
information from the sequence of frames. In the second stream, tempo’ai netwu ik is utilized to compute dense
optical flow displacements across multiple frames. Finally, the averag scorss from both streams are used for
prediction. Majority of the deep CNN frameworks are for 2D images witk . * keeping time information. Ji et al [32]
presented a 3D CNN for end to end action recognition. Their m. el ev* acts features from both the spatial and
temporal dimensions to get motion information from multiple ¢ Jiacent rames. This method is based on analyzing
consecutive segments of human subjects in video frames.

Deep CNN based methods can learn influential weights to u.~criminate between different actions present in visual
data [33]. However, action recognition models are not -an. * 2n a large-scale dataset such as ImageNet. Many
studies [6, 27, 34] have concluded that the activation: >f pre trained CNN models achieved impressive success for
image retrieval, fire detection, and video summarizatio.». 1'herefore, we have extensively investigated the deep
features of various pre-trained CNN models for ac..on recognition. Furthermore, existing CNN models are
computationally expensive and their recognit’un a.~uracy is not satisfied for all environments such as online data
streams of non-stationary environment. Therei. 2, v e conduct this study to address these issues with the following
key contributions:

1. We propose an efficient and rotimize.” action recognition system to process data streams acquired from
visual surveillance of non-stationar, 2nvironment. Our system uses the activations of fully connected layer
of a pre-trained VGG-16 “_.NN model for frame level representation of an action in video streams.

2. Actions are sequence ,f moucn patterns in consecutive frames, and the frame level features are high-
dimensional raw data :~ recr gnize actions precisely. Therefore, we have trained an optimized DAE to
squeeze those fea’ures &>d make it able to associate frame to frame hidden changes in low-dimensional
feature plane. This .~akF’es our system in effective sequence learning for action recognition compared to
complex learr ing apf. "oaches such as long short-term memory (LSTM).

3. We have investiyaied a non-linear learning approach and trained an efficient quadratic SVM to recognize
actions from ‘. w-dimensional features plane.

4. The video data in non-stationary environments are very diverse in nature due to changing overtime, where
one-time trained models are not effective enough for precise predictions. Therefore, we introduce an

iterative fine-tuning module that collects new data of high confidence prediction for actions and iteratively
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fine-tune the recognition model with this data. This process makes our system capable of updating itself
according to the variations in the underlying non-stationary environment.

5. Our system is tested on benchmark datasets from different perspectives “nu results are encouraging
compared to state-of-the-art, making it suitable for real-time surveillance ".iu “itoring in general and data
streams of non-stationary environment in particular.

The remaining paper is organized as follows: Section 2 highlights various »~necw. ~f the proposed framework.
Experimental setup and discussion on results are given in Section 3. Conclu ton strengths, weaknesses, and future
directions of this work are discussed in Section 4.

2. Proposed framework

In this section, the mechanism of the proposed system is discussed i det ... The system includes representation of
actions in online video data stream using deep CNN features, seq.~nce '=.rning using DAE, and classification of
actions with a quadratic SVM. First, deep features are extractec from se ected frames of online data stream using a
pre-trained VGG-16 CNN model. Second, the high dimension.! features are squeezed and the temporal changes
between features are learned in a low dimensional feature p..ne using DAE. Finally, a quadratic SVM is trained to
classify the squeezed features of processed duration of ¢ un.. ~deo stream. Furthermore, we accumulate the data
stream with high confidence scores of different actic .~ anu iteratively fine-tune our recognition model with new
data to adopt variations of non-stationary environment. "he proposed framework is shown in Fig. 1 whereas each

phase of the system is described in a different section «.>4 the implementation steps are given in Algorithm 1.
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Figure 1: The prop. sf 4 tframework for human action recognition system. An online video data stream is forward
propagated to a pre-trasned CNN model to extract features from a fully connected layer. This is followed by a deep
autoencoder which learns the temporal changes of a human action in low dimensional features plane. Finally, a
quadratic SVM is used to classify human actions.



