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a b s t r a c t

This article describes the development of an automated configuration of a software platform for Data
Analytics that supports horizontal and vertical elasticity to guarantee meeting a specific deadline.
It specifies all the components, software dependencies and configurations required to build up the
cluster, and analyses the deployment times of different instances, as well as the horizontal and vertical
elasticity. The approach followed builds up self-managed hybrid clusters that can deal with different
workloads and network requirements. The article describes the structure of the recipes, points out to
public repositories where the code is available and discusses the limitations of the approach as well
as the results of several experiments.
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1. Introduction

The need for data analytics platforms has raised in the re-
cent years, in parallel to the increase in the computing and
data storage requirements, in order to tackle the challenges of
data processing. Configuring and operating such platforms is
not straightforward and requires non-trivial system adminis-
tration skills. Data analytics platforms involve multiple compo-
nents and resources, which must be appropriately linked and
cross-configured. In addition, dealing with unpredictable work-
loads is an operationally complex task that requires dynamically
readjusting the resources and reconfiguring them on the fly.

In this way, this article presents a set of tools and config-
uration recipes for deploying a virtual self-managed cluster of
computing nodes. The cluster can scale horizontally (in and out),
by adding and removing computing resources and reconfiguring
them according to the workload, and vertically (up and down), by
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readjusting the assigned resources to individual jobs dynamically
to satisfy a given Quality of Service (QoS).

This paper introduces the problem, the software architecture,
the automatic deployment tools and recipes, the elasticity mech-
anism and the experiments, discussing the results obtained. The
reminder of the paper is structured as follows. First, Section 2
examines the requirements of a data analytics platform and re-
vises the state of the art related to the work presented in the
paper. Then, Section 3 presents the proposed architecture of the
platform used to perform data analytics and the mechanisms
involved in the elasticity management. Also, a brief analysis of
each component involved in the architecture is presented in this
section. Section 4 describes the most relevant metrics obtained
from the deployment of the self-managed virtual cluster and the
execution of several test cases to validate the horizontal and
vertical elasticity. Section 5 discusses the main developments and
improvements presented in this work in comparison with the
state of the art. Finally, Section 6 summarizes the main results,
concludes the paper and points to future work.

2. Requirements & state of the art

This section presents the requirements and reviews the state
of the art of the two main areas of research that constitute the
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basis of this work (cloud orchestration and elastic clusters) as
well as other cloud-based processing software architectures that
address the requirements identified.

2.1. Requirements

In this work, we consider three types of use cases that address
three main problems in data analytics [1]. The first use case is
data acquisition, which deals with the periodic acquisition of ex-
ternal datasets and the integration with the previously acquired
data. The second use case is the development of descriptive
models, aiming at deriving additional information and knowledge
from raw data. Finally, the third use case concerns predictive
models, which build up models for estimating specific variables
under new scenarios.

From this analysis, we identified the following technical re-
quirements concerning processing:

1. Running unrestricted batch jobs. This requirement refers
to the execution of batch jobs that do not have any QoS
guarantee to meet, such as long-running jobs that are not
linked to a production service.

2. Running periodic batch jobs. Periodic workloads, such as
daily jobs that retrieve the updated data from a public data
source, must be regularly executed by the platform.

3. Running batch jobs with QoS restrictions. Tracking the job
progress is a complex task that is limited to jobs that use
a specific execution framework that supports it (e.g. Spark,
Marathon, etc.). We consider in this requirement the guar-
antee that a given amount of CPU time is assigned to a
running job in a given time frame.

4. Self-adapting elasticity. This requirement is strongly linked
to requirement 3. The platform should provide enough
resources to deal with new jobs and to ensure that jobs
with QoS are properly executed.

5. Running parallel Spark jobs. The platform must support the
execution of Spark jobs across several nodes in parallel,
providing the right amount of resources to each job.

Considering these requirements, we focus on analyzing the
available technologies for cloud orchestration, elasticity and cloud
services for data analytics.

2.2. Cloud orchestration

Cloud orchestration is the process needed to automate the
entire lifecycle of a cloud application. It implies the deployment of
all the computational resources, the installation and configuration
of the different component parts of the application and their
correct interconnection.

To describe cloud applications, the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [2] open standard
has been defined by the OASIS consortium.1 It defines the inter-
operable description of services and applications to be run on the
cloud, including their components, relationships, dependencies,
requirements, and capabilities; thereby enabling portability and
automated management across cloud providers regardless of the
underlying platform or infrastructure.

By using TOSCA to model the user’s complex application ar-
chitectures it is possible to obtain repeatable and deterministic
deployments. Users can port their virtual infrastructures among
cloud providers obtaining the same expected topology.

Several open source orchestration tools and services exist in
the market, but most of them come with the limitation of only

1 https://www.oasis-open.org/

supporting their own Cloud Management Platforms (CMPs) be-
cause they are developed within those project ecosystems. As an
example we can cite some of them, such as OpenStack Heat [3]
and its YAML-based Domain Specific Language (DSL) called Heat
Orchestration Template (HOT) [4], native to OpenStack [5]. Open-
Nebula [6] also provides its own JSON-based multi-tier Cloud
application orchestration called OneFlow [7]. Eucalyptus [8] sup-
ports orchestration via its implementation of the Amazon Web
Services (AWS) CloudFormation [9] web service.

In case of other general orchestration tools, we can find Cloud-
ify [10], which provides TOSCA-based orchestration across differ-
ent cloud providers. Unfortunately Cloudify is not currently able
to deploy on OpenNebula sites, one of the main CMPs used within
current science clouds. Apache ARIA [11] is a very recent project,
not mature enough and also without support for OpenNebula.
Project CELAR [12] uses an old XML-based TOSCA version with
SlipStream [13] as the orchestration layer (this project has no
activity in the last years and SlipStream has the limitation of
being open-core, thus not supporting commercial providers in
the open-source version). CompatibleOne [14] provided orches-
tration capabilities based on the Open Cloud Computing Interface
(OCCI). However, the project has not been active in the last years.
OpenTOSCA [15] currently only supports OpenStack and the AWS
EC2 [16] service.

