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Abstract

1

Many IoT systems generate a huge and varic ' amov it of data that need to
be processed and responded to in a very short tin.. One of the major challenges
is the high energy consumption due to the . ~nsmission of data to the cloud.
Edge computing allows the workload to .. “~aded from the cloud at a location
closer to the source of data that need to be rocessed while saving time, improv-
ing privacy, and reducing network tra.9c¢c. ™ this paper, we propose an energy
efficient approach for IoT data ¢ 'ecuw.o.. and analysis. First of all, we apply a
fast error-bounded lossy compressor on vhe collected data prior to transmission,
that is considered to be thr greate t consumer of energy in an IoT device. In a
second phase, we rebuild the »an mitted data on an edge node and process it
using supervised deep .ear  ing *echniques. To validate our approach, we con-
sider the context of drivi._ Fchavior monitoring in intelligent vehicle systems
where vital signs .ata ve collected from the driver using a Wireless Body Sen-
sor Network (V' o.N) and wearable devices and sent to an edge node for stress
level detection. T .e experimentation results show that the amount of transmit-
ted data b «s b en reduced by up to 103 times without affecting the quality of
medical davw. and driver stress level prediction accuracy.
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1. Introduction

Cloud computing that is centrally deployed on a global sc. ' ¥ as become an
indispensable part of processing IoT data. However, clov +-assistea Internet of
things (CoT) faces several difficulties such as transmissic 1 laten y, bandwidth
constraints, and high energy consumption. For inst .nce. <ending a single bit
of data over the cellular network consumes a lot of .. ..gy v aich decreases the
lifetime of the IoT system.

On the other hand, edge computing has eme. =d as a promising paradigm
that pushes the cloud services to the edge of the metwork. It can be seen as
a decentralized cloud that drives the compu ng power closer to the source of
data and allows local decision making ... -~ ~omputing was shown to be a
better solution than the cloud in nvmerou IoT applications [1]. For instance,
applications that demand near real-tin. = 1¢ ponses such as autonomous driving
cars and eHealth can not work prc ~eriy ..ith the cloud due to the high latency
and ineffective bandwidth caused by the large number of sensors connected to
the network.

Wireless Sensor Networl 5 (W.Ns' | Wireless Body Sensor Networks (WBSNs),
and wearable devices aake up “he essential blocks of IoT architectures. Many
of these smart obje .ts, the .re responsible for the collection, processing, and
transmission of d «ta, « ~ still battery operated and resource constrained. The
three major ccast, uents of a smart object that consume energy are the mi-
crocontroller (.." U), transceiver, and sensor units. Among all tasks, it is
well know . ths , data transmission is the highest energy-consuming task in IoT
nodes [2] [3]. An nportant step towards energy efficiency in IoT applications is
the t7 ansfer ¢ © computational tasks from the cloud to the edge. In general, the
radio ¢. mm aication task between the IoT nodes and the edge consumes less
€ 1ergy t. an transmitting the data directly to the cloud over the cellular net-
we. - 111 4], Equally important, reducing the amount of data to be transmitted

to wue edge can further increase the lifetime of the IoT nodes and save storage




at the edge.
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Figure 1: IoT netw. "k architecture

In this paper, we consider the IoT . etwork architecture shown in Figure 1,
where the data are collected from . mart objects such as wearables and sensor
devices and sent periodically to an edge node using short range communication
protocols (e.g. WiFi, Blue’ ooth). 'he edge node is responsible for the process-
ing, analyzing, filtering storin, ‘.ad sending the data to the cloud. To start,
The energy conservat’” w y oble n is tackled by proposing a fast error-bounded
lossy data compres ion tecn. .que to be deployed on the IoT devices. The ob-
jective is to reduce the ~umber of bits to be transmitted periodically to the
edge node. Tt n, \ e study the effect of lossy compression on the performance
of machine ana " «ep learning models deployed at the edge, and trained on re-
constructs d d7 .a with degraded quality as compared to the original data. To
do so, we cown."Je the driving behavior monitoring use case where physiological
signa s are cc¢ 'ected from drivers and sent to the edge node in order to detect
their st. = '_vel. The stated problem in this work can be formulated as follow:
_loes the Toss of information due to lossy compression and energy conservation
teci. “= .es deployed on the IoT nodes affect the analysis and processing of the
dr .a at the edge?




