
Expert Systems With Applications 122 (2019) 27–42

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Iterated feature selection algorithms with layered recurrent neural

network for software fault prediction

Hamza Turabieh

a , ∗, Majdi Mafarja

b , Xiaodong Li c

a Department of Information Technology, Taif University, Taif, Saudi Arabia
b Department of Computer Science, Birzeit University, Birzeit, Palestine
c School of Science, RMIT University, Melbourne, Australia

a r t i c l e i n f o

Article history:

Received 3 February 2018

Revised 18 December 2018

Accepted 19 December 2018

Available online 25 December 2018

Keywords:

Software fault prediction

Feature selection

Layered recurrent neural network

a b s t r a c t

Software fault prediction (SFP) is typically used to predict faults in software components. Machine learn-

ing techniques (e.g., classification) are widely used to tackle this problem. With the availability of the

huge amount of data that can be obtained from mining software historical repositories, it becomes pos-

sible to have some features (metrics) that are not correlated with the faults, which consequently mis-

lead the learning algorithm and thus decrease its performance. One possible solution to eliminate those

metrics is Feature Selection (FS). In this paper, a novel FS approach is proposed to enhance the perfor-

mance of a layered recurrent neural network (L-RNN), which is used as a classification technique for the

SFP problem. Three different wrapper FS algorithms (i.e, Binary Genetic Algorithm (BGA), Binary Particle

Swarm Optimization (BPSO), and Binary Ant Colony Optimization (BACO)) were employed iteratively. To

assess the performance of the proposed approach, 19 real-world software projects from PROMISE repos-

itory are investigated and the experimental results are discussed. Receiver operating characteristic - area

under the curve (ROC-AUC) is used as a performance measure. The results are compared with other state-

of-art approaches including Naïve Bayes (NB), Artificial Neural Network (ANN), logistic regression (LR), the

k-nearest neighbors (k-NN) and C4.5 decision trees, in terms of area under the curve (AUC). Our results

have demonstrated that the proposed approach can outperform other existing methods.

© 2018 Elsevier Ltd. All rights reserved.

1

f

b

t

S

t

m

S

w

G

e

r

b

2

M

s

t

c

e

r

m

n

T

w

T

v

m

t

t

h

0

. Introduction

Software Fault Prediction (SFP) is the process of predicting the

ault-prone modules for the future releases of software versions

eing developed, depending on predefined software metrics or his-

orical fault datasets (from previous projects) (Catal, 2011; Porter &

elby, 1990). The SFP process becomes easier with the adoption of

he Agile Software Development (ASD) (Fowler & Highsmith, 2001)

ethodologies (e.g., Agile Unified Process, Extreme Programming,

crum and Kanban) rather than the traditional methodologies (e.g.,

aterfall model (Royce, 1987), software development (Hoda, Salleh,

rundy, & Tee, 2017; Stavru, 2014)). In ASD the incremental deliv-

ry of the software opens the door for rapidly adapting the volatile

equirements, and increasing the opportunities for collaboration

etween business owners and software developers (Hoda et al.,

017). Moreover, adopting ASD methodologies allows conducting
∗ Corresponding author.

E-mail addresses: h.turabieh@tu.edu.sa (H. Turabieh), mmafarja@birzeit.edu (M.

afarja), xiaodong.li@rmit.edu.au (X. Li).

(

b

i

a

t

ttps://doi.org/10.1016/j.eswa.2018.12.033

957-4174/© 2018 Elsevier Ltd. All rights reserved.
oftware engineering activities (maintenance, review, refactoring or

esting) synchronously with the development process.

Predicting faults in software subsystems (modules, components,

lasses, etc.) in the earlier stages (before delivering them to the

nd user), plays a vital role in reducing the time and effort costs

equired to accomplish the project, since it reduces the number of

odules to be processed in each activity, and eliminates the un-

ecessary effort s in finding fault s during the development process.

he importance of SFP comes from the fact that delivering a soft-

are version with some faults will affect the subsequent versions.

his is because there is a distinct relation between the different

ersions of the software products.

Implementing SFP in the early stages of the system develop-

ent process is used to eliminate the possible faults in the fu-

ure releases of the software. SFP methods vary from depending on

he software metrics to Machine Learning (ML) and soft computing

SC) techniques (Rathore & Kumar, 2017a). The software metrics-

ased methods use some predefined metrics to predict the faults

n a given software accordingly (Sheskin, 2003). This approach has

 major drawback that if we built a (learning) model, and reused it

o predict the faults in different projects with (possibly) the same

https://doi.org/10.1016/j.eswa.2018.12.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.12.033&domain=pdf
mailto:h.turabieh@tu.edu.sa
mailto:mmafarja@birzeit.edu
mailto:xiaodong.li@rmit.edu.au
https://doi.org/10.1016/j.eswa.2018.12.033

28 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

f

s

g

t

w

i

p

v

a

d

p

t

t

S

i

c

2

f

T

(

w

n

i

i

P

(

a

t

u

s

R

N

r

d

a

N

p

a

f

a

o

w

d

i

m

(

b

r

e

e

m

E

p

d

f

e

p
values of the used metrics, it may detect faults in the same areas

of the software (Zimmermann, Nagappan, & Zeller, 2008). As an al-

ternative approach, some researchers proposed the use of software

change metrics that take into consideration the historical changes

in the project to build the prediction models (Sheskin, 2003;

Zimmermann et al., 2008). However, those methods become im-

practical and a time-consuming process when dealing with com-

plex systems that emerged in a wide range of industries (e.g., nu-

clear power plant, defense, command and control, and medicine).

This is because those industries are becoming increasingly depen-

dent on complex software systems due to the advancement in the

software development tools. Predicting the possible faults at the

early stages of the software development process will substantially

help reduce the computation and development cost. In literature,

many studies have shown promising results in using SC methods

for SFP (Czibula, Marian, & Czibula, 2014; Erturk & Sezer, 2015;

2016; Rathore & Kumar, 2017b).

SC methods showed superior performance in extracting use-

ful knowledge from imprecise and unconstrained data when solv-

ing real-life problems. Machine learning (ML) is one of the data-

driven soft computing techniques that has been widely used to

predict the faulty modules in software projects. Representative ML

methods include Logistic Regression (Li & Henry, 1993), Support

Vector Machine (Xing, Guo, & Lyu, 2005), Naive Bayes (Alshayeb

& Li, 2003), Neural Network (Oliveira, Pontes, Sartori, & Em-

biruçu, 2017), and Ensemble classifiers (Rathore & Kumar, 2017b;

2017c). Malhotra in Malhotra (2015) conducted a systematic liter-

ature review on several ML techniques that were used in SFP. He

concluded that ML-based SFP methods showed high capability in

predicting the faultiness of a module in a software product and

outperformed the traditional statistical methods.

Artificial Neural Network (ANN) is one of the most widely-used

ML models in predicting the faultiness of software components

in the early stages of the software development lifecycle (SDLC)

(Erturk & Sezer, 2016; Maren, Harston, & Pap, 2014). In general,

ANN comes in several flavors such as feedforward neural network,

radial basis function neural network, and recurrent neural net-

work. Each type of ANN is able to solve complex problems in a

different manner. In particular, recurrent neural network shows a

competitive performance in solving several classification problems

(Maggiori, Charpiat, Tarabalka, & Alliez, 2017), as it considers pre-

vious input values through its training process. For SFP, several re-

searchers applied ANN with predefined metrics (features) as inputs

to ANN (Chatterjee, Nigam, & Roy, 2017; Erturk & Sezer, 2016). It is

difficult to say that these predefined metrics are suitable for de-

veloping a good classifier. As a result, finding the most suitable

metrics will have a significant effect on the ANN performance, de-

pending on the datasets.

One of the major issues that affect the performance of the

learning algorithms is data dimensionality. High dimensional data

may contain irrelevant and/or redundant features, that may mis-

lead the learning algorithm, hence decrease its performance. Elim-

inating these irrelevant or redundant features helps to increase the

learning algorithms’ performance, and to reduce the computational

time required for the prediction process. Feature selection (FS) is

one possible solution to reduce the dimensionality of data with-

out decreasing the performance of the learning algorithm (Liu &

Motoda, 2012). FS plays a vital role in computational intelligence

(Rauber, de Assis Boldt, & Varejão, 2015). FS aims to reduce the di-

mensionality of data by removing noisy, irrelevant and redundant

data. Moreover, FS promotes better understanding of data (Dash &

Liu, 1997). One of the main findings in a literature review for the

SFP tools (Hall, Beecham, Bowes, Gray, & Counsell, 2012), is that

FS improves the performance of the SFP models that employed ML

techniques.
t
Several approaches either use a fixed number of features or all

eatures to predict the fault in software projects. Projects are not

imilar to each other, using all features or a fixed number will not

ive a high-performance classifier over all the datasets. As a result,

he motivation of this research is to propose a novel approach that

ill select the most valuable features by exploring the dataset us-

ng different feature selection algorithms randomly to enhance the

erformance of the software fault prediction classifier.

The rest of this paper is organized as follows: a literature re-

iew of SFP techniques is presented in Section 2 . In Section 3 ,

 background on feature selection algorithms is presented. A

etailed discussion of the proposed methodology and the em-

loyed SC techniques are presented in Section 4 . In Section 5 ,

he datasets that are used in this study for software fault predic-

ion are described. The performance measurement is presented in

ection 6 . The obtained results and results analysis are presented

n Sections 7 and 8 . Finally, a summary of our research findings,

onclusions, and future works are presented in Section 9 .

. Related works

In literature, many Machine Learning (ML) techniques used

or tackling the SFP problem can be found, including Decision

rees (DT) (Khoshgoftaar & Seliya, 2003), Artificial Neural Networks

ANN) (Thwin & Quah, 2005), Naive Bayes (NB) (Menzies, Green-

ald, & Frank, 2007), Bayesian Network (BN) (Carrozza, Cotro-

eo, Natella, Pietrantuono, & Russo, 2013), Case-based Reason-

ng (CR) (El Emam, Benlarbi, Goel, & Rai, 2001), Fuzzy Cluster-

ng (FC) (Yuan, Khoshgoftaar, Allen, & Ganesan, 20 0 0), Multilayer

erceptron (MLP) (Carrozza et al., 2013), Logistic Regression (LR)

 Yuan et al., 20 0 0) and Support Vector Machine (SVM). Different

pproaches were followed in designing SC-based methods to solve

he SFP problem. For instance, (Cahill, Hogan, & Thomas, 2013)

sed two different classifiers (namely SVM and NB) to classify the

oftware modules. They proposed a new ranking method called

ank Sum to validate the obtained results. Different datasets from

ASA repository were used to test the proposed approaches. Their

esults suggested that NB performs better than SVM.