2.1) Deep features extraction and preparation

Video data contain a large amount of hidden visual contents including temporal changes of texture, motion, edges,
and colors. An efficient representation and analysis of these contents allow us to mak : .. ‘tomatic timely decisions
such as human actions recognition, fire detection, contextual information analysis,  «u “vent detection. Deep neural
networks have shown its effectiveness in images [35], sounds, and videos analysis [~ 6] because of its remarkable
representational abilities [37]. Training a deep CNN model requires a h'~e a. ~unt of data and high-cost
computational resources. The solution to this problem is to use pre-trained ‘NI models for different problems as
their parameters are trained on enormous datasets such as ImageNet [38]. .11 the pruposed system, a fully connected
“FC8” layer of a pre-trained VGG16 [39] CNN model is used to extre -t feat'.res from video frames. The fully
connected layer extracts generic global descriptors from an image [ 4]. 7... vefore, we argue that these features are
highly dominant and capable of representing visual contents whici. ~an k', us for learning the complex sequences
in the video frames. The pre-trained CNN model process one frame ¢ : a time, where the video data contains a
sequence of frames. We have fed 15 frames to the employed C. '"N model taken from online video data stream of
one-second with one frame skip. It gives a high dimensiorn.' features vector representing human action in a raw
form. The temporal sequences between these features ai ' sy. 2~7ed through an efficient DAE and learned it using

a quadratic SVM for human action recognition.

2.2) VGG-16 CNN model

In the proposed framework a VGG-16 [39] ~.iNniIv ~rchitecture is chosen for deep features extraction from video
frames. Because it is noticed in our experime, *s. tr.at it can achieve sensible stability between the accuracy and
time efficiency for action recognition pr .ble n. The architecture of VGG-16 is given in Table 1. The architecture
of VGG-16 is different from previous .tate-or ‘.1e-art CNN models [40-43] where initial layers are convolved with
11x11or 7x7 kernels with 4 to 5 strides. 1..%s type of setup increases the number of parameters in a CNN model.
Furthermore, with wide stride, it can .niss important patterns in the image. On the other hand, VGG-16 contains
3x3 kernels for all convolutio’.al laye. - with 1 stride, helping to reduce the number of parameters in layers and
convolve each pixel of the im«c dur (0 1 stride. It can be seen from Table 1 that two consecutive 3x3 convolution
layers are applied without a pool:ng layer in between. This combination of two-layer results in effect of 7x7 kernels.
Assembling consecutive th, ~= ~_nvolutional layers are followed by a “relu” activation, where multiple non-linear
functions make it mo e discr. minative.

1aole 1: The Architecture of a pre-trained VGG-16 CNN model.

Layers Convla, |Conv2a Conv3a | Conv3c Conv4a | Conv4c Convb5a | Conv5c FC FC FC8
Convlb | 5, ' Conv2b | o | Conv3b o LConv4b = LConv5b o

Kernel Size 3x3 |.£ 3x3 |.£ 3x3 3x3 |.£ 3x3 X1 |E 3x3 x1 | Inner Inner Inner

08_ 08_ § 08_ 08_ Product | Product | Product
Stride, Pad 11 ) 1,1 = 1,1 11 | 1,1 1,1 ) 1,1 11 |
= = = = =

