Accepted Manuscript e
. . . . . FiGICIS:
Privacy-preserving and sparsity-aware location-based prediction method S SIS RS
for collaborative recommender systems

Shunmei Meng, Lianyong Qi, Qianmu Li, Wenmin Lin, Xiaolong Xu, s

Shaohua Wan s
PII: S0167-739X(18)31805-3

DOI: https://doi.org/10.1016/j.future.2019.02.016

Reference: FUTURE 4769

To appear in:  Future Generation Computer Systems

Received date: 28 July 2018
Revised date: 19 December 2018
Accepted date: 11 February 2019

Please cite this article as: S. Meng, L. Qi, Q. Li et al., Privacy-preserving and sparsity-aware
location-based prediction method for collaborative recommender systems, Future Generation
Computer Systems (2019), https://doi.org/10.1016/j.future.2019.02.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.future.2019.02.016

'School of Computer Science and Engineering, Nanjing University of Sci- .«ov and Tev.mology, China

3 School of Computer and Software, Nanjing University of Informa’ on Se” .. ~ and Technology, China
®School of Information and Safety Engineering, Zhongnan Univer. =t Ecc .omics and Law, China

1.

Privacy-preserving and Sparsity-aware Locatior -be sed
Prediction Method for Collaborative Recommenc'=r >, <tems

Shunmei Meng', Lianyong Qi’, Qianmu Li', Wenmin Lin* Xiac .ong Xu’,

Shaohua Wan®*

“State Key Laboratory for Novel Software Technology, Nanj  1g Unive. :ity, China
3School of Information Science and Engineering, Qufu Norm. ' Univer ity, China
4 Department of Computer Science, Hangzhou Dianz* ™ iivers..,, China

{mengshunmei@njust.edu.cn, lianyongqi@gmail.com, ¢. nmu@njust.edu.cn,
linwenmin@hdu.edu.cn, xIxu@nuist.edu.cn, haohua. an@jieee.org }

Abstract. With the rapid growth of public -'- ' "___.igs, how to design effec-
tive prediction models that provide appropria. recommendations for potential
users has become more and more imr ~**ant. In wynamic cloud environment,
both of user behaviors and service pert. 'ma .ce are sensitive to contextual in-
formation, such as geographic locat‘on ini. mation. In addition, the increasing
number of attacks and security threav. a.. ~ brcaght the problem that how to pro-
tect critical information assets such as . ~usiuve data, cloud resources and com-
munication in a more effective «. 7 s~ manner. In view of these challenges,
we propose a privacy-preserving an. “narsity-aware location-based prediction
method for collaborative recommender systems. Specifically, our method is de-
signed as a three-phase * cocess. Firstly, two privacy-preserving mechanisms,
i.e., a randomized data . ~fuscatior technique and a region aggregation strategy
are presented to prote t the . ‘ve ¢ information of users and deal with the data
sparsity problem. T .en ¢ location-aware latent factor model based on tensor
factorization is apy ‘~d .o ex .lore the spatial similarity relationships between
services. Finally predic. *n are made based on both global and spatial nearest
neighbors. Exr .. ments are designed and conducted to validate the effective-
ness of our proposal. “he experimental results show that our method achieves
decent pred ... 1 accuracy on the premise of privacy preservation.

Keywords. = .cation-aware recommendation, Privacy-preserving, Data sparsi-
ty, Te’ sor factor.. ation

) .woduc.on

Recomn. ndat’ ,n has been a hot research topic with the rapid growth of cloud ser-
vir ss | 1-21. Great efforts have been done both in industry and academia to develop
ef ective p :diction models for recommender systems, which mainly aim at exploiting

' C cresponding author



available information to provide users with satisfying recommendation [3- ]. With
the popularity of mobile applications and devices, most cloud service. ~or.d be in-
voked everywhere [5]. Because of the dynamics of cloud environm. ~t, me * cloud
services become region-sensitive. Actually, user preferences, qualitv ~f se. ‘e (QoS)
and the popularity of services are all varying with the change ¢ use ” ceographic
location. Location information plays an increasingly importan. =l- in both users’
behaviors and service performance, especially in dynamic ¢'~1d ew. “ronment and
real-world applications.

Although there have been some researches focusing on stu 'ving lc .ation influence
to recommendation models [6-8]. Most of them merely f~__sed u.. we location influ-
ence on user preferences. Few work paid attention to t «¢ Ie .at. n influence on QoS
performance of services. Compared with traditional intc.uet se vices, QoS of cloud
services is more sensitive to location due to the dynamic * ot wneir environment. Both
of QoS of cloud services and user behaviors are usually ¢ \anging over geographic
location. Thus it is still a fundamental task for 7ecomw. ~en<er systems to provide the
most beneficial suggestions to potential users with e consideration of location in-
formation. Moreover, data sparsity is always ....vus wreat that deteriorates the per-
formance of recommendation methods [9-10], .. “ere users may only use a small
number of services and provide limited G - . ~~+ds. Under a data-sparsity scenario,
existing collaborative recommendation moa. 's fail to capture the similarity relation-
ships between users or services effect. .'v. Fc ~torization technique has been a suc-
cessful prediction model used in recomm. nac. systems and proved to be an effective
way to address the data sparsity prc .- 11 12].

In addition, the ever-increasing nun.. »r of attacks and security threats also bring
the privacy preservation problem. which has been an important issue emerged to be
addressed in complex cyber aviro. ment [13-14]. To make effective recommenda-
tions, user sensitive informat. ~n, such 1s observed QoS values, activity patterns, loca-
tion information, social 1~ .ations. *r ,, etc., are collected by recommender systems,
which puts users at risk. ('he sehavior data and location information of users may be
abused or even resold to  autb srized parties for profits. In location-aware recom-
mendation models, b .th locau. .1 information and observed QoS data could disclose
the private inform .tioi. ~f users. Thus effective privacy-preserving mechanisms
should be integrat~" into recommendation models to protect the private information
of users in a mor : eff ctive and secure manner [15-17].

Based on thes. ~servations, in this paper, we propose a novel privacy-preserving
and sparsity- .ware loc. tion-based prediction model based on tensor factorization. The
proposed r ode! aims to achieve a tradeoff between prediction accuracy and privacy
preservation. . " 1 iin contributions of our proposal are summarized as follows:

® A privacy-preserving location-based collaborative recommendation algorithm

is prop¢ sed to achieve a tradeoff between prediction accuracy and privacy
p-~<er ation. Firstly, a user-service-location model and a security model used
ir our method are defined.

s Th n two privacy-preserving mechanisms are proposed: 1) A random pertur-

" .don technique is employed to protect the observed QoS data of users; 2) A




region aggregation strategy is presented to preserve the specifi loc ition of
users and deal with the data sparsity problem.

e  Moreover, a location-aware tensor factorization model is en., 'oyeu “» mine
the similarity relationships between services over location a“aotiv." so as to
provide location-aware predictions.

