
Future Generation Computer Systems 96 (2019) 216–226

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An energy-efficient, QoS-aware and cost-effective scheduling
approach for real-time workflow applications in cloud computing
systems utilizing DVFS and approximate computations
Georgios L. Stavrinides ∗, Helen D. Karatza
Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

h i g h l i g h t s

• The proposed scheduling heuristic consistently outperformed the baseline policies.
• Only an insignificant loss of job result precision was incurred.
• In the worst case, the provided job results were only about 0.82% imprecise.

a r t i c l e i n f o

Article history:
Received 4 November 2018
Received in revised form 22 January 2019
Accepted 11 February 2019
Available online 15 February 2019

Keywords:
Quality of Service
Energy efficiency
Real-time workflows
Per-core DVFS
Approximate computations
Scheduling

a b s t r a c t

Green cloud computing attracts significant attention from both academia and industry. One of the major
challenges involved, is to provide a high level of Quality of Service (QoS) in a cost-effective way for the
end users and in an energy-efficient manner for the cloud providers. Towards this direction, this paper
presents an energy-efficient, QoS-aware and cost-effective scheduling strategy for real-time workflow
applications in cloud computing systems. The proposed approach utilizes per-core Dynamic Voltage and
Frequency Scaling (DVFS) on the underlying heterogeneousmulti-core processors, aswell as approximate
computations, in order to fill in schedule gaps. At the same time, it takes into account the effects of
input error on the processing time of the component tasks. Our goal is to provide timeliness and energy
efficiency by trading off result precision, while keeping the result quality of the completed jobs at an
acceptable standard and the monetary cost required for the execution of the jobs at a reasonable level.
The proposed scheduling heuristic is compared to two other baseline policies, under the impact of various
QoS requirements. The simulation experiments reveal that our approach outperforms the other examined
policies, providing promising results.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

As cloud computing continues to gain momentum, providing
a high level of Quality of Service (QoS) in a cost-effective way
for the end users and in an energy-efficient manner for the cloud
providers, is an ongoing challenge that gathers significant atten-
tion from both academia and industry. A Service Level Agreement
(SLA) is commonly required between the end users and a cloud
provider. It is a contract between the two parties that defines the
type of the provided service, the QoS requirements, as well as the
adopted pricing scheme [1].

Compared to other data center infrastructure components, pro-
cessors typically consume the greatest amount of energy [2–4].

∗ Corresponding author.
E-mail addresses: gstavrin@csd.auth.gr (G.L. Stavrinides), karatza@csd.auth.gr

(H.D. Karatza).

A widely used power management method is the Dynamic Volt-
age and Frequency Scaling (DVFS) technique. DVFS allows the dy-
namic adjustment of the supply voltage and operating frequency
(i.e., speed) of a processor, based on the workload conditions [5,6].
Modern multi-core processor architectures incorporate voltage
regulators for each integrated core, allowing per-core DVFS, so that
each core can operate at a different voltage and frequency level
from the other cores of the same processor [7]. While this provides
flexibility and better energy efficiency, it involves higher control
complexity, especially in the case of clouds where the heteroge-
neous physical resources are usually virtualized and managed by
the hypervisor (Virtual Machine Monitor — VMM) [8].

With the rapid growth of cloud computing, there is a dra-
matic increase in the number and variety of applications processed
on such platforms. They encompass a wide spectrum of sectors
and activities, ranging from social media and big data analytics,
to healthcare monitoring and financial applications [9,10]. The
workload generated by such applications usually comprises jobs

https://doi.org/10.1016/j.future.2019.02.019
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.02.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.02.019&domain=pdf
mailto:gstavrin@csd.auth.gr
mailto:karatza@csd.auth.gr
https://doi.org/10.1016/j.future.2019.02.019

G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226 217

with multiple component tasks that have precedence constraints
among them. That is, each job forms a workflow, where the output
data of a task are used as input by other tasks of the job [11]. A
task can start execution only when all of its predecessor tasks have
been completed. Timeliness and results quality are amongst the
most important QoS requirements commonly defined in a SLA [12].
Typically, each job features a firm deadline within which all of
its tasks should be completed. Otherwise, a late result would be
useless. Such jobs are commonly referred to as real-time jobs [13].

In such a real-time setting, it is often more desirable for a job
to provide an approximate result by its deadline, than a precise
result late. Based on this observation, Lin et al. proposed the ap-
proximate computations technique [14]. According to this approach,
a real-time job is allowed to return intermediate, approximate
(imprecise) results of poorer, but still acceptable quality, when
its deadline cannot be met. In order to achieve this, each task is
decomposed into a mandatory part, which provides an approxi-
mate result of the minimum acceptable quality, and an optional
part, which enhances the result provided by the mandatory part.
Due to the possibly approximate results of their parent tasks, child
tasks in a workflow application may have error in their input data,
which may require additional processing time in order to produce
an acceptable result [15,16].

1.1. Motivation

The energy, QoS and cost-related challenges involved with pro-
cessing inherently complex workloads on cloud computing plat-
forms, require the employment of novel and effective schedul-
ing techniques [17]. In order to address these challenges, the or-
chestration of the workload execution on the virtual machines
(VMs) of the cloud should take into account the characteristics
of the underlying physical processors, such as per-core DVFS. By
leveraging such features, SLA compliance can be provided at a
reasonable monetary cost for the end users, while keeping the
energy consumption of the resources as low as possible.

1.2. Contribution

Towards this direction, this paper presents an energy-efficient,
QoS-aware and cost-effective scheduling strategy for real-time
workflow applications in cloud computing systems. The proposed
approach utilizes per-core DVFS on the underlying heterogeneous
multi-core processors, as well as approximate computations, in
order to fill in schedule gaps. At the same time, it takes into account
the effects of input error on the processing time of the component
tasks. Our goal is to provide timeliness and energy efficiency by
trading off result precision, while keeping the result quality of the
completed jobs at an acceptable standard and the monetary cost
required for the execution of the jobs at a reasonable level.

The proposed scheduling heuristic is compared to two other
baseline policies. The work presented in this paper extends our
previous work in [18]. Specifically, the proposed scheduling ap-
proach is investigated under the impact of various QoS require-
ments, expressed in the form of result precision thresholds,
whereas only one acceptable level of result precision was consid-
ered in our previouswork. Furthermore, in this study themonetary
cost required for the execution of the jobs is also considered.

The remainder of the paper is organized as follows: Section 2
provides a background on processor performance and power
states, as well as an overview of related literature. Section 3
presents the system, workload, approximate computations and
energy consumptionmodels, aswell as the aspects of the employed
SLA. Section 4 describes the proposed scheduling heuristic, while
Section 5 gives a description of the performance metrics, the
experimental setup and analyzes the results of the simulation
experiments. Section 6 summarizes and concludes the paper.

2. Background and related work

The performance states (P-states) and the power states (C-states)
of a processor core can be controlled by the operating system or a
hypervisor through the Advanced Configuration and Power Inter-
face (ACPI). ACPI is an industry-standard power management in-
terface [19]. P-states, typically expressed as voltage and frequency
pairs, can be used to save energy when running workloads on a
core. P0 is the P-state that corresponds to the highest performance
level, i.e., the highest voltage and the highest frequency (base fre-
quency), and thus the highest power consumption. Higher P-states
(P1, P2 etc.) provide lower performance levels, i.e., lower voltage
and lower frequency, and thus lower power consumption. A core
may transition from one P-state to another via DVFS. Even though
the transition between P-states incurs a latency, it is commonly at
the scale of microseconds and thus negligible when compared to
the execution time of applications, which is usually at the scale of
minutes or hours [8,20].

C-states can help save energywhen a core is idle. C0 is the active
state inwhich the core is executing instructions at the performance
level specified by the utilized P-state. C1 is the first power state in
which the core is idle. When a core is in C1, it can switch to C0
virtually without any latency. In this state, the core consumes less
power thanwhen active (i.e., when in C0). In higher C-states (C2, C3
etc.) the core is set into deeper sleep states, wheremore aggressive
power conservation techniques are utilized, such as clock gating
and power gating. However, the higher the C-state of the core, the
more significant becomes the delay to switch back to C0. Therefore,
in a dynamic and real-time setting where jobs arrive at the system
dynamically and their deadlines must be met, switching to a C-
state higher than C1 may cause poor performance [21].