Our previous work in the field is the Infrastructure Manager
(IM) [17], a cloud orchestration runtime that deploys complex
and customized virtual infrastructures on multiple back-ends.
It supports the TOSCA Simple Profile in YAML version of the
standard. It is compatible with a wide variety of Cloud back-
ends, both on-premises CMP and public Cloud providers, thus
making user applications cloud agnostic. In addition, it features
DevOps capabilities, based on Ansible2 to enable the installation
and configuration of all the user required applications providing
the user with a fully functional infrastructure.

2.3. Cloud-based data analytics

In recent years, the Data Deluge [18] made it possible to
enter an era in which distributed computing is now the new
normal, paving the way for Big Data, a term coined for scenarios
in which the amount of data (or the speed at which data is
generated) can no longer be processed in a feasible time in a
single computer. Google, being a large-scale data-oriented enter-
prise, faced the challenges that involved the processing of huge
datasets and, in 2008 unveiled the MapReduce programming
model [19], together with an associated implementation for pro-
cessing large datasets. This was the seed that made possible the
Apache Hadoop project [20], an open-source software for reliable,
scalable, distributed computing that ended up forming the kernel
(as is the case of the Hadoop Distributed File System) of a huge
ecosystem of tools aimed at solving Big Data problems. This is
the case of Hive [21], a data warehouse software for querying
and managing large datasets in a distributed storage or Pig [22],
a platform for analyzing large datasets via a high-level language
for expressing data analysis programs. Other platforms such as
Spark [23], due to its speed related to in-memory processing, are
also fundamental for many Big Data scenarios.

In addition, the trend towards lightweight virtualization al-
lowed container technology to considerably evolve, exempli-
fied by the recent advances in Linux containers (LXC) [24] and
Docker [25], and the HPC-specific Singularity [26]. LXC enables to
run multiple isolated processes in one host without the overhead
caused by the hypervisor layer introduced by Virtual machines
(VMs) in CPU, memory and storage [27], as if it was a whole new

2 https://www.ansible.com/
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machine. Docker is oriented to applications, and the underlying
idea is to run a single application that is isolated and with a
tailored environment. Moreover, the ecosystem of tools around
Docker has exploded in the last years, with contributions in
many areas such as Continuous Integration/Continuous Deliv-
ery (CI/CD), application packaging and container orchestration
tools. Indeed, there are many applications to manage the execu-
tion of containers across multiple hosts (e.g. Kubernetes [28] or
Deis [29]) but one of the most advanced tools for computationally
challenging problems is Apache Mesos [30], a software that ab-
stracts CPU, memory, storage and other compute resources away
from machines to enable fault-tolerant distributed systems to
be built. Moreover, Mesos supports several frameworks suitable
for resource-intensive computing, as is the case of Chronos [31],
for the job fault-tolerant executions, and Marathon [32], for
the execution of long-running services. Finally, Singularity is an
alternative to Docker that has been developed in the HPC context.
It is growing popularity is due to the ability to create containers
that run in the user space, and are integrated with the underlying
system by mapping the system user ids and important folders
(such as home). In order to foster its usage, it is able to get images
in Docker format, among others.

2.4. Elastic clusters

Elasticity is the property of an infrastructure to dynamically
adapt itself to the current or estimated workload. This is mani-
fested in cloud infrastructures at several levels. In the lower level
of on-premises clouds, elasticity represents the ability to dynam-
ically power on and off the nodes of the underlying hardware in
order to provision and relinquish physical computing hardware
on which the virtualized infrastructure will run. At the level of
IaaS (Infrastructure as a Service), these techniques should be inte-
grated within the Cloud Management Frameworks (CMF) so that
requests of virtual infrastructure deployment trigger, if necessary,
the powering of physical nodes in order to accommodate the
virtual infrastructure that will be executed on top of the physical
infrastructure. Horizontal elasticity is the ability to dynamically
deploy and terminate nodes within a virtual infrastructure ac-
cording to a set of elasticity rules (scale in/scale out) and this
is exemplified by services such as Auto-Scaling [33] for AWS or
Heat/AutoScaling for OpenStack, to name a few.

In the literature, we can find several research works regarding
horizontal elasticity in virtual clusters. In [34] and [35], the Nim-
bus toolkit is employed to implement a tool to create elastic sites,
so that physical clusters based on a Local Resource Management
System (LRMS) such as Torque are supplemented with compu-
tational resources provisioned from AWS according to different
policies.

A widely used tool is StarCluster [36] which enables the cre-
ation of virtual clusters in ÅWS, that satisfy a user-defined list
of required applications (Sun Grid Engine, OpenMPI, NFS, etc.).
The Virtual Machines (VMs) are based on predefined Amazon
Machine Images (AMI). In addition, a plugin named Elastic Load
Balancer [37] is available to add and terminate new cluster nodes
taking into account the number of jobs queued up at the LRMS.
The main limitation of this plugin is that it requires a permanent
connection to the cloud infrastructure from the StarCluster instal-
lation in the user’s computer in order to deploy and terminate the
VMs.

In the last years, horizontal elasticity has also been introduced
in well-known Big Data frameworks. This is the case presented
in [38], where the authors propose a system called BBQ, which
is able to provide elasticity to Hadoop MapReduce. It works with
AWS and needs a specific modified implementation of Hadoop
to properly work with BBQ, thus, limiting the ability to choose a
desired configuration for the users.

Our previous work in the field is Elastic Cloud Computing Clus-
ter (EC3) [39], a tool that creates elastic virtual clusters from com-
putational resources provisioned from IaaS clouds. These clusters
scale out to a larger number of nodes on demand, up to a max-
imum size specified by the user. Whenever idle resources are
detected, the clusters dynamically and automatically scale in,
according to some simple policies, in order to minimize the costs
in the case of using a public cloud provider.