The remainder of this paper is organized as follows: Section . “ev .ews the related
work. Then the problem statement of our work is presented in €~~tion © Based on the
analysis in Section 3, a privacy-preserving and sparsity-awa ¢ locat. n-based predic-
tion algorithm is proposed in Section 4. Section 5 empirica.'v studi s the empirical
performance and efficiency of our method. Finally, Sectic-. J conv.uues this paper and
provides some future work.

2. Related Work

In this section, we review the related work of reco. “menaation models from four as-
pects: location-social influence, spatial-temp~=~! === ,ce, factorization techniques
and privacy-preserving recommendation models.

Location-Social Influence. Many resr ~~hes have demonstrated that there is a
strong correlation between user’s locations a. 1 s/her POls (Points of Interest) as well
as social connections. Recent location- ~are 1 ~ommendation studies mainly focuses
on exploiting the geographical influence r . ~ial influence to improve prediction ac-
curacy [18-25]. Lian et al. [18] r=nose . collaborative location recommendation
framework to exploit the relations betw "=n users, activities and locations, so as to pro-
vide location-aware recommendations. The research [19] presents a location-aware
probabilistic generative model .iav . verages location-based ratings to model user pro-
files and provide location-re’ ymmena tions. Chen et al. [20] employ the location in-
formation and QoS values *2 clu. ~r 1 sers and services to provide personalized service
recommendations. Jiang r. al. 21] propose a personalized travel sequence recommen-
dation approach by learn.. ~ * ypic7 . package model from big multi-source media, trave-
logues and communit™ -contric  :d photos. The references [22-24] focus on analyzing
the location influens ¢ . ~ users' check-in behaviors, and combining user preferences,
location influence or sociar ‘nfluence into a geo-social recommendation model. The
authors in [25] - resc 1t an instance-region neighborhood matrix factorization model
where two leve.~ o’ geographical characteristics are integrated into the learning of
latent factors ,fusers "nd locations to predict users' preferences on locations.

Spatial-" emr oral Influence. Recently, to obtain more accurate recommendations
for users, ma. _ rese .rches not only consider location influence but also temporal influ-
ence [2f L.]. Zha. g et al. [26] present a personalized trip recommendation approach
based « n not on y the temporal-spatial constraints but also user specific preferences on
POIs. 1. ~ refe :nce [27] proposes a spatial-temporal topic model to infer user prefer-
enr s, the spatial and temporal patterns of topics embedded in users’ check-in behav-
io s, and th : correlation between sentimental tags and rating scores from users’ check-
in o 1 rat"ig behaviors. Yuan et al. [28] study users’ mobility behaviors from users,
. -~tian information, temporal information, and activities, and propose a nonparamet-




ric bayesian model for context-aware applications. Wang et al. [29] prop’ se ¢ spatial-
temporal QoS prediction method where the temporal QoS prediction is -~ ulated as
a generic regression problem and a zero-mean Laplace prior distribu. ~n as. “mption
is made on the residuals of QoS prediction. The authors in [30] »resen. ~ spatial-
temporal latent ranking approach based on a ranking-based pairw se t¢ - ~r factoriza-
tion framework to model the interactions among users, POIs, a.. ' ti ae information.
Yang et al. [31] design a spatial-temporal activity preference m~del a.. ! apply a con-
text-aware fusion framework to integrate the spatial and ten poral p. “ference models
for preference inference.

Factorization Techniques. Factorization Techniques .. udiug voth matrix factor-
ization and tensor factorization have been successfully utili- ca 1 prediction models
since the Netflix Prize [3, 32-37].The reference [3] propu.es a b .althcare recommen-
dation model which presents a topic model based oun “vbrid matrix factorization
methods to mine user preference distribution and dactor fea re distribution. He et al.
[33] design a novel learning algorithm based ¢n ma. “x *.ctorization technique for
online recommendation, which aims to mine user pi. “rences from implicit feedback.
Zhang et al. [34] propose a temporal QoS-a .. .ccuiumendation approach based a
non-negative tensor factorization technique to ac ! with the triadic relations among
users, services and time. The authors in _ ) ~ronoses two distributed approaches
based on high-order and large-scale tensor 1 < orization to make a trade-off between
convergence speed and prediction acci. .~v. S, et al. [36] factorize user-item rating
matrix and other contextual movie simil vity matrices to integrate contextual infor-
mation into the recommendation m - 1= Th - literature [37] designs a mashup service
recommendation model by combining u.~ implicit API correlations regularization into
probabilistic matrix factorization model to enhance the recommendation diversity.

Privacy-preserving Recor ./mendation Algorithms. In recommendation models,
the requirement to collect u.~rs’ QoS data and other sensitive information probably
puts users at risk. To enab’: effec v recommendation from shared data under priva-
cy protection, there have pee’ many works on privacy-preserving recommender sys-
tems. Existing works on | sacy preserving recommendation models can be divided
into two categories, ".e., cryp.. graphy based recommendation approaches and data
perturbation based r .coi. mendation approaches.

Cryptography k--ed recoramendation approaches usually adopt homomorphic en-
cryption to encr pt u er private information [38-41]. Qi et al. [38] present a privacy-
preserving distric *t d service recommendation method based on Locality-Sensitive
Hashing stra’ 2gy to acieve a tradeoff among prediction accuracy, privacy preserva-
tion and ef icie' cy. The reference [39] proposes a privacy-preserving collaborative
QoS predictio.. frar .ework which combines Yao’s garbled circuit and additively ho-
momor’ aic en-ryption by additively secret sharing to address non-linear computa-
tions i QoS pi :diction. Kaur et al. [40] present a privacy-preserving collaborative
filtering . ~her ¢ on arbitrary distributed data based on multi-party random masking
an . polyr nmial aggregation techniques. Li et al. [41] propose an efficient privacy-
pt serving collaborative filtering algorithm for online recommendations, where an
unsy.. ~~"_nized secure multi-party computation protocol is presented.
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Data perturbation based recommendation approaches generally inject - ois¢ on user
data to protect user privacy [17, 42-48]. Zhu et al. [17] design -~ s'.nilarity-
maintaining privacy preservation strategy to obfuscate the QoS data ™om .~ users’
perspective and propose a location-aware low-rank matrix factorization ~ethod to
improve the robustness of recommendation models. The resear .n [« ~} nroposes a
simple yet effective privacy-preserving framework by applying a.“~ ¢ sfuscation tech-
niques, and introduces two privacy-preserving QoS predictic= appi. *ch under the
privacy-preserving framework. Boutet et al. [43] firstly desig 1 an ob. scation mecha-
nism revealing only the least sensitive information and then . opose ¢ randomization-
based dissemination algorithm ensuring differential prive . Poiauuis et al. [44] pro-
pose a multi-level privacy-preserving method for coll: yore’.ve fltering systems by
perturbing each rating based on multiple levels and diffeicut ran ,es of random values
for each level. The authors in [45] propose a hybrid pi. 2cy-preserving protocol for
matrix factorization by combining partially homormorphic e cryption with Yao's gar-
bled circuits. Casino et al. [46] propose a novel nriva 7 v sserving collaborative fil-
tering method based on micro-aggregation, which g. antees k-anonymity and makes
a tradeoff between the privacy of users’ prefer ..ccs wuu recommendation accuracy.