In its general form, the scheduling problem in distributed plat-
forms such as the cloud, concerns the mapping of a set of applica-
tion tasks to a set of computational resources, in order to complete
all tasks under the specified constraints. Completing each task
within its deadline, minimizing the response time and tardiness
of the tasks, as well as the energy consumption of the computa-
tional resources, are some typical scheduling objectives [22]. In its
general form, the scheduling problem has been shown to be NP-
complete [23].

A large body of research has been focused on energy-efficient
scheduling heuristics [24–32]. DVFS is a technique typically used
in this context. Wang et al. studied in [33] the slack time for non-
critical jobs, extended their execution time and reduced the energy
consumption of a DVFS-enabled homogeneous cluster, without
increasing the execution time of the tasks as a whole. However,
although the jobs featured precedence constraints among their
tasks, no deadlines were considered. Mhedheb et al. proposed
and implemented in [34] a load-aware and thermal-aware VM
scheduling mechanism in a cloud platform, capable of preventing
the occurrence of over-loaded or over-heated physical servers.
Even though DVFS was utilized for the power management of the
physical machines, single-core hosts were considered.

Mizotani et al. proposed in [35] a heuristic that utilized ap-
proximate computations with DVFS, for the scheduling of periodic,
independent real-time tasks on a homogeneous multiprocessor.
According to this approach, the mandatory parts of the tasks had
always higher priority for execution than the optional parts. Fur-
thermore, the mandatory part with the earliest deadline had the
highest priority for processing. The algorithm utilized the slack
time that might occur due to the early completion of a mandatory
part, for the scheduling of the optional part of the task at a lower
processor speed, using DVFS. However, this approach is not suit-
able for workflow applications, as it only considers independent
tasks. A similar method was proposed by Yu et al. in [36]. The
target system under study was a homogeneous multiprocessor, as

218 G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226

in the previous method. Even though this approach considered ap-
plications with component tasks featuring precedence constraints,
no data dependencies (and thus no input error) were considered
between the tasks. According to both of these methods, heteroge-
neous processors with per-core DVFS were not considered.

On the other hand, Lin et al. proposed in [37] scheduling algo-
rithms that leveraged per-core DVFS in a system with heteroge-
neous processors, in an attempt to achieve a balance between per-
formance and energy consumption. Two scheduling modes were
considered: (a) a batch mode, in which tasks were executed in
batches, and (b) an online mode, in which tasks with different
time constraints, arrival times and computational requirements
co-existed in the system. Even though heterogeneous processors
and per-core DVFS were considered, the workload consisted of
simple independent tasks. Moreover, no approximate computa-
tions were utilized. In our previous work in [38], we presented
a novel approach for the scheduling of real-time workflow ap-
plications in clouds that utilized schedule gaps with approximate
computations, where the underlying computing resources where
heterogeneous. However, even though our approach took into
account the effect of input error on the component tasks of the
applications, it did not utilize DVFS or any other energy-aware
heuristic.

3. Problem formulation

3.1. System model

The cloud computing system under study has an underlying
infrastructure that consists of a set H = {host1, . . . , hosth} of h
physical hostswith heterogeneous processors. Each host hosti has a
multi-core processor that consists of a set Ci = {corei1, . . . , core

i
ci}

of ci cores and supports a set Pi = {(V i
cc0 , f

i
0), . . . , (V

i
ccpi−1

, f ipi−1)}
of pi P-states (i.e., voltage and frequency pairs), where Vcc is the
supply voltage (in volts) and f is the operating frequency (in GHz).
The voltage and frequency pair (V i

cc0 , f
i
0) corresponds to the lowest

P-state (P0) of the processor, which provides the highest perfor-
mance level, i.e., the highest operating frequency (base frequency).
The pair (V i

ccpi−1
, f ipi−1) corresponds to the highest P-state (Ppi − 1)

of the processor, which provides the lowest performance level,
i.e., the lowest operating frequency.

All of the processors support the same instruction set and
per-core DVFS. This is a reasonable assumption, as the physical
hosts utilized in the data centers of major cloud vendors, such as
AmazonWeb Services,Microsoft Azure andGoogle Cloud Platform,
typically use processors that support the x86-64 instruction set
and per-core DVFS (such as modern AMD and Intel processor
architectures). All of the cores of each processor support the same
set of P-states and thus the same set of voltage and frequency
pairs. Each core can operate at a different P-state from the other
cores of the same processor. Different processors may support
different sets of P-states. All of the cores require the same number
of clock cycles per instruction. There is a set V = {vm1, . . . , vmv}

of v VMs in the cloud, where each VM is assigned a virtual CPU
(vCPU). Each vCPU corresponds to a physical core. Consequently,
the operating frequency fi of a VM vmi corresponds to the op-
erating frequency of the assigned physical core, according to its
current P-state. The VMs in the cloud are fully connected by a
virtual network. The data transfer rate between two VMs vmi and
vmj is denoted by lij and is uniformly distributed in the range[
l · (1− L/2) , l · (1+ L/2)

]
, where L is the heterogeneity degree of

the virtual network, whereas l is the mean data transfer rate of the
communication links. A central scheduler running on a dedicated
host is responsible for scheduling the tasks to the VMs in the
cloud [39]. The target cloud computing environment is illustrated
in Fig. 1.

3.2. Workload model

Real-time jobs corresponding to workflow applications arrive
dynamically at the cloud computing environment in a Poisson
stream with rate λ. Each job is represented by a Directed Acyclic
Graph (DAG) G = (N , E), where N is the set of the nodes of the
graph and E is the set of the directed edges between thenodes. Each
node represents a component task ni of the job, whereas a directed
edge eij between two tasks ni and nj represents the data that must
be transferred from task ni to task nj. The terms job, workflow
and DAG are used interchangeably in the rest of the paper. The
component tasks of aworkfloware not preemptible, as preemption
of real-time tasks may lead to performance degradation [40,41].
Each task ni has a weight wi that denotes its computational volume,
i.e., the number of clock cycles required to execute the instructions
of the particular task. The computational volume of each task is
exponentially distributed with mean w. The computational cost of
the task ni on a VM vmj is given by:

Comp(ni, vmj) = wi/fj (1)

where fj is the operating frequency of VM vmj.
Each edge eij between two tasks ni and nj has a weight zij that

represents its communication volume, i.e., the number of GB of data
needed to be transferred between the two tasks. The communica-
tion volume of each edge is exponentially distributed with mean
z. The communication cost of the edge eij is incurred when data
are transferred from task ni (scheduled on VM vmm) to task nj
(scheduled on VM vmn) and is defined as:

Comm
(
(ni, vmm), (nj, vmn)

)
= zij/lmn (2)

where lmn is the data transfer rate of the communication link
between the VMs vmm and vmn. In case both tasks ni and nj
are scheduled on the same VM or on VMs that run on the same
physical host, the communication cost of the edge eij is considered
negligible. The length of a path in the graph is the sum of the
computational and communication costs of all of the tasks and
edges, respectively, on the path. The critical path length CPL is the
length of the longest path in the graph. Each real-time workflow
has a firm deadline Dwithin which all of its component tasks must
finish execution. It is given by:

D = A+ RD (3)

where A is the arrival time of the workflow and RD is its relative
deadline, which is uniformly distributed in the range [CPL, 2CPL].

The communication to computation ratio CCR of a workflow is
the ratio of its average communication cost to its average compu-
tational cost on the target system and is given by:

CCR =

∑
eij∈E

Comm(eij)∑
ni∈N

Comp(ni)
(4)

whereN and E are the sets of the nodes and edges of theworkflow,
respectively. Comm(eij) is the average communication cost of the
edge eij over all of the communication links in the system, whereas
Comp(ni) is the average computational cost of the task ni over all of
the VMs in the system. It is noted that the base frequency of each
vCPU is considered for this calculation. An example of a workflow
application is shown in Fig. 2.