Channels 64 128 256 256 512 512 512 512 4096 4096 1000




2.3) Deep autoencoder

Deep autoencoder is an effective unsupervised feature representation technique with multiple hidden layers. The
motivation behind the neural concept of data learning is that the parameters of hid e, layers are not manually
constructed [44, 45], but they are learned according to the given data automatica’.y. This idea encouraged us to
learn time axis features of video sequences using DAE. The high dimensional dec, -eatures are squeezed to low
dimensions with a negligible error during transformation. Deep features from = sey, ‘ence of frames are extracted
and learned its hidden patterns and frame to frame changes using an effici ‘nt - rchiecture of four layers stacked
autoencoder as shown in Fig. 2. The first layer encodes 15000-dimension-.. ieat'ire vector to 8000 neurons, pursued
by 4000, 2000, and 1000 dimensions reduction, respectively. The reason . chind eduction of high dimensional data
with half factor is to reduce time complexity of the autoencoder. Sqi eezi'.y high dimensional data with small steps
and multiple deep layers results in high computational complex.™s. Tk> DAE learns "hierarchical grouping™ or
"part-whole decomposition™ in the input data [46]. The initial 'ayers o the stacked autoencoder capture the first
order features and changes in the raw input data. On the other n.~d, the intermediate layers learn the second-order
feature corresponding to the patterns that come in the firsi-cvder features. Therefore, we argue that the proposed

DAE learns the changes and patterns of human action ir niue . ~2quence effectively.

Encoder Encoder Encoder Encoder
Input re— ro— — w r— r— e Output
w w . . w w
:} —= :} =5 A :} —= :} —=L
15000 B ) B J B ) B ) 1000
8000 4000 2000 1000

Figure 2: The architecture of the stac’.ed fou. .utoencoders squeezing high-dimensional features to low-
di nensional features.
The autoencoder is comprised of two ".i.~<es: First is encoding where data is multiplied by weights, biases are added,
and followed by some non-linearit, . 'nction such as sigmoid and relu given in Eq. 1. Secondly, the encoded data
is decoded to the same number 0. *~ uuts as shown in Eq. 2. The weights are adjusted using a backpropagation to
reduce the mean squared erro’ ne7. to zero.
h(x) = sigm(Wx + b) 1)
x = sigm(W (h(x) + b) (2)
In the stacked autoenr saer, the first hidden layer takes input x, while the other gets input from the previous hidden
layer in the network a. show 1 in Eq. 3 and Eq. 4. Herein, “n” is the number of layers for encoding, x!, W', and b
are the data, weigi.*s, « . iases of the concerned layer, respectively.
()Y = sigm(Wixt + bY) (3)
A Sl-gm(W(n—l)h(x)(nH) + (D) (4)
The proposed DAE is trained up to 400 epochs. The L2 weights regularization is applied to diminish the over-fitting
problem and “falling into local minima” problem. The Sparsity regularization is also applied with sigma o of value
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0.05 which means that each neuron in the hidden layer takes an average output of 0.5 over the training samples.
Finally, mean squared error (MSE) with L2 regularization and sparsity regularization is used as a cost function for
fine-tuning the weights of the DAE. The error is reduced up to 102 in 300 epochs, v o1 was 0.0077 for the last
epoch of the training phase. Fig. 3(a) shows performance graph of the training pF.sc where we can see that the
error is reduced smoothly without going into overfitting problem. Fig. 3(b) represe..* the comparison between the
encoded data with some portion of the original data. It can be noted that data h~viny ‘2w activation, are caught by

the sparsity regularization and high values have got the same graph pattern < th : oriyinal data.

Performance is 0.0077738 at epoch 400

10" | [
{ —Train|
I Best |

10° 10000
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~——
107 pp - - 4 2000 4000 0NN 8000 10000 12000 14000
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400 Epochs 100 200 300 100 58— 00 800 900 1000
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Figure 3: Performance of the feature transformation froi. .1gh-dimension to low- dimensions. (a) Mean square
error graph of DAE decreasing with training epoch. (L) « ~mparison between the encoded features with some part
of the original features.