Different from previous research work, in our v. ~vk, we consider location influence
into recommendation models by distingt ... = resion-sensitive QoS metrics from
region-insensitive QoS metrics. A randomi. *¢ data obfuscation technique and a re-
gion aggregation algorithm are used tc . -=ser\ ~ the observed QoS data and location
information of users respectively. Beside® 1. most existing recommendation works,
factorization techniques are usuall, ..~ to predict the rating of users for services
directly. While in our proposal, we usc . high-order tensor factorization technique to
mine the similarity between services.

3. Problem Statemen.

In this section, we first , ~»s .nt 2 motivation scenario of our proposal and formulate
our problem. Then a t asor de. ~ aposition model used in our proposal is introduced.

3.1 A Motivar'.. Scenario

In this sectio.. v e will present a recommendation scenario to show the research
problem of ¢ .r work. Tom is a software engineer working in China, and he wants to
rent some ¢ oud virtv ] machines (VM). However, there are large-scale candidate ser-
vices that can atis”y his functional requirement. Then the problem that he faces is
how to .ind ar opcmized service that is most suitable for him in nonfunctional re-
quirem nts (Qo ). The QoS metrics of VM services contain price, stability, speed and
security. “Tere ye assume that Tom concerns more about stability and security.

~Now, there are two candidate VM resources A and B, which both meet the func-
tic 1al requ -ements of Tom. And Tom has not used both of them before. The overall
rati, - ¥ . the two candidate services are almost the same. However, in dynamic
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uie. ' omvironment, the QoS performance (such price and response time) of the same




service invoked in different locations maybe different. For example, th- rat 1g of A
and B in China are respectively {4.7, [4, 4.6, 4.8, 4.6]} and {4.5, [4.8, * 4 4, 4.5]},
where 4.7 is the overall rating and [4, 4.6, 4.8, 4.6] is the rating vect. - for 1. 'ividual
QoS. Then Tom may choose service A in China. While in the U.S the . “ng of A
and B are respectively {4.4, [4, 4.2, 4.4, 4.5]} and {4.6, [4.8, 4 5, 4 7, 1.5]}. Then
Tom may choose resource B when he travels to the U.S. for busi..*ss dut if we make
predictions based on all ratings without considering location ir""ience, *he prediction
for Tom in both countries maybe the same, which is obviousl unreas mnable.

From this example, we can find that the QoS performanc of clo d services may
vary over geographic location. And the correlation betv _.n us... and ratings over
mobile location may be weakened. Most existing rec »mn .aa. tion methods make
predictions for the target user (the user needs to be recouunend d) based on the col-
lected ratings without considering the location influence .~ Qo> performance of cloud
services. Besides, both of the observed QoS data ~nd locati n information could dis-
close the private information of users, such as their 1. Wit und affiliations. Thus, the
security and privacy problem is also an important .. e to be addressed in location-
aware prediction problem. In addition, prive . p.couiving mechanisms may lead to
less accurate prediction performance, as the rea. nformation of users (such as the
observed QoS data and location informe ... ‘= blurred. Thus we should make a
trade-off between prediction accuracy and p1. 77 oy preservation.

To address the privacy-preserving lo .“on-a rare prediction problem, we propose a
privacy-preserving and location-aware co.'abc tive recommendation model to obtain
an optimized recommendation.

3.2 Problem Formulation

Some important concepts .. defir tions are presented in this section. To mine the
triadic relations among us' ¢s, clou.” .ervices, and location features, we first introduce
the user-service-location .nod  used in our proposal. Then a security model for priva-
Cy preservation is presente..

(1) User-Service-! acation v.odel:

In the user-servis e-loc. “on model, given a user set U and a service set S, the num-
ber of users and sr  ‘~es are respectively N and M. Each service in S is associated with
an H-dimensior .1 Q¢ 3 vector O = (91,92, -9 ], Which indicates the features of non-
functional proper..> of the services. The rating of user i on service j at location Zii is
denoted as {7 8 RQU- o4 }, where 1 (r;; 20) denotes the overall rating of user i on ser-
vice j, RQ, =[rjj,rc s ...,rq§[ ]is the rating vector for individual QoS metric, li/' is a
location tas inu. at' (g the specific location where user i invoked service j.

Reg’ un Div'sion: To analyze the spatial influence to recommendation performance
in dyn: nic clot 1 environment, the invoked location of services is divided into G re-
gione ie., ‘" ,R,,...,R;}. We assume that services invoked in the same region are
lit :ly to L ve similar location-aware QoS performance.

Region- ensitive QoS metrics and Region-insensitive QoS metrics: To mining
the loe....un features of QoS, we distinguish region-sensitive QoS metrics from region-
mse ... ve QoS metrics. Region-sensitive QoS metrics are the metrics that have clear




location features, which are dynamic features relative to location informe 1on such as
response time). And region-insensitive QoS metrics are regular featu,.~ v nich are
usually evolving at a rather slow speed (such as reputation).

In our work, we distinguish region-sensitive QoS metrics from *=gion ~sensitive
QoS metrics by measuring the fluctuation of the rating for each in‘ (vid ' QoS metric
over different regions, which is defined in equation (1).

e
Flu(g;) = G%HZZ(avgmg,rqz;) ~avglrg), 2, (1)

s=1 g=1

Where avg(R,,rq,) is the average rating of metric g, n 1 gion R, of service s, and
avg(rqy ) is the overall average rating of g in all re_*ons o < ,vice 5. A fluctuation
threshold & is given to determine whether a QoS metric 15  =gion-sensitive or region-
insensitive. If Flu(g,)> & , theng, can be seen as o ~gion-« 2nsitive QoS metric, oth-
erwise, ¢q, is a region-insensitive QoS meu.> So the QoS metric vector
Q=I[91,92, ---qy] can be divided into two p~*~ ‘-~  _gion-insensitive QoS vector
1Q=[igy,iq,, .-,iq ] (0<a< H) and e ‘on-sensitive QoS vector
SQ=[591,592, -...5qp] (0<b<H,a+b= _

Global Nearest Neighbors and Spatia, N :arest Neighbors: In our model, the
neighborhood model is item-based. Tra. .*~nal . °m-based CF algorithms usually make
predictions based on the ratings of “neigh. or “*ems selected from the whole collected
data without considering location i ~.~=~e. Different from previous work, we define
two kinds of nearest neighbors in our p. ~nosal, i.e., global nearest neighbors and spa-
tial nearest neighbors, which are described in the following.