3.3. Approximate computations model

The computational volume wi of each component task ni of a
workflow is assumed to consist of a mandatory part mpi, followed
by an optional part opi:

wi = mpi + opi (5)

G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226 219

Fig. 1. The cloud computing environment under study.

where 0 ≤ mpi ≤ wi. A task is completed when at least its
mandatory part has been completed. The task can either complete
its optional part entirely, partially or it may skip its whole optional
part, depending on the decision of the scheduler. The results of a
partially completed task ni are approximate and therefore the task
has output error, which is given by:

OEi =
δi

opi
(6)

where δi is the discarded fraction of the optional part opi of the task.
Since 0 ≤ δi ≤ opi, from (6) it follows that 0 ≤ OEi ≤ 1.

Since the output data of the task are used as input by its child
tasks, the error is propagated to its child tasks as input error. It is
assumed that the input error of a task ni is equal to the total output
error of its parent tasks:

IEi =
∑
nj∈Ui

OEj (7)

where Ui is the set of the parent tasks of task ni. In case a task has
input error, there is an impact on its execution time. Specifically, its
mandatory part is extended, sincemore instructions and thus clock
cycles are required by the task to handle the error and produce an
acceptable result. It is assumed that the optional part of the task is
not affected by its input error.

The mandatory part extension of a task ni due to its input error
is defined as:

mpei = mpi · IEi (8)

where mpi and IEi are the mandatory part and the input error
of task ni, respectively. Each task ni has an input error limit IELi
beyond which the error in its input is not manageable and thus
an acceptable result cannot be produced, no matter how much
its mandatory part is extended. It is uniformly distributed in the
range [1, ui], where ui is the number of parent tasks of task ni.
Consequently, the input error IEi of the task must be 0 ≤ IEi ≤ IELi.

3.4. Energy consumption model

The power consumption of a processor core corei is given by
the sum of its dynamic power, which is caused by the switching
activity of the transistors, and its static power, which is mainly
caused by the leakage current [21,42,43]:

Pi = Pdynamici + Pstatici (9)

The dynamic power of corei is given by:

Pdynamici = ai · Ci · V 2
cci · fi (10)

where ai is the fraction of transistors that switch at each clock cycle
on average,Ci is the transistor capacitance,Vcci is the supply voltage

220 G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226

Fig. 2. Aworkflow application represented as a Directed Acyclic Graph (DAG) with
three entry tasks and three exit tasks. The number in each node denotes the average
computational cost of the represented task, whereas the number on each edge
denotes the average communication cost between the two tasks that it connects.
The critical path of the graph is depicted with thick arrows.

and fi is the operating frequency of the core. The static power of
corei is defined as:

Pstatici = Ileakagei · Vcci (11)

where Ileakagei is the leakage current.
Hence, the dynamic power of corei can be expressed as:

Pdynamici = Kdynamici · V
2
cci · fi (12)

where Kdynamici is the dynamic power factor of the core. The static
power of the core is typically proportional to its dynamic power
[44]. Therefore, it can be expressed as:

Pstatici = Kstatici · Pdynamici (13)

where Kstatici is the static power factor of the core.
Consequently, from (9), (12) and (13) it follows that:

Pi = (1+ Kstatici) · Kdynamici · V
2
cci · fi (14)

It is assumed that only the C-states C0 and C1 are utilized, due
to the real-time requirements of the workload. C1 corresponds to
the static power consumption of the core, at its lowest possible
voltage level. Hence, the energy consumption of a core corei over
a period of time [t0, t1] can be defined as an integral of its power
consumption [45]:

Ei =
∫ t1

t0

Pi(t) · dt (15)

3.5. SLA aspects

3.5.1. QoS requirements
The following QoS requirements are imposed by the employed

SLA:

• The deadline of each job must be met. In case a job misses its
deadline, a SLA violation occurs.
• Each completed job must provide results of acceptable qual-

ity.

It is assumed that there is a result precision threshold RPT , under
which the results of a job are not acceptable. The relation between
the result precision threshold and the mandatory part of a task ni
is given by:

mpi = RPT · wi (16)

where wi is the computational volume of the task. The result
precision of the task is defined as:

RPi = RPT + (1− RPT)(1− OEi) (17)

where OEi is the output error of the task. The result precision of a
job is considered to be equal to the average result precision of its
exit tasks.

In case the deadline of an uncompleted job is reached, the job is
not always considered lost. Specifically, if the uncompleted tasks
of the job are all exit tasks and all of them have completed their
mandatory part, then the job is considered completed. In this case,
even though the results of the job are approximate, they are still of
acceptable quality.

3.5.2. Pricing scheme
We consider a pay-as-you-go pricing scheme, where an hourly

rate is charged for each VM utilized for the execution of the work-
load.

4. Scheduling strategy

In order to schedule the ready tasks waiting in the queue of the
central scheduler, a heuristic is employed, which consists of two
phases: (a) a task selection phase and (b) a VM selection phase.

4.1. Task selection phase

Tasks are prioritized according to their job’s deadline. The task
that belongs to the job with the earliest deadline, is selected first
by the scheduler. Consequently, tasks are prioritized according to
the Earliest Deadline First (EDF) policy. In case two or more ready
tasks have the same priority, the task with the largest average
computational cost is selected first. This tie-breaking technique
is employed, as it has been proven in the literature that when
combined with EDF, it gives better results than other methods,
such as random selection [46].

4.2. VM selection phase

Once a task is selected by the scheduler, it is allocated to the VM
that can provide it with the earliest estimated finish time EFT . The
EFT of a ready task ni on a VM vmk is given by:

EFT (ni, vmk) = max {tdata(ni, vmk), tidle(ni, vmk)} + Comp(ni, vmk)
(18)

where tdata(ni, vmk) is the time atwhich all input data of task ni will
be available on VM vmk, whereas tidle(ni, vmk) is the time at which
vmk will be able to execute task ni.

In order to calculate the term tidle(ni, vmk), we first determine
the position that task ni would be placed in the queue of VM
vmk. This position is determined by taking into account the task’s
priority and by utilizing possible schedule gaps, using DVFS and
approximate computations. The following steps are performed:

• Step 1: We first find the position at which the ready task ni
would be placed in the VM’s queue, according to its priority.

G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226 221

• Step 2: In case all of the required input data of the ready task
ni are available on VM vmk (i.e., tdata(ni, vmk) = tcurrent, where
tcurrent is the current time), we check whether a schedule
gap exists. A schedule gap is formed when the VM is idle
and the task nq placed at the head of the queue is still in
the process of receiving its required input data from other
hosts. The capacity g of the schedule gap is calculated as:
g = tdata(nq, vmk)− tcurrent, where tdata(nq, vmk) is the time at
which all of the required input data of task nq will be received.
• Step 3: If a schedule gap exists, we calculate the maximum

possible discarded fraction δmaxi of the ready task’s optional
part, so that the input error limit of each of its child tasks is
not exceeded. This is given by:

δmaxi = opi ·min
{
1, min

nj∈Yi

{
IELj − IEj

}}
(19)

where Yi is the set of child tasks of the ready task ni. In case
the examined ready task is an exit task of its job, then we
consider that δmaxi = 0, since all exit tasks should be allowed
to produce precise results.
• Step 4: Subsequently, we try to fill in the schedule gap with

the maximum possible part of ready task ni, using the mini-
mum possible supported operating frequency of VM vmk. In
case the whole task cannot be inserted into the schedule gap,
we insert only a part of it, utilizing approximate computa-
tions. Specifically, for each supported operating frequency fk
of VM vmk, we check the following conditions, starting from
the lowest supported frequency (i.e., the highest P-state of the
corresponding core):

g ≥ wi/fk (20)

g ≥ (wi − δmaxi)/fk (21)

δmaxi · Pk ≥
∑
nj∈Yi

δmaxi

opi
·mpj · P (22)

In condition (22) we check whether the energy that can be
saved by skipping a fraction of the ready task ni’s optional
part equal to δmaxi , is greater than or equal to the total average
additional energy that would be consumed by the extended
mandatory part of ni’s child tasks, due to ni’s potential output
error. Pk is the power consumption of the corresponding
physical core of VM vmk for the particular frequency level,
whereas P is the average power consumption of all of the
cores in the system, operating at base frequency. In case
condition (20) holds, the whole task can be inserted into
the schedule gap and the VM can process it with frequency
fk. In case conditions (21) and (22) hold, only a part of the
task can be inserted into the schedule gap and the VM can
process it with frequency fk. The part of the task that would
be processed in this case would be equal to its computational
volume w′i that fits into the gap at the particular frequency,
i.e., w′i = g · fk. In case the ready task ni cannot be placed into
a schedule gap or a schedule gap does not exist, the position
of task ni in vmk’s queue is determined only by its priority
(i.e., as in step 1).