Moreover, Carrozza et al. (2013) implemented five different pre-

iction and regression models (i.e., DT, BNs, MLP, SVM and NB),

nd analyzed their performance based on different datasets from

ASA repository. In addition, they proposed new software com-

lexity metrics for predicting Mandelbugs in complex systems

long with the traditional metrics. K-fold cross-validation and con-

usion matrix was used. SVM and MLP are reported as the best

pproaches. In Malhotra (2014) , a comparative study between a set

f SFP methods was provided, where several ML and LR algorithms

ere implemented to predict the software faults in AR1 and AR6

atasets from the PROMISE repository. A deep comparison between

mplemented methods was presented and DT outperformed the LR

odels and other ML algorithms.

A multi-strategy classifier (RB2CBL) that integrates Rule-Based

RB) model with Case-Based Learning (CBL) model was proposed

y Khoshgoftaar, Xiao, and Gao (2014) . Moreover, Genetic Algo-

ithm (GA) was used to optimize the parameters of the CBL mod-

ls. In Rathore and Kumar (2017b) , the idea of ensemble learn-

rs methods (i.e., LRCR and GRCR) was employed, and the perfor-

ance of those models was evaluated based on Average Absolute

rror (AAE) and Average Relative Error (ARE). This ensemble ap-

roach is evaluated on different datasets selected from PROMISE

ata repository and Eclipse bug data repository, and it outper-

ormed other learning-based methods. Moreover, the GRCR based

nsemble method outperformed the LRCR based method.

In Erturk and Sezer (2016) , a two phases system for SFP was

roposed, where Fuzzy Inference System (FIS) was employed at

he first phase (no data available about the project), and then

H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42 29

i

p

e

t

p

t

t

f

a

P

K

t

e

c

(

p

e

N

p

E

c

M

c

s

s

p

p

o

t

s

d

c

c

a

Q

p

d

r

f

a

t

m

C

(

p

f

s

h

p

w

t

g

t

c

fi

l

m

s

o

i

r

s

3

a

d

F

r

p

fi

t

f

s

m

t

s

t

i

i

b

w

e

i

w

f

f

a

a

g

o

t

a

r

c

s

c

l

p

A

(

G

m

O

s

t

a

T

m

e

fi

p

l

o

o

H

F

q

s

t

a

a

a

(

terative Artificial Neural Network (ANN) is employed in the second

hase when some data about the project was collected from the

arlier phases. The iterative model outperformed other models and

he authors claimed that it can be adopted as on-line approach to

redict the faults in software. Recently, Shatnawi (2017) proposed

he use of receiver operating characteristic (ROC) analysis as an SFP

ool, where a threshold is defined to classify software modules to

ault-prone and not fault-prone.

Some preprocessing techniques were employed before

pplying the learning algorithm. In Cotroneo, Natella, and

ietrantuono (2013) , different datasets from three projects (Linux

ernel, MySQL DBMS, and CARDAMOM) were considered to collect

he Aging-Related Bugs. Several classification algorithms were

mployed to predict the software faults. The experiments were

onducted in two phases, the first was on the plain datasets

without preprocessing). In the second phase, the datasets were

reprocessed with a logarithmic transformation. The preprocessing

nhanced the performance of the learning algorithms, such that

B with logarithmic transformation was reported as the best

erforming classifier (Cotroneo et al., 2013).

Fifteen variants of NB classifier were tested on NASA and

clipse datasets and compared with many well-known classifi-

ation algorithms by Dejaeger, Verbraken, and Baesens (2013) .

arkov blanket feature selection method was used as a prepro-

essing step. Using AUC and the H-measure as performance mea-

urements, it was found that the augmented NB classifiers perform

imilarly or better than the traditional NB classifiers, and both out-

erformed the other tested methods. Okutan and Yıldız (2014) pro-

osed a new approach to select the most important metrics based

n the Bayesian networks that were used to define the rela-

ionships among software metrics and defect proneness. Another

imilar approach was proposed in Chen et al. (2014) , where five

ifferent FS and sample reduction methods were used as prepro-

essing steps to simplify the training process, and three classifi-

ation algorithms (NB, C4.5, KNN) were tested on Eclipse project

nd some datasets from NASA repository. In Jin and Jin (2015) ,

uantum based PSO (QPSO) feature selection method was ap-

lied as a preprocessing step, followed by ANN classifier, to pre-

ict software fault-proneness. Using some datasets from NASA

epository, the obtained results showed that ANN with QPSO per-

ormed better than other approaches. Recently, Miholca, Czibula,

nd Czibula (2018) proposed a hybrid model (called HyGRAR)

hat hybridized gradual association rule mining and ANNs. For

ore comprehensive studies about SFP tools, readers can refer to

atal and Diri (2009) , Radjenovi ́c, Heri ̌cko, Torkar, and Živkovi ̌c

2013) , Hall et al. (2012) , Hoda et al. (2017) .

Studying the presented works above, it is clear that using a pre-

rocessing technique on the dataset significantly affected the per-

ormance of learning algorithm. FS is an important preprocessing

tep that reduces the number of features in the dataset, which

elps in solving many problems like the overfitting that may com-

romise the performance of the learning algorithm. Moreover, it

as proved that metaheuristic algorithms proved their ability to

ackle FS problems efficiently and better than other search strate-

ies (i.e., complete and random strategies).

Due to the stochastic nature of the meta-heuristic algorithms,

hey cannot guarantee to find the optimal feature subset, and ac-

ording to the No Free Lunch (NFL) theorem in the optimization

eld, there is no algorithm that can solve all optimization prob-

ems efficiently. In this paper, a pool of meta-heuristics-based FS

ethods (i.e, GA, PSO and ACO) is used to tackle this problem. The

election of these three algorithms is due to some characteristics

f each of them, i.e., the exploration process in GA is better than

n PSO and ACO, while PSO makes a balance between the explo-

ation and exploitation process. ACO focuses more on building the

olution (exploitation process) than on exploration.
. Background on feature selection methods

FS is considered as a combinatorial optimization problem, that

ims to search for the optimal subset of features from the original

ataset, that still faithfully represents the original data. The general

S process consists of two main steps: (i) searching for the minimal

educts, and (ii) evaluating the selected features. From evaluation

erspectives, FS algorithms are classified in two main categories:

lter and wrapper . Filter methods consider only the relations be-

ween features to evaluate the feature subsets, which makes them

aster than the wrapper methods that evaluate the feature sub-

ets by employing a learning algorithm according to a validation

ethod. In general, wrapper methods usually obtain better results

han filter methods (Kudo & Sklansky, 20 0 0).

The main challenge of FS methods is how to search for the best

ubset of features that perfectly represents the original data. For-

unately, FS can be viewed as a search problem, where each point

n the search space represents a feature subset. Formally speaking,

f a dataset contains three features, e.g., (A, B, C), one of the possi-

le methods to represent a feature subset is to use a binary array

ith three elements (i.e., number of features in the dataset). If an

lement has a value equal to 1, then the corresponding feature is

ncluded (selected) in the feature subset, otherwise the value is 0,

hich means it is not selected. Hence (1, 1, 1) means that the three

eatures are selected, while (0, 1, 0) indicates that only the second

eature is selected. Since FS is NP-hard problem, large problems

re not easy to be solved by using an exact search method. For ex-

mple, if the dataset includes n features, then 2 n subsets will be

enerated and assessed. Therefore, heuristic search strategies are

ften employed as an alternative solution to reduce the computa-

ional costs.

Meta-heuristic algorithms, the higher level of heuristics,

re stochastic search methods that have demonstrated supe-

ior performances in tackling feature selection problems when

ompared to exact methods (Ezgi & Selma, 2016; Guyon & Elis-

eeff, 2003). According to (Talbi, 2009), meta-heuristics can be

lassified into two main types depending on the number of so-

utions to be processed in each iteration of the optimization

rocess; single-solution based methods (S-based), (e.g., Simulated

nnealing (SA) (Van Laarhoven & Aarts, 1987), Tabu Search (TS)

 Glover, 1986)), and population-based methods (P-based), (e.g.,

enetic Algorithm (GA) (Holland, 1992), Particle Swarm Opti-

ization (PSO) (Kennedy & Eberhart, 1995), and Ant Colony

ptimization (ACO) (Maniezzo, 1992)). As the names imply, in

ingle-solution based methods, one solution is manipulated and

ransformed into a new solution in each iteration. In contrast,

 set of solutions is evolved in the population-based methods.

he main difference between S-based and P-based is that P-based

ethods are more exploration oriented methods; i.e., trying to

xplore the search space as broadly as possible in the hope to

nd more promising regions, while S-based methods are more ex-

loitation oriented methods; i.e., trying to fine-tune a specific so-

ution in its neighborhood area in the hope of finding the global

ptimal value.

Meta-heuristic algorithms are able to find the optimal or near-

ptimal solutions for a certain problem in a reasonable time.

owever, each algorithm has some strengths and weaknesses.

or example, S-based algorithms are not able to provide a high-

uality solution for complex problems with high dimensional

earch space, where the search space increases in an exponen-

ial manner with the problem size. As a result, S-based algorithms

re not practical for complex problems. While P-based algorithms

re able to search different parts of the fitness landscape, act

s a low-pass filter of the landscape, ignoring local distractions

 Prugel-Bennett, 2010).

30 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

Fig. 1. A pictorial diagram of the proposed methodology.

i

w

t

c

t

t

E

F

w

w

a

t

d

w

t

i

t

a

t

t

o

t

s

n

4

4. Proposed methodology

As mentioned earlier, SFP is a real-world problem that depends

on historical datasets of previous (completed) projects. In gen-

eral, ML algorithms showed good results when compared with the

traditional algorithms (Talbi, 2009). The performance of ML algo-

rithms is highly dependent on the data dimensionality. Therefore,

finding the most significant features and removing the unnecessary

features will be critical in finding an efficient and robust classifi-

cation or prediction model. Since the goal of using a FS method

is to enhance the performance of the learning algorithm, wrapper

FS methods are more suitable than filters methods. In wrapper FS

methods, the selection criterion is the performance of the learning

algorithm (e.g., classifier).