Definition 1. (Global Ne7.est . '?ighbors) For a candidate service s, its global
nearest neighbors are the ser. ~es that ave the most similar QoS ratings with service s
at all regions.

Definition 2. (Spatial .Nea’ est Neighbors) The spatial nearest neighbors of service
s in region R, are the serv. = that aave the most similar QoS performance with service
s at the aggregated re .ion of n, (The definition of the aggregated region is presented
in Section 4.1)

(2) Security Mndel:

With the ever ‘inct asing number of attacks and security threats in cloud environ-
ments, the priva. - < ad security problem has been an important issue emerged to be
addressed in ecomm. “der systems. In most existing location-aware recommendation
models, fev we «s ¢ nsider the security problem in their prediction models. The re-
quirement to « 'lec’ users’ QoS record data and other sensitive information probably
puts usr s at risk. 1rig. 1 shows the security model for privacy preservation of our pro-
posal. \s show in Fig. 1, both observed QoS data and location information could
disclose .~~ n+'vate information of users. In complex cyber environment, the private
inf yrmatic 1 of service users may be abused by the potential privacy attackers such as
in incere r« ;commender systems and other unauthorized parties. Thus effective privacy-
prese ~+_ mechanisms should be integrated into recommendation models to protect
w.e  rate information of users in a more secure manner. More detail analysis about




security and privacy problem in location-aware recommendation model is des: ribed in
the following.

Private information of | Potenti . p. fvacy
service users E at acke s
e N iemm—, | N |
‘ The observed QoS data | | No protection = ! ‘ Ur aworized parties | |
AN Y, AN Va
S | — ——
Protect N Res .
r _\'-. :I ! : = ] ) ~
[ Location information | | -0¢, ‘ion-based [
\ , .

| -~comp znder systems |
M |

i Security mechanisms for . “vacy
preservation

| QoS data pe. “rpauon |
\ technique

| Reg'~u agg. <ation |
L. gy

Fig. 1 Security model for privacy preservation.

1) Risk of disclosing the r aservet QoS data: The observed QoS data records con-
tain both the subjective and ob). *ive .eedbacks of users on services, which reflect not
only user preferences but .Iso *he coatextual information of users. Thus more accurate
predictions could be m. le ' y maing the relationships between users and services
based on history QoS sata rv ~r.s of users. However, the observed QoS data may be
abused by insincere .« ~mmender systems or even resold to unauthorized parties for
profits. The real Qos infor.. tion may disclose the private information of users such as
access manners, ‘ pec ‘ic location information, or even user habits and user identity. In
our proposal, tc nrot ct the private information of users form potential privacy attack-
ers, we apply a ran. “mized data obfuscation technique to disguise the observed QoS
data. The re .dor .zed obfuscated QoS data will reduce the association among the QoS
data, users o. 1 ervi es, and then it will be difficult for attackers to infer user habits or
the spec’”_ idenu._ of users so as to protect the privacy information of users.

2) F sk of a. closing location information of users: With the popularity of mobile
applicav ~ns an . devices, specific location information could be obtained easily by
tod .y s network technology. In complex cyber environment, specific location infor-
m tion has become important personal private information of users. According to the
loc. “ion ir .ormation, not only the specific geographic location of users (such as city
~=d region) could be obtained, but also more specific identity information of users
*o1.d be inferred by integrating service category information. Thus it is also important




to protect users’ location information. Most existing location-aware recr .nm ndation
approaches utilize the specific location information, or even the specif.. lat’.ude and
longitude information of users to make personal recommendations. C. ~e the "mecific
location information of users is obtained by the attackers, it will put 1<ers a. -isk. Thus
it is important to blur the specific location information of users to r ake * ~vs in a more
secure environment. To address this problem, a region aggregation. “*r egy is proposed
in our work to expand and fuzzy the target region so as to blur *~= spe. *ic location of
users.

Based on the data obfuscation technique and the region . gregat yn strategy, the
private information of users could be protected, but the pre > tion uccuracy of the loca-
tion-aware recommendation model will be affected. Thu in r (va y-aware recommen-
dation model, it is important to get a trade-off between picuictio’ accuracy and priva-
cy-preservation.

3.3  CP Decomposition Model

To analyze the latent factors among servi. ~. neignoors and location information,
high-order decomposition techniques are necessary. ”TANDECOMP/ PARAFAC (CP)
decomposition model [49] has been provec "o v. ~~ of the most successful approach-
es of high-order decomposition for its uniq. > .ess and related interpretability of the
components. In our work, we will app, - . loca ‘on-aware LFM (latent factor model)
model based on CP decomposition to minc the .riadic relations among services, neigh-
bors and location features. In  « I~ >mposition, an N-dimensional tensor
X e RI*Iv can be decomposed inw. a sum of rank-one tensors, which can be

written as:
RX
YO YNNI e
1

where Ry is the rank of . s r X and vector x}' e R Ry (r=1.,Ry andn=1,.,N).
More details of CP de .omposiu. a can be found in reference [49].

4.  Privacy pr. serving and Sparsity-aware Location-based
Predic..~r Method

In this pa'er, ‘0 m ke effective predictions with privacy protection, a privacy-
preserving au. spr sity-aware location-based prediction method is proposed. Our
method s designed as a three-phase process. In phase 1, two privacy-preserving
mecha: isms are proposed. Firstly, to protect the observed QoS data of users, a simple
but effec e ~.ita perturbation technique is applied. To further blur the geographic
lor ation ¢ € users, regions are aggregated, which also addresses the data sparsity prob-
le. 1. In phe ;e 2, similarity between services is first calculated based on the obfuscated
Qod> '~* .rstly, and then a location-aware LFM model based on CP decomposition is
app " to predict the missing similarities. In phase 3, predictions are made based on
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the history ratings of both the global neighbors and the spatial nearest ne ght rs. The
three phases are described in detail in the following.

4.1  Privacy-preserving Mechanisms

1) QoS Data Perturbation:

For privacy preservation, we use a randomized data obfus~_..lon tec nique to dis-
guise the observed QoS values. The basic idea of the randomi ed data bfuscation is to
add a noise to the real QoS data. By the empirical analysis, th literat ce [42] and [50]
have proved that some approximate computations (such . scalar product) on the ag-
gregated data of the disguised QoS data can be done witl der .at ¢ - even better accura-
cy. The randomized perturbation on the observed QoS vaiues ¢ .a be performed with
the following equation:

rh _ .
r ij —I/'f; 81‘];, r(3)
where r{j is the real QoS data, and r’g is the disguisc ' QoS data of r{j, e, €[—PB,B]is a
random value generated based on the unifor— ... L..on in [—f, ], and S is the

random range. If the range is too large, the accura.’ of the prediction will be very low.
While if the range is too small, the perturb © 7~< value could still disclose the private
information of users. Thus, to make a trade-¢ ¥} stween user privacy and the prediction
accuracy, the range of the random valu. .” is ci. ical and should be well chosen, which
will be discussed in detail in the experime. t.