The pseudocode for determiningwhether a schedule gap can be
utilized as described above (steps 2–4), is given in Algorithm 1. The
utilization of schedule gaps is also performed in the same manner
for a task waiting in a queue when all of its input data become
available on its assigned VM. Furthermore, it is also performed for
tasks that are waiting for service in a queue and either the task in
service completes execution or a task is discarded from the queue
because its job’s deadline has been reached. In the last two cases,
eligible tasks are considered according to their priority.

Algorithm 1 Schedule gap utilization with DVFS and approximate
computations.
Input: A ready task ni and a VM vmk .
Output: Decision on whether a gap in vmk ’s schedule can be utilized by task ni .
1: gapExists← false
2: gapIsUtilized← false
3: if tdata(ni, vmk) = tcurrent then
4: if vmk is idle and tdata(nq, vmk) > tcurrent then
5: gapExists← true
6: g ← tdata(nq, vmk)− tcurrent
7: end if
8: end if
9: if gapExists then
10: if ni is an exit task then
11: δmaxi ← 0
12: else
13: δmaxi ← opi ·min

{
1,minnj∈Yi

{
IELj − IEj

}}
14: end if
15: for each fkp ∈ Pk starting from fkmin do
16: if g ≥ wi/fkp then
17: gapIsUtilized← true
18: w′i ← wi
19: selectedFrequency← fkp
20: return gapIsUtilized
21: else if g ≥ (wi − δmaxi)/fkp and

δmaxi · Pkp ≥
∑

nj∈Yi

δmaxi
opi
·mpj · P then

22: gapIsUtilized← true
23: w′i ← g · fkp
24: selectedFrequency← fkp
25: return gapIsUtilized
26: end if
27: end for
28: end if
29: return gapIsUtilized

The proposed scheduling approach is energy-efficient through
the utilization of per-core DVFS during the VM selection phase.
Furthermore, it is QoS-aware, as the deadlines of the jobs are taken
into account during the task selection phase, using the EDF algo-
rithm. Moreover, it is cost-effective, as it tries to minimize the idle
time of the VMs (and thus the associated monetary cost required
for running each VM), through the utilization of schedule gaps
during the VM selection phase. The provided energy efficiency,
QoS and cost effectiveness are further enhanced through the com-
bination of DVFS with approximate computations, which allows
the partial execution of the tasks inserted into schedule gaps,
utilizing lower frequencies. Consequently, less energy is required
for the execution of the tasks, more jobs are completed within
their deadline and less time and thus monetary cost is required for
executing theworkload on the VMs. These objectives are achieved,
while ensuring at the same time that all of the jobs will provide
results of acceptable quality.

We refer to our proposed scheduling heuristic as Earliest Dead-
line First with DVFS and Approximate Computations (EDF_DVFS_AC).
The proposed approach is compared to two baseline scheduling
policies: (a) EDF, which is not energy-aware and it does not utilize
any schedule gaps, DVFS or approximate computations and (b)
EDF_DVFS, which is a modified version of our proposed heuristic,
where schedule gaps are utilized using per-core DVFS (i.e., it is
energy-aware), but only if the whole task fits into the gap (i.e., ap-
proximate computations are not used).

5. Performance evaluation

5.1. Performance metrics

The following metrics were employed for the evaluation of the
performance of our proposed scheduling algorithm:

222 G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226

• Total energy consumption, which is the total energy in
kilowatt-hours (kWh) consumed by all of the cores of the
system under study, during the observed time period.
• SLA violation ratio, which is the ratio of the number of jobs

that did not finish their execution within their deadline (and
thus lost), over the number of all of the jobs that arrived at
the central scheduler of the cloud, during the observed time
period.
• Average result precision, which is the average result precision

of the completed jobs, during the observed time period.
• Total monetary cost, which is the total monetary cost in US

dollars ($) required for the completion of the same number
of jobs, under each scheduling policy.

5.2. Experimental setup

The performance of the system was evaluated by conducting
a series of simulation runs, rather than by analytical methods.
Due to the complexity of the system and workload models under
study, analytical modeling would be very difficult to implement
and would require several simplifying assumptions that would
have an unpredictable impact on the results. In order to model
in detail all of the characteristics of the framework under study
and have full control on all of its parameters, we chose not to use
one of the available simulation packages. Instead, we implemented
our own discrete-event simulation program in C++, tailored to the
specific requirements of the particular problem, using the indepen-
dent replications method. Furthermore, synthetic workload was
used, in order to obtain unbiased, general results, not applicable
only to particular workload traces. The workflows were generated
randomly, using our own random DAG generator, as described
in [15]. Each generated DAGwas aweakly connected graph, having
a path between any pair of tasks, without taking into account the
direction of the edges. There was at least one entry and one exit
task in each generated DAG.

For comparison purposes, the P-states of the host processors
were based on those of real-world processors. Specifically, half of
the hosts in the underlying infrastructure were considered to be
small in terms of the number of processor cores, having per-core
P-states modeled after the Intel Xeon E5450 processor, whereas
the other half of the hosts were considered to be large, having per-
core P-states modeled after the Intel Xeon X5670 processor. The
supported P-states of the small and large host processor cores are
shown in Table 1 [47,48]. The static power factor of the small and
large host processor cores was chosen to be Kstatic = 0.3, since
the static power consumption in CMOS circuits is approximately
30% of the dynamic power consumption [44]. The dynamic power
factor of the cores was calculated based on the maximum power
consumption of the employed real-world processors, as provided
by the manufacturer [49].

We conducted a set of experiments for each combination of
values of the communication to computation ratio (CCR) and the
result precision threshold (RPT) parameters. In terms of the CCR
parameter, we considered: (a) computationally intensive (CCR =
0.5), (b) moderate (CCR = 1) and (c) communication intensive
(CCR = 2) jobs. In terms of the RPT parameter, we considered a
wide range of values. On the one end of the spectrum, the result
precision threshold and thus the mandatory part of each task was
considered equal to zero (RPT = 0). Consequently, each task
could essentially be omitted. However, this was restricted by the
imposed input error limit, as well as the requirement that each exit
task should always give results of the highest possible precision. On
the other end of the spectrum, the result precision threshold was
considered equal to 1 (RPT = 1), meaning that each task was not
allowed to omit any fraction of its computational volumeand itwas
thus forced to always produce precise results (i.e., approximate

Table 1
P-states of host processor cores.
P-state Voltage (V) Frequency (GHz)

Small host processor core

P0 1.35 3.00
P1 1.17 2.67
P2 1.00 2.33
P3 0.85 2.00

Large host processor core

P0 1.35 2.93
P1 1.29 2.80
P2 1.23 2.67
P3 1.17 2.54
P4 1.11 2.40
P5 1.05 2.27
P6 0.99 2.14
P7 0.92 2.00
P8 0.86 1.87
P9 0.80 1.74
P10 0.75 1.60

computations were not utilized in this case). Between these two
extreme cases, the following values were also considered for the
result precision threshold: RPT = {0.25, 0.5, 0.75}. In these cases,
a task was allowed to omit a large, medium or small fraction of
its computational volume, respectively. This variety of result preci-
sion thresholds enabled us to investigate our proposed scheduling
heuristic under the impact of variousQoS requirements, in contrast
to our previous work in [18], where a fixed value for the result
precision threshold was considered.