In this paper, a wrapper feature selection algorithm that de-

pends on a layered recurrent neural network as an evaluator is

proposed, as depicted in Fig. 1 . The algorithm starts by taking

the SFP dataset as an input and then executes the proposed al-

gorithm over a number of iterations. At each iteration, one of the

three employed FS algorithms (i.e., BGA, BPSO or BACO) is selected

randomly, in order to find the most valuable metrics. Then the

proposed algorithm will generate the training and testing dataset

based on the selected metrics. A layered recurrent neural network

is iterated for a predefined number of iterations and evaluates the

obtained model using testing data. If the obtained result reaches

an optimal value or the maximum number of iterations, the algo-

rithm will stop. Otherwise, it starts a new iteration.

When designing any optimization algorithm, two key issues

should be taken into consideration; the solution representation

and the fitness function. In this work, the solution is encoded as a

binary vector of length equal to the number of features as shown

u
n Fig. 2 . The 0 value indicates that the feature is not selected,

hile 1 indicates that the feature is selected. As FS process aims

o reduce the number of selected features while increasing the ac-

uracy of the classification algorithm, the designed fitness func-

ion should consider both issues. In the proposed FS algorithms

he ANN is used as evaluator. The fitness function can be seen in

q. (1) :

 itness = E ∗ (1 + β ∗ | R |
| N|) (1)

here E is the overall error rate (for training and testing) that

as obtained from the ANN classifier, β is a user defined vari-

ble (here, β = 5), | R | represents the number of the selected fea-

ures, | N | is the total number of features is a dataset. The training

ataset is used for computing the gradient and updating the net-

ork weights and biases. The validation dataset is used through

raining process to avoid overfitting problem. The error on the val-

dation set is monitored during the training process. The valida-

ion error normally decreases during the initial phase of training,

s does the training set error. However, when the network begins

o overfit the data, the error on the validation set typically begins

o rise. The network weights and biases are saved at the minimum

f the validation set error. The testing dataset is used to evaluate

he obtained model.

The parameter settings of the employed ANN classifier are pre-

ented in Table 1 . In the following subsections, the main compo-

ents of the proposed algorithm are described.

.1. Binary genetic algorithm

Genetic Algorithm (GA) is an evolutionary algorithm that sim-

lates the process of natural selection (Holland, 1992). GA is a

H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42 31

Fig. 2. An example of a feature selection solution.

Table 1

Parameters setting for ANN internal classifier.

Parameters Values

Number of neurons input layer Number of selected features

Number of neurons hidden layer 10

Number of neurons output layer 1

Training sample 70% of the data

Testing sample 15% of the data

Validation sample 15% of the data

Fitness function Mean square error

Table 2

The parameters setting for BGA.

Parameters Values

Number of iterations 30 0 0

Population size 40

Crossover rate 0.7

Mutation rate 0.1

Selection type Roulette Wheel Selection

Crossover type single, double or uniform

P

q

g

t

a

p

t

i

u

t

i

a

s

l

b

w

b

o

t

e

p

p

t

A

S

p

i

e

g

Fig. 3. The pseudo-code for Genetic Algorithm.

4

t

t

s

s

T

o

c

l

t

i

s

a

(

a

t

o

fl

r

s

p

v

x

s

H
-based algorithm, and the best solution is obtained after a se-

uence of iterative steps. In GA, the optimization process starts by

enerating a set of solutions that represent the initial population,

hen genetic operators (i.e., selection, crossover, and mutation) are

pplied on selected solutions from the population. This step is re-

eated iteratively until satisfying a stopping condition; i.e., the op-

imal or near optimal solution is found or a predefined number of

terations is reached. In each iteration, the solutions are evaluated

sing a fitness function which estimates the significance of the ob-

ained solution (Huang & Wang, 2006).

Crossover and mutation are the main evolutionary operators

nside GA. During the optimization process, these operators are

pplied to the individuals in the population to produce new

olutions, reflecting the performance of GA. Generating new so-

utions starts by selecting two parents from the population pool,

ased on a specific selection mechanism (e.g., random, roulette

heel, or tournament), then crossover operator (e.g., single, dou-

le, uniform) is applied to these parents which then produce two

ffsprings. In mutation, local changes (e.g., randomly) are applied

o the both offsprings. Then the population is updated by consid-

ring the produced offsprings that replace some solutions in the

opulation based on an elitism replacement strategy. The updated

opulation is then considered for the next iteration. Fig. 3 shows

he pseudo-code for GA.

Table 2 shows the parameters setting for the Binary Genetic

lgorithm (BGA) that is used in this paper. A Roulette Wheel

election (RWS) is used as a selection approach for selecting two

arents. Three types of crossover (e.g., single, double, uniform) are

mplemented and one is randomly selected for each iteration to

nhance the exploration process. Fig. 4 simulates the BGA for a sin-

le iteration.
.2. Binary particle swarm optimization

Kennedy and Eberhart (1995) proposed the Particle Swarm Op-

imization (PSO) algorithm. The main idea behind PSO is to mimic

he social behavior of organisms such as bird flocking and fish

chooling. In a PSO algorithm, particles (which represent candidate

olutions) are flying around, in a multi-dimensional search space.

he positions of these particles are adjusted according to particles’

wn memories and the best-fit particle of the neighboring parti-

les. More specifically, each particle adjusts its position x id and ve-

ocity v id according to the best position visited so far (i.e., p i) and

he best position in the neighborhood (i.e., p g). Note that i is the

ndex of a particle in the swarm (i = 1 , . . . , Sn) , Sn is the size of

warm, d is the dimension index of a particle (candidate solution),

(d = 1 , . . . , m) , and t represents the iteration number. The velocity

nd the position of a solution are updated based on Eqs. (2) and

3) , respectively. Note that w is a positive inertia weight, r 1 and r 2
re randomly generated numbers between 0 and 1 at each itera-

ion, and c 1 and c 2 present the degree of influence of p id and p gd

n the particles velocity, respectively. To control the velocity from

ying out of the search space, the velocity v is bounded within

ange of [v min , v max] . Every newly visited position represents a new

olution, which is also used for updating the global best solution

g . Fig. 5 shows the pseudo-code for the PSO algorithm.

 id (t + 1) = w v id (t) + c 1 r 1 [p id (t) − x id (t)] + c 2 r 2 [p gd (t) − x id (t)] .

(2)

 id (t + 1) = x id (t) + v id (t + 1) . (3)

In the continuous version of PSO, particles’ movements in the

earch space are defined by the update rule Eqs. (2) and (3) .

owever, FS is a binary optimization problem, where the variable

32 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

Fig. 4. An example of a Binary Genetic Algorithm for a single iteration.

Fig. 5. The pseudo-code for Particle Swarm Optimization.

Table 3

The parameters setting for BPSO.

Parameters Values

Number of iterations (t) 30 0 0

Swarm size (Sn) 40

degree of influence (c1) 1.5

degree of influence (c2) 1.5

vmax 1

vmin 0

Inertia weight (w) 0.8

p

B

4

g

t

w

w

l

(

a

s

E

b

b

p

P

w

a

i

s

p

values are restricted to 0 or 1. In (Kennedy & Eberhart, 1997), a bi-

nary version of PSO (BPSO) that can be used to solve binary opti-

mization problems was proposed. In BPSO, a sigmoid transfer func-

tion (TF) is used to convert the continuous variables to binary ones.

The continuous values of the velocity vector are fed into the TF to

produce a probability value that converts each element of the po-

sition vector to 0 or 1 based on Eq. (4) :

S(v id (t + 1)) =

1

1 + e −v id (t)
(4)

where V d
i

represents the velocity value of the d th dimension in the

i th vector, and t represents the current iteration.

The position of the current particle is updated according to

Eq. (5) based on the probability value S(v id (t + 1)) obtained from

Eq. (4) :

x id (t + 1) =

{
1 if rand(0 . 0 , 1 . 0) < S(v id (t + 1))
0 otherwise

(5)

where x d
i
(t + 1) represents the element in the d th dimension in

the i th position in the next iteration, rand () is a function that gen-

erates a random number in the interval 0 and 1. Table 3 shows the
arameters setting used for BPSO in this paper. Fig. 6 simulates the

PSO for a single iteration.

.3. Binary ant colony optimization

Ant colony optimization (ACO) is a population-based search al-

orithm that simulates the behavior of real ants in order to find

he shortest path. Ant movements are based on a pheromone,

hich is deposited on some paths by some other ants. ACO is

idely-used for solving pathfinding problems, scheduling prob-

ems, fuzzy control network routing, and image processing, etc.

 Dorigo & Caro, 1999; Mohan & Baskaran, 2012). ACO starts by cre-

ting a set of agents (ants) located at different positions of the

earch space, which can be used to build a candidate solution.

q. (6) shows the probabilistic transition rule, which is the proba-

ility of ant k to determine the next move (include feature i) in its

uilt solution at time step t based on the heuristic information and

heromone values, which is the local trial updates for each ant.

k
i (t) =

{

[τi (t)] α . [ηi (t)] β∑

u ∈ J k [τu (t)] α . [ηu (t)] β
if i ∈ J k

0 otherwise
(6)

here τ i and ηi are two values that present the pheromone value

nd heuristic desirability associated with feature i ; respectively. J k

s the set of acceptable features that can be added to the partial

olution. α and β are two values that determine the relative im-

ortance of the pheromone value and heuristic information.

H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42 33

Fig. 6. An example of a BPSO for a single iteration.

Fig. 7. The pseudo code for Ant Colony Optimization.

Table 4

The parameters setting for BACO algorithm.

Parameters Values

Number of iterations 30 0 0

Number of ants (agents) 20

Initial pheromone 1

Pheromone Exponential Weight (α) 0.8

Heuristic Exponential Weight (β) 0.8

Evaporation Rate 0.6

t

p

t

e

p

i

E

t

l

g

a

s

τ

P

4

a

h

t

o

t

a

t

c

p

m

B

a

T

u

c

n

i

a

c

d

n

p

p

F

a

(

H

q

b

P
The pheromone values are updated once all agents finish

heir movements (constructing solutions) based on Eq. (7) , where

f (P k
i
(t)) is the cost of the current solution at time step t . This

rocess is repeated until a stop condition is met. The new solu-

ions found by the agents substitute the old population using an

litism replacement strategy for the next iteration. Fig. 7 shows the

seudo-code for the ACO algorithm.