As the observed QoS data are ot ".~~atea ~andomly, it is impossible to infer the real
QoS values based on the obfuscated «, S values. Thus the observed QoS values are
protected.

2) Region Aggregation:

To make more effective =comme 1dations, location information of users will be
utilized in location-aware - econu. ~r .ation model. Users also have privacy concerns
about their geographic lo atio’ . Since the location preferences or social relationship of
users are private. The dis< ' are ¢ ( such information may lead to security threats. Be-
sides, as the QoS perf rmance . cloud services is usually spatially dynamic, user pref-
erences and ratings 7or .. ~ services also vary over location. Then the neighbors (similar
services) of the same service may also vary with different invoked location. To make
more accurate r con nendations, we should make predictions based on the history
ratings at the ta,,_~t egion. However, the data sparsity problem is always a shortcom-
ing in recom aender . 'stems, especially in location-aware recommendation models.
The related .atir , dat-set of the target user at the target region may be very spare, since
users may on., se . small number of items and provide limited QoS records in a cer-
tain reg’ n.

To solve the privacy preservation problem and data sparsity problem, we employ
an aggre, ~tior strategy to aggregate the similar regions for the target region, so as to
ex and th~ target region and blur the specific location of users. The algorithm of the
re_ion agg >gation strategy is presented in Algorithm 1, which is an improved version
of ti. *h=-hold-based clustering algorithm proposed in [51].
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Algorithm 1 Region Aggregation Algorithm
Input: Regions {R;, R,,..., R}, and region similarity threshold
Output: New region division: {/R,, FR,,..., FR}

1 Ke1,FR, <R

2 fori<2toG

3 forj<1toK

4 fe0,max <0

5 if n( R;, FR) =2 0& n(R;, FR)) = max
6 then max<n(R;, FR).f=]

7 end if

8 end for

9 iff#0

10 then FR; < FR,U R,

11 do merged « False

12 forj<1to K

13 iff#j&n(FR;,"R)=v
15 FR;« "Ry, K< K-1
16 merged « True
17 » “ear ,

18 end if

19 end for

20 while (merged)

21 else K <« K+1

22 FRK = R,‘

23 end if

24 end for

25 return{/R,, /..., R };

In Algorithm 1, a reg on i randomly selected and assigned as a region cluster itself
(Line 1). Then for eve'y u.. ssig' ed region, calculate its similarity with existing clus-
ters. If the similarity * no less tuan the region similarity threshold &, then aggregate the
region to the cluste: with .~e maximum similarity (Line 3-10). If no such cluster could
be found after ch- " ‘ng all existing clusters, then assign the region as the seed for a
new cluster (Lir s 21- .3). After the step above, if the similarity of the new region clus-
ter with another e.~” ing cluster is no less than threshold 8, then merge the two clusters
together, anc reccmpuwe the cluster similarities (Line 11-20). From Algorithm 1, it can
be found the er.h original region R, only belongs to an aggregated
gion FRy (1<x_ "X 1< KZG).

A< prescted in Algorithm 1, we define a spatial similar coefficient
n(R;,R ) €[0,1]. which is denoted as the spatial closeness of the region-sensitive QoS
metrics fo. © .didate services between region R; and R;. The larger 7(R;,R;) is, the
cl ser the vatial features of candidate services between R; and R; is. The spatial simi-
lar ty n(R; ?;) is determined based on Pearson Correlation Coefficient (PCC), which is
defince .u equation (4). Given a region similarity threshold @, if 7(R,R;)> 6, then
reg' s .; and R; can be considered to be similar.
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ZeS(&)mS(R )(RS” RS))*(RS;s —RS;)
ﬂ(st (4)

\/Zes(k)ms(ze )“_” RS’“ \/Zes(R)(\g(R)“ s RS/"

where S(R;)S(R;) is the set of coinvoked services by users at regiv. R; and R, RS s
is the average spatial QoS-rating vector of service s at regic 1 K;, FS;1s the average
spatial QoS-rating vector of all candidate services in S(R;)r S(R;)al R;. Here, RS
and RS; are calculated based on obfuscated QoS data. No#~ tha, - oS data appear-
ing below are all obfuscated data.

Once the regions are aggregated, the specific region 1. uturre' . The location infor-
mation used in our recommender model is no longer w.. accuate locations, but only
represented by a region number. And the sub-regions in the . ggregated region clusters
are discontinuous which would make it more difficul .~ get .ne real locations of users.
And it will be meaningless for attackers to get the ay, “egated region information. Thus
the private location information of users canbr ~ _.__._...

Based on the above two privacy-preservation 1. ~chanisms, i.e., the data obfuscation
technique and the region aggregation strate ,, ““= nrivate information of users could be
protected. To achieve decent prediction accw -ar y on the premise of privacy preserva-
tion, appropriate values for random ran, . # anc egion similarity threshold 8 should be
set, which will be analyzed in the experim. nt.

4.2 Nearest Neighbors Determinatios .

1) Similarity Computatir .:
As presented in Section ., there re two kinds of nearest neighbors, i.e., global
nearest neighbors and spat” 1l neares. ieighbors, which can be calculated as follows.
The global nearest ne ghbr (s of a service s can be determined by equation (5).

sindPe AJueU(s)ﬁU(v)( Que = RQ ) (Rqu*@v) ’ 5)

— —
RQ, - RQ, XHRwa .

—

[
V ZueU(u)ﬂU(v)

where U(s)nU(v, ** the set of users that rated both service s and service v in all re-
gions. Here, ve give a preset similarity threshold J;,, , then the services that have simi-
larity with ~rvi e s 70 less than J;, can be considered as global nearest neighbors of
service s.

The spatial 1earest neighbors of service s at aggregated region FR, can be deter-
mined v 7 equat’ on (6).

sim3" (FR,) = Z“EUW(FRm( Qu ~RQ, )+ [RQ,, - RQ,) , (6)

(%l fre, - |
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where U, (FR,)={ulueU(s)nU(v) &I, € FR, &I, €FR,} . Then the sp dal nearest
neighbors of service s in R, are the services in FR; that have similarity -ith service s
no less than Jg;,, .

2) Similarity prediction based on tensor factorization:

Though the data sparsity problem can be relieved by aggregs ing ‘- .m.. ¢ regions.
The rating data in the aggregated region is still sparse. It’s still har. = mine similarity
relationships between users without enough knowledge of his ury service experience.
Thus it is difficult to find the spatial nearest neighbors for tl > target ser u. To solve
the data sparsity problem further, a spatial-aware LFM model v <ed o-. CP decomposi-
tion is applied to predict the spatial similarity between ser . ices.