To dynamically manage the clusters, EC3 relies on the CLUster
Energy Saving (CLUES) [40] tool, an elasticity manager. CLUES
has been already integrated in public and on-premises cloud
environments in order to deploy/destroy VMs and it is able to
automatically integrate the VMs in the LRMS according to the
workload of the cluster.

Horizontal elasticity is appropriate when the problems solved
are inherently parallel. In cases where the problems cannot bene-
fit from an increase in the amount of resources, another elasticity
strategy must be considered. Vertical elasticity is the ability to
dynamically resize the resources of the nodes, such as the number
of CPUs, the share of CPU or memory, according to a set of
elasticity rules (scale up or scale down).

Most of the hypervisors and cloud IaaS support vertical elas-
ticity. This is the case of OpenNebula and OpenStack, which offer
functions to resize the memory or change the number of CPUs
of stopped VMs. Nevertheless, dynamic resizing of VMs is not
supported because it is necessary to act both at the level of the
hypervisor and at the level of the VM’s operating system.

There are techniques for providing vertical elasticity leverag-
ing the CPU CAP (the maximum amount of CPU resources a VM
can use) and the physical memory allocated by the hypervisor.
This strategy only acts at the level of the hypervisor and, thus,
it has a better approach than the strategy described above. This
way, the internal configuration of the VM remains the same,
but it is provided with a higher share of physical resources,
so the virtual CPU can run faster or slower, and have more
RAM mapped on physical RAM. For example, the work by Shen
et al. [41] describes an approach named CloudScale to automate
fine-grained elastic resource scaling for multi-tenant cloud com-
puting infrastructures. Other examples of these techniques are
described in [42]. It should be pointed that, in this example, the
system needs access to the private network to connect with the
worker nodes and root privileges for leveraging the CPU CAP and
the memory RAM.

Vertical memory elasticity is interesting for some problems
(e.g. when the consumed memory grows over time). For this
purpose, the virtualization hypervisors provide two mechanisms:
add or remove memory, also named hot memory plugging, and
memory ballooning [43,44]. In any case, the allocation of re-
sources with the aforementioned techniques affects all of the
tasks running in the VM.

Providing vertical elasticity to guarantee QoS restrictions re-
quires a more fine-grained approach than the techniques de-
scribed above because it is necessary to resize the assigned re-
source for a specific job (not all the running jobs of the VM). For
this purpose, it is needed to act at the level of processes of the
operating system of the VM.

Nowadays, Docker containers are becoming the new platform
for packaging, distribution and deployment of applications in
Cloud Computing. Vertical elasticity in Docker containers has few
works in the literature compared those available for VMs. The
work by Al-Dhuraibi et al. [45] presents a mechanism that mod-
ifies the allocated resources (CPU time, vCPU cores and memory)
of a Docker container according to the workload demand. This
mechanism monitors the CPU time, CPU utilization, vCPUs and
memory utilization to take the elasticity decisions and imple-
ments these decisions modifying the cgroups pseudofiles of the
Docker container directly.
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Fig. 1. Architecture of the required infrastructure to perform data analytics.

The job execution capabilities of the Mesos cluster are pro-
vided by their frameworks and, commonly, these jobs are encap-
sulated in Docker containers or Mesos native containers, which
are processes of the VM. In case of Mesos, the level of pro-
cesses of the operating system of the VM can be seen as the
jobs of frameworks that support vertical elasticity (for example,
Marathon).

Some techniques modify the assigned resources for Apache
Mesos execution frameworks. One example of this approach
is [46], a Mesos executing and monitoring framework called
Makeflow is designed to adjust the number of vCPUs of a series
of independent jobs according to their actual performance. The
work [47] proposes a mechanism to provide both horizontal and
vertical elasticity according to the share of CPU and memory used.
This technique considers that the jobs do not store a persistent
state and, thus, they can be easily restarted.

3. Architecture design

The architecture of the infrastructure must enable the exe-
cution of a wide variety of workloads, that range from paral-
lel to high-throughput jobs, including short jobs and big data
workflows. This section provides information on the proposed
architecture for the deployment and the automatic management
of both horizontal and vertical elasticity at the level of the frame-
work.

3.1. General architecture

The proposed architecture is depicted in Fig. 1. In the sce-
nario, the administrator user is in charge of deploying the virtual
infrastructure by using the EC3 client. EC3 interacts with the
Infrastructure Manager (IM), requesting the needed resources
considering the characteristics of the cluster together with its
specific configuration. With these data, the IM interacts with the
selected cloud provider, requests the VMs that compose the clus-
ter and configures them. Notice that, by using IM, the cluster can
be deployed on different on-premises and public clouds. In par-
ticular, at least the following providers can be used: OpenNebula,

OpenStack, Amazon Web Services, Google Cloud Platform [48]
and Microsoft Azure [49].

The infrastructure has three main types of nodes:

• The front-end node, that is the master of the cluster. It con-
tains the Mesos master instance together with the Marathon
and Chronos frameworks, and also including Docker,
Hadoop, Spark and NFS. The front-end also has an instance
of the IM that, together with CLUES, is in charge of managing
the elasticity of the cluster. This node is also in charge of
offering an interface for end users of the infrastructure.

• The Monasca [50] nodes, that include the Openstack
Monasca server instance, that also have Apache Kafka [51],
Apache Storm [52], InfluxDB [53] and Grafana [54]; three
Monasca agents also act as Hadoop datanodes. The archi-
tecture also includes a VM that provides the keystone [55]
server needed by Monasca. It is not running inside the
Monasca server to avoid excessive resource consumption.

• The working nodes, that are the elastic part of the infrastruc-
ture. These nodes are deployed on-demand when triggered
by CLUES, that monitors the Mesos and Marathon queues
and reactively provides the needed Mesos agents. These
working nodes also contain Docker and CRIU [56], to have
the ability to run jobs inside containers with checkpointing
capabilities. NFS is employed to provide a shared file system
across the nodes to manage the checkpointed containers. A
Spark daemon is also running on each working node and all
of them are monitored by Monasca.