In binary Ant colony optimization (BACO), each individual ant

s represented by a binary bit string x = (x 1 , x 2 , . . . , x n) , x i ∈ {0, 1}.

ach ant k at a bit j generates a solution based on a probability dis-

ribution as shown in Eq. (8) , where τ i represents the pheromone

evel for position x i to select s ∈ {0, 1}. Fig. 8 simulates a BACO al-

orithm for a single iteration, where an ant (agent) starts building

 solution based on touring concept. Table 4 shows the parameters
etting for BACO used in this paper.

k
i (t + 1) = τ k

i (t) +

1

f (P k
i
(t))

(7)

k
i (t) =

{
τi (t) ∑

u ∈ J k τu (t)
if i ∈ J k

0 otherwise
(8)

.4. Layered recurrent neural network

Artificial Neural Network (ANN) approach is a machine learning

lgorithm based on an abstraction model of the human brain. ANN

as been widely used for solving challenging learning or classifica-

ion problems. ANN is able to learn even if the input data is noisy

r incomplete one. Once the ANN is trained, it can perform predic-

ion instantaneously. ANN has been adopted in diverse areas such

s robotics, power system, forecasting, optimization and manufac-

uring (Maren et al., 2014). In this paper, we adopt a Layered Re-

urrent Neural Network (L-RNN) structure that is able to learn the

revious input data adaptively based on layer recurrence structure.

L-RNN has been successfully applied in several complex do-

ains such as image processing (Zhang, Yin, Zhang, Liu, &

engio, 2017), industrial problems (Qin, Yang, Xue, & Song, 2017)

nd forecasting (Ruiz, Rueda, Cuéllar, & Pegalajar, 2018; Senjyu,

akara, Uezato, & Funabashi, 2002), since it considers the past val-

es through the training process. Moreover, L-RNN is able to solve

omplex problems with a set of correct weights. L-RNN has a dy-

amic memory, i.e., the information can be temporally memorized

n the L-RNN model. Basically, the learning process of L-RNN is

 time-varying pattern, applying either feed-forward or feedback

onnections. Moreover, training L-RNN is similar to training a stan-

ard neural network, but with a little twist. Each output depends

ot only on the calculations of the current time step, but also the

revious time steps. As a result, outputs of some nodes are in-

uts to other nodes providing repeated feedback to the network.

eedback nodes remember the values of the previous stage; thus,

 new output will depend on previous and current input data

 Lipton, 2015).

An example of the basic structure of L-RNN is shown in Fig. 9 .

ere we illustrate L-RNN at time t . Given an input sequence L =
(L 1 , . . . , L t) , a standard L-RNN computes the hidden vector se-

uence P = (P 1 , . . . , P t) and output vector sequence y = (y 1 , . . . , y t)

y iterating over Eqs. (9) and (10) .

 t = f (W L t + W PP P t−1 + b P) (9)
hL

34 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

Fig. 8. An example of BACO for a single iteration.

Fig. 9. An example of Layer Recurrent Neural Network (L-RNN).

Table 5

The parameters setting for L-RNN.

Parameters Values

Number of iterations 10 0 0

Number of neurons in Input layer number of features

Number of neurons in Hidden layer number of features /2

Number of neurons in Output layer 1

Threshold value to transfer output 0.5

5

f

(

d

t

m

K

p

t

h

i

M
y t = f (W yh P t + b y) (10)

where f () is an activation function (sigmoid function), three weight

matrices: (i) W hL : which is a matrix that presents the conventional

weights between input layer and a hidden layer, (ii) W PP : which

is a matrix that presents the weights between a hidden layer and

itself at adjacent time steps and (iii) W yh : which is a matrix that

presents the weights between a hidden layer and output layer. b P
and b y are vectors that present bias parameters which help each

recurrent neuron to learn an offset.

Generally speaking, there are two types of training algorithms

for L-RNN, back-propagation through time and real-time recurrent

learning. Back-propagation through time is used to alter the net-

work structure between feedback structures to feed-forward struc-

tures. Whilst real-time recurrent learning applies the same set of

weights recursively over the network structure. In this paper, we

use back-propagation through time. Table 5 shows the parameters

settings for L-RNN used in this paper. A threshold value 0.5 is used

to transform the final output. The output of L-RNN can be used

to categorize classes into either faulty (≥ threshold) or not faulty

(< threshold).
. PROMISE datasets for software fault prediction

Several public datasets are available in the field of software

ault prediction, such as the PROMISE (Tera-Promise., 2017), NASA

 M.D.P, 2017) and AEEEM (D’Ambros, Lanza, & Robbes, 2010)

atasets. Several software metrics have been proposed to inves-

igate the quality of developed software such as object-oriented

etrics, which are known as CK metrics suite (Chidamber &

emerer, 1994). In this paper, we examined 19 real software fault

rojects from the PROMISE public software engineering reposi-

ory (Jureczko & Madeyski, 2010; Tera-Promise., 2017), which are

ighly recommended by several researchers in software engineer-

ng. These datasets are noise free and have no missing values.

oreover, the selected projects have various sizes (i.e., having

H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42 35

Table 6

The details of the selected datasets.

Dataset # of Instances # of Defective Rate of defective

Instances Instances

ant-1.7 745 166 0.223

camel-1.0 339 13 0.038

camel-1.2 608 216 0.355

camel-1.4 872 145 0.166

camel-1.6 965 188 0.195

jedit-3.4 272 90 0.331

jedit-4.0 306 75 0.245

jedit-4.2 367 48 0.131

jedit-4.3 492 11 0.022

log4j-1.0 135 34 0.252

log4j-1.1 109 37 0.339

log4j-1.2 205 189 0.922

lucene-2.0 195 91 0.467

lucene-2.2 247 144 0.583

lucene-2.4 340 203 0.597

xalan-2.4 723 110 0.152

xalan-2.5 803 387 0.482

xalan-2.6 885 411 0.464

xalan-2.7 909 898 0.988

1

(

l

e

o

o

6

r

H

c

d

v

Z

a

s

t

n

A

f

2

t

(

b

W

F

t

l

S

S

w

t

s

h

p

L

t

Z

7

s

s

i

l

f

w

i

c

v

p

w

w

f

a

r

7

R

t

o

T

A

w

≥

w

p

c

m

W

n

f

i

o

a

c

c

a

a

t

o

h

7

T

s

d

w

s
09–909 instances) and different percentages of defective instances

i.e., ranging from 2.2% to 98.8%). A brief summarization of all se-

ected data is presented in Table 6 . Each dataset has 20 differ-

nt object-oriented metrics as input and a single fault value as an

utput variable. Table 7 presents the description of the 20 object-

riented metrics.

. Performance measure

Several criteria are used to evaluate a classifier such as accu-

acy, precision, recall, F-measure and area under ROC curve (AUC).

owever, all mentioned criteria except AUC are influenced by a

ut-off value on the predicted probability of defect instances. The

efault value of cut-off is 0.5, which may not be the best cut-off

alue while evaluating a classifier (Zhang, Mockus, Keivanloo, &

ou, 2016). While ROC is not related to the cut-off value and not

ffected by the skewness of faulted data (the ROC curves are insen-

itive to changes in class distributions. If the proportion of negative

o positive cases changes in the test dataset, the ROC curves will

ot change) (Fawcett, 2004). Several researchers suggest using the

UC value for better evaluating any classifier since AUC is not af-

ected by changing data distributions (Ghotra, McIntosh, & Hassan,

015; Lessmann, Baesens, Mues, & Pietsch, 2008), hence we select

he AUC value to evaluate the proposed classifier in this paper.

In short, AUC depends on the trade-off between True Positive

TP) rate against False Positive (FP) rate. The final AUC value can

e calculated based on a confusion matrix formed as in Table 8 .

here:

1. TP: Correctly predicted positive values where actual and predic-

tive values are both Yes.

2. TN: Correctly predicted negative values where actual and pre-

dictive values are both No.

3. FN: When actual class is yes but predicted class in No.

4. FP: When actual class is no and predicted class is Yes.

rom confusion matrix, two important values are used to calculate

he AUC value: sensitivity and specificity, which are defined as fol-

ows.

ensit i v it y = T P rate =

T P

P
(11)

peci f icity = T N rate =

T N

(12)

N
here P is the number of actually positive samples and N is

he number of actually negative samples. Moreover, AUC mea-

ures the probability that a randomly chosen defective entity ranks

igher than a randomly chosen clean entity. Fig. 10 shows the

roposed rules to evaluate any classifier using AUC (Hosmer &

emeshow, 20 0 0). AUC measures enable researchers to generalize

he results even if the data distribution is changed (Koru, Emam,

hang, Liu, & Mathew, 2008).

. Experimental results

In this paper, we examine the performance of different feature

election algorithms in enhancing the software fault prediction

ystem. To achieve this, several experiments were performed us-

ng MATLAB-R2014a. We applied the proposed iterated feature se-

ection algorithms with L-RNN classifier over 19 different datasets

rom PROMISE repository (see Table 6). Two sets of experiments

ere performed (i) L-RNN without cross-validation, where the data

s divided 80% for training and 20% for testing; (ii) L-RNN with

ross-validation, where self-training is applied based on k cross-

alidation (k = 5). Each dataset is divided into 5 parts, where 4

arts (80%) were used for training and the remaining one (20%)

as used for testing. Each set of experiments were tested with and

ithout feature selection. Incase of without feature selection, all

eatures were used as input to L-RNN. Each dataset has been ex-

mined 11 times. The following subsections present the obtained

esults.

.1. Results without cross-validation

In this subsection, we present the experimental results of L-

NN classifier without cross-validation, as shown in Table 9 . Two

ypes of experiments have been performed, the first one with-

ut feature selection, while the second one with feature selection.

able 9 reports 4 values for each experiment: average AUC, best

UC, minimum AUC and median of AUC, respectively.

