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Abstract

This paper provides a comprehensive performance analysi. of parametric and non- para-
metric machine learning classifiers including a deep 1. ~d-fr rtward multi-layer perceptron
(MLP) network on two variants of improved Conce, * Vector Space (iCVS) model. In the
tirst variant, a weighting scheme enhanced wit" .. ..ouon of concept importance is used
to asses weight of ontology concepts. Concept im; ~rtance shows how important a con-
cept is in an ontology and it is automaticall - co. [*ted by converting the ontology into
a graph and then applying one of the Markov "~ .sed algorithms. In the second variant of
iCVS, concepts provided by the ontology =. 1 ti 2ir semantically related terms are used
to construct concept vectors in order to rep.esent the document into a semantic vector
space.

We conducted various experiments using a variety of machine learning classifiers for
three different models of documer .. .. ~resentation. The first model is a baseline concept
vector space (CVS) model that r lies on in exact/partial match technique to represent a
document into a vector space The ~econd and third model is an iCVS model that em-
ploys an enhanced concept v eigl cing scheme for assessing weights of concepts (variant
1), and the acquisition of ter1. > .hat are semantically related to concepts of the ontology
for semantic document re rresenta..on (variant 2), respectively. Additionally, a compari-
son between seven diffe ent ('~ssifiers is performed for all three models using precision,
recall, and F1 score. Re .. 'ts for multiple configurations of deep learning architecture are
obtained by varying “ae r amber of hidden layers and nodes in each layer, and are com-
pared to those obtainea -ith conventional classifiers. The obtained results show that the
classification perfr rms nce is highly dependent upon the choice of a classifier, and that the
Random Forest, L.~ den’ Boosting, and Multilayer Perceptron are among the classifiers
that performec ..ther . ell for all three models.

Keywords: do.ument representation, CVS, iCVS, document classification, deep learning,
ontology




1. Introduction

The global Internet population has reached 3.8 billion in 2017 from . ” billion the year
before, which is 47% of the world’s population [1]. According to 1.°M |z,, in 2013 the
amount of data produced was 2.5 quintillion when the Interne’ u. >rs were around 2.7
billion only. The number is expected to grow in coming yez s w aici. means that the
amount of data produced will be tremendous. By 2020, it is estu. ~ted that around 1.7
MB of data will be created every second for every person or earth.

The penetration of Internet of Things (IoT) and smart g3dgets to households and a
huge amount of data produced every minute as a result '...5 ctcu.ed a need for better or-
ganization and structuring of the data, which accordi g t* |5" is mostly unstructured.
Despite the computational resources available now~days, o”ganizing and structuring
tremendous amount of data is not a trivial task and wi.~out it, finding and extracting
useful information from massive Internet resources ‘< a cha .enge [4]. Nearly 3.87 million
Google searches are conducted every minute of .>e da, vy the users [1]. Finding rele-
vant information for every query from plethora of re ~urces is a challenging task. For
text-based documents, ontology can play a vita: .»le in this regard [5].

An ontology is a data representation te-hniques that not only help better organize
data but also help categorize and classify dat. oF jects for easy search and retrieval. Many
text document classification approaches ‘7ide. - employ ontologies to classify and or-
ganize text-based documents. A text doc'ui."nt is generally represented by a vector
space model [6]. A vector space mc .l i~ a feature vector representation constructed
by terms/words occurring in a documer.. “nd their corresponding weights. Each term
denotes a dimension in the vector snace and it is independent to other terms in the same
document. This representation te .nniqu ~ is based on string literals and fail to consider or-
der of words and semantic relatio. ~hips yetween them i.e. taxonomic and non-taxonomic
relations. In order to overcom . these 1. >ues, a conceptual space document representation
emerged as a means that tal >s 2 uvar tages of using wide coverage of concepts and rela-
tions provided by ontologi :s. 1. ~ conceptual space representation, a document is repre-
sented as a vector compri .« ! of concepts (rather than words) and their weights. Concepts
are identified and located in a Cocument through a matching technique which links the
terms appearing in th .t d. cument with the concepts in the ontology. In fact, the link be-
tween a term f and a . 2pt c is a mapping denoted by (t, ¢) in which textual description
defined in label of " is repi.. ed with textual description defined in label of c. The weights
of concepts are d ‘fin-d b’ counting the occurrences of the concepts within a document
i.e. concept relevance R searchersin [7, 8,9, 10, 11, 12] have widely used concept vector
space model for doc mment classification. Even though this approach has proven useful
for document -lassifi ation of many domains, it however has some limitations. Two ma-
jor limitati~__5 of uus approach are: 1) it relies on the exact technique in which a document
is represe 1ted in o vector space using concept vectors built by mapping terms occurring
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in a document with concepts appearing in a ontology, and 2) weight’ .. technique that
treats all concepts equally important regardless of where the concept: are Jepicted in the
hierarchy of an ontology [13]. The importance is not equal for all corcepw. ~nd it depends
on relations of concepts with other concepts in the ontology hierarchy. “oncepts which
have more relations with other concepts are more important +ian *~= concepts which
have less relations [14].

These limitations are addressed in this paper by proposin-, .n in., *oved concept vec-
tor space model in which

1. a weighting technique enhanced with the new cc..cept uuportance parameter is
used to asses weight of ontology concepts. The ¢ »ne pt mportance in our case is
computed automatically by first converting th~ ontoloc y into an ontology graph
and then implementing one of the Markov based a., ~rithms called PageRank. The
obtained importance is then aggregated wi.. the c ncept relevance in order to
achieve the final weight of that particular co..-ept.

2. concept vectors used to represent the dor -~ ‘nto a semantic vector space are
constructed by using concepts provided by *he ontology through exact technique
and by acquiring terms that are rela* ' ~nd can be attached to concepts of that
ontology:.

The rest of the paper is structured as fol. "w. Section 2 describes related work. Section
3 gives an overview of the proposed -hitec*ure and presents a detailed description of
our proposed concept vector space moac.' Section 4 describes the concept importance
calculation procedure and presents the performance of conventional and deep machine
learning classifiers on the INFUS £ dau. set for classifying funding documents in to five
distinct categories. Lastly, sectic.> 5 co’ cludes the paper and gives an insight into the
future work.