Regarding networking, all the components of the infrastruc-
ture are interconnected by a private network. Moreover, a ded-
icated overlay network, managed by Weave [57], is created to
interconnect the containers running on different hosts. The front-
end is also connected to this overlay network, so that applications
running in the containers can interact with the services using
the overlay network. This guarantees a bi-directional communi-
cation on a wide range of ports without exposing the jobs to
the Internet. The front-end of the cluster is the only component
that can be accessed via a public network, even though the
whole infrastructure has access to the Internet via NAT (Network
Address Translation).
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Fig. 2. Architecture for vertical scaling. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.2. Vertical scaling

This section describes the architecture of the developed mech-
anism for providing vertical elasticity to the batch jobs with
QoS restriction. As it is described in Section 2, the developed
mechanism aims to guarantee that the desired amount of CPU
time is assigned to a running job in the given time frame of
the targeted QoS. These jobs are embedded in Docker containers
and are executed using the Marathon framework of Mesos. The
architecture is composed of three main components: Launcher,
Executor and Supervisor. This architecture is depicted in Fig. 2,
where the green dashed lines represent the interactions be-
tween components and the other services (Marathon, Monasca
and Keystone).

Vertical elasticity is the ability to resize the assigned resources
of a job in order to meet a targeted QoS. In this work, the
mechanism varies the assigned share of CPU to the job. Resizing
jobs in Marathon requires updating the job specification in the
Marathon scheduler via its REST API. Once the job specification is
changed, Marathon removes the older version of the job without
preserving the execution state. Then, it runs the job with the new
resource reservation. Furthermore, it should be pointed out that
the new job execution can run on another working node.

Therefore, everytime a job is resized its progress state is lost.
To avoid this problem, this work uses CRIU [56], which is a
project for the Linux operating system that allows to freeze a
running application as a collection of files called checkpoint.
Checkpointing allows users to stop and resume the job at the
same execution point as it was when the checkpoint was made,
even in another machine. As Marathon cannot freeze and resume
the Docker container using CRIU, it is required that the developed
mechanism manages the Docker container execution.

The Launcher is a command-line tool in charge of the sub-
mission of the job. Users run the Launcher specifying the job in
JSON format with the QoS information, the parameters to connect
and configure the Supervisor, and the credentials of the Marathon

scheduler. The QoS information is composed of the number of
seconds of CPU time that the mechanism should assign for com-
pleting the job, the over-progress percentage, and the time frame
(in seconds) for executing the job. Users can configure, with
the parameter called over-progress percentage, the overprogress
threshold used by the Supervisor in Algorithm 1 for computing
the job performance state .

First, the Launcher assigns to each job a unique identifier
(UUID). If the Launcher submits to Marathon the job specifi-
cation provided by the user, then the Marathon executor will
manage the Docker container. As the mechanism must manage
the Docker container for using the checkpointing feature, an
additional component, the Executor, is required. To allow the
Executor to manage the Docker container, the Launcher creates a
new job specification based on the job specification provided by
the user. Tasks in Mesos are isolated because they are executed
embedded into Docker containers or Mesos native containers.
Thus, the Marathon executor runs the new job (the Executor)
created by the Launcher isolated by a Mesos native container.
Once the new job specification is generated, the Launcher submits
it via a REST API call to the Marathon scheduler. Finally, the
Launcher sends a message with information about the job to
the Supervisor. This information is formed by the job name, the
job UUID, the maximum overprogress percentage, the number
of seconds of CPU time that the mechanism should allocate for
completing the job, and the time frame for executing the job in
seconds.

The Executor performs several tasks. First, it prepares the
worker node to enable the Docker container monitoring using
a modified Docker plug-in of the Monasca Agent. Afterwards, it
checks for the existence of a previous checkpoint of the job in
the directory shared by all of the worker nodes. If the Executor
does not find a checkpoint, then it starts the Docker container.
Once the Docker container is running, the Executor notifies via
a REST API call to the Supervisor. Then, it waits until the Docker
execution is done or until capture the termination signal sent by
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the Marathon executor when a scaling decision is implemented
by the Supervisor. If the Docker container ends its execution,
the Executor cleans the worker node and the shared directory,
and notifies the end of the job execution via a REST call to the
Supervisor. If the Executor captures a termination signal, then
it means that the Docker container will be resized. Thus, the
Executor performs the checkpoint of the execution and stores
it into the directory shared by all the worker nodes. Once the
Marathon executor runs the Executor with the new allocated
resources, the Executor resume the Docker container execution
from the stored checkpoint.

The Supervisor is a REST service in charge of the decision mak-
ing. When the Executor notifies the start of the job execution to
the Supervisor, it begins to periodically monitor the job to decide
if scaling up or down is needed. There are three possible job per-
formance states: overprogress, underprogress or ontime. If the job
state is overprogress or underprogress, then the Supervisor scales,
respectively, down or up the assigned resources to the job. The
Supervisor implements the scaling decision re-submitting the job
specification (which is available on the Marathon scheduler) with
the new resource reservation by a REST API call to the Marathon
scheduler. The amount of share of CPU that is incremented or
decremented is set at the startup of the Supervisor. For this work,
empirical observation indicates that 0.4 offers good results. Once
the new resource assignation arrives to the Marathon scheduler,
it notifies the Marathon executor to send the termination signal
to the old version of the job, which is captured by the Executor
to create and store the checkpoint.