It is clear that L-RNN classifier without cross-validation and

ithout feature selection is able to find acceptable results (AUC

0.7) in 14 datasets out of 19 based on best AUC value. While

ith feature selection only 3 datasets are acceptable. For exam-

le, L-RNN classifier without feature selection is able to obtain ex-

ellent results on jedit-4.0 dataset, where the average, best, mini-

um and median are 0.8442, 0.9655, 0.4310, 0.9023, respectively.

hile the results for the same dataset with feature selection are

ot good enough since best ROC value is 0.6364 which indicates a

air classifier. Figs. 11 and 12 present the boxplots diagram for test-

ng datasets without and with feature selection, respectively; based

n the average values, it is obvious that the overall performance is

 poor classifier for both cases. However, the obtained results indi-

ate that FS is not always able to enhance the performance of the

lassifier. Moreover, splitting the datasets into two parts (training

nd testing) may also create an over-learning problem (training for

 long time, where the neural network extracts too much informa-

ion from the individual cases forgetting the relevant information

f the general case). To overcome this problem, a cross-validation

as been applied by dividing dataset into k-fold number.

.2. Results with cross-validation

The results of the L-RNN with cross-validation are presented in

able 10 . The performance of the proposed algorithm with feature

election over camel-1.0, jedit-3.4, jedit-4.3, log4j-1.1 and xalan-2.7

atasets is outstanding based on the average AUC results. While

ithout feature selection only one dataset (jedit-4.3) has an out-

tanding result. Based on the best AUC values, it is clear that

36 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

Fig. 10. The ROC curves and AUC values.

Fig. 11. Boxplots diagram without feature selection and without cross validation.

Fig. 12. Boxplots diagram with feature selection and without cross validation.

H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42 37

Table 7

Metrics description.

Metric Description

wmc Number of methods defined in a class.

dit Depth of a class within the class hierarchy from the root of inheritance.

noc Number of immediate descendants of a class.

cbo Count the number of classes coupled to class.

rfc Count the number of distinct methods invoked by a class in response to a received message.

lcom Count the number of methods that do not share a field to the method pairs that do.

ca Count the number of dependent classes for a given class.

ce Count the number of classes on which a class depends.

npm Number of public methods defined in a class.

lcom3 Count the number of connected components in a method graph.

loc Count the total number of lines of code of a class.

dam Computes the ratio of private attributes in a class.

moa Count the number of data members declared as class type.

mfa Shows the fraction of the methods inherited by a class to the methods accessible by the functions defined in the class.

cam Computes the cohesion among methods of a class based on the parameters list.

ic Count the number of coupled ancestor classes of a class.

cbm Count the number of new or redefined methods that are coupled with the inherited methods.

amc Measures the average method size for each class.

max_cc Maximum counts of the number of logically independent paths in a method.

avg_cc Average counts of the number of logically independent paths in a method.

Table 8

The confusion matrix.

Predicted class

Actual class Class = Yes Class = No

Class = Yes True Positive (TP) False Negative (FN)

Class = No False Positive (FP) True Negative (TN)

w

d

b

t

n

8

r

p

t

p

c

T

a

e

t

i

p

e

e

t

f

r

g

s

c

s

t

a
ith feature selection outperforms without feature selection in 17

atasets.

Figs. 13 and 14 show the performance of the datasets based on

oxplots diagram. The results demonstrate that the feature selec-

ion plays an important role in enhancing the results and robust-

ess.

. Result analysis

In this section, we present a detailed analysis of the obtained

esults with a comparison with the results of the well-known ap-

roaches in the literature. To evaluate the obtained results and
o show how the number of used features affects the classifiers’

Table 9

Results of L-RNN classifier without cross-validation.

Dataset Results on testing without feature selection

Avg.ROC Best ROC Min.ROC Median RO

ant-1.7 0.6047 0.7151 0.4470 0.6110

camel-1.0 0.6396 0.9621 0.0303 0.7727

camel-1.2 0.4262 0.5182 0.2955 0.4295

camel-1.4 0.6023 0.7443 0.4275 0.6003

camel-1.6 0.5423 0.7422 0.4163 0.5403

jedit-3.4 0.6540 0.9623 0.0377 0.7642

jedit-4.0 0.8442 0.9655 0.4310 0.9023

jedit-4.2 0.6178 0.9310 0.4459 0.5758

jedit-4.3 0.6955 0.9742 0.2320 0.6443

log4j-1.0 0.6832 0.8918 0.3351 0.6944

log4j-1.1 0.7061 0.8070 0.6316 0.7018

log4j-1.2 0.4583 0.7611 0.20 0 0 0.4306

lucene-2.0 0.5105 0.6721 0.3766 0.5032

lucene-2.2 0.4905 0.6718 0.3231 0.4833

lucene-2.4 0.4919 0.7231 0.3608 0.4867

xalan-2.4 0.5587 0.7481 0.4043 0.5714

xalan-2.5 0.5515 0.6294 0.4644 0.5553

xalan-2.6 0.6584 0.7322 0.5798 0.6619

xalan-2.7 0.4432 0.6920 0.1503 0.4760
erformance, a statistical comparison using the Wilcoxon statisti-

al test with a significance level of 0.05 was conducted as well.

able 11 presents the p-values of the obtained results. In this table,

 p -value less than 0.05 indicates that there is a statistical differ-

nce between results. We can see that the obtained p -value is less

han 0.05 for both tests.

By investigating the average of ROC results from Table 9 , it

s clear that the performance of the LRNN with all features out-

erforms the same approach with feature selection in all datasets

xcept camel-1.2 and lucene-2.0 datasets. While comparing the av-

rage of ROC results from Table 10 , we can see that applying fea-

ure selection is able to outperform the same approach without

eature selection in all datasets. Moreover, the obtained average

esults with cross validation combined with feature selection al-

orithms outperforms all other reported results.

The models that do not use the cross validation strategy are

impler in implementation, require less training models and low

omputational time compared to those use the cross validation

trategy. However, the cross validation strategy enables the model

o be trained on all samples in the dataset, which yields to more

ccurate model. Adding feature selection approach reduces the
Results on testing with feature selection

C Avg.ROC Best ROC Min.ROC Median ROC

0.5234 0.6154 0.4316 0.5359

0.6074 0.8015 0.2811 0.5902

0.4432 0.5922 0.3246 0.4309

0.5214 0.5793 0.4366 0.5278

0.5045 0.6114 0.3963 0.5010

0.5180 0.6585 0.4053 0.5232

0.5494 0.6364 0.4104 0.5675

0.5185 0.6862 0.2801 0.5046

0.6838 0.9012 0.2161 0.6994

0.5354 0.6795 0.3377 0.5234

0.5222 0.6923 0.3513 0.5281

0.3614 0.7153 0.1495 0.3450

0.5531 0.6650 0.4305 0.5664

0.4630 0.5829 0.3842 0.4571

0.4851 0.6383 0.3834 0.4739

0.5364 0.6710 0.4256 0.5171

0.5098 0.5668 0.4547 0.5082

0.5064 0.5617 0.4372 0.5076

0.4201 0.5775 0.2732 0.4087

38 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

Table 10

Results of L-RNN classifier with cross-validation.

Dataset Results on testing without feature selection Results on testing with feature selection

Avg.ROC Best ROC Min.ROC Median ROC Avg.ROC Best ROC Min.ROC Median ROC

ant-1.7 0.7382 0.7850 0.6888 0.7369 0.8842 0.9048 0.8724 0.8794

camel-1.0 0.8772 0.8921 0.8518 0.8869 0.9052 0.9235 0.8853 0.9042

camel-1.2 0.6136 0.6239 0.5908 0.6174 0.6484 0.6544 0.6414 0.6510

camel-1.4 0.7877 0.7913 0.7807 0.7895 0.7807 0.8575 0.7069 0.7747

camel-1.6 0.6350 0.6726 0.6123 0.6303 0.6914 0.7391 0.6556 0.6934

jedit-3.4 0.8912 0.9087 0.8777 0.8872 0.9177 0.9287 0.9081 0.9189

jedit-4.0 0.8301 0.8328 0.8247 0.8317 0.8700 0.8953 0.8307 0.8783

jedit-4.2 0.8555 0.8978 0.8326 0.8418 0.8913 0.9249 0.8647 0.8886

jedit-4.3 0.9091 0.9333 0.8805 0.9061 0.9131 0.9372 0.8939 0.9131

log4j-1.0 0.8844 0.8976 0.8620 0.8936 0.8759 0.9105 0.8531 0.8712

log4j-1.1 0.8708 0.8754 0.8660 0.8720 0.9145 0.9241 0.9067 0.9127

log4j-1.2 0.8411 0.8500 0.8322 0.8431 0.8522 0.8957 0.8222 0.8449

lucene-2.0 0.8219 0.8407 0.8047 0.8261 0.8677 0.8881 0.8251 0.8741

lucene-2.2 0.7632 0.7819 0.7445 0.7624 0.8236 0.8542 0.8022 0.8270

lucene-2.4 0.7892 0.8187 0.7488 0.7942 0.8259 0.8547 0.8010 0.8185

xalan-2.4 0.8121 0.8356 0.7981 0.8064 0.8270 0.8419 0.8101 0.8277

xalan-2.5 0.6414 0.6837 0.6047 0.6460 0.7493 0.7743 0.7151 0.7537

xalan-2.6 0.6406 0.6779 0.6153 0.6259 0.7125 0.7318 0.7044 0.7055

xalan-2.7 0.8009 0.8335 0.7725 0.7959 0.9295 0.9461 0.9177 0.9241

Fig. 13. Boxplots diagram for cross-validation without feature selection.

Fig. 14. Boxplots diagram for cross-validation with feature selection.

H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42 39

Table 11

P -value results based on Wilcoxon test.

Compared approaches p _value

Without cross-validation with FS vs. Without cross-validation without FS 9.81E-05

Cross-validation with FS vs. Cross-validation without FS 1.52E-04

Table 12

Comparison between the proposed method and the sate-of-the art methods based on the average AUC values.