2. Related Work

The field of document cla.fication has attracted a lot of attention in recent years,
thereby resulting in a - vic. » variety of approaches. Depending on the vector space docu-
ment representation . ~od :l employed there are two main categories of these approaches
relevant to the clas ificat.. n task: 1) Keyword based vector space approach, and 2) Con-
cept (ontology) b sed vector space approach.

The first approa. » re ies on a set of terms (words) extracted from the documents in
the dataset. T'.1is apnroach has some limitations as it does not consider the dependency
between the { 'rms ar d it also ignores the order and the syntactic structure of the terms
in the documern..- 7o overcome these limitations, concept based vector space approach
comes inf) effec’ This approach relies on a set of concepts taken from an ontology to
derive the semar .ic representation of documents. There is some research work in which
concerts expiuited by ontologies are used for semantic document representation. One ex-
ample .  p-esented in [15], in which the authors introduced a classification approach that
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relies on a document representation model constructed using concepts g hered by a do-
main ontology. In particular, a domain ontology for Health, Safety, a- d E' «vironment for
oil and gas application contexts is used for classifying documents d~alin, with accidents
from the oil and gas industry. An extended version of classification «, nroach given in
[15] is presented later in [9]. This extended work proposed a cla sifi - *on approach that
employs a semantic document representation model that, bes..'=s concepts derived by
the ontology, uses a list of semantically related terms. Althor- 1 the . pproach presented
in this paper is similar to our work, we differ in the way of "1ow we acquire semantically
related terms. An extraction technique that relies on semantic nd ¢ )ntextual information
of terms is used in our approach to find and extract the .nost semantically related terms
instead of n-gram extraction technique used in [9].

Concept vector space approach employs a weighi.~o te-"_ique for assessing weight
of concepts that relies on the concept relevance as a discru. inatory feature for document
classification. A drawback of this weighting techn.. te is chat it considers all concepts
equally regardless of where in the hierarchy the co. ~epts occur. There have been some
efforts to find concepts importance depending - :._ L Usition of concepts where they are
depicted in the hierarchy. For instance, researchers '~ [16] used three different weights for
concepts depending on the position where t. <, = ~~1r in the ontology hierarchy. The first
weight was assigned to concepts which are oc~urring as classes, second weight for con-
cepts occurring as subclasses and the thi . e, ht for concepts occurring as instances.
The value of these weights is set empirical. 7 ti.rough trial and error by conducting ex-
periments. The value of 0.2 is set for « ~nccp s which occur as classes, 0.5 for concepts
occurring as subclasses and 0.8 when conce, ts occur as instances.

A slightly different approach ¢’ .. mputing weights is implemented in [17, 18] where
layers of ontology tree are used * ) repre: 2nt the position of concepts in the ontology. The
weight of each concept is ther cow. ~ut:d by counting the length of path from the root
node to the given concept. "he .ame approach of using layers for calculating weight
values of concepts is used 1. '"9J]. “ath length is also used to compute the weight of
concepts but rather than _onside. ng all ontology concepts, only the leaf concepts are
used. The idea behind t} s a; »~roach is that more general concepts, such as superclasses,
are implicitly taken in*  ~ccount through the use of leaf concepts by distributing their
weights to all of their sub' lasses down to the leaf concepts in equal proportion.

The drawback of av. 7e presented approaches is that they compute concepts” weight
either empirically .hre agh wial and error by conducting experiments thus keeping these
weights fixed or v ir g th- path length. Furthermore, the approach presented in [19] uses
only the top-le” _* ont" ,gy for computing weights. Our approach uses a Markov based
PageRank alg rithm o compute the concept importance. The algorithm uses all concepts
of ontology an.' the * .nportance of a concept is computed relative to all other concepts in
the ontolc ,y.

From (lassific tion perspective, studies presented above have not established well the
representat.. = ~ . documents which is one of the main aspects that influences the perfor-
mance 21 « .. ~logy based classification models. Documents are represented as vectors
containii . relevance of the concepts that are gathered by an ontology by searching only
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the presence of their lexicalizations (concept label) in the documents. .5 » result of this,
classification models are limited to capture the whole conceptualizat’ m ir .volved in doc-
uments.

Another strand of research covers the work related to the use of mac~ine learning ap-
proaches for document classification. For instance, the authors ir [8] - “~posed a machine
learning based classification approach for understanding sentin..’ through differentiat-
ing good news from bad news. This is achieved using a vecte: _pace 'ocument represen-
tations learned by deep learning and convolutional neural 1 etwork s with a test accuracy
of 85%. Another example of using convolutional recurrent a. »o le'.rning model for clas-
sification is proposed in [7]. This approach is similar ’v our work but our focus is on
classification of documents instead of sentences and w. 1°.e fe ture vectors constructed
by concepts derived by an ontology.

3. Architecture of the Proposed Model

The main goal of the proposed model shex= = * gure 1 is classification of image
and textual documents using an improved conce, * vector space which relies on seman-
tically rich document representations and ¢ . ~hanced concept weighting scheme. An
image document in our case is a movie fram > ontaining handwritten lecture notes on
the chalkboard extracted from a lecture .%eo «mploying image processing techniques
while the textual documents are financial ¢ »cu.nents that are stored in pdf format. The
model consists of seven main modules “wa. .~ described in the following subsections.

3.1. Text Analysis Module - TAM

The input of proposed classi ication model is a collection of documents that can be
stored either as unstructured textu.' de.a or image. If the input is a document image, it
initially goes through a text a-.aly is module called TAM to extract texts from that image.

TAM module itself consis.” o thr e steps and preprocessing is the very first one which
ensures that the image ha‘ a reau. Jle text. The readable quality of a text in a document
image is mostly affectec by hlocking and blurring artifacts as a result of compression
and denoising. These “~adable text issues are avoided by using a metric designed for
evaluating text quali*y ca led a reference free perceptual quality metric (RE-PQM) [20].
The image is then conve - ed into binary format using Otsu technique [21] and text regions
are localized usin-, a 4 conuiected component based labelling approach as illustrated in
Figure 2.