The Supervisor uses the Algorithm 1 to determine the job
performance state. This algorithm has three input values: the per-
formance, the overprogress, and underprogress thresholds. The per-
formance is obtained using Eq. (2). The Eq. (2) uses the CPU time
consumed cputimecurrent (t) and the expected CPU time consumed
(cputimedesired(t)) on a certain time t (both expressed in seconds).
The Supervisor estimates the CPU time consumed at certain time
t , cputimecurrent (t), requesting via the REST API the gathered infor-
mation about the Docker container to the Monasca. The informa-
tion obtained by the Supervisor fromMonasca is composed of two
metrics (container.cpu.user_time and container.cpu.system_time).
These values correspond to the total user and system clock ticks
consumed by the container in the node where it is running. These
values are transformed into seconds, dividing them by the clock
ticks per second constant of the system. The addition between
these values is the cputimecurrent (t). In addition, the Supervisor
also estimates the CPU time that the job would have to consume
at certain time t , cputimedesired(t), by means of Eq. (1).

cputimedesired(t)

=

{ (tcurrent−tstart )∗secondsjob
secondstimeframe

if tcurrent ≤ tstart + secondstimeframe

secondsjob otherwise
(1)

where tcurrent is the current time in timestamp format, tstart is
the start time of the execution in timestamp format (obtained
when the Executors notifies the start of the execution), secondsjob
is the number of seconds of CPU time that the mechanism
should allocate for completing the job (sent by the Launcher),
and secondstimeframe is the available time interval to complete the
execution of the job (sent by the Launcher).

The underprogress threshold is 10% by default, so the value
used in Algorithm 1 is 0.9. The overprogress threshold is customiz-
able by the user because this value is sent by the Launcher. The
value used in Algorithm 1 is 1.0 plus the overprogress threshold
provided by the user to the Launcher.

performance(t) =
cputimecurrent (t)
cputimedesired(t)

(2)

Algorithm 1: Algorithm used by the Supervisor to obtain the job
state.

Input : performance, thresholdoverprogress and thresholdunderprogress
Result: state
begin

if performance > thresholdoverprogress :
state = overprogress ; /* Decrease resource
reservation */

else if performance < thresholdunderprogress :
state = underprogress ; /* Increase resource
reservation */

else:
state = ontime ; /* Nothing to do */

end

3.3. Description of the components

As shown in the figures above, the proposed architecture is
composed of several components. Most of them are well-known
software packages and frameworks while others are software
tools developed by our research group.

All these components require different configuration files and
installation steps, which are customized for the different un-
derlying operating systems supported by the VMs. Therefore,
this involves a large number of configuration files. Therefore,
to ease the deployment and installation process, Ansible roles
and playbooks were used for the sake of maintainability and
high reusability. These are configuration files that describe the
process of installation, configuration and integration with the se-
lected architecture. Furthermore, to keep the component recipes
as generic as possible (to further ease maintenance and reuse),
such recipes were coded according to the following principles:

• The production Ansible roles should be stored in public
repositories such as GitHub (all the recipes should be open-
source and available to the public).

• The variables used inside the Ansible roles should be defined
in a way that they can be set up at deployment time. This
way, updates can be automatically applied to the roles, so
users do not keep outdated configurations on their systems
(except those that could have been explicitly modified by
the user).

• The Ansible roles should be added to Ansible Galaxy3 a pub-
lic repository4 of roles so that others can reuse them, thus
greatly simplifying the roles definition and composition.

• In addition to the Ansible roles, there must exist high-level
installation recipes (also stored in GitHub) for the Infrastruc-
ture Manager5 and EC36 that contain all the configuration
steps for deploying complete virtual infrastructures.

• The recipes should support different platforms (currently
Ubuntu 14, Ubuntu 16 and CentOS 7).

Table 1 includes the components that were identified and
configured using Ansible roles for the creation of the virtual
infrastructure previously described.

The EC3 tool is in charge of deploying the fully configured clus-
ter by using these Ansible recipes. Thus, it provides the required
infrastructure with the necessary services to deploy applications

3 https://galaxy.ansible.com/
4 https://galaxy.ansible.com/grycap
5 https://github.com/grycap/im
6 https://github.com/grycap/ec3

https://galaxy.ansible.com/
https://galaxy.ansible.com/grycap
https://github.com/grycap/im
https://github.com/grycap/ec3
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Table 1
Components of the Mesos cluster architecture.
Node type Component Version Requirements Comments

Front/wn Apache Mesos 1.4.1 All Main framework,
including Mesos-DNS.

Front Marathon 1.4.3 1,3,4 For deploying long-term and
high-availability services on Mesos.

Front Chronos 2.1.0 1,2,4 Cron-like job scheduler for Mesos.

Front/wn Spark 1.6.3 1,5 Execution of Spark code through
spark-submit from the Front/End
or external resources.

Datanode Hadoop 2.6 All HDFS storage backend.

Front/Monasca Zookeeper 3.4.8–1 All High availability of Mesos
and Marathon.

Front/Monasca/wn Docker 17.05.0-ce 1–4 Containerization of applications
launched through Marathon
and Chronos.

Front Docker registry 2 1–4 Mirroring and caching the Docker
images to speed-up distribution
along the cluster.

Front CLUES 2.1.0b 4 Manages horizontal elasticity.

Front Infrastructure Manager 1.6.6 4 Manages the configuration of the
internal nodes.

Front/wn CRIU 2.6 4 Performs container checkpointing

Monasca/wn OpenStack Monasca 1.6.1 3,4 Monitoring system, including
the Docker plugin.
Monasca agent installed in WN.

Keystone OpenStack Keystone 13.0.0 3,4 A service that provides API
client authentication, service
discovery, and distributed
multi-tenant authorization.

Monasca Apache Kafka +

Storm + Grafana +

InfluxDB

2.12,
1.0.2, 4.0.1
& 0.9.5

3,4 Components for the Monasca Server

Front/wn Weave 2.1.3 All Provides the overlay network to
the container infrastructure.

Front/wn Vertical Elasticity 1.0 3,4 Proactive vertical elasticity mechanism
for Marathon using Monasca

by using only a command, that automatically configures and con-
textualizes all the VMs that compose the cluster infrastructure. As
stated above, all the sources of the recipes used to configure the
cluster are stored in GitHub.7 Moreover, for the sake of repro-
ducibility of the results of this contribution, a Docker container
image with the EC3 client installed has been released.8

4. Results

The experiments performed in this paper address three main
aspects: (i) the efficiency of the deployment of a medium-sized
virtual infrastructure; (ii) the overhead of the horizontal elasticity
compared to the execution with resources deployed upfront;
and (iii) the ability of the vertical elasticity to reconfigure the
reservation of resources for a running job to meet a specific QoS.