The rest of the paper is organized as follows: Section 2 preser s tb : work
related to data analysis on the edge and data reduction in IoT . ~vlica. ons.
Section 3 explains the proposed compression scheme. Sectio’ 4 liscusses the
case studied in this paper and presents the prediction mode. 1 ployed at the

edge. Section 5 details the experimental results. Section ¢ conclrdes the paper.

2. Related Work

In this section, we first introduce the analysis ¢ da.. in edge computing
using machine and deep learning, and then w discuss lata reduction in IoT

applications.

2.1. Machine and deep learning in edge comp. '“ng

The use of machine and deep learnin, ' tc chniques for data processing could
help edge devices to be smarter, ai.n "np1. ve privacy and bandwidth usage.
In [5], the authors introduced d~»n lea. ing for IoT into the edge computing
environment and proposed an appro. ~h that optimizes network performance
and increase user privacy. .. ‘ne and deep learning in edge computing can
bring multiple improveme. *s to th : traditional approaches that rely on cloud

computing by:

e Processing da’a using - aventional machine learning techniques and trans-

ferring the - esulu. ~v necessary features extracted from raw sensor data.

e Deployi g ps t of deep learning networks layers on the edge and trans-
ferrin | the e.. ~acted features whose size is smaller than that of the input

dat

e Deploy g neural networks on the edge with minimized size that maintain

o curac.

e Tra ning the networks on the cloud and shipping the trained models to

wuie edge.




The aforementioned approaches reduce the pressure on the network  rr fucing
the size of the data to be transferred to the cloud. For instance each ‘ayer
in a deep learning network processes and scales down the size ot 110 generated
features from the previous layer. The more layers are deploye.. ~ the edge, the
smaller is the size of the features to be transferred to tb . cloud and the more
they are incomprehensible, hence, increasing the privacy.

Edge nodes are devices such as mobile phones [oT _~teways, and local
PCs that have a limited processing capability as co.upare . to cloud servers.
The size of neural networks deployed on these device. should be reasonable.
In [6], the authors showed that different lightwe. ht 1 oraries and algorithms
can be deployed on edge nodes such as smartphon. ~ and enable real-time data

analytics.

2.2. Data reduction in IoT applications

Different data reduction schemes tc - e..>rgy saving in IoT applications have
been proposed in the state of the ~rt. ... [7][8], the authors proposed data re-
duction approaches based on adaptive sampling. These approaches work by
studying the level of varie «ce bev 7een the collected data over a certain time
frame, and dynamically ~djus.’ ¢ ' ne sampling frequency of the devices. Adap-
tive sampling approar aes vork well in applications where the collected time
series are stationary In tu. ~ se of quickly varying data, these approaches per-
form poorly. In "], v.~ authors proposed a data reduction mechanism based
on dual predic’.on. The proposed mechanism works by building a model that
describes the s > :d phenomenon and deploying it on both the edge node and
the IoT dr vice'. The advantage of prediction approaches is that the model at
the edge pre 'cts .he sensed measurement without requiring any radio commu-
nicat’ m unle s the prediction error exceeds a predefined threshold. However,
such p. dicti- a mechanisms suffer when it comes to devices like a high frequency
1 10tion » ‘nsor, where the data collection frequency is high and the data varies
qu. “klv