The next ste~ of 1." '/ module is segmentation and extraction of text lines from the
connected cor tponei. s obtained as blobs after localization followed by extraction of words
using vertical . -D pr jjection histogram. We assume that the text documents obtained at
this stage “..e correct since the evaluation of TAM itself is beyond the scope of this paper.
Readers ¢ -e there ‘ore advised to refer to [22] and [23] for full details on the TAM module.
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1.7 re 1 Architecture of the proposed classification model

3.2. Preproces: mg

This m- aule taxes as input text documents extracted from the image documents in the
TAM mo: ule an '/or a collection of documents stored in unstructured textual formats,
e.g. Word, PDF Powerpoint slides, etc. These text documents undergo preprocessing
steps . w.i.. ""ng morpho-syntactic analysis. The first preprocessing step involved is tok-
enizatio. .n which the text is split in small pieces known as tokens. Next, stop words
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Figure 2: Labelling approach using 4 connected-co o’ ents

and duplicate words are removed, and finally a stemming i perfor ned to normalize the
retrieved words.

The output of this module is a collection of docume ats c~mposed of plain text with
no semantics associated to them and it is linked directly ~ .ne ¢ ;ncept extraction module
in order to embed semantics into those text document.

3.3. Concept Extraction

Concept extraction module concerns with consu “~tion of feature vectors. A feature
vector is an n-dimensional vector comprised . cuinepts provided by domain ontolo-
gies so as to make a move from the keyword-bas. 1 vector representation towards the
semantic-based vector representation. To «-tuc - *his step toward semantic represen-
tation, we primarily need to associate terms - <tracted from documents with concepts
of the ontology. Terms are located and «x.actvd from documents using a Lucene in-
verted indexing technique which generates 2 list of all unique terms that occur in any
document and a set of documents in w>ich uese terms occur. The extracted terms are
stemmed using a stemming method. Furthe., noisy terms, i.e terms with single character,
are removed from the list of extr.cic' terms. The extracted terms are associated with
the concepts of the ontology us'1g: 1) 11e matching method in which terms appearing
in a document are mapped w'th ti.. * ievant concepts from the domain ontology, and
2) acquisition of relevant terr (inc.ogv that is semantically related and can be attached to
concepts of that domain ontoi.  v.

The matching method «12] fouuws the idea of searching for concepts in the domain
ontology that have labe’s m« ~hing either partially or exactly/fully with a term occur-
ring in a document. Tr | 1t it simply, each term identified and located in a document is
searched in the dom- m ¢ itology, and if an instance term matches its concept label than
term is replaced with ti.. concept. Concept labels are considered all lexical entries and
lexical variations _on*iined in a concept. The obtained concepts are used to construct
concept vectors. .'* exs:t match is the case where a concept label is identical with a
instance term - ccurring in the document. A partial match is the case when concept la-
bel contains ¢ term o ‘curring in the document. The exact and partial match is formally
defined as follc +ine

Definitio \ 1 Let Ont be the domain ontology and let D be the dataset composed of doc-
uments of .“is e'ven domain. Let Doc € D be a document defined by a finite set of terms
Doc = <v,,"_ ., t;}. Mapping of term ¢, € Doc into concept c¢; € Ont is defined as:



| 1, iflabel (c;)=t,
EM(t;, c;) = { 0, if label (c;)# t;

| 1, iflabel (c;) contains t;
PM(ti,c;) = { 0, iflabel (c;) does not contair t;

where, EM and PM denote exact match and partial matc!,, respactively.

If EM(t;,c;) = 1, it means that term f; and concept label « - are id ntical, then term ¢; is
replaced with concept c;. For example, for a concept in the on. '~y such as Organization
or Call as shown in Figure 3, there exists an identical ter n th .. "ppears in the document.

If PM(t;,c;) = 1, it means that term ¢, is part of conce} . .abe] _;, then term ¢, is replaced
with concept c¢;. For example, the ProjectFunding compe na ontology concept shown in
Figure 3, contains terms that appears in the docum~nt such as Project and/or Funding.

Extraction of concepts through acquisition of :~leve. ~t * srminology that is related and
can be attached to ontology concepts is a more comp..~x task which is achieved through
exploitation of both contextual and semantic 1. -ormation of terms occurring in a docu-
ment.

Contextual information of a term is defi1.~d r y .cs surrounding words and it is com-
puted using Equation 1.

it
[Rzniinzy

The vectors, t; and t;, are composed « ¢ values derived by three statistical features,
namely, term frequency, term font tvnes, and term font sizes, respectively. Different font
types, i.e. bold, italic, underline, :nd fct sizes, i.e. title, level 1, level 2, are introduced
to derive the context. In our casc, valu s of these statistical features are extracted from
input pdf documents using A pache I .JFBox library, that is, an open source Java library
which allows creation of ne" ~ p-.f dr cuments, manipulation of existing documents and
the extraction of content fr -m ac ~ nents.

Semantic informatior ¢‘ a term is calculated using a semantic similarity measure
based on the English lexical da.ibase WordNet. Wu&Palmer similarity measure [24] is
employed to computr a ¢ >mantic score (Eq. 2) for all possible pairs of terms t; and t;
occurring in a documec ~t

Context(t;,t, 1)

‘ 2 x depth(lcs)
// t t,“ t L) = 2
emantic(ti, t;) depth(t;) + depth(t;) ?

Parameter, de; th(lcs) « \ows the least common subsumer of terms t; and ¢;, and parameters
depth(t;) and de, “(* | show the path’s depth of terms t; and ¢;, in the WordNet.

Comb’ natior. of contextual and semantic information gives an aggregated score as
shown in “quatic n 3.

A,y cgatedScore(t;, t;) = X« Context(t;, t;) + (1 — X) x Semantic(t;, t;) 3)
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where, ) is set to 0.5 showing an equal contribution of context and . nantic compo-
nents on the aggregated score.