Dataset Our results (Erturk and Sezer, 2016) (Shatnawi, 2017) (Okutan and

Yildiz, 2012)

With

cross-validation

Without

cross-validation

NB ∗ ANN ANFIS LR NB 5NN C4.5 Bayesian

Networks

ant-1.7 0.8842 0.5234 0.7261 0.8468 0.8184 0.83 0.79 0.76 0.74 0.82

camel-1.0 0.9052 0.6074 0.8881 0.9242 0.8939 – – – – –

camel-1.2 0.6484 0.4432 0.5531 0.6008 0.6009 0.57 0.56 0.64 0.52 –

camel-1.4 0.7807 0.5214 0.6603 0.7911 0.8132 0.7 0.67 0.67 0.6 –

camel-1.6 0.6914 0.5045 0.6878 0.6807 0.7143 0.65 0.59 0.66 0.54

jedit-3.4 0.9177 0.5180 0.6777 0.8796 0.8997 – – – – –

jedit-4.0 0.8700 0.5494 0.7055 0.8246 0.7826 0.77 0.7 0.81 0.72 –

jedit-4.2 0.8913 0.5185 0.8352 0.8750 0.9755 0.84 0.75 0.77 0.64 –

jedit-4.3 0.9131 0.6838 0.8273 0.4613 0.9115 – – – – 0.658

log4j-1.0 0.8759 0.5354 0.8455 0.8929 0.8857 – – – – –

log4j-1.1 0.9145 0.5222 0.8970 0.9018 0.9018 – – – – –

log4j-1.2 0.8522 0.3614 0.8058 0.7804 0.7719 – – – – –

lucene-2.0 0.8677 0.5531 0.8136 0.8492 0.8651 0.77 0.75 0.7 0.67 –

lucene-2.2 0.8236 0.4630 0.7174 0.7628 0.7457 0.62 0.61 0.7 0.58 –

lucene-2.4 0.8259 0.4851 0.7723 0.8248 0.8148 0.75 0.69 0.73 0.68 0.633

xalan-2.4 0.8270 0.5364 0.7621 0.8186 0.8197 – – – – –

xalan-2.5 0.7493 0.5098 0.6575 0.6747 0.6633 – – – – 0.624

xalan-2.6 0.7125 0.5064 0.6400 0.6821 0.6782 – – – – –

xalan-2.7 0.9295 0.4201 0.8054 0.8167 0.8589 – – – – –

Average 0.8358 0.5138 0.7515 0.7836 0.8113 – – – – –

s

t

t

p

t

p

l

I

v

3

p

w

S

c

S

Y

t

o

Y

M

E

m

t

p

o

t

i

t

s

w

A

Table 13

Number of selections by feature selection algo-

rithms for each metric.

Sequence # Metrics Number of selections

1 wmc 84

2 dit 85

3 noc 67

4 cbo 96

5 rfc 99

6 lcom 73

7 ca 98

8 ce 87

9 npm 83

10 lcom3 81

11 loc 94

12 dam 88

13 moa 84

14 mfa 79

15 cam 79

16 ic 78

17 cbm 81

18 amc 89

19 max_cc 72

20 avg_cc 72

t

(

m

b

d

n

m

A

f
earch space for training process. Moreover, cross validation is bet-

er approximation approach either with or without feature selec-

ion. As a result, determining the most effective features is an im-

ortant issue to gain an acceptable classifier and it is not accurate

o select a fixed set of features or take all features.

Table 12 presents the results of the proposed algorithm com-

ared with several methods in the literature that used feature se-

ection algorithms or fixed size of features based on AUC values.

n this paper, Naive Bayes (NB

∗) algorithm was applied with cross-

alidation, where k = 5 , to explore Naive Bayes performance. Only

 features were selected (i.e., cbo, wmc and rfc) to make fair com-

ression with (Erturk & Sezer, 2016). It is clear that NB algorithm

ith three features is not performing well. Moreover, Erturk and

ezer (2016) used only three features based on the suggestion

oming from Radjenovic, Hericko, Torkar, and Zivkovic (2013) .

hatnawi (2017) used all features in his work, while Okutan and

ıldız (2014) applied Bayesian Network to find the relation be-

ween features and select the most effective features.

By investigating the results in Table 12 , it can be obvi-

usly seen that the results in Shatnawi (2017) and Okutan and

ıldız (2014) were outperformed by the proposed approach.

oreover, the proposed approach outperformed the results in

rturk and Sezer (2016) in 14 datasets out of 19 datasets. Its worth

entioning that (Erturk & Sezer, 2016) used a fixed number of fea-

ures that were recommended in a previous study. However, in the

roposed approach, the features were selected automatically based

n a set of well-known metaheuristics algorithms. Thus, the ob-

ained results can be interpreted due to the fact that each project

s quite different from another one in the real world. Observing

he average results of all approaches, it can be seen that the re-

ults of iterated feature selection algorithms with L-RNN classifier

ith cross-validation outperforms all other approaches based on

UC values. Based on the previous results, it can be concluded that
he proposed approach could select the most informative features

i.e., object-oriented metrics) that yield to the highest AUC results.

Table 13 shows the number of times that each object-oriented

etric has been selected by feature selection algorithms. The num-

ers presented in this table are obtained after 11 runs over each

ataset. The total number of runs is 209. For example; feature

umber 4 (cbo) has been selected 96 times over all datasets, which

eans that cbo metric has a high impact on the prediction process.

s a result, to generate a good classification model for software

aults prediction cbo metric should not be ignored during collect-

40 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

Table 14

Execution time for all datasets in seconds.

Dataset Without feature selection With feature selection

Without cross validation With cross validation Without cross validation With cross validation

ant-1.7 301.34 1536.52 6325.82 25570.23

camel-1.0 150.82 752.29 5842.41 20174.82

camel-1.2 285.14 1184.13 6021.88 23865.74

camel-1.4 360.58 1925.16 6777.23 27012.37

camel-1.6 125.39 539.87 7529.53 40021.51

jedit-3.4 140.21 675.00 4827.20 17520.30

jedit-4.0 144.21 756.37 5297.61 22281.28

jedit-4.2 158.22 788.21 4961.82 22652.37

jedit-4.3 96.22 4 91.4 8 5371.85 20086.44

log4j-1.0 85.61 415.38 3985.25 16650.00

log4j-1.1 115.82 677.57 3527.83 15277.53

log4j-1.2 132.45 705.84 4521.36 26336.42

lucene-2.0 130.57 791.40 4991.75 25362.85

lucene-2.2 169.32 1058.32 4652.88 19216.32

lucene-2.4 172.38 1038.25 5482.11 27157.77

xalan-2.4 378.51 1603.69 7125.33 32514.29

xalan-2.5 420.76 2752.50 7432.96 40275.81

xalan-2.6 432.72 2652.89 7952.60 37790.20

xalan-2.7 475.39 3484.05 7932.22 41849.42

Average 225.03 1254.15 5818.93 26400.82

Table 15

Metrics used for best AUC results for each dataset.

Dataset Features Algorithm AUC

ant-1.7 3 5 6 8 11 13 14 17 19 PSO 0.904833

camel-1.0 1 5 7 12 14 15 16 19 ACO 1

camel-1.2 1 3 4 5 8 9 10 11 12 14 GA 0.6919

camel-1.4 1 2 3 5 6 8 10 11 12 17 GA 0.857479

camel-1.6 1 2 4 7 12 13 17 20 PSO 0.739072

jedit-3.4 1 5 6 8 12 13 17 18 PSO 0.928652

jedit-4.0 1 2 5 6 7 8 12 19 20 GA 0.895276

jedit-4.2 1 2 3 4 5 6 9 12 14 18 19 20 GA 0.9953

jedit-4.3 1 5 6 10 12 13 16 17 ACO 0.9841

log4j-1.0 1 2 7 10 11 13 15 16 17 18 20 GA 1

log4j-1.1 1 2 3 7 10 11 15 ACO 0.924139

log4j-1.2 2 5 7 12 13 14 19 20 GA 0.895727

lucene-2.0 2 3 6 12 14 15 16 17 19 PSO 0.854152

lucene-2.2 1 4 5 7 18 PSO 0.854152

lucene-2.4 3 4 5 8 10 11 20 ACO 0.854696

xalan-2.4 1 2 3 4 5 6 7 8 14 15 16 18 20 GA 0.7095

xalan-2.5 1 3 4 5 7 8 13 GA 0.774263

xalan-2.6 3 6 11 12 13 14 ACO 0.786

xalan-2.7 2 5 6 9 11 13 15 18 PSO 0.946099

t

i

f

t

p

a

e

a

f

t

a

r

e

p

9

a

s
ing data for any new project. While feature number 3 (noc) has

been selected 67 times, which is less important compared with cbo

feature. However, it is hard to ignore any feature during software

fault prediction since the difference between numbers reported in

Table 13 is not too big. As a result, each project has specific fea-

tures that have a high impact value on the performance of the

classifier.

Table 15 shows the metrics (features) that are selected for

each dataset and the algorithm which selected these features. It is

clear that each dataset has different metrics based on the dataset

complexity. For example, the most effective metrics for jedit-4.3

dataset are 1 = wmc, 5 = rfc, 6 = lcom, 10 = lcom3, 12 = dam, 13 = moa,

16 = ic and 17 = cbm. As a result, it is important to have an algo-

rithm that is able to determine which features that have a high

impact value on the classifier performance, which is the main mo-

tivation of our paper.

Moreover, our experimental results show that the proposed al-

gorithm is able to improve the performance of the classification

rate as compared with other approaches. However, software faults

prediction process is performed off-line, where the execution time

is increased exponentially with the size of datasets. In our pro-

posed algorithm, two main processes are performed, one for fea-
 t
ure selection and L-RNN classifier. As a result, the execution time

s high for large datasets such as xalan-2.7, while it is acceptable

or small datasets such as log4j-1.1. Table 14 shows the execution

ime for all datasets in seconds.

Finally, we can summarize that the performance of L-RNN de-

ends on the characteristics of input data. Feature selection works

s data compression. Some data is useless and have little or no

ffects on classification process. As a result, finding the important

nd relevant metrics will enhance the training process. Three dif-

erent FS algorithms are implemented to achieve a balance be-

ween exploration and exploitation through searching process to

void getting stuck in local optima. Feature selection plays a vital

ole in the training process to enhance the classification rate. This

nhancement is achieved by reducing the size of search space (in-

ut data) and complexity of L-RNN.