IN' w.c_ous aggregation and compression approaches that take advantage of the




temporal correlation in the collected data have been proposed [10,11 12, 3, 14].
In [10], the authors proposed a data filtering technique based on “he Y. rson
coefficient metric. This method works by recursively dividing che dataset into
two equal parts and aggregating the data based on the correi.. ‘o 1 between the
subsets. In [11], the author proposed a data aggregation methe for incoming
data stream in IoT based monitoring systems. The propc "ed me nhod is an ap-
proximation with ‘extremums’ technique that reduce , the - ~lume of data to be
stored or transmitted. The results show that this mewnod v as able to achieve
a compression of up to 10 times on temperature data. ™ [12, 13], the authors
proposed data compression techniques that teke a. =ant ge of the temporal cor-
relation in the collected data. The proposed techn.. res are based on the simple
and computationally efficient 1-D Discrete Wa ~let Transform (DWT) via lifting
scheme and the Differential Pulse Coa. iy .." tion (DPCM). The aforemen-
tioned data reduction techniques, i* =ddit. \n to many others proposed in the
literature, perform well on stationary .mivcriate time series. However, an im-
portant number of IoT devices now days include more than one sensor and are
able to collect multiple features. Therefore, data reduction techniques that work
efficiently on multivariate ime ser. ‘s are required.

Compressive Sensine (CS) » . transform domain compression techniques
that are usually used for mag s have been proposed as well for multivariate
time series compre sion in - I' applications. In [15], the authors proposed a
multisignal comp.ession. “echnique based on the theory of fuzzy transform. The
proposed metl »d I 1s been applied on multisignal environmental data collected
by a wireless sew.  network and reduced the data by approximately two times.
In [16], tb - au’ aors proposed the 2-D lifing wavelet transformation to compress
multisignal a.*a _ollected from different sensor nodes. The proposed method
uses he Haa. wavelet and achieves a compression ratio of 1.33 and recovery
accnrac, ~f ,8.4%. Transform domain compression techniques are character-
ied by i1e ability to recover the data accurately. However, the compressing
pei. == unce of these techniques remains limited. On the other hand, CS theory

hs 5 emerged as an efficient approach for energy-efficiency in IoT applications in




recent years [17] [18]. By taking advantage of the signal sparsity, CS app vaches
assure an accurate signal recovery by sampling signals at a much lo.. > rate Shan
the traditional Shannon-Nyquist theorem. Nevertheless, CS echiqaues suffer
when dealing with non-sparse multi-dimensional signals conta. ~".g diverse fea-
tures with different scales of values.

The major drawbacks of the above-mentioned proposii ons is t 1at they yield
low compression ratio on non-stationary multi-sens or d»* and they are not
tested on real devices. This paper proposes a data compre sion technique for
TIoT applications and resource constrained devices that -orks efficiently on mul-
tivariate time series and implemented on a real we.. ~ble levice. In the following
sections, the proposed lossy compressor is presente. and the impact of informa-

tion loss on data analytics at the edge is stuu ~d.

3. Error-bounded lossy compre-sion

In this paper, a lighweight ver<ion ot “he work presented in [19] is given. The
authors in [19] proposed a fast error-. ~unded lossy compression scheme namely
SZ for High Performance C' __ ~uting (HPC) applications. This compression
scheme has been propose to deal with the huge amounts of data generated
during the execution o’ HPC ay Jlications. The original SZ compresses input
data files that are in b.. ~v; for aat and can have different data shapes and data
types (single-precis ~n and double-precision). In this work, we propose to adapt
the SZ algorithm for To. devices by considering only the floating point data
type and disc .rdir | the other types which make the code smaller in size and
easier to co apile ¢ tiny devices. Moreover, the algorithm was adapted to take
a 1-D arr v o’ floa” sensor data as input and return a byte array that is going
to be t _ismn. 1« to the edge node. The motivations behind choosing SZ for

ToT & plicatic 1s are as follows:

e S7 allows the compression of multivariate time series containing diverse

fea' ares with different scales

e 57 allows the control of information loss by using an error bound




e SZ leads to higher compression ratio than the multi-dimension ! tre isform

domain compression techniques

The proposed compression scheme is defined in Algorithm " . It . . ~rsidered
that the data are transmitted to the edge after each period F .* time t. The
collected data are in the form of M x N array, where ! denot s the number
of readings and N denotes the number of features. For -—am e, consider a
motion sensor that collected 128 gyroscope and acc lere uev v readings for the
three coordinate axes after a period P. In that ca.~ M ‘= - jual to 128, and N
to 6.