Aggregated score through a rank cut-off method is used to a~aun. terms that are
related to concepts of the ontology. More concretely, terms that are a. ~ve the specified
threshold (top-N) are considered to be the relevant terms.

3.4. Domain Ontology

This module covers domain ontology which interfaces Te rm-to-\"oncept mapper com-
ponent in the concept extraction module and the weighting ~her e module. A domain
ontology is a data model which represents concepts 2 1d re'ations between them in a
given domain. An ontology structure is formally repres ~*_-d b - a 5-tuple [25], as shown
in the Equation 4.

Ont := (C,R,H¢. rew, A) 4)

where,

e Cis aset of concepts, e.g. Funding, Call:

Ris a set of relations, e.g. announces. pron - ces;

He¢ is a hierarchy or taxonomy of conc=p.. with multiple inheritance, e.g. Program-
meFunding isa Funding and Finar.. -, .5 nme isa ProgrammeFunding;

rel is a set of non-taxonomic relations which are described by their domain and
range restrictions, e.g. isRec (wedr_'. appliesFor;

A is a set of ontology axims, .~ .essed in an appropriate logical language, which
describe additional con .trai its;

The ontology definitic 1 show.. in Equation 4 can be domain specific by defining a
lexicon whichis a 3-tupl Lea. -(L, F, G) consisting of a set of lexical entries £ for concepts
and relations, and twc _~ts F and G that link concepts and relations with their lexical
entries.

3.5. Weighting Sch me

The weight o1 . concr pt is a numeric value which is assigned to each concept in or-
der to assess it~ . owex 1 distinguishing a particular document from others. A technique
used to comp ite the weight of concepts is known as concept weighting scheme. There
exist various w ~ight*.1g schemes that typically rely on the relevance of concepts reflected
by freque’ cy of nccurrences of concept’s lexicalizations within a document. In this mod-
ule we pr sent ar enhanced concept weighting scheme which besides concept relevance,
introduces « -~ w parameter called concept importance that reflects the contribution of
a conc. ot ;. e ontology. Concept importance is processed offline and it involves the
followiny steps: 1) mapping the domain ontology into an ontology graph, 2) applying
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Markov based algorithms, and 3) calculation of concept importance anc a, Jregation with
concept relevance.

The first and the foremost step of this module is to convert the fom. " ontology de-
scribed in subsection 3.4 into an ontology graph for calculating concey “ importance. To
achieve this, we adopt a model where the ontology is represer .ed *- a directed acyclic
graph. The modelling is an equivalent mapping which means .2’ an ontology concept
is mapped into a graph vertex and an ontology relation into 2 ,_aph « 'ge which connects
two vertices. The formal definition of this graph, known a ontolc 3y graph, is given as
follows.

Definition 2 Given a domain ontology Ont, the ontolo zy <.ap1 G = {V, E, f} of Ont is
a directed acyclic graph, where V is a finite set of vert‘ces mar ped from concepts in Ont,
E is a finite set of edge labels mapped from relations in _»¢, and f is a function from E
toV x V. O

In Figure 3, we present part of the INFUSE ontolo¢ - graph which consists of a subset
of concepts and relations from the funding don.. in. The details of the INFUSE ontology
are given in Section 4.

In the semantic web, a formal syntax for 1e ming ontologies is Web Ontology Lan-
guage (OWL) and Resource Descriptior “ram work (RDF) Schema. These languages
represent the ontology as a set of Subject-i’re*~ate-Object (SPO) expressions known as
RDF triples. The set of RDF triples ic ".:~w1. as RDF graph where subject is the source
vertex and object is the destination verte.., and predicate is a directed edge label which
links those two vertices. The formal definition of RDF graph is given as following.

Benen. ~
T Program
GrantSeeker Y
sRe-(ivedty isFinancedsy
applie==ar
>
CoreFunding rdfs:su. a5’ f—p Funding isGivensy— Organization promotes—{ Action
=3
rdfr LubcClz ;Of i
announces
rdfs:subClassOf
- . 4
Proje tFunding
Call

ProgrammeFunding

Figure 3: A part of INFUSE ontology graph
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Definition 3 Given a set of RDF triples 7', the RDF graph G = {V, E, f* ¢ T is a directed
acyclic graph, where V is a finite set of vertices (subjects and objer s) i « G defined as
V ={v, :uwe (S(T)UP(T))}, E is a finite set of edge labels (predicaiw ") in G defined
as £ = {espo : SPO € T}, f is a function linking subject S to an nbjec’ ©) by an edge E
defined as f = {fp: fr=Vs = Vo,Vs, Vo € T} o

The ontology graph and RDF graph are not the same for a ~iver. ntology. The differ-
ence is that a relation in an ontology graph is defined as a - ertex . » the RDF graph. For
example, relation isReceived in ontology graph shown in Fig. ve 3 i represented as a ver-
tex in RDF graph, as shown in Figure 4. In other words, .. 1elation in RDF graph is a link
between a subject denoted by rdfs:domain property anc ar obj:xct denoted by rdfs:range
property as given in Definition 3.

Funding |<4—rdfs:domain isReceivedBy ) rafs:range— Beneficiary

Figure 4: An example P .7 ~~»nh representation

The next step is computation of the im -« ~tan. = of vertices of the graph using an adop-
tion of the Markov based algorithms. The >ragh can be either ontology graph or RDF
graph as defined above. The idea bei. u 1.7 ‘kov based algorithms is representing the
graph as a stochastic process, more concre ~ly as a first-order Markov chain where the
importance for a given vertex is de“ ~~d as the fraction of time spent traversing that ver-
tex for an infinitely long time i*. a ran.'om walk over the vertices. The probability of
transitioning from a vertex i to a . ~rte’. j is only dependent on the vertex i and not on
the path to arrive at vertex j. (hic property, known as the Markov property, enables the
transition probabilities to be . »» ese’ .ted as a stochastic matrix with non-negative entries
and the maximum probab'.ity or

In this paper, we use I« _eRank [26] algorithm as one of the most well known and
successful example of M~tkov based algorithms [27].