. Conclusion and future work

In this paper, we have proposed an iterated feature selection

lgorithm with a layered recurrent neural network for solving the

oftware faults prediction problem. The proposed algorithm is able

o select the most important software metrics using different fea-

H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42 41

t

b

i

o

f

(

k

o

q

t

f

m

A

A

t

M

e

R

A

C

C

C

C

C

C

C

C

C

D

D

D

D

E

E

E

E

F

F

G

G

G

H

H

H

H

H

J

J

K

K

K

K

K

K

L

L

L

L

M

M

M

M

M

M

M

M

ure selection algorithms. The classification process is carried out

y a layered recurrent neural network. The proposed algorithm

s able to obtain an excellent classification rate (with an average

f 0.8358 over all datasets) based on AUC results, which outper-

orms existing results found in the literature such as Naïve Bayes

NB), Artificial Neural Network (ANN), logistic regression (LR), the

-nearest neighbors (k-NN) and C4.5. The obtained results support

ur claim of the importance of feature selection in building a high-

uality classifier rather than using a fixed set of features or all fea-

ures.

For future work, we plan to investigate the performance of dif-

erent classifiers such as genetic programming to build a computer

odel that is able to predict faults based on a selected metrics.

uthor contributions form

Contribution Authors

Study conception and design Turabieh and Mafarja

Analysis and interpretation of data Turabieh and Mafarja

Programming Turabieh and Mafarja

Drafting of manuscript Turabieh, Mafarja and Li

Critical revision Turabieh, Mafarja and Li

cknowledgments

We would like to acknowledge the anonymous reviewers for

he valuable comments that improved the quality of this paper.

oreover, we would also like to thank the Editors for their gen-

rous comments and support during the review process.

eferences

lshayeb, M. , & Li, W. (2003). An empirical validation of object-oriented metrics in

two different iterative software processes. IEEE Transactions on Software Engi-
neering, 29 (11), 1043–1049 .

ahill, J. , Hogan, J. M. , & Thomas, R. (2013). Predicting fault-prone software modules
with rank sum classification. Software engineering conference (ASWEC), 2013 22nd

australian (211–219) .
arrozza, G. , Cotroneo, D. , Natella, R. , Pietrantuono, R. , & Russo, S. (2013). Analysis

and prediction of mandelbugs in an industrial software system. Software test-

ing, verification and validation (ICST), 2013 IEEE sixth international conference on
(262–271) .

atal, C. (2011). Software fault prediction: A literature review and current trends.
Expert Systems with Applications, 38 (4), 4626–4636 .

atal, C. , & Diri, B. (2009). A systematic review of software fault prediction studies.
Expert Systems with Applications, 36 (4), 7346–7354 .

hatterjee, S., Nigam, S., & Roy, A. (2017). Software fault prediction using neuro-

fuzzy network and evolutionary learning approach. Neural Computing and Appli-
cations, 28 (1), 1221–1231. doi: 10.10 07/s0 0521- 016- 2437- y .

hen, J. , Liu, S. , Liu, W. , Chen, X. , Gu, Q. , & Chen, D. (2014). A two-stage data prepro-
cessing approach for software fault prediction. Software security and reliability,

2014 eighth international conference on (20–29) .
hidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented de-

sign. IEEE Transactions on Software Engineering, 20 (6), 476–493. doi: 10.1109/32.

295895 .
otroneo, D. , Natella, R. , & Pietrantuono, R. (2013). Predicting aging-related bugs

using software complexity metrics. Performance Evaluation, 70 (3), 163–178 .
zibula, G. , Marian, Z. , & Czibula, I. G. (2014). Software defect prediction using rela-

tional association rule mining. Information Sciences, 264 , 260–278 .
’Ambros, M., Lanza, M., & Robbes, R. (2010). An extensive comparison of bug pre-

diction approaches. 2010 7th IEEE working conference on mining software reposi-

tories (MSR 2010) (31–41) . doi: 10.1109/MSR.2010.5463279 .
ash, M. , & Liu, H. (1997). Feature selection for classification. Intelligent Data Analy-

sis, 1 (1–4), 131–156 .
ejaeger, K. , Verbraken, T. , & Baesens, B. (2013). Toward comprehensible software

fault prediction models using Bayesian network classifiers. IEEE Transactions on
Software Engineering, 39 (2), 237–257 .

origo, M., & Caro, G. D. (1999). Ant colony optimization: A new meta-heuristic.
In Proceedings of the 1999 congress on evolutionary computation-CEC99 (cat. no.

99TH8406) (2, 1477 vol. 2) . doi: 10.1109/CEC.1999.782657 .

l Emam, K. , Benlarbi, S. , Goel, N. , & Rai, S. N. (2001). Comparing case-based reason-
ing classifiers for predicting high risk software components. Journal of Systems

and Software, 55 (3), 301–320 .
rturk, E. , & Sezer, E. A. (2015). A comparison of some soft computing methods for

software fault prediction. Expert Systems with Applications, 42 (4), 1872–1879 .
rturk, E. , & Sezer, E. A. (2016). Iterative software fault prediction with a hybrid
approach. Applied Soft Computing, 49 , 1020–1033 .

zgi, Z. , & Selma, A. O. (2016). A hybrid approach of differential evolution and
artificial bee colony for feature selection. Expert Systems with Applications, 62 ,

91–103 .
awcett, T. (2004). ROC graphs: Notes and practical considerations for researchers.

Tech. Rep.
owler, M. , & Highsmith, J. (2001). The agile manifesto. Software Development, 9 (8),

28–35 .

hotra, B., McIntosh, S., & Hassan, A. E. (2015). Revisiting the impact of classifica-
tion techniques on the performance of defect prediction models. In Proceedings

of the 37th international conference on software engineering – volume 1 (789–
800) . Piscataway, NJ, USA: IEEE Press . http://dl.acm.org/citation.cfm?id=2818754.

2818850 .
lover, F. (1986). Future paths for integer programming and links to artificial intel-

ligence. Computers & Operations Research, 13 (5), 533–549 .

uyon, I. , & Elisseeff, A. (2003). An introduction to variable and feature selection
[journal article]. Journal of Machine Learning Research, 3 (Mar), 1157–1182 .

all, T. , Beecham, S. , Bowes, D. , Gray, D. , & Counsell, S. (2012). A systematic lit-
erature review on fault prediction performance in software engineering. IEEE

Transactions on Software Engineering, 38 (6), 1276–1304 .
oda, R. , Salleh, N. , Grundy, J. , & Tee, H. M. (2017). Systematic literature reviews in

agile software development: A tertiary study. Information and Software Technol-

ogy, 85 , 60–70 .
olland, J. H. (1992). Adaptation in natural and artificial systems:. An introductory

analysis with applications to biology, control and artificial intelligence . Cambridge,
MA, USA: MIT Press .

osmer, D. W. , & Lemeshow, S. (20 0 0). Applied logistic regression. Wiley-interscience
publication . Wiley Series in probability and statistics) (2nd ed) .

uang, C. L., & Wang, C. J. (2006). A GA-based feature selection and parame-

ters optimization for support vector machines. Expert Systems with Applications,
31 (2), 231–240. doi: 10.1016/j.eswa.2005.09.024 . http://www.sciencedirect.com/

science/article/pii/S0957417405002083 .
in, C. , & Jin, S. W. (2015). Prediction approach of software fault-proneness based

on hybrid artificial neural network and quantum particle swarm optimization.
Applied Soft Computing, 35 , 717–725 .

ureczko, M., & Madeyski, L. (2010). Towards identifying software project clusters

with regard to defect prediction. In Proceedings of the 6th international con-
ference on predictive models in software engineering (9:1–9:10) . New York, NY,

USA: ACM. doi: 10.1145/1868328.1868342 . http://doi.acm.org/10.1145/1868328.
1868342 .

ennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural networks,
1995. proceedings., IEEE international conference on.(4, 1942–1948 vol.4) . doi: 10.

1109/ICNN.1995.4 8896 8 .

ennedy, J. , & Eberhart, R. C. (1997). A discrete binary version of the particle swarm
algorithm. Systems, man, and cybernetics, 1997. computational cybernetics and

simulation., 1997 IEEE international conference on (5, 4104–4108) .
hoshgoftaar, T. M. , & Seliya, N. (2003). Software quality classification modeling us-

ing the SPRINT decision tree algorithm. International Journal on Artificial Intelli-
gence Tools, 12 (03), 207–225 .

hoshgoftaar, T. M. , Xiao, Y. , & Gao, K. (2014). Software quality assessment using a
multi-strategy classifier. Information Sciences, 259 , 555–570 .

oru, A. G., Emam, K. E., Zhang, D., Liu, H., & Mathew, D. (2008). Theory of rel-

ative defect proneness. Empirical Software Engineering, 13 (5), 473. doi: 10.1007/
s10664- 008- 9080- x . https://doi.org/10.1007/s10664- 008- 9080- x .

udo, M. , & Sklansky, J. (20 0 0). Comparison of algorithms that select features for
pattern classifiers. Pattern Recognition, 33 (1), 25–41 .

essmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking classification
models for software defect prediction: A proposed framework and novel find-

ings. IEEE Transactions on Software Engineering, 34 (4), 4 85–4 96. doi: 10.1109/TSE.