To begin, the 2-D array is converted to the " D a. ., (Algorithm 1, line 4).
Then, the flattened array is compressed v~*~= " ' _ssy SZ technique. Finally,
the resulted binary array is transmitted to the dge. Algorithm 2 presents the
main steps employed by the adapted S.” cr mpression scheme. Note that the
adaptation has been done by extrac ‘..~ the necessary functionalities from the

original SZ to make it fit on wea»ables «d resource constrained devices.

Algorithm 1 Proposed compression s heme

Require: FE (error bound)
1: while Energy > 0 Al O Sensc “s_status = ON do

2. for each period o

3: data[M, N] + ' .ecte « sensors data

4: input[M > N« Flatten(data)

5: bin_outpit < aawpted_SZ(input, E, M, N) (Alg 2)
6: trans nit_ Jata(bin_output)

7. end ‘or

8: end - 'hil .

T e SZ co. 1pressor starts by compressing the 1-D array using adaptive curve-
fitting .. ~7-75. The bestfit step employs three prediction models: Preceding
I eighbor Fitting (PNF), Linear-Curve Fitting (LCF), and Quadratic-Curve Fit-
ting ‘> UF). The difference between the three models resides in the number of

pr :cuisor data points required to fit the original value. The adopted model is




the one that yields the closest approximation. Note that the fitt ‘1 d .ca are
transformed into integer quantization factors and encoded using r. “mau. ‘ree.
In the case when none of the prediction models in the curve-fit' ing step satisfies
the error bound, the data point is marked as unpredictable an. i< then encoded

by analyzing the IEEE 754 binary representation. (Algor chm 2 line 2).

Algorithm 2 Adapted SZ steps s
Require: input (1-D array), E (error bound),M (mt mror ) N (num columns)

Ensure: output (binary array)
1: Bestfit Curve-Fitting Compression
2: Compressing Unpredictable Data

As for the error bound, the absolute error © ~und has been used in which the
compression/decompression errors are . muw - 5 be within an absolute error.
For instance, if the value of a date ~oint s considered to be X, an absolute
error bound of 10~! means that the de. »m, ressed value should be in the range

(X —107%, X + 1071,

4. Case Study

The combination o’ IoT, cloud computing, and healthcare has taken a lot
of attention during *+he . st v.ars. Among the major challenges that face the

healthcare applice . ~s are:

e Latency .ue > communication between cloud and IoT devices
e Limit :d netwe k bandwidth due to the high amount of generated data

e High c¢. * o privacy and security breaches

Here .~ where che benefits of edge computing take place. As mentioned in pre-
v'ous sertions, edge computing can be considered a major solution for latency
a d banc width challenges in IoT and healthcare applications. In a similar way,

“rient on-node data compression can increase the lifetime of the application,




and reduce the size and the number of transmitted packets which m « af’:ct the
latency and network bandwidth positively. However, the integrity ~f the data
and loss of information due to compression remain critical iss1 :s 1. r heaithcare
applications. In this section, the impact of data compression. ~* d energy effi-
ciency on the analysis of medical data at the edge is stv ued. Tet us consider
the case of driving behaviour monitoring and stress detec ion wk >re the physi-
ological signals are continuously collected from a dri- er ar ' transmitted to the
edge node for analysis and detection of stress level.

In the following, the dataset used in our work is des. -ibed, then the process-
ing and analysis of the data are discussed, and fin."'v. t'.e model used for stress

level detection is presented.

4.1. Dataset

The Stress Recognition in Autonmobile rivers database published on Phys-
ioNet has been used in this work [20]|="]. This dataset contains multiple physi-
ological signals recorded from hea. “v vl nteers, taken while they were driving
on a specified route in and around Boston, Massachusetts. The driving task
done by each driver varies rom ar »ut 50 min to 1.5 h and can be divided into

six sections as shown in ¥igu. 2:

e Rest [1,6]: The re.'* 1g pr riods in the beginning of the driving task and at

the end of it . = labeled as ”low stress”

e City [2,5' L iving in the city periods in sections 2 and 5 are labeled as
“high stic - since the subjects drove in a busy main street and frequently
hanc.ed * 1e traffic conditions and the unexpected emergencies created by

cyclisw. and jaywalkers

e Highway [3,4]: Driving on the highway periods in sections 3 and 4 are

labeicu as "moderate stress”

Nc '~ th- ¢ the labeling of the data has been validated by drivers’ self-reported

qu s>.lonnaires in [20].
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Figure 2: Driving task

This study is conducted on 9 drivers among 17 ava.’ ~ble in the database since
the marker indicating the driving sections (rest, . *tv, hig 1way) is not present in
all drivers files. Five physiological signals were us. 1 for stress detection, namely
electrocardiogram (ECQ), heart rate (HR), . ~Ivanic skin response (GSR) of the

hand and foot, and respiration rate (R’ ..