A simplified princ'ple f work of PageRank algorithm is as follows. It initially defines
the importance of a ve.’~ x i as given in Equation 5.

N PR(j)

where, PR\ ) is the importance of vertex j, V; is the set of vertices that links to vertex i,
and Outder,. .2(j) 15 une number of vertices that have outlinks from vertex j.

As we can sec from the Equation 5, the PageRank is an iterative algorithm. It assigns
an initial i». nort .nce to a vertex i as shown in Equation 6.

PRO(i) =
11

1
N ©)



where, N is the total number of vertices in the graph. Then PageR ... iterates as per
Equation 7 and continues to iterate until a convergence criterion is se isfir d.

R+
Z Outdegree 7) @

The process can also be defined using the matrix nota*'c... Lc* M be the square,
stochastic transition probabilities matrix corresponding tc the a.-ected graph G, and
Imp(k) is the Importance vector at the k' iteration. Then th. cor putation of one itera-
tion corresponds to the matrix-vector multiplication as <.iow= in Equation 8.

PR*V — M« PR (8)

The entry of transition probability matrix M, fo. 2 vert: x j which links to vertex i, is
defined using Equation 9.

if the, ~is a link from j to i

r hovipise

1
pij = { Outdegree(j)’ (9)

b

There are two properties that are nece’ ~ary . » be satisfied in order for a Markov based
algorithm to converge. It should be aperic 11c *nd irreducible [28]. The transition prob-
ability matrix M is a stochastic matri> —-ith , robability 1 and this makes the PageRank
algorithm aperiodic. The PageRank alg. ~ithm is not irreducible due to the definition
given in Equation 9, where some of the transition probabilities in matrix M may be 0.
This does not meet the criteria c. irre'ucibility property which requires the transition
probabilities to be greater than .

To make the PageRank algr rithm .- educible in order to converge, a damp factor 1 —«
is introduced. As a result of * 1is, 1 ne v transition probability matrix M* is defined where
a complete set of outgoing :dge. w.h probability a/N are added to all vertices in graph.
The definition of matrix ».* is given in Equation 10.

M*=(1-a)M+a {1} (10)
NxN

The damp fac or } esides enabling the PageRank algorithm to converge also over-
comes the problewn. -. rar « sinks [28].

Replacing *. with ./ in Equation 8, the PageRank algorithm is defined as given in
Equation 11.

PR* YD — (1 — a)M x Pr® 4 o [1} (11)

NxN
Finally, ~oncs pt importance is defined as given in Equation 12.

Imp(c;) = PR¥+Y (12)
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The final step of this module is aggregation of concept importance «.. 1 concept rele-
vance to compute weight of concepts. The value of a concept weig' t is .n the range of
[0,1] because both concept importance and concept relevance are n~rma..~ed.

w(e;) = Imp(c;) X Rel(c;) (13)

Concept importance Imp is computed using Equation 12 de- ~i' ed above, while con-
cept relevance Rel is computed using Equation 14.

Rel(c;) = Z Freq(c;) (14)

where, Freq(c;) is the frequency of occurrences of le.  aliz7 dons of concept c; in the
document to be classified.

3.6. Document Representation

The output of both modules, concept extractio.. and weighting scheme, will serve
as an input to semantic document representat’ ... ...ouule for representing a document.
More concretely, concepts obtained from concepu ~xtraction module and their weights
computed through weighting scheme modu = «.. “~2d to represent a document in a vec-
tor space as defined in Equation 15.

Doc = {(Cl, wl), (CQ, 2, {’737 w3)> 0 (Ci7 wl)} (15)

where ¢; is the i concept obtained fro.. concept extraction module and w,, is its weight
computed from weighting scheme module.

Table 1 illustrates an example . . »mantic document representation through a vec-
tor space that is constructed by 1 sing co. cepts (Geographical Area and Applicant) and their
weights composed of two coripon.te, Importance (Imp) and Relevance (Rel), as de-
scribed in subsection 3.5.

Table 1' An ¢. ~o ple of building concept vector space

G ographicalArea Applicant
Doc ap  Rel w Imp  Rel w
dr 0130 0.797 0.104 0.020 0.797 0.016
a.  0.30 0.624 0.081 0.020 0.624 0.012
d3  v.130 0.000 0.000 0.020 0.860 0.017

3.7. Docu .ent Classification

The lat mod e of proposed model deals with classification of documents into ap-
propriate ca. _,_ries using conventional machine learning classifiers and deep learning.
In esse nce, . ‘ocument represented via concept vector space is fed into the classifier to
build a p. :diction model that can be used to classify a new unseen document.
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4. RESULTS AND ANALYSIS

This section describes the calculation of concept importance of a re.'- vorld ontology.
It also gives a description of the dataset used to perform the expe. men. for demon-
strating the applicability of our proposed document represente’...> models. Finally, it
provides a thorough comparison of document classification re< alts actueved using both
conventional machine learning techniques and deep networks.

4.1. Concept Importance Calculation

A real-world domain ontology called INFUSE ontolog+ is u.~~ .or computing concept
importance. This ontology is developed as part of the IN"_U"E ! project and it comes
from the funding domain. It is composed of 85 concep.., e.g. runding, GrantSeeker and
18 object properties, e.g. isGivenBy, appliesFor, that co. nect these concepts. A part of
INFUSE domain ontology represented as an ontolc oy grap 1is shown in Figure 3.

To convert the ontology into an ontology grap’ anu -~ .ipute the concept importance,
we have used the RDF rank algorithm. This algorithn. ‘s part of the extensions module of
GraphDB [29] and it computes the importance . ~t every vertex in the entire RDF graph.
Table 2 shows the concept importance values of the “op ten concepts of the INFUSE on-
tology. The concept importance is a floating ~o1r .« ..amber with values varying between
Oand 1.