2008.35 .
i, W. , & Henry, S. (1993). Object-oriented metrics that predict maintainability. Jour-

nal of systems and software, 23 (2), 111–122 .
ipton, Z. C. (2015). A critical review of recurrent neural networks for sequence

learning. CoRR, abs/1506.0 0 019. http://arxiv.org/abs/1506.0 0 019 .
iu, H. , & Motoda, H. (2012). Feature selection for knowledge discovery and data min-

ing (454) . Springer Science & Business Media .

aggiori, E., Charpiat, G., Tarabalka, Y., & Alliez, P. (2017). Recurrent neural networks
to correct satellite image classification maps. IEEE Transactions on Geoscience and

Remote Sensing, 55 (9), 4 962–4 971. doi: 10.1109/TGRS.2017.2697453 .
alhotra, R. (2014). Comparative analysis of statistical and machine learning meth-

ods for predicting faulty modules. Applied Soft Computing, 21 , 286–297 .
alhotra, R. (2015). A systematic review of machine learning techniques for soft-

ware fault prediction. Applied Soft Computing, 27 , 504–518 .

aniezzo, A. (1992). Distributed optimization by ant colonies. Toward a practice of
autonomous systems: proceedings of the first European conference on artificial life

(134) .
aren, A. J. , Harston, C. T. , & Pap, R. M. (2014). Handbook of neural computing appli-

cations . Academic press .
.D.P (2017). NASA. http://nasa-softwaredefectdatasets.wikispaces.com/ . Last [Ac-

cessed 24 November 2017].

enzies, T. , Greenwald, J. , & Frank, A. (2007). Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33 (1), 2–13 .

iholca, D. L. , Czibula, G. , & Czibula, I. G. (2018). A novel approach for software
defect prediction through hybridizing gradual relational association rules with

artificial neural networks. Information Sciences, 441 , 152–170 .

http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0005
https://doi.org/10.1007/s00521-016-2437-y
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0007
https://doi.org/10.1109/32.295895
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0010
https://doi.org/10.1109/MSR.2010.5463279
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0013
https://doi.org/10.1109/CEC.1999.782657
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0019
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0019
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0019
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0019
http://dl.acm.org/citation.cfm?id=2818754.2818850
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0026
https://doi.org/10.1016/j.eswa.2005.09.024
http://www.sciencedirect.com/science/article/pii/S0957417405002083
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0028
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0028
https://doi.org/10.1145/1868328.1868342
http://doi.acm.org/10.1145/1868328.1868342
https://doi.org/10.1109/ICNN.1995.488968
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0031
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0032
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0033
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0033
https://doi.org/10.1007/s10664-008-9080-x
https://doi.org/10.1007/s10664-008-9080-x
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0035
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0035
https://doi.org/10.1109/TSE.2008.35
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0037
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0037
http://arxiv.org/abs/1506.00019
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0038
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0038
https://doi.org/10.1109/TGRS.2017.2697453
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0040
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0040
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0041
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0041
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0042
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0042
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0043
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0043
http://nasa-softwaredefectdatasets.wikispaces.com/
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0044
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0044
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0044
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0044
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0044
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0045
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0045
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0045
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0045
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0045

42 H. Turabieh, M. Mafarja and X. Li / Expert Systems With Applications 122 (2019) 27–42

R

S

S

S

S

T

T

T

X

Z

Z

Mohan, B. C., & Baskaran, R. (2012). A survey: Ant colony optimization based re-
cent research and implementation on several engineering domain. Expert Sys-

tems with Applications, 39 (4), 4618–4627. doi: 10.1016/j.eswa.2011.09.076 . http:
//www.sciencedirect.com/science/article/pii/S0957417411013996 .

Okutan, A., & Yıldız, O. T. (2014). Software defect prediction using bayesian
networks. Empirical Software Engineering, 19 (1), 154–181. doi: 10.1007/

s10664- 012- 9218- 8 . https://doi.org/10.1007/s10664- 012- 9218- 8 .
Oliveira, J. C. M. , Pontes, K. V. , Sartori, I. , & Embiruçu, M. (2017). Fault detection and

diagnosis in dynamic systems using weightless neural networks. Expert Systems

with Applications, 84 , 200–219 .
Porter, A . A . , & Selby, R. W. (1990). Empirically guided software development using

metric-based classification trees. IEEE software, 7 (2), 46–54 .
Prugel-Bennett, A. (2010). Benefits of a population: Five mechanisms that advan-

tage population-based algorithms. IEEE Transactions on Evolutionary Computa-
tion, 14 (4), 500–517. doi: 10.1109/TEVC.2009.2039139 .

Qin, S., Yang, X., Xue, X., & Song, J. (2017). A one-layer recurrent neural network

for pseudoconvex optimization problems with equality and inequality con-
straints. IEEE Transactions on Cybernetics, 47 (10), 3063–3074. doi: 10.1109/TCYB.

2016.2567449 .
Radjenovic, D., Hericko, M., Torkar, R., & Zivkovic, A. (2013). Software fault

prediction metrics: A systematic literature review. Information and Soft-
ware Technology, 55 (8), 1397–1418. doi: 10.1016/j.infsof.2013.02.009 . http://www.

sciencedirect.com/science/article/pii/S09505849130 0 0426 .

Radjenovi ́c, D. , Heri ̌cko, M. , Torkar, R. , & Živkovi ̌c, A. (2013). Software fault predic-
tion metrics: A systematic literature review. Information and Software Technol-

ogy, 55 (8), 1397–1418 .
Rathore, S. S. , & Kumar, S. (2017a). A decision tree logic based recommendation sys-

tem to select software fault prediction techniques. Computing, 99 (3), 255–285 .
Rathore, S. S. , & Kumar, S. (2017b). Towards an ensemble based system for predict-

ing the number of software faults. Expert Systems with Applications, 82 , 357–382 .

Rathore, S. S. , & Kumar, S. (2017c). Linear and non-linear heterogeneous ensemble
methods to predict the number of faults in software systems. Knowledge-Based

Systems, 119 , 232–256 .
Rauber, T. W. , de Assis Boldt, F. , & Varejão, F. M. (2015). Heterogeneous feature mod-

els and feature selection applied to bearing fault diagnosis. IEEE Transactions on
Industrial Electronics, 62 (1), 637–646 .

Royce, W. W. (1987). Managing the development of large software systems: Con-

cepts and techniques. In Proceedings of the 9th international conference on soft-
ware engineering (328–338) .
uiz, L., Rueda, R., Cuéllar, M., & Pegalajar, M. (2018). Energy consumption forecast-
ing based on elman neural networks with evolutive optimization. Expert Systems

with Applications, 92 (Supplement C), 380–389. doi: 10.1016/j.eswa.2017.09.059 .
enjyu, T. , Takara, H. , Uezato, K. , & Funabashi, T. (2002). One-hour-ahead load fore-

casting using neural network. IEEE Transactions on Power Systems, 17 (1), 113–118 .
hatnawi, R. (2017). The application of ROC analysis in threshold identification, data

imbalance and metrics selection for software fault prediction. Innovations in Sys-
tems and Software Engineering, 13 (2), 201–217. doi: 10.1007/s11334- 017- 0295- 0 .

https://doi.org/10.1007/s11334- 017- 0295- 0 .

heskin, D. J. (2003). Handbook of parametric and nonparametric statistical proce-
dures . CRC Press .

tavru, S. (2014). A critical examination of recent industrial surveys on agile method
usage (94, pp. 87–97) .

albi, E. G. (2009). Metaheuristics: From design to implementation (74) . John wiley &
sons .

era-Promise (2017). http://openscience.us/repo . Last accessed 24 November 2017.

hwin, M. M. T. , & Quah, T. S. (2005). Application of neural networks for software
quality prediction using object-oriented metrics. Journal of Systems and Software,

76 (2), 147–156 .
Van Laarhoven, P. J. , & Aarts, E. H. (1987). Simulated annealing. Simulated annealing:

Theory and applications (7–15) . Springer
ing, F. , Guo, P. , & Lyu, M. R. (2005). A novel method for early software quality pre-

diction based on support vector machine. Software reliability engineering, 2005.

ISSRE 2005. 16th IEEE international symposium on (10–pp) .
Yuan, X. , Khoshgoftaar, T. M. , Allen, E. B. , & Ganesan, K. (20 0 0). An application

of fuzzy clustering to software quality prediction. Application-specific systems
and software engineering technology, 20 0 0. proceedings. 3rd IEEE symposium on

(85–90) .
hang, F., Mockus, A., Keivanloo, I., & Zou, Y. (2016). Towards building a universal

defect prediction model with rank transformed predictors. Empirical Software

Engineering, 21 (5), 2107–2145. doi: 10.1007/s10664- 015- 9396- 2 . https://doi.org/
10.1007/s10664- 015- 9396- 2 .

hang, X. Y., Yin, F., Zhang, Y. M., Liu, C. L., & Bengio, Y. (2017). Drawing and rec-
ognizing chinese characters with recurrent neural network. IEEE Transactions

on Pattern Analysis and Machine Intelligence, PP (99), 1. doi: 10.1109/TPAMI.2017.
2695539 .

Zimmermann, T. , Nagappan, N. , & Zeller, A. (2008). Predicting bugs from history.

Software Evolution, 4 (1), 69–88 .

https://doi.org/10.1016/j.eswa.2011.09.076
http://www.sciencedirect.com/science/article/pii/S0957417411013996
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1007/s10664-012-9218-8
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0048
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0048
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0048
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0048
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0048
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0048
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0049
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0049
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0049
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0049
https://doi.org/10.1109/TEVC.2009.2039139
https://doi.org/10.1109/TCYB.2016.2567449
https://doi.org/10.1016/j.infsof.2013.02.009
http://www.sciencedirect.com/science/article/pii/S0950584913000426
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0053
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0053
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0053
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0053
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0053
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0053
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0054
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0054
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0054
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0054
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0055
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0055
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0055
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0055
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0056
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0056
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0056
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0056
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0057
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0057
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0057
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0057
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0057
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0058
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0058
https://doi.org/10.1016/j.eswa.2017.09.059
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0060
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0060
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0060
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0060
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0060
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0060
https://doi.org/10.1007/s11334-017-0295-0
https://doi.org/10.1007/s11334-017-0295-0
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0062
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0062
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0063
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0063
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0064
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0064
http://openscience.us/repo
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0065
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0065
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0065
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0065
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0066
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0066
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0066
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0066
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0066
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0067
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0067
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0067
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0067
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0067
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0068
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0068
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0068
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0068
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0068
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0068
https://doi.org/10.1007/s10664-015-9396-2
https://doi.org/10.1007/s10664-015-9396-2
https://doi.org/10.1109/TPAMI.2017.2695539
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0071
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0071
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0071
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0071
http://refhub.elsevier.com/S0957-4174(18)30803-0/sbref0071

	Iterated feature selection algorithms with layered recurrent neural network for software fault prediction
	1 Introduction
	2 Related works
	3 Background on feature selection methods
	4 Proposed methodology
	4.1 Binary genetic algorithm
	4.2 Binary particle swarm optimization
	4.3 Binary ant colony optimization
	4.4 Layered recurrent neural network

	5 PROMISE datasets for software fault prediction
	6 Performance measure
	7 Experimental results
	7.1 Results without cross-validation
	7.2 Results with cross-validation

	8 Result analysis
	9 Conclusion and future work
	Author contributions form
	Acknowledgments
	References