4.2. Data processing and analysis

For each driver data file, th. ...'=~ ' s been removed from HR and GSR
signals following [22]. In order to stuay the impact of data compression on the
information contained in th- data, 2 feature extraction phase is used from which
time-domain and frequency-_~mair features are extracted from the ECG signal
in addition to the two nair components of the GSR signal namely: Skin Con-
ductance Level (SCT ), a. ' S'.n Conductance Response (SCR). The objective
of this step is to ¢ n., ~re the features extracted from the original data with the
features extract _ ‘rom the compressed data.

Table 1 d. <ri! es the features extracted from the ECG signal by applying
time and f equency Jomain analysis such as FIRAfilters and fast fourier trans-
form met.. 7. Ir order to analyze the GSR signal, which can be considered
an im ,ortant seusitive measure for emotional arousal, we extract the slow vari-
ation 'SCL) r ad the faster alterations (SCR) following a convex optimization
2 yproac” proposed in [23]. Table 2 shows the features extracted from the GSR

si mal.
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Table 1: Features extracted from ECG signal

Feature Description
Root mean square of the Inter-beat (RR) Inter vals “ e time
RMSSD :
intervals between consecutive heart beats)
meanNN Mean RR interval
sdNN Standard deviation RR interval
Coefficient of Variation (CV), i.e. the rati = o. sdNN divided
cvNN
by meanNN
Coefficient of variation of successive diffe ences, i.e. the
CVSD
RMSSD divided by meanNN
. Median of the absolute valr~~ ~“*" = _uccessive differences
medianNN
between the RR intervals
madNN Median Absolute Deviati 1 ((VIAD) of the RR intervals
Median-based Coeffic. .." of ariation (MCV), i.e. the ratio
mcvNN
of madNN divider hv me 'ianNN
The number of interva. differences of successive RR intervals
pNN20 greater than ~y .. ~ divided by the total number of RR
intervals
The nur per of inverval differences of successive RR intervals
pNN50 greater . - a 50 ms divided by the total number of

RRB . tervals

4.8. Stress de ectic n using Feed-Forward Neural Network (FFNN)

This se cior comw. ‘ders the features shown in Tables 1 and 2 in addition to
heart rate “H'¢) ar d respiration rate (RR) as a single sequence in which a label
is assi ;ned. The prediction task is a supervised sequence classification task. A

FFNI is a ne work that contains a large number of neurons, arranged in layers:

¢ .e inprt layer, one or more hidden layers, and one output layer.

I oure 3 shows the FFNN architecture used in the classification task. The

_ —=al network consists of 17 input neurons, corresponding to a sequence of

12



Table 2: Features extracted from GSR signal

Feature Description ‘
meanGSR | Mean value of GSR signal ‘
meanSCL | Mean value of SCL

slopeSCL | Difference between max and min v .lues of SCL
meanSCR, | Mean value of SCR
maxSCR | Max value of SCR

17 physiological features. Additionally, the neural netv. ork is provided with a
correct label of that sequence. That is, whe her .. ~ cquence corresponds to
low stress, moderate stress, or high stress. Providin. “hat edge analytics require
lightweight algorithms to perform reasonable u. ~hine learning [6], we have used
a network with a minimized size that . air .aws accuracy. The implemented
network has four hidden layers con. “ing (“ 60 neurons, which use the ReLLU
activation function [24]. The number o layers The network was trained with a
variant of stochastic gradient descen. ‘Adam’ [25] and categorical cross entropy.
Furthermore, Dropout regul~-*~ation technique [26] has been used to prevent
overfitting and 10-Fold Cr ss Valid tion has been used to validate and find the
optimal set of hyperpa’ ameters “,r the model. Finally, the network has been

trained for 300 epochs it 1 a ] arning rate of 0.01.