For the first case, this work measures the deployment time
of a cluster with 50 nodes and 100 processing cores. This time
includes the deployment of the VMs, the download and instal-
lation of the software dependencies, and the configuration of all
the services. This process is entirely automatic.

The second case covers the execution of a set of 20 parallel
Spark jobs at different time intervals. Initially, there are no pro-
cessing resources except the front-end node of the cluster and the
system automatically starts and reconfigures them as required.

7 https://github.com/grycap
8 https://hub.docker.com/r/eubrabigsea/ec3client/

The execution intervals have been defined in a way that the job
queue is flushed completely, triggering the suspending of idle
nodes.

The third case deals with the Quality of Service guarantees for
a Marathon job executed in the cluster. The cluster is busy with
other jobs competing for the resources, so we aim to assign the
required CPU time to meet the targeted QoS. The developed tool9
dynamically readjusts the share of CPU to reduce the assigned
resources to a job if it is over progressing and increases the
assigned resources if the job progress is lower than expected.
We measure the job performance as the amount of CPU time
consumed by a job according the given time frame in the QoS
agreed.

For the three experiments, the physical infrastructure used is
composed by two type of nodes. The first type of node has two
Intel(R) Xeon(R) CPU E5-2683 v3 2.00 GHz (14 cores) processors,
64 GB of memory RAM, 240 GB of Solid State Disk, two 1 GB Eth-
ernet network adapter and one 10 GB Ethernet network adapter.
The second type of node has two Intel(R) Xeon(R) CPU E5-2660
v4 2.00 GHz (14 cores) processors, 128 GB of memory RAM, 250
GB of Solid State Disk, two 1 GB Ethernet network adapter and
one 10 GB Ethernet network adapter. The Storage Area Network
is a Dell Equallogic PS4210 with 16 TB availables. This hardware
is managed by the OpenNebula Cloud Management Framework
and the KVM hypervisor.

9 https://github.com/eubr-bigsea/vertical_elasticity

https://github.com/grycap
https://hub.docker.com/r/eubrabigsea/ec3client/
https://github.com/eubr-bigsea/vertical_elasticity
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Fig. 3. Deployment time of the different node types.

4.1. Deployment metrics

The deployment of the data analytics cluster is done automat-
ically through EC3. The following metrics have been evaluated to
show the performance and the impact of the usage of the elas-
ticity on the user experience when interacting with the virtual
cluster:

• Deployment of the static components (not managed by
CLUES): Mesos master (front-end of the cluster, with 4 CPUs
and 16 Gb of RAM), Monasca master (with 2 CPUs and 8 Gb
of memory RAM) and 3 HDFS datanodes (with 2 CPUs and 2
Gb of memory RAM). This set of nodes are deployed by the
EC3 client in the virtual cluster creation step.

• Deployment of the first working node (with 1 CPU and 2 Gb
of RAM), including the creation of the golden image that will
be used to speed up the deployment of the rest of the elastic
nodes. This feature consists on creating a VMI from the first
working node correctly configured and integrated in the
system. Thus, this VMI is used for the next working nodes
deployed in the system, accelerating their configuration.

• Deployment of a second working node using the created
golden image to measure the impact of the usage of golden
images in subsequent nodes.

• Concurrent deployment of multiple concurrent working
nodes (10, 20, 35 and 50 nodes). It will show how the system
will react when a large set of nodes are requested.

These measures give information about the overheads on the
deployment of the full operational cluster and their reconfigura-
tion, which serves as basis for defining elasticity mechanisms and
suitable applications.

The first step is the deployment of the front-end and the set of
static nodes (front + monasca node + 3 datanodes). The average
deployment time for the complete initial infrastructure is 23 min
26 s (1406 s). Fig. 3 shows the comparative deployment time of
the initial infrastructure and the working nodes. The deployment
of a node without golden image plus the creation of the golden
image when the node has been configured takes an average time
of 10 min 31 s (631 s) whereas the deployment of nodes with
golden images takes an average time of 6 min 38 s (383 s). Clearly,
nodes deployed from a Virtual Machine Golden Image, created on
the fly, show a smaller configuration time.

Finally, for testing the scalability of the system, we present
the deployment times for a concurrent deployment of multiple
nodes (10, 20, 35 and 50 nodes). Table 2 depicts the results of
each test, where golden images have been used to accelerate the
deployments. The configuration system has been improved in the

Table 2
Deployment time for different quantities of nodes (deployed simultaneously).
Number of nodes 10 20 35 50

Average time per
node (sec.)

513.647 560.349 666.997 900.841

Total time (sec.) 520.472 592.602 751.997 1052.883

Table 3
Scheduling of the jobs to be executed.
Job Submit Job Submit Job Submit Job Submit

1 0:00:30 6 0:35:54 11 0:55:14 16 1:31:14
2 0:01:15 7 0:52:34 12 1:28:34 17 1:31:54
3 0:01:53 8 0:53:14 13 1:29:14 18 2:05:14
4 0:18:34 9 0:53:54 14 1:29:54 19 2:21:54
5 0:19:14 10 0:54:34 15 1:30:34 20 2:38:34

frame of the EUBra-BIGSEA10 project to deal with the bottlenecks
that appear when a large number of nodes are simultaneously
configured. In the original approach a single VM is selected as the
‘‘master’’. Then, Ansible is installed in this VM, which configures
all the VMs in parallel. In this new approach (suitable for a large
number of simultaneous VM deployments), Ansible is installed
in all the VMs and each one configures itself in parallel. This
approach increases the latency but reaches higher scalability,
being successfully demonstrated in more than 100 machines.

Fig. 4 shows the latency time (in seconds) from the request
of the deployment of 50 simultaneous nodes in the cluster to the
actual provisioning of the resources. The graph shows the number
of machines deployed at each timestep. The figure shows that
most of the nodes (42) are fully configured in less than 980 s. The
rest of the nodes take a bit more time (72 s). It is only 7.3% more
than the first groups of nodes. This delay is produced by different
bottlenecks of the cloud platform (mainly network) when a large
number of nodes are configured in parallel.