For computationally intensive DAGs (CCR = 0.5), the mean
computational volume of the tasks was selected to be equal to
w = 1.758 · 1012 clock cycles, so that on average, a task would
take 10 min to execute on a vCPU corresponding to a core of a
large processor, operating at base frequency (i.e., 2.93 GHz). For
moderate and communication intensive DAGs (CCR = {1, 2}), the
mean computational volume of the tasks was selected to be equal
to w = 0.879 · 1012 clock cycles, so that on average, a task would
take half the time to execute compared to the computationally
intensive case (i.e., 5 min). For each CCR and mean computational
volumew, themean communication volume z was calculated from
(4). In order for the system to be stable, the job arrival rate was
chosen to be λ = 0.004. The hourly rate per VM was considered
to be $0.019, which is the average hourly rate charged by Amazon
EC2 for on-demand VM instances with one vCPU and variable EC2
Compute Units (for Windows usage) [50]. The input parameters of
the simulation model are shown in Table 2.

We ran 30 replications of the simulation with different seeds of
randomnumbers, for each set of input parameters. Each replication
was terminatedwhen 4000 jobs had been completed.We found by
experimentation that this simulation run length was long enough
to minimize the effects of warm-up time. For every mean value,
a 95% confidence interval was calculated. The half-widths of all
of the confidence intervals were less than 5% of their respective
mean values. Furthermore, in order to examine whether the dif-
ferences between the mean values obtained by each scheduling
methodwere statistically significant, a 95% confidence intervalwas
calculated for the difference between each pair of mean values.
The calculated confidence intervals did not include 0 and thus
the differences in the results between the employed scheduling
policies were statistically significant.

5.3. Simulation results and discussion

The simulation results for the total energy consumption, SLA
violation ratio and total monetary cost metrics, are presented in
Figs. 3–5, respectively, for each (CCR, RPT) pair of values, under

G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226 223

Table 2
Input parameters of the simulation model.
Parameter Value

System model parameters

Small hosts:
Number of hosts (i.e., processors) hsmall = 20
Number of host processor cores csmall = 4
Number of core P-states psmall = 4
Static power factor of processor core Kstaticsmall = 0.3
Dynamic power factor of processor core Kdynamicsmall = 2.8154 · 10−9

Large hosts:
Number of hosts (i.e., processors) hlarge = 20
Number of host processor cores clarge = 6
Number of core P-states plarge = 11
Static power factor of processor core Kstaticlarge = 0.3
Dynamic power factor of processor core Kdynamiclarge = 2.2846 · 10−9

Cloud:
Number of VMs v = 200
Heterogeneity degree of virtual network L = 0.5
Mean link data transfer rate l = 1 Gbps
Hourly rate per VM $0.019

Workload model parameters

Number of completed DAGs 4000
DAG arrival rate λ = 0.004
Number of tasks per DAG n ∼ U[16, 128]
DAG communication to computation ratio CCR = {0.5, 1, 2}
Mean task computational volume w = 0.879 · 1012 clock cycles for CCR = {1, 2}

w = 1.758 · 1012 clock cycles for CCR = 0.5
Result precision threshold RPT = {0, 0.25, 0.5, 0.75, 1}

Other model parameters

Scheduling policies EDF, EDF_DVFS, EDF_DVFS_AC

each scheduling policy, EDF, EDF_DVFS and EDF_DVFS_AC. The
comparison of the scheduling strategies with respect to all of
the employed performance metrics is shown in Tables 3–6. It is
demonstrated that for all types of workload and result precision
thresholds, the proposed scheduling heuristic, EDF_DVFS_AC, out-
performed the other two baseline policies, providing the lowest
total energy consumption, SLA violations ratio and total monetary
cost. This was achieved with only an insignificant loss of job result
precision. Specifically, in the worst case, the proposed approach
provided average result precision equal to 0.9918, which was only
about 0.82% lower than the precise results provided by the other
two policies.

It can be observed that for all types of workload – compu-
tationally intensive (CCR = 0.5), moderate (CCR = 1) and
communication intensive (CCR = 2) workflows – EDF_DVFS_AC
provided lower energy consumption, SLA violations and monetary
cost when lower result precision thresholds were employed. This
was due to the fact that lower precision thresholds allowed the
component tasks of the workflows to omit larger fractions of their
computational volume. Consequently, more schedule gaps were
utilized, since it was more likely for a partial task to fit into a gap.

The two baseline policies, EDF and EDF_DVFS, were not affected
by the variation in the values of RPT , since they did not utilize
approximate computations. For the highest precision threshold
(RPT = 1), EDF_DVFS_AC exhibited the same performance as
EDF_DVFS, since in that case both strategies filled in schedule gaps
using only DVFS, without utilizing approximate computations. On
the other hand, lower result precision thresholds favored the pro-
posed heuristic. It can also be observed that EDF_DVFS_AC did
not provide lower average result precision when lower precision
thresholds were employed. This was due to the imposed input
error limit on the tasks, as well as the requirement that each exit
task should always give results of the highest possible precision.

The average energy savings in the case of EDF_DVFS_AC were
11.01% compared to the non energy-aware policy, EDF, and 9.20%
compared to the other energy-aware scheduling method,

EDF_DVFS. The average improvement in SLA violationswas 33.98%
and 27.90%, compared to EDF and EDF_DVFS, respectively. In terms
of the result precision, the average decrease was 0.21% compared
to both baseline strategies. Furthermore, EDF_DVFS_AC provided
7.82% average monetary cost savings compared to EDF, and 5.70%
compared to EDF_DVFS. On average, the energy and monetary
cost savings were more significant in the case of computationally
intensive workflows, which required in general longer execution
times and thus greater energy consumption and higher monetary
cost. Therefore, with the effective utilization of schedule gaps, the
execution time of the workflows shrunk, since partial tasks could
be placed in the gaps using approximate computations. At the same
time, less energy was required to execute them, not only due to
their smaller execution times, but also due to the utilization of
lower operating frequencies through the application of DVFS on
the physical cores.

On the other hand, the improvement in the SLA violations ratio
was on average more significant in the case of communication
intensive workflows. Due to the longer data transfer times, more
gaps formed in the schedule of the VMs. Therefore, the effective
utilization of those gaps with our proposed approach, which pro-
vided flexibility by allowing the insertion of partial tasks into the
gaps, yielded better performance. The result precision decrease
was on average greater in the case of computationally intensive
workflows, which indicates that more exit tasks were forced to
discard a fraction of their optional part in order to meet their job’s
deadline, compared to the case of moderate and communication
intensive workflows.

6. Conclusions and future work

In this paper, we proposed an energy-efficient, QoS-aware and
cost-effective scheduling strategy for real-time workflow applica-
tions in cloud computing systems. Our approach utilized per-core
DVFS on the underlying heterogeneous multi-core processors, as
well as approximate computations, in order to fill in schedule gaps,

224 G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226

Table 3
Energy savings (%).
(CCR, RPT) EDF_DVFS vs.

EDF
EDF_DVFS_AC
vs. EDF

EDF_DVFS_AC
vs. EDF_DVFS

(0.5,0) 3.93 43.70 41.40
(0.5,0.25) 3.93 16.76 13.36
(0.5,0.5) 3.93 12.11 8.52
(0.5,0.75) 3.93 8.74 5.01
(0.5,1) 3.93 3.93 0.00

(1,0) 0.20 21.01 20.85
(1,0.25) 0.20 5.03 4.83
(1,0.5) 0.20 3.24 3.05
(1,0.75) 0.20 1.54 1.34
(1,1) 0.20 0.20 0.00

(2,0) 2.02 27.01 25.50
(2,0.25) 2.02 10.18 8.33
(2,0.5) 2.02 5.60 3.65
(2,0.75) 2.02 4.10 2.12
(2,1) 2.02 2.02 0.00

Average 2.05 11.01 9.20

Table 4
SLA violations decrease (%).
(CCR, RPT) EDF_DVFS vs.