The triadic relations among services, neighbors and lc ~at’ Jn fe .tures can be formu-
lated as a three-dimensional similarity tensor Sim e R""*&  The :lement in tensor Sim
is denoted as simgllch , which represents the spatial similat.. - of service i and service j
at the aggregated region FR, . Based on the CF Jecompr sition model, the tensor
sim e "X can be expressed as the inner-produc’ f th. . . R-dimensional vectors:

Sim=~[S,V,L]= s

]

Lov, ol 1 ™

where R is actually the rank of tensor Sim, w. “_h is defined as the smallest number of
rank-one tensors. S =[s;,85,....5z], V -~ Vv, .,vgland L=[T},T,,...Tz]. S,, V,
and /. represent the latent factor vectors «"socviated with service, neighbor and loca-
tion, respectively. Actually, s, and ., atc Lo 1 user vectors, the tensor Sim should be

SW simSYN . So s, ana * should be theoretically equivalent. Then

symmetric and simg; " sim '
equation (7) can be rewritten as ©~'lows:

R
Sim=~Y"s, s, 01, 1 ®)
r=1

As shown in equatir a (»,, ~or pared with the traditional user-item matrix factoriza-
tion model, we consi ~r not only the latent factors between services, but also the rela-
tion with the “geographic. ! trend” reflected in location information. Then the miss
spatial similarity ... Ye predicted by equation (9).

R
i SNN _
Simg " = p+by +zsir °8jy Ol ©

r=1

In egration \ ™M .he observed spatial similarity can be broken into two components:
biases 32] an ' service-neighbor-location interaction. The bias component contains
the ove all aver ge similarity ¢ and location bias b, . To learn the involved parame-
ter 7 an. " involved vectors, i.e., s5;., 5, and /, , we minimize the regularized
sc 1ared ex or function:

min Z
b,s, 1

" (i, ) k)eTrain

2
. SNN _ 7. SNN
szm;]g-k —szmgk “ +HAW | (10)
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where Train is the set of the (i, j, k) pairs for szm, WV which i is known a’ the ‘raining
set. simj;" is obtained by equation (6). W = b} + ||s,,|| +| s ) +||lk, || ~hi n is ap-
plied to regularize the learned parameters to avoid overfitting [53] anc L1e co.tant A
controls the extent of regularization.

In this paper, we adopt stochastic gradient descent to solve eg’ atio: ['0) by loop-
ing through all similarity values in the training set. For each giv.~ t iining case, the
associated prediction error is denoted as e;j :

S SNN \
e = simy’ —Simg” = szmljk —u—by - B_J RN RNy (11)
r=l
Modifying the parameters by a magnitude proportion... 0 ¥ learning rate) in the
opposite direction of the gradient, yielding the following “2cuiience equations:

by <« by (e — A-by)
S, ;v M2 (S, 0L,)— A-8,).11(12)
Lk N +7(el/k '(Si o S/)_l' Lk)

By iterative learning based on equatior. - .2} “h~ spatial similarity between service
i and service j at aggregated region FR, can Y predicted and obtained. And then the
spatial nearest neighbors can be deter. ..~~d L sed on the spatial similarity and the
preset similarity threshold &, .

4.3  Rating Prediction

Once the global nearest ne’ ghbors “denoted as Sy, ) and spatial nearest neighbors
(denoted as Sgyy ) are deter.. med, th .n the prediction of target user i on candidate
service / at the aggregated egion . .” (denoted as7; ) is defined in equation (13). The
prediction consists of tw, par s, i.r., prediction based on the global nearest neighbors
and prediction based or the  natis . nearest neighbors, which are combined by the SAW
(Simple Additive We’ rhting) tecanique.

GNN SNN
B ZeS( M ) sim B Zesszwv(] PRy ~7v)-simy T (FR) (13)
L =a- rj A +(1 a) rj anNF

e NN(/)‘ ]\ﬂ ZGSSNN(IF&)‘ ( Rk)‘

Where o  the weis at coefficient, r is the average rating of service i, r is the aver-
age ratine of >.~vi ¢ j at the aggregated region FR; , Sgyy (/) and SSNN( J,FRy) re-
spectiv 1y repr sent service j’s global and spatial nearest neighbor set where the ser-
vices h ve been 1sed by user 7, 7, is the overall average rating of services in Sgyy (/) ,
and ¥ is.. - - .erall average rating of services in Sqyy (j, FR;) .

In our 1 oposal, there are two schemes to determine « , which can be a fixed value

or . » emp .ical value. For the fixed scheme, « can be set as ¢ (18 and 1-a= %I .

Then it the number of region-sensitive QoS metrics is more than the number of re-
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gion-insensitive QoS metrics, i.e., @ > b, then the prediction based ¢ . th. spatial
part makes up the larger part of the total. For the empirical scheme, & ¢.~ } > empiri-
cally well chosen in the experiment, which will be discussed in detail u. Sectio. 5.2.

5 Experiments

In this section, experiments are designed to evaluate the effici ncy of . ur proposal. We
first present the experiment settings and then demonstrate the . xperime 1tal results with
detailed analysis.

5.1 Experimental Settings

1) Experimental Setup and Dataset

We implement our method in Java programming ‘~ngue e and run it on a cluster
server consisting of 17 nodes. Each node has a. 'mteyR) Xeon(R) CPU E5-2650
(2.6Ghz/30M Cache) processor and 64 GB RAM - - experiment, we employ two
real datasets to evaluate the efficiency of our p. ~racy-preserving location-based pre-
diction algorithm. The two datasets are des ~hed as 10llows:

WSDREAM-Dataset-1 [54]: This datase. ‘s - publicly available QoS dataset of re-
al-world Web services and contains tt QoS | erformance (throughput and response
time) of 5825 services from 339 users .7u. 'ocation information. This dataset pro-
vides two kinds of geographic locat'~» info, mation: latitude & longitude, and regions.
In our experiment, we only use the re, ~n information of users to represent the loca-
tion of service invocations.

TRIPADVISOR-Dataset: T'.c sv. »nd dataset is a real-world dataset collected from
a well-known travel review ite (ww» . tripadvisor.com), where many travelers give
ratings and comments to vrrious “av ( services. We collect ratings for hotels from 15
regions, which contain tb ., ovr .all ratings and individual QoS ratings (totally six QoS
metrics). After cleaning, ‘he ¢ arr about 1681722 records left, with 76177 users and
6547 hotels. All the r.tings 1. - 1otels range from 1 to 5, with 5 as the excellent. To
analyze the location .n." "ence to QoS, we preprocess the rating dataset by aggregating
the hotels that have both ti.. same stars and similar tags. After preprocessing, there
are about 160 kir 4s ¢ "hotels, and every kind of hotels can appear in different regions.

In our expei. »er , we use the five-fold cross validation method, and the dataset
was split inte 30% t. ing data and 20% test data.

2) Corr oar7 dve \pproaches:

To evaluate .= r (fectiveness of our proposal, we compare our method with four al-
ternativ - apprc “ches:

IPC " [55]: 'his method is an item-based collaborative filtering method using
Peareon  ~-"ation Coefficient, which is widely used in e-commerce scenarios.