2.4) Learning actions using quadratic SVM

Learning with linear SVM is not effective ir a high 'imensional features plane when substantial class overlapping
comes in the training data as the hyperplar 2 seoar..’.ng two different classes, is always a straight line [47] as shown
in Fig. 4. In such case, a non-linear SVIv, ** eff’ ctive which can separate the data with wide hyperplane between
two class data. In training SVM for r w.!*iole classes, we get the imbalance data problem and we need to train one
category data against all categorir., “ecause SVM is originally for binary class classification. In the non-linear
SV M, increasing the polynomial 1.7 don may give an optimum hyperplane between the two classes, but it increases
the computation time of the s/ste’.1 [48]. In our system, we have used a non-linear quadratic SVM through which
we have achieved stability h~twec > iccuracy and time efficiency.

M =20 5)

Two strategies have b.=»n us.d for multi-class SVM: one-vs-one (OvO) and one-vs-all (OVvA). In “OvO”, we need

to train “M” class: ers 1o, “N” classes as given in Eq. 5 where the nth class is trained against all N-1 classes. This
is computationally ex,. *nsive when the number of classes increases. In case of the proposed system, it is trained on
UCF101 [29], HMDB51, and UCF50 datasets, which has 101, 51, and 50 categories, respectively. This lead to 5050
classifiers for 101 categories of data, 1275 and 1225 classifiers for 51 and 50 classes, respectively. This type of

setup is not efficient in real-time applications such as surveillance stream. On the other hand, in “OvA” we need
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only “N-1" classifiers. It requires training of single classifier per-class, with the training data of the class as positive
samples and all other classes data as negatives samples. In such case, the classification gets into imbalance data
problem due to samples of one class data against samples of all classes. In the propr sc system, we have used a
highly powerful feature which is discriminative for each class and we can get high ac. uracy on “OvA” non-linear
classifier.

f(x5) Nor 11, ear
1.0 /

0.8
—
0.6 Anecar
0.4
~  ©
\

0.2 0.4 0.(.' 0.8 1.0 f(x])
Figure 4: Hyperplane separation between two class data ‘'su.g linear SVM and non-linear SVM classification.

2.5) Incremental model training for data stream

Another encouraging feature of our system ’, 1ts ~apability to update itself iteratively, grasping the changes in
surrounding environment. The iterative train.>a r.ocess is shown in Fig. 5. The data stream predicted with
confidence score greater than a certain tt resk old zan be used to re-train the model iteratively, enabling it adaptive
to different varying conditions. The th' eshola « .n be selected considering the requirements of users, environmental
effects, and deployment settings. The data vith high confidence scores is accumulated along with the predicted
labels. When a certain amount ¢ da’a is assembled, the same trained model is fine-tuned with new data which
adapts itself with the variatiuns in (e environment. Considering these characteristics, our system can be
implemented in health care ce..* s fr patient activity monitoring and for anomaly, fraud and intruder detection in

real-time video streams o’ surve.'lance.
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Algorithm 1: Human actions representation anu vecognition in online data stream

Input: Video stream V
Initialization

1) Load trained models (m:: VGG-16 mode , m>: ae s autoencoder, and ms: quadratic SVM)
2) Select duration b (in secs) of online vi 2o - rear ( for processing
3) Set counter=1

Process
4) while (V)
a. Db« readV [counter]
b. f1 «~— M1 (D)
C. fre—my(fy)
d- Pcounter‘— ms (fz)
e. Predicted actic 0 in vi. 0 data stream for duration B € Pcounter
f. If Peounter > thre.hold
Accunr iate drta of B with Pcounter iN New database
end of If
g. Increment couiwer
h. Outpu. d'.play label of an action for D

5) end of

while

Accumulate data
stream with high
predication scores
only
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3. Experimental evaluation