meanNN 4—‘

RMSSD <« —|

Hidden Layer 2
Hidden Layer 3
Hidden Layer 4

17 physiological features
INPUT
Hidden Layer 1

‘@

Stress Level

meanGSR

HR

-a -

Figure 3: FFNN
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5. Experimental Results and Analysis

In the following sections, the results of applying the aforementic. ~d data
compression technique on physiological data are presented. Twr mc rics are
discussed in the following: data reduction, and the impact ~f in.. »mation loss

on the prediction accuracy.

5.1. Data reduction and energy conservation

The data sets and the signals were recorded "~om t*~ drivers at 496 Hz.
In order to test the efficiency of the proposed compre sion scheme, we have
deployed the data on the SD card of a Poi.- Mu.” wearable. In the same
way, the compression technique written =~ 7 '____uage using Android NDK
toolset was implemented. After each period p - 1min, an array data[M, N]
is transmitted using Android (Bluetooth "o v knergy) BLE to the edge device,
which is a local PC where the recei. - datc are processed and analyzed. The
results are then transferred to th~ <loud. Note that M, the number of readings,
is equal to 148800 and N, the numbe. of features, is equal to 5.
The experimentation has be .. . ‘nducted for around 4 hours, equivalent to 241
periods. Figure 4 shows ti. differer ce between the amount of data transmitted
with and without comr .ession. . ne x-axis denotes the periods, and the y-axis
denotes the number 01 * 7 es v .eded to represent the data in logarithmic scale.
The transmission ¢ = “he original data after each periods requires around 2976000
bytes, while the nmumber o. bytes required for transmitting the compressed data
varies betwee . 287,2 bytes and 41602 bytes. Thus, reducing the transmitted
data by up .0 105 .‘mes.

Figur 5 d scri’ es the change of the wearable battery level over 241 periods

for five u.iferen. scenarios:

e L.~k 1")e: the wearable device is in the idle state

e Rec line: the wearable device is continuously collecting data (motion and

neart rate sensors are turned on)

14
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Figure 4: Amount of original and compressed da. transmitted over 241 periods

e Yellow line: the wearable devi - is cu 'lecting data and running the com-

pression algorithm after each per.nd

e Green line: the wearable device '« collecting data, and performing com-

pression and transmis .ou . “er each period

e Blue line: the we rabic Jerce is collecting data, and performing data

transmission aft ¢ ea n pe-iod (no compression)

The results cle: .” - show the impact of data reduction on the communication
task energy consmption. [he battery level of the device continuously collecting
data was dec saser to around 86% after 241 periods. Note that by comparing
the sensing and co. »utation tasks with the idle state, it can be noticed that
these tas. ~ ¢ ntri’ ute a little in the energy consumption of the device. On
the ot’ <1 hand, ~hen applying the proposed data compression scheme prior to
trans. \ission, she battery level was decreased to 83% while sending the data
w .nout compression decreased the battery level to around 56%. As a result,

t. e devic . lifetime could be increased by up to 27% after 4 hours.

15
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5.2. Loss of information and stress de‘ec..~n

In this section, the impact of 1."~rmauvion loss on the prediction accuracy of
the proposed FFNN for stress level detection is studied. For each of the drivers
datasets, a sliding window 30 sec. nds with 75% overlap on the data is applied,
and the physiological fe tures ‘e cribed in the previous section are extracted
from each window. N te ‘aat “or each window, the extracted features form a

set/sequence labele . as low, “aoderate, or high stress that is going to be fed as

an input to the n:ural . ~twork.

16
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Figure 6: 2500 original ECG sam, les v .. apressed ECG samples

Figure 6 compares the original ECG sig. ~1 transmitted to the edge without
compression with the compresse.. ~ign.. ising an error bound of 107!, Even
though the compression has affected sughtly the shape of the signal, the po-
sitions of the peaks that # e use. to exploit the signal and extract the most
important features remain u.. har jed. Note that one of the advantages of the
SZ algorithm is that t 1e e ror hound is controllable and can be initialized ac-
cording to the medi al nec’ "a other words, the trade off between compression
ratio and loss of i ifor.. ~tion can be easily controlled by the medical staff.