LFM [23]: This method is a recommendation model based on matrix factorization,
wi ‘ch is p oposed to exploit the latent factors of the original data. Both IPCC and
LFM ... ¢ no data obfuscation.
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P-UIPCC and P-PMF [42]: These two methods are two QoS predic’ .on 1ethods
based on a generic privacy-preserving framework with data obfuscation . ~hr «ques. In
P-UIPCC, the similarity between users is integrated with the similar. - betv. ~n ser-
vices to make predictions. P-PMF is collaborative recommendation metho.. bhased on
probabilistic matrix factorization model and data obfuscation techr .que

3) Performance Metrics:

Four widely used performance metrics are applied to evalu- .c he staustical accura-
cy of recommendation approaches: mean absolute error (M \E) [56) area under the
ROC curve (AUC) [57], precision and recall [58].

MAE is a statistical accuracy metrics used to meas .re th= prediction accuracy,
which is defined as the average absolute deviation bet\ -ee- the sredicted rating and
the real rating. Lower MAE presents more accurate ~redicti~ s. Besides, we apply
three classical Information Retrieval (IR) metrics, i.e., AU, precision and recall, to
evaluate Top-N recommendation performance. AU is the @ ea under the ROC curve,
and larger AUC value indicates higher prediction. “~cura.,. The equation of precision
and recall are presented as follows:

N7, R,
Precision@ N === — ——
2 eIl

e el
Y_W - 7, AR,

ZueU |Tu |

where T, is the recommendc “on set ¢ ~services for user u in train set, R, is the rec-
ommendation set of servics 3 for u. >t 4 in test set.

Recall @ N @N

5.2  Experimental Re. s

1) Prediction E’.. ~tiveness:

In our experiment, to eva. iate the prediction accuracy of our proposal, we compare
our method (der sted 1s PSLRec) with the four methods. The comparison results are
shown in Figs. . 1

Comparicun in " AE: Fig. 2 (a) and Fig. 2(b) respectively present the result of
prediction r zrfor nance on the two datasets of all approaches in MAE with the change
of the randow.. ange g. From Fig. 2, we can see that our approach degrades in predic-
tion acc .acy (i.e., MAE increases) when ff becomes larger, as the observed QoS data
is bett - disgui: *d. However, when f is small (e.g., #<0.8 in Fig. 2 (a), and <0.8 in
Fig. 2(b, our - ethod performs better than [IPCC (baseline method with no data obfus-
cat'on). Similarly, our method also performs better than LFM when $<0.2 in Fig. 2 (a),
ar 15<0.4 11 Fig. 2(b). Thus a tradeoff can be made between the prediction accuracy
ana rive y preservation by setting appropriate 5. Additionally, we also observe that
<. method consistently outperforms P-UIPCC and P-PMF with the same random
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range, which depicts the effectiveness of considering location influence intc recom-
mendation models.

11
o7 f .
" 1 10} &
e
06 |- ™ . ¥ o 3 i
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A~ P-UIPCC o7} a— p-UIPCC| A
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(a) WSDREAM-Dataset-1 (b)TR' >2ADVISOR-Dataset

Fig. 2 Performance comparison in MAE with the change .~ ~andom range f.

Comparison in AUC: Fig. 3 provides the pic ‘iction performance of different ap-
proaches on AUC with the change of §, v .. ™ ‘= conducted on WSDREAM dataset.
We observe that our method degrades in A 'C when ff becomes larger. When £<0.2,
the prediction accuracy of our propo. .' is b. ‘ter than LFM, and when $<0.2, our
method also performs better than IPC~. ™* suggests that an appropriate value
for ff should be selected to make a ; .- hai.nce between the prediction accuracy and
user privacy. However, we find that tn. 2dvantage of our method over P-UIPCC and
P-PMF decreases with the increase of 5, which indicates that data obfuscation have
worse effect to prediction accr acy . “th the increase of £.

0.95
r = |PCC
o LFM
0.9 4 P-UIPCC|
r v P-PMF
Y ¢ PSLRec |
R 08 $ . . . o
- *
<«
080 [ z i - -
- — — .
8 i _ 2
0.75 - x|
0.70 1 1 1 1 1
0.0 0z 0.4 0.6 0.8 1.0

p (WSDREAM)

Fig. 3 P ~forman : comparison in AUC with the change of random range f.

comparison in Precision and Recall: Fig. 4 and Fig. 5 depict the performance of
Tio-N (N=3, 5, 7) recommendations of all approaches, where £ is set as 0.5. And the
Qo Aat~ of users could be well disguised when f=0.5. Fig. 4 shows the preci-
o.e N performance, and Fig. 5 shows the recall@N performance. In both datasets,
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the precision of our method degrades with the increase of N, while t' ¢ r¢ :all up-
grades. From Fig. 4 and Fig. 5, we can observe that our method, i.e., PS. Re , outper-
forms both P-UIPCC and P-PMF in both precision and recall. For exa. *nle, .. ~ase of
the WSDREAM dataset, the precision@7 and recall@7 of PSLRer are 1. —ectively
5.2% and 7.6% higher than P-PMF. Besides, we can find that whe (=" " the predic-
tion accuracy of our proposal is close to IPCC and a little lowe, “ha. LFM. And on
the TRIPADVISOR dataset, the precision@?7 and recall@N of "“LRe. ~re only 2.5%
and 2.3% lower than LFM. The results present that our propc sal cou. ' achieve decent
accuracy on the premise of privacy preservation.

0.9

I ipcC
B LFM
I r-uirce
05 I_' [ p-PMF |
z z B rsLRec
3 % [N PSLRec |
g 5.1
f: :
- =
06 t—
05
Top-3 Top-5 Top-7 Top-3 Top-5 Top-7
Top-N (p=0.5) Top-N (p=0.5)
(a) WSDREAM-Dataset-1 (b)TRIPADVISOR-Dataset

Fig. 4 Performance comparison in Top-N . *diction accuracy on precision@N.
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I |2 P-PMF [ p-PMF
B PsiRec o7 |- | PSLRec g
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Recall@N

)
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Top-3 Top-5 Top-T
Top-i { p=0.5) Top-N (§=0.5)
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Fig. 5 Pr 1ormance comparison in Top-N prediction accuracy on recall@N.

2) honact f Parameter Settings:

In this section, we discuss the impact of parameter settings to prediction accuracy
ur. ler the 7 RIPADVISOR-Dataset. Here, we mainly analyze the impact of the fluctua-
tion .. = Lo0ld § and the weight coefficient & associated with random range f.
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Impact of 5 : The fluctuation threshold ¢ is used to determine whethe a ( S met-
ric is a region-sensitive QoS metric or not. Different § may bring differ. -+ d'vision of
region-sensitive QoS and region-insensitive QoS. To evaluate the effec. ~f § .. aredic-
tion performance, we vary & from 0.2 to 1 with the step of 0.2. The regio.. ~imilarity
threshold @ and the weight coefficient & are set as 0.4 and 0.5, resr ectiv ~**  Fig. 6 (a)
shows how & effect the final prediction performance. Here, we gc M .E of our meth-
od in case of f=0 (no data obfuscation), #=0.2and #=0.5 The rc. "Its show that
the MAE curve changes similarly when f=0and f= 0.2, an . MAE -=aches the opti-
mal point when & is about 0.6 in both cases. And MAE reache the opf mal point when
é is about 0.4 in case of f=0.5. The trend of MAE curv a casc vt = 0.5 is incon-
sistent with the MAE curves of other two cases. It imy des ‘.at ‘arger random range
may have more uncertain effects.