In this section, we evaluated the proposed system on several benchmark datasets used for action recognition
assessment. The datasets include UCF101 [29], UCF50 [49], YouTube Actions [50] a.” HMDB51 [51]. Sample
categories from five different datasets are shown in Fig. 6. The proposed system "va. implemented and assessed
using MATLAB2017b on Ubuntul6.04 environment, Core™i5-6600 set up with 1o =" $ RAM and 12 GB GeForce-
Titan-X GPU. A deep learning toolbox “MathConvNet” is used for CNN *ratuic~ extraction, neural network
toolbox is used for DAE, and “classification Learner” toolbox is used for ‘earing quadratic SVM classifier for
action recognition. The proposed method is assessed using four differe .« accuracy calculation matrix including
confusion matrix (Fig. 7 and Fig. 8), precision, recall, and the F-measui » scors given in Table 3. Results of each

dataset and comparisons with state-of-the-art are given in Table 2 ar d di- .. ssed in separate sections.
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Figure 6: Sample action class < form UCF101, UCF50, HMDB51, and YouTube actions datasets.
3.1) UCF101 dataset

UCF101 [29] is a popular real-lifc act’on videos dataset which contains 13320 videos of 101 action classes collected

(2

~——
—

from YouTube in “.avi” forr at. "he number of samples for all categories are balanced, ranging from 100~130
samples and duration of an actio. in rach sample is 2~7 seconds. UCF101 is relatively a challenging dataset because
of many action classes w 1ere hu nans are performing actions on different objects, musical instruments, sporting
goods, and interaction **“th p.. . of human body. Results are collected using this dataset and comparison with state-
of-the methods is gi ‘en in Table 2, where column 4 presents the average accuracy of the proposed system.
Confusion matrix “_- *he test set on this dataset is shown in Fig. 7 where we have achieved an average accuracy of
94.33%. We compare 1 the proposed system with the histograms of oriented gradient and optical flow (HOG-HOF)
+ fisher vector (FV) [13], oriented histogram flow (OHF) + bag of words (BoW [15], gradient boundary histograms
(GBH) + motion boundary histogram (MBH) [25], improved dense trajectories (IDT) hybrid approach [21], and
multi-view super vector [52] hand-crafted features. The IDT [52] shows the best accuracy of 87.9% on UCF101

dataset among all hand-crafted features based methods. We have outperformed these methods by 6.43% increase
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in accuracy, which is evident from column 4 of Table 2. The performance of the proposed system beat neural
network-based methods [28, 31, 53-57] with 1.23% improvement in the accuracy. The precision, recall, and F1-
measure score for the UCF101 dataset is given in Table 3, where we have achiever p. -itive prediction score 0.
8932, 0. 9035 sensitivity score, and 0. 8983 F1-measure scores. These statistics o1, "w the effectiveness of the
proposed system for human action recognition on the UCF101 dataset.

Table 2: Comparison of the proposed system with state-of-the-art hand-~+afte.. and CNN based action

recognition methods.

‘Accuracy %)
Datasets ™" yCF50 [ UCF11 HMDB51 | YouTube
Action
Methods 4 -
HOG-HOF + FV [58, 59] - 1 /5.4 45.6 -
OHF + BoW [24, 59] - [ 771 515 -
Hand crafted | GBH + MBH [25] | 866 62.2 -
features-based ["jmnroved dense trajectories hybrid ~
methods 92.5 87.9 61.1 -
approach [21]
Multi-view super vector [52] 83.5 55.9 -
LSVC with CNN [28] N - 65.4 -
Composite LSTM [53] ; - 75.8 441 -
Hierarchical clustering [54] ! 93.2 76.3 51.4 89.7
Neural key-volume mining deep CNN [55] - 93.1 63.3 -
network- FstCN (SCI fusion) [56] - 88.1 59.1 -
based
methods Fusion (S: VGG-16, T:VCG 3-16) |5 | - 925 65.4 -
Single stream CNN [60; i - - 93.1
Two-stream model (f.~ion by SVM) [31] - 88.0 59.4 -
Proposed system 96.4 94.33 70.3 96.21

Table 3: The effective iess of tre proposed system using precision, recall, and F1-measuere scores.