Table 2: Concept importance for the tc » te.i. concepts of the INFUSE ontology

No  Concept Concept Importance
1 Coverag~ 0.20
2 Geogr- phical \rea 0.13
3 Topic 0.11
4 Cor nty 0.07
5 Pa_*ic’pan’ 0.06
6 ' rogra. > ae 0.05
7 C_ranisation 0.05
8 Funawg 0.05
9 Applicant 0.04

10 Candidate 0.04

Figure 5 show. - t"«e ¢ ncept importance values in ranking order after having com-
puted them for 'l the -~oncepts of the INFUSE ontology. As can be seen from the chart
diagram, the :oncep importance is different for different concepts, varying from 0.2 -
0.02 for almos. half ¢. the concepts set, while for the rest of the concepts it is 0.01. These
findings ¢ nurm the idea that the contribution of ontology concepts in terms of concepts’
discrimin ting p: wer is different and thus some concepts are more important than the
others with . ~<~ ect to document classification.

https: /7 www.eurostars-eureka.eu/project/id /7141
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Figure 5: Concept importance for all concents of thi INFUSE ontology

4.2. Performance Evaluation of Baseline CVS and iCVS

In order to demonstrate the general applicabiu.  of our proposed classification model
and to validate its effectiveness, extensive € .. “~ents using various classifiers are con-
ducted on the INFUSE dataset.

The INFUSE dataset consists of 467 gr.~.. 1oc ‘ments that had been collected and clas-
sified into 5 categories by field experts as pa-t 0. the INFUSE project. The dataset is split
randomly, in which 70% of the docume. *s a. ased to build the classifier and the remain-
ing 30% to test the performance of the modeX The number of documents in each category
varied widely, ranging from the &__1~ty category which contains 165 documents to the
Music category which contains - nly 14 locuments. Table 3 shows five categories along
with the number of training ard te_“ng documents in each category.

T: ole 3: Dataset size

No “ategory #Train #Test Total
-1 Culure 102 44 146
2 Health 73 32 105

?  Music 10 4 14

4 Society 115 50 165

5  Sportssociety 26 11 37
4 Total 326 141 467

Parametric *nd ns nparametric machine learning techniques are used for experiment-
ing. A par.utetric machine learning technique assumes that the data can be parameter-
ized by a ixed nt mber of parameters. In essence, the statistical model of parametric tech-
niques is s, ~cifi .d by a simplified function through two types of distributions, namely,
the cli «> | “~r probability, and the class conditional probability density function (poste-
rior) for ~.ch dimension. On the contrary, a nonparametric machine learning technique
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assumes no prior parameterized knowledge about the underlying p o. ability density
function and the classification uses the information provided by trair ng .amples alone.

Naive Bayes is a parametric machine learning technique applied foi -lassification in
this paper, while nonparametric techniques applied in this paper inci.. 1e Decision Tree
and Random Forest. We also have chosen to use Support Ve .tor *“achine (SVM) for
classification that can be either parametric or non-parametric te. hr.que. Linear Support
Vector Machine contains a fixed size of parameters represent- ! by u.> weight coefficient
and thus it belongs to the parametric techniques. On the ot 1er sid. . Non-linear Support
Vector Machine is a non-parametric technique and Radial Ba. *s Fu~.ction Kernel Support
Vector Machine, known as RBF Kernel SVM, is a typic .1 ex~mple of this family. In ad-
dition, we have applied two boosting techniques, nan °I- Gr: dient Boosting and Ada
Boosting, which grant power of ensemble classifiers .~at g~ .erate multiple predictions
and majority voting among the individual classifiers.

Additionally, a Multilayer Perceptron (MLP) is u.~d in .his study. An MLP is a feed-
forward Artificial Neural Network (ANN). The artn. -ial neurons in the network compute
a weighted sum of its inputs z;, adds abias b, ar * _._ .i.s an activation function. A simple
ANN is represented as: y = f(wx; + ), where w 15 "he weigh and f is the activation func-
tion. Most commonly used activation funct ... ~= sigmoid, which is o(z) = 1/(1 + e™*)
and rectified linear units which is ReLU(z) = m.* (0, z). The weight and bias terms are es-
timated by training the network on the oL . “vaL’= data to minimize the loss using cross-
entropy or mean square error. In an MLP, t.e 1.eurons are structured into layers. These
layers are fully-connected which impu.. = uwt every neuron in one layer is connected to
every neuron in the adjacent layer. The inp a1t and the output layers are the visible lay-
ers in the network while a netwr .. may contain multiple hidden layers. Normally, a
network containing more than o e hida n layer is known as a deep neural network.

The standard information rrtrie. ~1 r .easures such as precision, recall and F1 measure,
are used to evaluate the perfo ma-.ce ot the document classification. Precision is the num-
ber of documents which are c.. s ifie’. correctly with respect to all classified documents. It
is given as: tp/(tp + fp). Pzcall is .".e number of classified documents with respect to the
total number of docume-.ts .. the dataset. Recall is defined as: tp/(tp + fn), where tp, tn,
and fn are true positive, “vue negative, and false negative samples. F1 measure is the har-
monic mean of precis’'on ¢ ad recall and it is defined as: 2((precision x recall) /(precision +
recall)).

Best results are obt .inea on the conventional machine learning techniques for follow-
ing configuration. For th 2 Bayesian classifier, a Gaussian NB is used whereas for SVM, a
radial basis fur _Zon (.." F) kernel SVM is used. A value of 0.001 is used for gamma which
describes hov - much influence a single training sample has, and a maximum value is
set for the reg. 'ariz- .jon parameter c. The depth of the tree for RF classifier is set to 10
which gav - pbest tesults. For all other parameters of the classifiers, default configurations
are used. For de p learning based MLP architecture, multiple simulations consisting of
L x N are «>*'ed out by varying the number of hidden layers L and the number of
neuro: s 1v - z2ach layer, where L = {3,5,7}, and N = {64,128, 256,512,1024}. Figure
6 shows “1e total number of trainable parameters for a 5-hidden layer MLP containing
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1024 neurons in each layer. The input to the network shown is 323 size _u. cept vector for
iCVS variant 2. Relu is applied as the activation function, adam is us d a- the optimizer,
while the learning rate « is set to le=®. A softmax function is appli~d av "“e last layer to
convert the likelihood of a test sample belonging to one of the 5 classes.