Impact of o : The weight coefficient « determines ~heter prediction based on
global neighbors or prediction based on spatial ne‘ehbors p ays the larger part in the
final prediction. In our proposal, we give two schem. * to .ecide o . As presented in
Section 4.3, « can be a fixed value ¢/ 7 or an emy ~ical value. Here, we study the
impact of & to the final performance by vary " .. « wuin 0 to 1 with a step of 0.1. §
and @are set as 0.6 and 0.4, respectively. o =0 a..? « =1 are two special cases (That
a =0 considers only prediction based or. w.. ~'~hal part, and « =1 considers only
prediction based on the spatial part). Actuall, -/e can get that “/ 17=0.5 (a=3 and H=6)
when §=0.6 and & =0.4. Thus the tw. ~hen.s for « adopted in our proposal are
coincident. Through this study, we can ~bs.-ve that the distinguishing of region-
sensitive QoS metrics from region-" .. "ty » QoS metrics is necessary and meaning-
ful. In addition, from Fig. 6 (b), we can . ~e that MAE reaches the optimal point when
a falls around 0.5 in case of f=0and = 0.2. It can be found that the optimal exper-
imental value of a and a/ ;7@ - app: ximately equal. However, when fis set as 0.5,
the trend of MAE curve is c. “letely inconsistent with the MAE curves of other two
cases, and there’s no deter ainea . » mal point. It implies that the impact of different
parameter settings to pre .ictic 1 acruracy may be weakened with larger . Thus to get
decent prediction accurac, -1 the premise of privacy preservation, S and other critical
parameters such as § - ad « sho..”d be well chosen.

11 11
[“e—p=0 [~w—p=0
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= - 1 = § * . - - g 1
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- : - - - - " - o
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(a) =04, a=0.5 (b) 6 =0.6, 6 =0.4

'~ A Parameters impact on prediction performance (MAE). (a) Impact of the fluctuation
e shold 8. (b) Impact of the weight coefficient a.
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3) Security and Privacy Analysis:

This section presents the security and privacy analysis of our approac.. 2 ; demon-
strated in Section 4.1, to overcome the security issues in location-awai. “econ. enda-
tion models, two privacy-preserving mechanisms are proposed to pr~ ~ct the ~bserved
QoS data and specific location information of users in a more secv' ¢ m¢ ...~ However,
more secure privacy mechanisms may lead to less accurate preu.  n performance.
Thus it is important to make a trade-off between predictior ...curac, and privacy
preservation. In the following, we analyze the impact of the random range f (in data
obfuscation technique) and the region similarity threshold ¢ ‘in rec.on aggregation
strategy) to privacy preservation and prediction accuracy.

From Fig. 2 and Fig. 3, we can see that our approac. (Il .er ., 1AE and AUC indi-
cates worse prediction performance) degrades in pred:~tion accr.acy when f becomes
larger (higher £ indicates that the observed QoS data is v« *er disguised). Thus an ap-
propriate value for f should be set. On the WSDRE * M datas ', our approach performs
better than IPCC and LFM when £<0.8 .~d 5,7, respectively. On the
TRIPADVISOR dataset, our approach performs be..> than IPCC and LFM when
£<0.8 and £<0.4, respectively. Moreover, we « ua 11nd that our approach consistently
outperforms or no worse than P-UIPCC and P-PM1 vith the same random range. Then
we could set an appropriate S (For example e« | ~loud be set as 0.3 on WSDREAM
dataset and 0.6 on TRIPADVISOR dataset, - spectively) to get a good balance be-
tween privacy preservation and predictic . ~cur. ~y.

Based on the region aggregation algo. ‘thn., the location information used in our
prediction model is no longer the sp. ~uic '~ ations, but only the fuzzy location infor-
mation (a region number) which makes 1. 'ifficult for the attackers to get the real loca-
tion information of users. As described in Algorithm 1, to blur the specific location
information, an appropriate v' e for ‘he region similarity threshold 8 should be cho-
sen. We can see that if the rey ~n simi arity threshold 6 is small, the number of aggre-
gated region clusters is al 0 smaun, - /hich weakens location features but could better
hide user's specific locat on i .forn-ation. While if 8 is large, the location influence to
recommendations is e™ph. ‘zed but the location information of users may be dis-
closed. Thus an app" ‘oriate 8 saould also be set. For example, based on the above
experimental analys.s on "RIPADVISOR dataset, when 8 is set as 0.4 in this case, we
could get acceptal’_ ~rediction accuracy with the specific location information blurred.

The above s curif analysis depicts that a good balance could be made between the
prediction accurac, nd the goal of privacy preservation based on our proposal.

6 Conu. sio’ s

In t is paper a privacy-preserving and sparsity-aware location-based prediction
model 15 ~ror sed for collaborative recommender systems. It aims to provide the
mr st ben~ficial products for users with the consideration of privacy preservation.
Fi st, locat on influence is considered into the classical neighborhood-based collabo-
rative = uiction model by distinguishing region-sensitive QoS metrics from region-
we. *ive QoS metrics. Accordingly, global nearest neighbors and spatial nearest




21

neighbors are defined. To protect user privacy, a data obfuscation technic e 1¢ utilized
to disguise the observed QoS data of users. In addition, a region agg. ~at on algo-
rithm is presented to deal with the data sparsity problem and blur the . >=citic *~cation
information of users. After data obfuscation and region aggregation = loc. ‘n-aware
LFM model based on tensor factorization is applied to mine t} 2 sp ! similarity
relationships between services and identify the spatial nearest 1. ‘et vors. Then, the
final predictions can be made by combining the predictions bas~+ on .. ~ global near-
est neighbors and spatial nearest neighbors. Finally, experim :nts bas d on real-world
datasets are conducted to demonstrate the effectiveness of o * propos 4. In our future
work, we will do further study collaborative recommend~’..a muuwis based on multi-
model integration and consider more privacy-preservatic 1 m« _na_ isms.
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Highlight

Location influence is considered into neighborhood-based collaborative .~ommendation
model by distinguishing region-sensitive QoS metrics from region-insensitive QoS ,. atrics.
A privacy-aware region aggregation is proposed to deal with the data - pars :y problem and
protect user privacy.

A location-aware latent factor model based on tensor factorization is nrop. ~ad to identify the
spatial nearest neighbors.

Extensive experiments are conducted on real-world dataset.
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