Table 3 shc vs he Root Mean Square Error (RMSE) between the features
extracted frou. *F: compressed and original ECG and GSR signals for the 9
drivers. N tice that the average RMSE for each feature is small, and the im-
portant fea. ces <ach as heart rate, respiration rate, and R-R interval have a
RMS’. close » zero, which means that the compression had very low impact on
the ini. ~mati mn loss.

In o. 'er to fully answer the stated problem in section 1, the sequences of
fec “nres ure randomly divided into train and test sets (75%/25%). Two models

arr _asidered, the first one was trained on the sequences of features extracted
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Driver #

I
4 6 7 8 9 10 11 12 16 E &
HR 0.27 | 0.08 | 0.07 | 0.10 | 0.04 | 0.08 | 0.07 | 0.07 | .20 ‘ 0.1,
RMSSD 1.57 | 1.68 | 1.18 | 0.94 | 1.20 | 2.45 | 3.77 | 2.28 ‘ 2.47 ‘ 1.94
meanNN 091 | 1.24 | 0.24 | 0.23 | 0.25 | 1.02 | 0.30 | 0.7 | 1.0y | 0.66
sdNN 0.61 | 1.01 | 0.29 | 0.33 | 0.58 | 1.12 | 1.65 | ( 87 | 1.4 | 0.87
cvNN 0 0 0 0 0 0 0 0 ‘ 2 0
CVSD 0 0 0 0 0 0 0 j(‘ ‘0 0
medianNN | 2.19 | 1.4 | 0.67 | 1.34 | 1.01 | 2.08 | 1.74 ].UT 1.63 | 1.45
madNN 191 | 1.19 | 1.01 | 1.22 | 1.12 | 1.96 | 1.95 | .88 | 1.52 | 1.41
mcvNIN 0 0 0 0 0 0 & ‘ J 0 0
pNN50 1.78 | 2.2 1.23 | 1.51 | 1.91 | 1.92 | 224 | 1.56 | 1.27 | 1.72
pPNN20 252 | 3.63 | 1.70 | 1.95 | 1.93 | 2.39 ‘ 1.80 | 1.92 | 3.38 | 2.35

mean_gsr 0 0 0.01 | 0.02 | 022 ‘ 0.01 ,0.02|0 0 0

mean_scl 0.23 0221023021 | 0.2 ‘J.QO 0.20 | 0.19 | 0.23 | 0.21
slope_scl 0.38 | 0.36 | 0.34 | 0.34 . "8‘ t33 1034029 | 044 | 0.34

mean_scr 0.22 | 0.22 | 0.23 0.21‘0."1 0.20 | 0.20 | 0.19 | 0.23 | 0.21

max_scr 0.37 | 0.31 | 0.30 | 0.5. ' 0.25 | 0.30 | 0.23 | 0.27 | 0.41 | 0.30
RR 0.02 | 0.02 | 0.02 0.02‘0.02 0.02 | 0.02 | 0.02 | 0.02 | 0.02

Table 3: Root mean square er w betwee the features extracted from original data and the

features extracted from reco strucie * d ca

from the original dat 1 an. *he second one on the sequences of features extracted
from the compres: 2 'ata. For hyperparameter optimization, 10-fold cross val-
idation is perfor .. 1 on the training sets, and then our models are evaluated on
the test sets. Tab': 4 summarizes the stress level detection performance of the
aforementi ned moucls. The results show that the average accuracy achieved
by the twe v ode', is 98%. It can be noticed that not only the compression
did nr . affec* the prediction accuracy but even improved it in some cases such
as for Ariver and driver 12, which is due to the denoising capability of the

¢ mpres-ion technique.
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Accuracy
Original | Compressed
Driver 4 | 1.0 0.99
Driver 6 | 1.0 1.0 ‘
Driver 7 | 0.97 0.98
Driver 8 | 0.98 0.98 ]
Driver 9 | 0.98 0.97
Driver 10 | 0.99 0.99 -
Driver 11 | 0.92 094
Driver 12 | 0.99 v 9 o
Driver 16 | 0.99 n.oC
Average | 0.98 0..°