4.2. Horizontal elasticity

The second case consisted of submitting 20 parallel data an-
alytics jobs (implemented in Spark) to an infrastructure that
initially had only two nodes started (2 vCPUs and 4 GB RAM each).
These jobs were submitted at different time frames as shown
in Table 3. The infrastructure had to detect the registration of
a Spark framework, realize that there are not enough resources
and deploy an additional node when a job remains queued longer
than a given threshold (5 s in the experiment), with a cooling
time (waiting time to perform a new action) of 5 min. Jobs were
prepared to run for approximately 11 min and were able to use
up to 4 cores each and request 0,5 GB of memory RAM. It is
important to state that even if the job requests for 4 cores and
Mesos offers it 2 cores, the job would anyway start. If there are
enough resources (4 free cores), the job will take them all.

During the execution of the jobs, we measured the timestamp
at the submission, execution start and execution end. We also
registered all the changes in the status of the nodes, which
could be OFF (not deployed), RESTART (being restarted), IDLE
(powered-on and without jobs allocated), USED (executing jobs)
or SUSPEND (being suspended). Fig. 5 shows the results of the
evolution of jobs and Fig. 6 shows the status of the nodes along
time.

Fig. 5 shows the number of jobs (vertical axis) along time
(horizontal axis) for five metrics. Submitted, Started and Ended
lines denote the accumulated number of jobs that have been
submitted, have actually started and have been completed over

10 http://www.eubra-bigsea.eu/

http://www.eubra-bigsea.eu/
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Fig. 4. Deployment time for 50 simultaneous nodes.

Fig. 5. Jobs queued vs jobs running in the platform during the experiment and accumulated list of jobs (suspend mode).

Fig. 6. Evolution of the state of the cluster nodes, started and suspended on demand.
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time. The lines Queued and Running denote the number of jobs
that are queued or concurrently running at a given time. The ex-
ecution profile has been defined to ensure that there are peaks of
workload that require starting up new VMs and idle periods long
enough to trigger the suspension mode for the VMs. This is used
to analyze the behavior system when adjusting the infrastructure.
More details are provided in Fig. 6.

As depicted in Fig. 5, the length of the queue does not grow
above one job. The delay between the submission and the start
of a job (the difference in the horizontal axis between submitted
and started lines) is negligible. It is important to remark that
this overhead relates mainly to the time required for the VMs to
change from suspended to running, as the VMs are suspended
on disk rather than destroyed. It should be pointed out that the
execution time for the jobs varies according to the resources
available at the executing time.

Fig. 6 shows how the working nodes are started and sus-
pended on demand. The figure shows the number of working
nodes (vertical axis) that are in each one of the five possible status
(described at the beginning of this section) along time (horizontal
axis). It is important to outline that transitions are very short, and
the submission pattern of the execution enables emptying the
queues and triggering the suspension of idle resources. Moreover,
the default amount idle time to switch off a node in CLUES was
used (20 min) but this value can be modified by user depending
on the requirements.

4.3. Vertical elasticity

Running batch jobs that need to deal with QoS restrictions on
infrastructures with a significant amount of free resources is not
a complex task. For this type of infrastructures, it is very easy to
accomplish the QoS restrictions because the scheduler only has to
assign the maximum resources to all running applications. Thus,
vertical elasticity makes sense in congested infrastructures. The
QoS restrictions for this type of jobs are defined as the allocation
of a minimum CPU time to the job during a given time interval.

The job used for checking the vertical elasticity capabilities of
the implemented architecture takes 480 s (one CPU) and 360 s
(two CPUs) to be completed. The number of the seconds (CPU
time) that the mechanism must allocate is set to 400 s, which
is a value between the completion time when using one and two
CPUs. If a node has more amount of CPU share available than the
job needs, the job uses all amount of CPU share. The QoS restric-
tion on this test is set to the same completion time than when the
job is executed using one CPU. Indeed, the developed mechanism
for providing vertical elasticity is designed to make all jobs with
QoS restrictions of a congested infrastructure to accomplish their
agreed QoS. The maximum overprogress threshold is 10%, which
means the job enters to overprogress state when its performance
is 10% better than the required for meeting the targeted QoS.

The test has special interest because the job enters into the
three possible states (described in Section 3.2) during the exe-
cution. In addition, the experiment ends in 393 s, demonstrating
that the system can scale up and down to guarantee a minimum
CPU time. The execution trace can be observed in Figs. 7 and 8.

Fig. 7 shows the performance value (obtained using (2)) and
the performance state (obtained using 1) along the experimen-
tation. The Y -axis and X-axis of Fig. 7 represent, respectively,
the performance and the time when the sample was collected.
The Y -axis colored ranges denote the performance state: red,
green and yellow represent, respectively, underprogress, ontime
and overprogress.

Fig. 8 shows a comparison between the consumed and the
desired CPU time consumed, and the assigned share of CPU at
each sample. The X-axis represent the time when the sample

was collected. The desired CPU time is the amount of time that
the developed mechanism estimates that should be consumed
at the moment of which the samples are collected. The left Y -
axis represents the amount of CPU time consumed in seconds.
The right Y -axis represents the share of CPU assigned to the
job during the experiment. If the working node where Marathon
executes the job has 1 CPU and the user assigns 1.0 CPU share to
the job, it means that the job has the 100% of the CPU share of
one CPU. Thus, if the working node has 3 CPU and the CPU share
assigned to the job is 2.5 CPUs, the job has reserved all of the CPU
share of two CPUs and the 50% of the CPU share of the remaining
CPU.

It should be noted that instants when the samples were col-
lected are the same at both figures. The first sample corresponds
to the start of the job. When the second sample is collected,
it can be observed in Fig. 7 that the job performance state is
overprogress. In Fig. 8 it can be observed at the second sample
that the difference between the current time of CPU consumed
and the desired time of CPU consumed is big enough to make the
performance above the overprogress threshold. Thus, the Supervi-
sor decrements of the assigned share of CPU, which can be seen
in the dashed line at the same figure. Then, the Executor performs
a checkpoint as soon as it realizes that the Supervisor decreased
the job assigned resources.