EDF
EDF_DVFS_AC
vs. EDF

EDF_DVFS_AC
vs. EDF_DVFS

(0.5,0) 6.90 90.91 90.23
(0.5,0.25) 6.90 34.53 29.68
(0.5,0.5) 6.90 23.50 17.83
(0.5,0.75) 6.90 16.76 10.60
(0.5,1) 6.90 6.90 0.00

(1,0) 2.08 77.40 76.92
(1,0.25) 2.08 31.89 30.44
(1,0.5) 2.08 28.12 26.60
(1,0.75) 2.08 14.78 12.97
(1,1) 2.08 2.08 0.00

(2,0) 15.84 76.33 71.88
(2,0.25) 15.84 31.95 19.14
(2,0.5) 15.84 30.91 17.91
(2,0.75) 15.84 27.82 14.24
(2,1) 15.84 15.84 0.00

Average 8.27 33.98 27.90

Table 5
Result precision decrease (%).
(CCR, RPT) EDF_DVFS vs.

EDF
EDF_DVFS_AC
vs. EDF

EDF_DVFS_AC
vs. EDF_DVFS

(0.5,0) 0.00 0.34 0.34
(0.5,0.25) 0.00 0.82 0.82
(0.5,0.5) 0.00 0.42 0.42
(0.5,0.75) 0.00 0.14 0.14
(0.5,1) 0.00 0.00 0.00

(1,0) 0.00 0.25 0.25
(1,0.25) 0.00 0.33 0.33
(1,0.5) 0.00 0.17 0.17
(1,0.75) 0.00 0.05 0.05
(1,1) 0.00 0.00 0.00

(2,0) 0.00 0.22 0.22
(2,0.25) 0.00 0.27 0.27
(2,0.5) 0.00 0.09 0.09
(2,0.75) 0.00 0.03 0.03
(2,1) 0.00 0.00 0.00

Average 0.00 0.21 0.21

taking into account the effects of input error on the processing
time of the component tasks. We conducted a series of simulation
experiments under various QoS requirements, expressed in the
form of result precision thresholds, where the proposed heuristic,

Table 6
Monetary cost savings (%).
(CCR, RPT) EDF_DVFS vs.

EDF
EDF_DVFS_AC
vs. EDF

EDF_DVFS_AC
vs. EDF_DVFS

(0.5,0) 4.32 34.57 31.61
(0.5,0.25) 4.32 16.67 12.90
(0.5,0.5) 4.32 12.35 8.39
(0.5,0.75) 4.32 9.20 5.10
(0.5,1) 4.32 4.32 0.00

(1,0) 0.89 7.14 6.31
(1,0.25) 0.89 3.57 2.70
(1,0.5) 0.89 3.46 2.59
(1,0.75) 0.89 2.08 1.20
(1,1) 0.89 0.89 0.00

(2,0) 1.74 9.57 7.96
(2,0.25) 1.74 4.35 2.65
(2,0.5) 1.74 3.99 2.29
(2,0.75) 1.74 3.48 1.77
(2,1) 1.74 1.74 0.00

Average 2.32 7.82 5.70

Fig. 3. Total energy consumption (kWh) for each pair of (CCR, RPT) values.

Fig. 4. SLA violation ratio (%) for each pair of (CCR, RPT) values.

EDF_DVFS_AC, outperformed the other two baseline scheduling
policies, EDF and EDF_DVFS. In all sets of experiments, it con-
sistently provided not only the lowest energy consumption, but
the lowest SLA violations ratio and total monetary cost as well,
with only an insignificant loss of job result precision. Our future
work plans include the investigation of the proposed scheduling
technique in cases where the employed SLA is more relaxed, so
that various degrees of tardiness are tolerated in the execution of
the jobs.

G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226 225

Fig. 5. Total monetary cost ($) for each pair of (CCR, RPT) values.

References

[1] G.L. Stavrinides, H.D. Karatza, Performance evaluation of a SaaS cloud under
different levels of workload computational demand variability and tardiness
bounds, Simul. Model. Pract. Theory 91 (2019) 1–12, http://dx.doi.org/10.
1016/j.simpat.2018.11.006.

[2] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing, Future
Gener. Comput. Syst. 28 (5) (2012) 755–768, http://dx.doi.org/10.1016/j.
future.2011.04.017.

[3] G.L. Valentini, W. Lassonde, S.U. Khan, N.M. Allah, S.A. Madani, J. Li, L. Zhang,
L. Wang, N. Ghani, J. Kolodziej, H. Li, A.Y. Zomaya, C.Z. Xu, P. Balaji, A. Vishnu,
F. Pinel, J.E. Pecero, D. Kliazovich, P. Bouvry, An overview of energy efficiency
techniques in cluster computing systems, Cluster Comput. 16 (1) (2013) 3–15,
http://dx.doi.org/10.1007/s10586-011-0171-x.

[4] G.L. Stavrinides, H.D. Karatza, The impact of workload variability on the
energy efficiency of large-scale heterogeneous distributed systems, Simul.
Model. Pract. Theory 89 (2018) 135–143, http://dx.doi.org/10.1016/j.simpat.
2018.09.013.

[5] J.J. Chen, C.Y. Yang, T.W. Kuo, Slack reclamation for real-time task scheduling
over dynamic voltage scaling multiprocessors, in: Proceedings of the 2006
IEEE International Conference on Sensor Networks, Ubiquitous, and Trust-
worthy Computing (SUTC’06), 2006, pp. 358–365, http://dx.doi.org/10.1109/
SUTC.2006.1636201.

[6] S. Kim, H. Eom, H.Y. Yeom, S.L. Min, Energy-centric DVFS controlling method
formulti-core platforms, Computing 96 (12) (2014) 1163–1177, http://dx.doi.
org/10.1007/s00607-013-0369-2.

[7] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, R. Geyer, An energy
efficiency feature survey of the Intel Haswell processor, in: Proceedings of
the 29th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’15), 2015, pp. 896–904, http://dx.doi.org/10.1109/IPDPSW.2015.70.

[8] R.N. Calheiros, R. Buyya, Energy-efficient scheduling of urgent bag-of-tasks
applications in clouds through DVFS, in: Proceedings of the 6th IEEE Inter-
national Conference on Cloud Computing Technology and Science (Cloud-
Com’14), 2014, pp. 342–349, http://dx.doi.org/10.1109/CloudCom.2014.20.

[9] I.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S.U. Khan, The rise
of big data on cloud computing: review and open research issues, Inf. Syst. 47
(2015) 98–115, http://dx.doi.org/10.1016/j.is.2014.07.006.

[10] G.L. Stavrinides, H.D. Karatza, Scheduling data-intensive workloads in large-
scale distributed systems: trends and challenges, in:Modeling and Simulation
in HPC and Cloud Systems, first ed., in: Studies in Big Data, vol. 36, Springer,
2018, pp. 19–43, http://dx.doi.org/10.1007/978-3-319-73767-6_2, (Chapter
2).

[11] Y. Chen, W.T. Tsai, Service-Oriented Computing and Web Software Integra-
tion: From Principles to Development, fifth ed., Kendall Hunt Publishing,
2015.

[12] G.L. Stavrinides, H.D. Karatza, Scheduling real-time jobs in distributed sys-
tems - simulation and performance analysis, in: Proceedings of the 1st In-
ternational Workshop on Sustainable Ultrascale Computing Systems (NE-
SUS’14), 2014, pp. 13–18.

[13] G.L. Stavrinides, H.D. Karatza, Scheduling real-time bag-of-tasks applications
with approximate computations in SaaS clouds, Concurr. Comput.: Pract.
Exper. (2017) e4208, http://dx.doi.org/10.1002/cpe.4208.

[14] K.J. Lin, S. Natarajan, J.W.S. Liu, Imprecise results: utilizing partial computa-
tions in real-time systems, in: Proceedings of the 8th IEEE Real-Time Systems
Symposium (RTSS’87), 1987, pp. 210–217.

[15] G.L. Stavrinides, H.D. Karatza, The impact of input error on the scheduling of
task graphs with imprecise computations in heterogeneous distributed real-
time systems, in: Proceedings of the 18th International Conference on Analyt-
ical and StochasticModelling Techniques and Applications (ASMTA’11), 2011,
pp. 273–287, http://dx.doi.org/10.1007/978-3-642-21713-5_20.