Dataset Precision Recall F1-measure
UCF50 [49] 0.9321 0.9124 0.9221
UCF101 (29] 0.8932 0.9035 0.8983

HMDB51 =11 0.6906 0.6234 0.6553

YouTube » = ons [50] 0.9541 0.9387 0.9463
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3.2) UCF50 dataset

UCF50 is a diverse collection of human actions due to high diversity in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background, and different illumination in surrounra. < [49]. It has fifty action
classes, wherein videos of each category are divided into different groups that -i.>re some common features
variations such as in one group a piano is played by a person four times but w.*'. a different viewpoint. The
comparison with state-of-the-art methods on this dataset is given in Table 2. It *~ evicnt from column 3 of Table 2
that the proposed system has achieved higher accuracy compared to both h: ad-- rafted features and deep features-
based methods. Confusion matrix of the test set for UCF50 dataset is shr wi in Fiy. 7 where we have achieved an
average accuracy of 96.4%. The proposed system has reported an impr.oveme'.t of 4% in results to hand-crafted
features-based method (IDT) [21] and 3% to CNN features based hier arch”_ " clustering [54] method. The precision,

recall, and F1-measure scores for the UCF50 dataset are shown ~ Tak!~ 3. The proposed method has achieved

higher true positive, sensitivity and effectiveness scores 0.9321 0.9124 and 0.9221, respectively.
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UCF50 Dataset UCF101 Dataset
Figure 7: Confision Matrixes of UCF50 and UCF101 action recognition datasets.

3.3) HMDB51 dataset

The HMDB51 [51] is cor siderec as a challenging dataset in action recognition society. It contains actions related
to human facial interact'~n, ..>=.on of the body parts, body dealing with objects, sports, and human exercises. The
dataset comprises of 3849 ac .ion samples taken from YouTube with a variety of different subjects and is divided
into 51 categories '~ eacn category there are more than one hundred video samples. The dataset is made more
challenging because f taking samples from a variety of subjects in different illumination and viewpoint changes
for performing the same actions. On this dataset, the average accuracy of state-of-the-art methods lies under 60%.
In the proposed system, we represented human action with high-level features using CNN and DAE, which helps
to recognize the complex action in an efficient way with improved accuracy. The comparison with previous

techniques reported for HMDB51 is given in Table 2, where the proposed system has dominated [21, 25, 52]. The
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method [25] shows best performance of 62.2% accuracy on HMDB51 among all hand-crafted features based
methods. The proposed system is also compared with CNN based methods includirg composite LSTM [53],
hierarchical clustering [54], key-volume mining deep CNN [55], FSTCN (SCI fusic 1) {56], fusion (S: VGG-16,
T:VGG-16) [57], and two-stream model (fusion by SVM) [31]. The proposed sys’cin has improved performance
of these methods by 8.2% in accuracy of hand-crafted features and 5% for the CN. : "iased approaches. Confusion
matrix for HMDB51 dataset is show in Fig. 8 where we have achieved an avera~~ acc..-acy of 70.4%. The precision,
recall, and F1-measure score for HMDB51 dataset is given in Table 3. On his Jataset, we have achieved 0.6906
precision, 0.6234, and 0.6553 for recall and F1-measure score, respecti: ery. The low recall score is due to high
false positives received for some actions such as Fig. 8 (class 50), whici has ¢/ mparatively many false positives.
Despite these factors, our system achieved a higher average accurac / of ~¢.1% on this challenging dataset.

08
108
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10.6

0.5

04

0.3

0.2

0.1

5 10 15 20 25 30 35 4, 3 50 2 4 6 8 10
HMDB51 Datase . YouTube Actions Dataset

Figure 8: Confusion .. ~trixes of HMDB51 and YouTube action recognition datasets.