As it can be seen in Fig. 8, the current CPU time consumed
is lower than the desired CPU time consumed in the next two
samples but, the job’s states are not equal. In case of the third
sample, the performance state is underprogress (the performance
value is 69%) so the Supervisor will do an increment of the
assigned share CPU and the Executor will create a checkpoint.

Regarding the job performance at the fourth sample, the CPU
time consumed is lower than the required CPU time calculated
using Eq. (1). Due to the underprogress threshold is set to 90%
and the performance value (calculated using Eq. (2)) is 93%, the
performance state is ontime. For this reason, the job does not
require to be resized.

The last sample corresponds with the end of the execution.
Figs. 7 and 8 show that the application terminates fulfilling the
quality of service agreed with 87 s of margin.

We measured that the time from the start of the checkpointing
to when it is stored in the shared directory (NFS) ranges from 30
to 60 s. After several tests, we estimate that executing one check-
pointing and restart of the job execution increases the execution
time in 6 s. Thus, even though the time of checkpointing in NFS
is considerable, the downtime of the job execution is negligible.
This is because the container continues to be executed while the
checkpoint is created, similarly to virtual machine live migration
techniques. Indeed, only when the checkpoint is completed the
container is stopped and, then, it is immediately rescheduled
in a new machine. Therefore, the time required for loading the
checkpoint and starting the process is negligible.

It is complicated to estimate the overhead caused by the
checkpoint mechanism in the experiment. The duration of the
experiment was 393 s. The average duration of the job execution
with 1 and 2 CPU takes, respectively, 480 and 360 s. In this
experiment, the mechanism performed two checkpoints, so the
overhead of checkpointing is 12 s. Thus, the overhead of the
mechanism will be lower than 33 s and higher than 12 s.

5. Discussion

This section compares the proposed tools and solution ex-
posed in this work with the already available solutions that can
be found in the literature regarding the execution of time critical
applications. Concerning cloud orchestration, our analysis of the
state of the art revealed that there is no general orchestration
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Fig. 7. Performance during the experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The dashed line represents the CPU share assignation during the experiment. The rest of the figure is a comparison between the CPU time consumed and
the CPU time (desired) that the job is expected to consume at the time when the sample was collected.

tool that enables the deployment of cloud applications in several
on-premises and public IaaS deployments using the standard
TOSCA specification. Most of them only provide access to a very
limited list of cloud providers. Our proposed cloud orchestration
solution, the IM tool, supports the TOSCA standard and a big
number of public and federated Cloud providers and on-premises
CMPs, making the application cloud agnostic. The IM automates
the Virtual Machine Image (VMI) selection, deployment, config-
uration, software installation, monitoring and update of virtual
infrastructures.

The deployment of Big Data frameworks such as Mesos or
Kubernetes requires an underlying distributed computing and
storage infrastructure, that can be provisioned from on-premises
clouds, public clouds or even from bare metal. However, there are
several limitations that hinder the adoption of these frameworks,
especially by Data Scientists that may be well versed in using
the frameworks themselves but not specifically on efficiently
deploying and scaling them. The framework presented in this
paper in combination with the EC3 tool, considerably simplifies
the deployment of these Big Data frameworks. EC3 allows to
automatically deploy these Big Data frameworks with a single
command, and without the need of user interaction.

Most of the already available solutions to automatically deploy
clusters provide a virtual cluster with a fixed number of nodes,

other solutions are oriented to a specific LRMS or they are tied to
Amazon EC2 and, therefore, cannot provision nodes from other
public Cloud providers, or even on-premises Cloud deployments
(e.g. based on OpenNebula, OpenStack, etc.). The vertical elasticity
mechanism presented in this work in combination with EC3 and
the IM tools allows the user to deploy virtual clusters offering at
the same time both horizontal and vertical auto-scaling capabil-
ities. In addition, the contribution of the presented mechanism
to the vertical elasticity capabilities (i.e. executing data analytics
jobs embedded in Docker containers using Marathon involving
common applications with QoS restrictions) was not found in the
literature.

6. Conclusions

This paper has presented a software architecture and a set of
open-source tools and configuration recipes for deploying a vir-
tual self-managed cluster which offers horizontal (in and out) and
vertical (up and down) scalability. Moreover a series of plugins
have been developed to offer quality of service capabilities inside
the cluster.

Regarding the technical requirements identified at the begin-
ning of the paper, the test cases defined and the results exposed,
it can be concluded that all the requirements proposed were ful-
filled by the architecture presented. Running unrestricted batch
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jobs is one of the basic functionalities offered by the standard
cluster configuration. In all the test cases it is demonstrated how
the cluster admits different types of jobs and executes them
without issues.

For running periodic batch jobs, the cluster must be prepared
to accept a set of jobs defined to be executed in an specific time.
In Section 4.2 a batch of jobs are programmed to be launched and
the cluster executes them by adjusting the resources available.
This demonstrates that the defined architecture is not only able
to process this kind of scheduled jobs, it is also able to self
adapt horizontally depending on the workload. Moreover, the
jobs presented in Section 4.2 are a set of Spark jobs that were
executed in parallel thus complying with the last requirement
presented which required to execute Spark jobs in parallel.

In addition, the QoS restrictions and the vertical elasticity
were tested in Section 4.3. The execution of batch jobs with
QoS restrictions by adjusting the share of CPU assigned is done
thanks to a set of plugins developed and deployed automatically
in combination with the frameworks available in the architecture
presented.

Moreover, and as an extra step towards reusability and com-
munity usage, all the code developed for this project is publicly
available and any user with access to one of the supported cloud
providers (which include the most popular ones) can deploy an
elastic cluster and tweak the configuration to fit the needs.

Future work includes testing the cluster with bigger setups,
such as several hundred nodes and thousands of jobs during long
periods of time but unfortunately and due to all the test being
done in real infrastructures with shared resources and real users,
the test cases have to be limited.
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