Table 4: FFNN prediction accuracy on test sets (. © /) corresponding to sequences of features

extracted from original and compressed dav 1. mecy vely

6. Discussion

Most of the IoT devices nowada_ s are equipped with multiple sensors and are
able to collect different ypes ¢ < ata. Thus, the compression techniques must
deal with multisenso’ rea .ings at a single device. Furthermore, in the case
of real-time or near real-tin. applications, the reconstruction (decompression)
time of the algor.chm 1. st be small in order to pass the data to the machine
learning mode’ ana ~eturn the prediction/classification results to the user in the
shortest time po. 'ble. Although transform-based compression and compressed
sensing (C3) ¢ . be used for dealing with multisensor readings, these methods
have several “se (vantages that make the choice of SZ for this type of prob-
lems s the b st solution. Transform-based compression techniques transform
raw daw. *~ . set of coefficients, and need to be followed by an entropy coding
s sep to e. code the coefficients in order to achieve an acceptable reduction rate.
Ou %~ other hand, CS requires that a signal is sparse in some domain and

deesn t contain noise in order to achieve an “exact” reconstruction, which is
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not the case in real world applications. CS is also an asymmetri alg’ rithm,
which means that the decompression needs a higher computation.. ~omp. xity
than that of the compression and longer time in order to recov’ « ti. > data, mak-
ing it inefficient for applications that require fast responses. . m ther issue for
transform-based techniques and CS is adaptability. In ¢.ner words, the com-
pression algorithm must adapt and perform well across ‘ifferen’ applications,
subjects, and activities. For instance, the multivaris ce tir - series used in this
paper contains different variables having different stav.stical characteristics. So
in order to apply CS to multivariate data, each of tu. variables contained in
the data must meet the conditions needed by CS . wor’. perfectly, which is not

always the case.

Data size (bytes) | Compression time (se~onds) | . ecompression time (seconds)
11904000 0.036 \ 0.05
2976000 0.012 0.01
992000 0.00%5 \ 0.006
99200 0.0037 0.002

Table 5: Average compression/d comp. =sion time for the SZ algorithm on different data sizes

Table 5 shows the time r ;eded by ' ae proposed SZ algorithm deployed on a wear-
able device (Polar Mu™) o ¢ mpress and decompress different sizes of input
multivariate data. t can be seen that the average compression/decompression
time is small, thus maki.~ SZ suitable for near real-time applications. For the
above-mentior od 1 asons, the proposed SZ can be a better candidate for mul-
tisensor rea lings . ~mpression not only for its fast compression/decompression
and high :om ress’on rate, but also for its ability to adapt for different appli-

cations ~~d sce > rios.

7. “T'onc....i0n

Since oringing intelligence closer to IoT devices reduces network latency and

c.. 77 consumption due to radio communications, data reduction can be seen
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as an additional solution to increase the lifetime of IoT devices. M t s pa-
per, an energy efficient data reduction scheme for IoT-Edge app. “ation. was
proposed. The proposed scheme is based on an error-bounde « lo sv compres-
sor designed for high performance computing applications ti.. * produce large
amounts of data during the execution. The compression ¢ gorithm was adapted
to fit on a Polar M600 wearable and its performance was 1 sted or medical mul-
tivariate time series. The results showed that the v e we» able to reduce the
amount of transmitted data to the edge device by up .o 102 times and thus to
increase the lifetime of the wearable. Furthermore, we -onsidered the use case
of drivers stress recognition and studied the imp. * of .ossy data compression
on the analysis, exploit, and classification of medi. ! data. The results showed
that the information extracted from compres. 1 data was valid, and the classi-
fication accuracy obtained from trainin_ tuc .. del on features extracted from

compressed data did not decrease.
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An energy efficient data reduction approach based on a fast error-bounden lossy
compressor is proposed

An edge machine learning model for drivers’ stress detection has bee | p. 2posed

The performance of the proposed approach has been tested on a 1.~ we. "able device
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