3.4) YouTube actions dataset

YouTube action is one of the cor plex and challenging datasets because the actions samples are collected in low
resolution with moving and sti. ~~mera in different scales, clustered background, illumination and viewpoint
changes. It contains 11 ac fion cle sses collected from sports in which some videos are taken from 25 subjects with
4 samples for each act’ui, ana uther videos are collected from YouTube. The comparative results using this dataset
with other methods is niven 1 Table 2. Two CNN based methods including hierarchical clustering [54] and single
stream CNN [60] ‘v 4 94.3% and 93.1% accuracy, respectively, which is improved by our proposed method
by almost 2%. Confu. ion matrix of the test set for YouTube actions dataset is presented in Fig. 8 where we have
achieved an average accuracy of 96.21%. The proposed system exhibits better precision, recall, and F1-measure
score of 0.9541, 0.9387, and 0.9463, respectively for this dataset as given in Table 3.

3.5) Discussion on visual results
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The proposed system is evaluated on 20% samples from each dataset to obtain the quantitative results. Fig. 9 shows
correct and incorrect predictions with their maximum confidence scores of our proposec system for a single action
video. A set of frames of each action are also given for better understanding of r:a/'~rs. It is noted from the
experiments that the complex actions such as “Horse racing” and “Horse riding” wi.’ch has minor difference of

I

“many horses” and “one horse”, respectively, has more than 95% accuracy. Rovww = and Row 5 of Fig. 9 show
incorrect predictions. This is due to the common visual contents in the grour~ truu. and predicted classes of the
dataset. For example, “skateboarding” is predicted as “skiing” and “divir ¥’ 7, miss-classified as “high jump”.
However, the confidence scores of incorrect predictions of these challenr.iy classes are very low. The predication
“high jump” is incorrect because when the diver jumps for the dive, ch.nges I atween the frames, represent high

jump class for that particular interval of time.

. . Ground . Confidence
Sequence of frames representing an action Truth Predictions Score
Basketball | Basketball 0.61
Skate .
Boarding Skiing 0.231
Surfing Surfing 0.41
Horse Horse
Racing Racing 0.74
Diving High Jump 0.24
Skiing Skiing 0.76

Figure 9: Predicted re sults a» "\ng with maximum confidence scores for the overall test video by the proposed action

recognition system. The = _.erline red text shows in-correct prediction of our system.
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3.6) Model behavior Vs Label transitions over time

The proposed trained model predicts action in the data stream over intervals, and for each interval of time, the
confidence score changes due to motion of the camera, variation in the viewpoint, ar .« .~ale of an actor. It is very
challenging to have adjacent prediction scores for the same action or abrupt char e uring transition to another
action. A series of confidence scores and predicted actions over time are visualizeu .~ rig. 10, where scores for the
same class are approximately similar to each other. However, when there a»~ son.~ overlapping frames of two
actions in the interval under process, it affects the accuracy of prediction in a ‘egr.1ve inanner with a low confidence
score. This situation can be observed from Fig. 10 (Row 3 and Row 7). +or Istance, in Row 4 the frames of
“jumping” action are overlapped with frames of “dive” action. Therefve, in .he first interval of the concerned
sequence, high jump is predicted with low confidence score and fc res* (€ the intervals, scores are adjacent and
predictions are accurate. This problem is tackled by iteratively fii.>-tuni~~, the recognition model, which makes it

adoptable to variations between different actions performed in >on-stati nary environment.

Overall

Intervals Int. 1 Int. 2 Int. 3 Int. 4 Int.5
Accuracy

Representative
frame from each
interval

N 100%
GT/Prediction Horse Ride /HorseRide ' ... " 'e/HorseRide Horse Ride / Horse Ride Horse Ride / Horse Ride
Confidence score 0.527 0.452 0.485 0.469 0.526

Representative
frame from each

interval 100%

GT/Prediction Baseball / Baseball aseball / Base.all Baseball / Baseball Baseball / Baseball Baseball / Baseball