[16] G.L. Stavrinides, H.D. Karatza, Scheduling real-time DAGs in heterogeneous
clusters by combining imprecise computations and bin packing techniques
for the exploitation of schedule holes, Future Gener. Comput. Syst. 28 (7)
(2012) 977–988, http://dx.doi.org/10.1016/j.future.2012.03.002.

[17] Y. Chen, Service-Oriented Computing and System Integration: Software, IoT,
Big Data, and AI as Services, sixth ed., Kendall Hunt Publishing, 2018.

[18] G.L. Stavrinides, H.D. Karatza, Energy-aware scheduling of real-time work-
flow applications in clouds utilizing DVFS and approximate computations,
in: Proceedings of the IEEE 6th International Conference on Future Internet
of Things and Cloud (FiCloud’18), 2018, pp. 33–40, http://dx.doi.org/10.1109/
FiCloud.2018.00013.

[19] VMware, Host power management in VMware vSphere 5.5, Tech. Rep. EN-
001262-00, VMware Inc. (Aug. 2013).

[20] A. Mazouz, A. Laurent, B. Pradelle, W. Jalby, Evaluation of CPU frequency
transition latency, Comput. Sci. - Res. Dev. 29 (3) (2014) 187–195, http://dx.
doi.org/10.1007/s00450-013-0240-x.

[21] R. Schöne, D. Molka, M. Werner, Wake-up latencies for processor idle states
on current x86 processors, Comput. Sci. - Res. Dev. 30 (2) (2015) 219–227,
http://dx.doi.org/10.1007/s00450-014-0270-z.

[22] J. Kolodziej, Evolutionary Hierarchical Multi-Criteria Metaheuristics for
Scheduling in Large-Scale Grid Systems, Springer, 2012.

[23] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, 1979.

[24] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, B. Luo, Cost and energy aware scheduling
algorithm for scientific workflows with deadline constraint in clouds, IEEE
Trans. Serv. Comput. 11 (4) (2015) 713–726, http://dx.doi.org/10.1109/TSC.
2015.2466545.

[25] Y. Govindaraju, H. Duran-Limon, A QoS and energy aware load balancing and
resource allocation framework for IaaS cloud providers, in: Proceedings of
the 9th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC’16), 2016, pp. 410–415, http://dx.doi.org/10.1145/2996890.3007895.

[26] T. Kaur, I. Chana, Energy aware scheduling of deadline-constrained tasks in
cloud computing, Cluster Comput. 19 (2) (2016) 679–698, http://dx.doi.org/
10.1007/s10586-016-0566-9.

[27] H. Duan, C. Chen, G. Min, Y.Wu, Energy-aware scheduling of virtual machines
in heterogeneous cloud computing systems, Future Gener. Comput. Syst. 74
(2017) 142–150, http://dx.doi.org/10.1016/j.future.2016.02.016.

[28] F. Juarez, J. Ejarque, R.M. Badia, Dynamic energy-aware scheduling for parallel
task-based application in cloud computing, FutureGener. Comput. Syst. 78 (1)
(2018) 257–271, http://dx.doi.org/10.1016/j.future.2016.06.029.

[29] S. Kumar, M. Kalra, A hybrid approach for energy-efficient task scheduling
in cloud, in: Proceedings of the 2nd International Conference on Communi-
cation, Computing and Networking (ICCCN’18), 2018, pp. 1011–1019, http:
//dx.doi.org/10.1007/978-981-13-1217-5_99.

[30] W. Zhang, Y.Wen, Energy-efficient task execution for application as a general
topology in mobile cloud computing, IEEE Trans. Cloud Comput. 6 (3) (2018)
708–719, http://dx.doi.org/10.1109/TCC.2015.2511727.

[31] L. Gu, J. Cai, D. Zeng, Y. Zhang,H. Jin,W.Dai, Energy efficient task allocation and
energy scheduling in green energy powered edge computing, Future Gener.
Comput. Syst. 95 (2019) 89–99, http://dx.doi.org/10.1016/j.future.2018.12.
062.

[32] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, S. Hu, Minimizing cost andmakespan
for workflow scheduling in cloud using fuzzy dominance sort based HEFT,
Future Gener. Comput. Syst. 93 (2019) 278–289, http://dx.doi.org/10.1016/j.
future.2018.10.046.

[33] L. Wang, S.U. Khan, D. Chen, J. Kolodziej, R. Ranjan, C. Xu, A. Zomaya, Energy-
aware parallel task scheduling in a cluster, Future Gener. Comput. Syst. 29 (7)
(2013) 1661–1670, http://dx.doi.org/10.1016/j.future.2013.02.010.

[34] Y. Mhedheb, F. Jrad, J. Tao, J. Zhao, J. Kolodziej, A. Streit, Load and thermal-
aware VM scheduling on the cloud, in: Proceedings of the 13th Interna-
tional Conference on Algorithms and Architectures for Parallel Process-
ing (ICA3PP’13), 2013, pp. 101–114, http://dx.doi.org/10.1007/978-3-319-
03859-9_8.

[35] K.Mizotani, Y. Hatori, Y. Kumura,M. Takasu, H. Chishiro, N. Yamasaki, An inte-
gration of imprecise computationmodel and real-time voltage and frequency
scaling, in: Proceedings of the 30th International Conference on Computers
and Their Applications (CATA’15), 2015, pp. 63–70.

[36] H. Yu, B. Veeravalli, Y. Ha, S. Luo, Dynamic scheduling of imprecise-
computation tasks on real-time embedded multiprocessors, in: Proceedings
of the 2013 IEEE 16th International Conference on Computational Science
and Engineering (CSE’13), 2013, pp. 770–777, http://dx.doi.org/10.1109/CSE.
2013.118.

[37] C.C. Lin, Y.C. Syu, C.J. Chang, J.J. Wu, P. Liu, P.W. Cheng, W.T. Hsu, Energy-
efficient task scheduling for multi-core platforms with per-core DVFS, J.
Parallel Distrib. Comput. 86 (2015) 71–81, http://dx.doi.org/10.1016/j.jpdc.
2015.08.004.

http://dx.doi.org/10.1016/j.simpat.2018.11.006
http://dx.doi.org/10.1016/j.simpat.2018.11.006
http://dx.doi.org/10.1016/j.simpat.2018.11.006
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1007/s10586-011-0171-x
http://dx.doi.org/10.1016/j.simpat.2018.09.013
http://dx.doi.org/10.1016/j.simpat.2018.09.013
http://dx.doi.org/10.1016/j.simpat.2018.09.013
http://dx.doi.org/10.1109/SUTC.2006.1636201
http://dx.doi.org/10.1109/SUTC.2006.1636201
http://dx.doi.org/10.1109/SUTC.2006.1636201
http://dx.doi.org/10.1007/s00607-013-0369-2
http://dx.doi.org/10.1007/s00607-013-0369-2
http://dx.doi.org/10.1007/s00607-013-0369-2
http://dx.doi.org/10.1109/IPDPSW.2015.70
http://dx.doi.org/10.1109/CloudCom.2014.20
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1007/978-3-319-73767-6_2
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb11
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb11
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb11
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb11
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb11
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb12
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb12
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb12
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb12
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb12
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb12
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb12
http://dx.doi.org/10.1002/cpe.4208
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb14
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb14
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb14
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb14
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb14
http://dx.doi.org/10.1007/978-3-642-21713-5_20
http://dx.doi.org/10.1016/j.future.2012.03.002
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb17
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb17
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb17
http://dx.doi.org/10.1109/FiCloud.2018.00013
http://dx.doi.org/10.1109/FiCloud.2018.00013
http://dx.doi.org/10.1109/FiCloud.2018.00013
http://dx.doi.org/10.1007/s00450-013-0240-x
http://dx.doi.org/10.1007/s00450-013-0240-x
http://dx.doi.org/10.1007/s00450-013-0240-x
http://dx.doi.org/10.1007/s00450-014-0270-z
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb22
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb22
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb22
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb23
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb23
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb23
http://dx.doi.org/10.1109/TSC.2015.2466545
http://dx.doi.org/10.1109/TSC.2015.2466545
http://dx.doi.org/10.1109/TSC.2015.2466545
http://dx.doi.org/10.1145/2996890.3007895
http://dx.doi.org/10.1007/s10586-016-0566-9
http://dx.doi.org/10.1007/s10586-016-0566-9
http://dx.doi.org/10.1007/s10586-016-0566-9
http://dx.doi.org/10.1016/j.future.2016.02.016
http://dx.doi.org/10.1016/j.future.2016.06.029
http://dx.doi.org/10.1007/978-981-13-1217-5_99
http://dx.doi.org/10.1007/978-981-13-1217-5_99
http://dx.doi.org/10.1007/978-981-13-1217-5_99
http://dx.doi.org/10.1109/TCC.2015.2511727
http://dx.doi.org/10.1016/j.future.2018.12.062
http://dx.doi.org/10.1016/j.future.2018.12.062
http://dx.doi.org/10.1016/j.future.2018.12.062
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1016/j.future.2013.02.010
http://dx.doi.org/10.1007/978-3-319-03859-9_8
http://dx.doi.org/10.1007/978-3-319-03859-9_8
http://dx.doi.org/10.1007/978-3-319-03859-9_8
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb35
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb35
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb35
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb35
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb35
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb35
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb35
http://dx.doi.org/10.1109/CSE.2013.118
http://dx.doi.org/10.1109/CSE.2013.118
http://dx.doi.org/10.1109/CSE.2013.118
http://dx.doi.org/10.1016/j.jpdc.2015.08.004
http://dx.doi.org/10.1016/j.jpdc.2015.08.004
http://dx.doi.org/10.1016/j.jpdc.2015.08.004