Layer (type) OQutput Shape Fooam 6
dense_1 (Dense) (None, 1024) dle?G-z::
dense_2 (Dense) (None, 1024) 104066 1
dense_3 (Dense) (None, 1@24) Tl
dense_4 (Dense) (None, 10824} . \49600
dense_5 (Dense) (None, 5) 25

Total params: 3,485,701
Trainable params: 3,485,781
Non-trainable params: @

Figure 6: Model summary for a 5-hidden layer MLI -.ciuecture for 323 concept input vector size
with 1024 neurons.

Three different models of vector space doc ment representation are used to test the
classifiers. In the first model called basc'n.~ C 'S, we conducted a document classifi-
cation experiment on the INFUSE dataset ir. wnich an exact/partial match technique is
employed to match term occurring in .. 1ocument with relevant concepts of the ontol-
ogy to build concept vectors for representuig documents into vector space. Precision,
recall, and F1 results obtained frc .1 52 - conventional Machine Learning techniques and
a deep MLP with different nunr »er of I 'dden layers and neurons are shown in Table 4
and Table 5, respectively. As can bc ~e n from the results, Gradient Booosting classifier
shows the best performance ¢ ymr ared to other conventional classifier achieving a 82.58%
of weighted F1 score. On the ¢ *".er } and, MLP with 3 hidden layers and 1024 neurons in
each layer outperforms ot «er deep network achieving an F1 score of 80.02%.

Table 4: Perf~ ~ance or conventional ML techniques using baseline CVS

Technu." e Precision (%) Recall (%) F1 (%)
N-ive Bayes 67.24 60.99  61.90
L ~ci-on ".ree 66.10 66.40 65.50
Panac ~. Forest 77.69 77.30 77.25
SVM 81.73 7730  78.85
Grad .ent Boosting 82.99 82.26 82.58
Aaa Boosting 58.61 5390  54.69

In the se .~ experiment, we performed document classification using the same clas-
sifiers 7 .. ~ame corpus of documents from the INFUSE dataset, but employing the
second 1.° ydel of document representation. The second model called iCVS variant 1 is
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Table 5: Performance of MLP using baseline CVS

# of hidden #of neurons | Precision (%) | Recall (%) ' £1 (%)
layers |

64 79.32 78"~ | 7847

3 128 77.80 7°.01 77.89

256 77.05 77 .00 77.08

512 79.75 794" 79.07

1024 80.13 80.14 80.02

64 78.11 1001 77.50

5 128 78.29 /.01 77.96

256 75.21 " 446 74.36

512 77.21 76.59 76.64

1024 77.87 77.30 77.24

64 7700 7801 77.77

7 128 77.93 77.30 77.40

256 /CR3 75.58 75.89

512 75.00 73.75 73.92

1024 7€.75 76.59 76.90

an enhanced concept weighting scheme tha. is used for assessing weight of concepts of
the ontology. Six different conventiona. Maciune Learning techniques, and a Multilayer
Perceptron with different number of hiddern layers and different number of neurons per
layer, are used for classification 7..u e obtained results are shown in Table 6 and Ta-
ble 7, respectively. As with base’ ne CVt model, the obtained results using iCVS variant
1 show that Gradient Boostin ; clas.fi .r achieved the highest improvement compared
to other conventional machir e le .rning and deep learning techniques. In the context of
deep networks, the best perto. - anr 2 is achieved by an MLP architecture with 7 hidden

layers and 256 neurons pr ‘' layer wth an F1 score of 76.64%,.

Table 6: Perfc

Techm?e Precision (%) Recall (%) F1 (%)
N-.1ve Bayes 66.63 5390 57.73
L ~ci-ion ".ree 69.10 70.00  68.80
Pana. ~. Forest 84.54 80.85  82.07
SVMm 66.65 53.19  56.64
Grac .ent Boosting 83.06 81.56  82.14
Aaa Boosting 61.72 60.28  60.33

iCVSva. ~~’* 2 model is also evaluated in a similar fashion. In this model, concept vec-
tors fC " 1c; . ~enting documents into vector space are build through acquisition of new
terms th. * are semantically related and can be attached to concepts of the ontology. In
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Table 7: Performance of MLP using iCVS variant 1

# of hidden #of neurons | Precision (%) | Recall (%) ' £1 (%)
layers |

64 72.84 73 = | 7277

3 128 67.40 6" .50 68.22
256 71.86 709 71.29

512 73.69 73.77 73.55

1024 73.35 73.04 72.81

64 70.33 vo.od 69.53

5 128 72.65 /.04 72.77
256 72.16 72.34 72.16

512 68.30 68.79 68.23

1024 73.1: 73.04 72.82

64 66..~ | 68.08 66.46

7 128 67.79 69.50 68.30
256 7C k2 76.59 76.64

512 77.10 75.17 75.87

1024 7745 73.75 73.47

our case, for each concept of the INFUSE o1 *ology we used only the top-5 terms found
as relevant in terms of relatedness. ko. exauiple, terms fund, amount, part, subsistence,
and grant, are the top-5 terms that are found to be the most semantically related terms
with ontology concept funding. T'.c . ~formance of document classification, in terms of
precision, recall and F1 measurr achiev 2d by six conventional Machine Learning tech-
niques and a Multilayer Percer tron . -it'« different number of hidden layers and neurons,
is given in Table 8 and Table 9, r :spectively. As can be seen from the results shown in
Table 8 and Table 9, the best | - corr dng classifier is an MLP having three hidden layers
and 64 neurons in each lay ~r with an F1 score of 84.98% which is slightly better than SVM

with an F1 score of 84.11 /o.