Confidence score 0.500 L3 0.333 0.333 0.385

Representative
frame from each

interval 80%

GT/Prediction Breast Stre ¢ / Biking dreaststroke / Breaststroke | Breaststroke / Breaststroke | Breaststroke / Breaststroke | Breaststroke / Breaststroke

Confidence score 0. 18 0.682 0.717 0.644 0.717

Representative
frame from each
interval

80%
— °

A Y A

GT/Prediction Dive / Jump Dive / Dive Dive / Dive Dive / Dive Dive / Dive

Confidence score 0312 0.519 0.549 0.509 0.492

Figure 10: Sample variations in predictions and confidence scores for an action with respect to time. The overall

accuracy is considered from the predictions of the particular action for all five intervals.
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3.7) Computational complexity and feasibility analysis

This section investigates the running time of our system and its feasibility to online date stream understanding and
mining. The experiments of the proposed system for feature extraction, training, and * zs.’~q of DAE and quadratic
SVM for action recognition are performed using GeForce-Titan-X GPU. On this < :w. 0, the VGG-16 model takes
0.12 seconds to extract features from one frame. In the proposed system, we have “2d 15 frames at a time from
video data stream to take advantage of the parallelism in GPU which tak~~ ap,. ~ximately 0.61 seconds for
extracting features from them. Secondly, the DAE takes 0.52 seconds or ‘,queezing action patterns to low
dimensional features plane. Finally, the quadratic SVM takes only 0.18 <.cunds o classify the given set of frames
into action categories. As a whole, the system takes 1.31 seconds for prc ~essins, 30 frames from the video stream,
showing nearly real-time processing. Based on the statistics shown "1 Fi,. - 1, the proposed system can process 25

frames per second in real-time surveillance for human action reccyitior . non-stationary environments.

14 13
12
10
@ 8 7
iR
E
6 5
E
4
1.31
2 1
0.61 0.52 0.18 -
0 | .
Feature extraction Df sp avtoencoder Action recognition Total time

EGPU CPU

Figure 11: Processing time of the nrroposeu system on CPU and GPU taken for 1 second video data stream for
action recognition.

4. Conclusion and Future wr rk

In this paper, we presented «. op’«umized DAE based human actions representation framework that can be
implemented in real-wor! | dyna. 1ic scenarios. The input of our system can be acquired from online surveillance
video data stream, web~*tes, _Z_ial media feeds or any other visual content resources. Semantic features of a pre-
trained VGG16 CNN model are used for frame level representation. An optimized DAE is trained to effectively

<

represent actions ~m raw information of video frames. The DAE converts high-dimensional data to low-
dimensional feature lane and learns information variations amongst adjacent frames. Finally, quadratic SVM
processes the output of DAE to classify the human action performed within the input video data stream at a
particular time. Our experiments verify that the proposed system can process 25 frames per-second regardless of
the noisy effects and heterogeneous nature of data streams. The experiments conducted with benchmark datasets

including UCF50, UCF101, HMDBS51, and YouTube Action dataset revealed that it is an efficient and effective
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system for action recognition in surveillance from non-stationary environment. Lastly, data stream with high
confidence scores are accumulated for iterative fine-tuning of the proposed action recogrition model with new data,
enabling it to adopt variations in non-stationary environment.

In future, we plan to analyze multiple actions by detecting and tracking multiple “ai ets in a sequence of online
video stream. The current available realistic video datasets contain actions perfor,.> d by a single person, where
multiple actions need to be recognized in dense situations. Secondly, when ther= is a s, 'ation of overlapping actions
in a single sequence such as jump and dive in same sequence reduces he .ccuiacy. This limitation will be
considered in our future work. Furthermore, we have motivation to devr.up artiva recognition mechanism based
on multi view surveillance videos connected in a visual sensor network ir. differs at dynamic environments. Finally,
the proposed system is feasible to be extended for video classificat on, '..Man activity recognition, violent event
recognition, and can be implemented for crowed analysis in dense ~nvir~r aent.
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