226 G.L. Stavrinides and H.D. Karatza / Future Generation Computer Systems 96 (2019) 216–226

[38] G.L. Stavrinides, H.D. Karatza, A cost-effective and QoS-aware approach to
scheduling real-time workflow applications in PaaS and SaaS clouds, in: Pro-
ceedings of the 3rd International Conference on Future Internet of Things and
Cloud (FiCloud’15), 2015, pp. 231–239, http://dx.doi.org/10.1109/FiCloud.
2015.93.

[39] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual machine live
migration in clouds: a performance evaluation, in: Proceedings of the 1st
International Conference on Cloud Computing (CloudCom’09), 2009, pp. 254–
265, http://dx.doi.org/10.1007/978-3-642-10665-1_23.

[40] G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, third ed., Springer, 2011, http://dx.doi.org/10.
1007/978-1-4614-0676-1.

[41] G.L. Stavrinides, H.D. Karatza, The effect of workload computational demand
variability on the performance of a SaaS cloud with a multi-tier SLA, in:
Proceedings of the IEEE 5th International Conference on Future Internet of
Things and Cloud (FiCloud’17), 2017, pp. 10–17, http://dx.doi.org/10.1109/
FiCloud.2017.26.

[42] J.A. Butts, G.S. Sohi, A static power model for architects, in: Proceedings of the
33rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’00), 2000, pp. 191–201, http://dx.doi.org/10.1109/MICRO.2000.898070.

[43] F. Diniz Rossi, M. Storch, I. de Oliveira, C.A.F. De Rose, Modeling power
consumption for DVFS policies, in: Proceedings of the 2015 IEEE International
Symposium on Circuits and Systems (ISCAS’15), 2015, pp. 1879–1882, http:
//dx.doi.org/10.1109/ISCAS.2015.7169024.

[44] K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks appli-
cations with deadline constraints on DVS-enabled clusters, in: Proceedings
of the Seventh IEEE International Symposium on Cluster Computing and
the Grid (CCGRID’07), 2007, pp. 541–548, http://dx.doi.org/10.1109/CCGRID.
2007.85.

[45] G.L. Stavrinides, H.D. Karatza, Simulation-based performance evaluation of
an energy-aware heuristic for the scheduling of HPC applications in large-
scale distributed systems, in: Proceedings of the 8th ACM/SPEC International
Conference on Performance Engineering (ICPE’17), 3rd International Work-
shop on Energy-aware Simulation (ENERGY-SIM’17), 2017, pp. 49–54, http:
//dx.doi.org/10.1145/3053600.3053611.

[46] M. Park, S. Han, H. Kim, S. Cho, Y. Cho, Comparison of tie-breaking policies
for real-time scheduling on multiprocessor, in: Proceedings of the 2004
International Conference on Embedded and Ubiquitous Computing (EUC’04),
2004, pp. 174–182, http://dx.doi.org/10.1007/978-3-540-30121-9_17.

[47] V. Sundriyal, M. Sosonkina, Z. Zhang, Automatic runtime frequency-scaling
system for energy savings in parallel applications, J. Supercomput. 68 (2)
(2014) 777–797, http://dx.doi.org/10.1007/s11227-013-1062-0.

[48] L. Brochard, F. Thomas, Energy aware scheduling, in: Proceedings of the 2013
Equip@Meso Computational Fluid Dynamics Symposium (CFD’13), 2013.

[49] Intel, https://ark.intel.com/products/ (Accessed: 26.03.18).
[50] Amazon Web Services - Amazon EC2 On-Demand Instance Pricing, https:

//aws.amazon.com/ec2/pricing/on-demand/ (Accessed: 09.10.18).

Georgios L. Stavrinides received the B.Sc. degree in Infor-
matics from Aristotle University of Thessaloniki, Greece
in 2006 and the M.Sc. degree in Advanced Computing
from Imperial College London, UK in 2007. He received
the Ph.D. degree in Computer Science from Aristotle Uni-
versity of Thessaloniki, Greece in 2014. He is currently a
postdoctoral researcher in the Department of Informatics
at the Aristotle University of Thessaloniki, Greece, under
the supervision of Professor Emeritus Helen D. Karatza.
His research interests include: scheduling algorithms,
real-time distributed systems, fog and cloud computing,

modeling, simulation and performance evaluation of large-scale distributed sys-
tems.

Helen D. Karatza is a Professor Emeritus in the Depart-
ment of Informatics at the Aristotle University of Thessa-
loniki, Greece. Her research interests include: computer
systems modeling and simulation, performance evalua-
tion, grid and cloud computing, energy efficiency in large-
scale distributed systems, real-time distributed systems,
resource allocation and scheduling. She is the Editor-
in-Chief of the Elsevier journal ‘‘Simulation Modelling
Practice and Theory’’ and Senior Associate Editor of the
‘‘Journal of Systems and Software’’ of Elsevier. She has
been Guest Editor of special issues in multiple interna-

tional journals.

http://dx.doi.org/10.1109/FiCloud.2015.93
http://dx.doi.org/10.1109/FiCloud.2015.93
http://dx.doi.org/10.1109/FiCloud.2015.93
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1109/FiCloud.2017.26
http://dx.doi.org/10.1109/FiCloud.2017.26
http://dx.doi.org/10.1109/FiCloud.2017.26
http://dx.doi.org/10.1109/MICRO.2000.898070
http://dx.doi.org/10.1109/ISCAS.2015.7169024
http://dx.doi.org/10.1109/ISCAS.2015.7169024
http://dx.doi.org/10.1109/ISCAS.2015.7169024
http://dx.doi.org/10.1109/CCGRID.2007.85
http://dx.doi.org/10.1109/CCGRID.2007.85
http://dx.doi.org/10.1109/CCGRID.2007.85
http://dx.doi.org/10.1145/3053600.3053611
http://dx.doi.org/10.1145/3053600.3053611
http://dx.doi.org/10.1145/3053600.3053611
http://dx.doi.org/10.1007/978-3-540-30121-9_17
http://dx.doi.org/10.1007/s11227-013-1062-0
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb48
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb48
http://refhub.elsevier.com/S0167-739X(18)32735-3/sb48
https://ark.intel.com/products/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

	An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations
	Introduction
	Motivation
	Contribution

	Background and related work
	Problem formulation
	System model
	Workload model
	Approximate computations model
	Energy consumption model
	SLA aspects
	QoS requirements
	Pricing scheme

	Scheduling strategy
	Task selection phase
	VM selection phase

	Performance evaluation
	Performance metrics
	Experimental setup
	Simulation results and discussion

	Conclusions and future work
	References