Table 8: Per’>rm nce of conventional ML techniques using iCVS variant 2

Te  anique

Precision (%)

Recall (%) F1 (%)

DM aiv-. Bar es
Deci " Tree
Ran.'om Forest

SVM

G:adient Boosting
2 da Boosting

67.02
79.20
77.04
85.66
84.35
69.79

65.95  65.28
7790  76.70
7446  75.06
83.68  84.11
83.68  83.96
60.99  62.56

A ac * ; side comparison is illustrated in Figure 7 for three models. The figure
presents - complete picture of the performance of conventional machine learning and
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Table 9: Performance of MLP using iCVS variant 2

# of hidden #of neurons | Precision (%) | Recall (%) ' £1 (%)
layers |

64 85.05 8570 | 3498

3 128 80.12 8.14 79.55
256 79.04 79.4. 78.79

512 81.47 81.5 81.29

1024 81.68 82.26 81.80

64 80.11 6000 80.11

5 128 7807 | 43 78.06
256 80.76 |85 80.34

512 78.79 78.72 77.82

1024 78.42 79.43 78.58

64 77.° | 7801 77.21

; 128 80.76 80.85 80.47
256 /750 77.30 77.17

512 82.99 83.68 83.07

1024 87.69 82.26 81.57

deep learning techniques on the INFUSE da.xset for the proposed models. The bar chart
shows the weighted F1 score obtained v - corventional machine learning, namely Naive
Bayes (NB), Decision Tree (DT), Random rorest (RF), Support Vector Machine (SVM),
Gradient Boosting (GB), and Ada "vu. “ng (AD), and a Multilayer Perceptron (MLP) with
3 hidden layers and 64 neurons »er layt r, tested on three different models of document
representation.

As can be seen from the “esu’ts shown in Figure 7, a higher weighted classification
F1 score is achieved by al' c.. - sifie.s using iCVS variant 2. An exception is Random
Forest that gives slightly v orse clacsification performance than other classifiers. Random
Forest is an ensemble m thou *hat employs the same decision tree classifier on different
training sets generated ... ‘ng the bootstrap sampling method. In a bootstrap sampling, a
new training set is cr -ate'. by taking data from the original training set, thus some data
may be used severs! tin. s to construct the forest and others not at all. This may be one
of the reasons tha’ thic classifier performs worse.

It is also intere.* 1g t s note from the Figure 7 that in general MLP classifier outper-
forms all conv-...ionai .nachine learning classifiers achieving a classification F1 score of
84.98%. On t e othe hand, the worst performance is shown by Naive Bayes classifier
which may hay ~ har pened due to the imbalanced classes of the INFUSE dataset. Imbal-
anced clas ses m~y result in biasing of the classifier towards the majority of the class and
thus the 1 >rform nce of Naive Bayes classifier can quickly turn poor.

An intere.:l.g fact that also can be observed from the bar chart shown in Figure 7 is
that iC/5S » a.zant 1 model has different impact on the performance of classifiers. While
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Figure 7: F1 measure of different classifiers using exa.“/partial match (baseline CVS), enhanced
weighting scheme (iCVS variant 1), and acquisi* . - ~f related terms (iCVS variant 2)

nonparametric and boosting machine lear. u.~ techniques demonstrate a positive impact
on document classification using an iCVS vai'ant 1, parametric and MLP show a negative
impact on classification performance giv:~g worse accuracy.

5. Conclusion and Future Work

In this paper, we have inv estig. “er. and analysed the document classification per-
formance using a concept v’ cto’ space model improved with new concept weighting
scheme, and semantic docuvmc - rer cesentation. Concept weighting scheme is enhanced
with new parameter that akes inwv account the importance of ontology concepts. Con-
cept importance is com; ute.. ~utomatically and this is achieved by converting the on-
tology into a graph ar .. “hen employing the PageRank algorithm on it. Importance of
an ontology concept s thr n aggregated with concept relevance which is computed using
the frequency of apeat. ~ces of a concept in the document. A semantic representation of
document is achie . ed ising concepts derived from ontology through matching technique
and acquisition o1 .>< w te.ms that can be semantically related with ontology concepts.

We conduc’ _u varie 4s document classification experiments on three models of docu-
ment represer tation . e. baseline CVS model and iCVS model with two variants. Addi-
tionally, a com; ~risc.1 between seven different classifiers is performed for all three mod-
els using ~srecisinn, recall, and F1 score. For all three models, Random Forest, Gradient
Boosting, and M ltilayer Perceptron, performed rather well. Furthermore, a thorough
investigatio.. .- carried out to evaluate the performance of MLP by varying the number
of hidd»n a,.rs and the number of neurons in each layer. A three hidden layer MLP
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with 64 neurons achieves higher classification performance compared .. other architec-
ture configurations.

Generally, iCVS variant 1 employing an enhanced weighting scheme -sed for assess-
ing weights of concepts did not add much to the overall performance e..-ept for Random
Forest which gave better results employing baseline CVS and i€ VS --viant 2 with an F1
score of just over 81%. Our findings showed that adding more . ~r _epts to ontology im-
proves the classification performance by 4.78 percentage pc’..: on ..~erage in all cases,
however, it is computationally expensive due to a large nu nber o." feature vectors. The
classification performance is also highly dependent upon t. » che ce of a classifier and
we can achieve the same performance on the iCVS moc :1 (v2riant 1 and variant 2) with
Random Forest and Gradient Boosting classifier.

Investigation and analysis of classification perfori. ~nce - done on real-world ontol-
ogy and dataset consisting a small number of documents, so in future work we plan to
conduct a performance analysis in a large-scale data. ~t. W2 also plan to implement and
test other Markov based algorithms for computing ~oncept importance as fundamental
part of concept weighting scheme and compar- 1.___ .cchniques with the PageRank al-
gorithm.

Furthermore, the primary focus of our s. «., ~»< addressing two major concept vec-
tors limitations namely exact matching and we '« ating scheme by proposing an improved
concept vector space model. However, ov' ~rop bsed approach does not handle another
concept vectors limitation which is ontolog.-al .elationships. Future studies on the cur-
rent topic are therefore suggested in ¢.e1 o establish representation of documents in
which concept vectors can be redefined to c.nsider the various relationships that exist in
an ontology.
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