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ARTICLE INFO ABSTRACT

Article history:

Software fault prediction (SFP) is typically used to predict faults in software components. Machine learn-
ing techniques (e.g., classification) are widely used to tackle this problem. With the availability of the
huge amount of data that can be obtained from mining software historical repositories, it becomes pos-
sible to have some features (metrics) that are not correlated with the faults, which consequently mis-
lead the learning algorithm and thus decrease its performance. One possible solution to eliminate those
metrics is Feature Selection (FS). In this paper, a novel FS approach is proposed to enhance the perfor-
mance of a layered recurrent neural network (L-RNN), which is used as a classification technique for the
SFP problem. Three different wrapper FS algorithms (i.e, Binary Genetic Algorithm (BGA), Binary Particle
Swarm Optimization (BPSO), and Binary Ant Colony Optimization (BACO)) were employed iteratively. To
assess the performance of the proposed approach, 19 real-world software projects from PROMISE repos-
itory are investigated and the experimental results are discussed. Receiver operating characteristic - area
under the curve (ROC-AUC) is used as a performance measure. The results are compared with other state-
of-art approaches including Naive Bayes (NB), Artificial Neural Network (ANN), logistic regression (LR), the
k-nearest neighbors (k-NN) and C4.5 decision trees, in terms of area under the curve (AUC). Our results

Received 3 February 2018

Revised 18 December 2018
Accepted 19 December 2018
Available online 25 December 2018

Keywords:

Software fault prediction

Feature selection

Layered recurrent neural network

have demonstrated that the proposed approach can outperform other existing methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Software Fault Prediction (SFP) is the process of predicting the
fault-prone modules for the future releases of software versions
being developed, depending on predefined software metrics or his-
torical fault datasets (from previous projects) (Catal, 2011; Porter &
Selby, 1990). The SFP process becomes easier with the adoption of
the Agile Software Development (ASD) (Fowler & Highsmith, 2001)
methodologies (e.g., Agile Unified Process, Extreme Programming,
Scrum and Kanban) rather than the traditional methodologies (e.g.,
waterfall model (Royce, 1987), software development (Hoda, Salleh,
Grundy, & Tee, 2017; Stavru, 2014)). In ASD the incremental deliv-
ery of the software opens the door for rapidly adapting the volatile
requirements, and increasing the opportunities for collaboration
between business owners and software developers (Hoda et al.,
2017). Moreover, adopting ASD methodologies allows conducting
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software engineering activities (maintenance, review, refactoring or
testing) synchronously with the development process.

Predicting faults in software subsystems (modules, components,
classes, etc.) in the earlier stages (before delivering them to the
end user), plays a vital role in reducing the time and effort costs
required to accomplish the project, since it reduces the number of
modules to be processed in each activity, and eliminates the un-
necessary efforts in finding faults during the development process.
The importance of SFP comes from the fact that delivering a soft-
ware version with some faults will affect the subsequent versions.
This is because there is a distinct relation between the different
versions of the software products.

Implementing SFP in the early stages of the system develop-
ment process is used to eliminate the possible faults in the fu-
ture releases of the software. SFP methods vary from depending on
the software metrics to Machine Learning (ML) and soft computing
(SC) techniques (Rathore & Kumar, 2017a). The software metrics-
based methods use some predefined metrics to predict the faults
in a given software accordingly (Sheskin, 2003). This approach has
a major drawback that if we built a (learning) model, and reused it
to predict the faults in different projects with (possibly) the same
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values of the used metrics, it may detect faults in the same areas
of the software (Zimmermann, Nagappan, & Zeller, 2008). As an al-
ternative approach, some researchers proposed the use of software
change metrics that take into consideration the historical changes
in the project to build the prediction models (Sheskin, 2003;
Zimmermann et al., 2008). However, those methods become im-
practical and a time-consuming process when dealing with com-
plex systems that emerged in a wide range of industries (e.g., nu-
clear power plant, defense, command and control, and medicine).
This is because those industries are becoming increasingly depen-
dent on complex software systems due to the advancement in the
software development tools. Predicting the possible faults at the
early stages of the software development process will substantially
help reduce the computation and development cost. In literature,
many studies have shown promising results in using SC methods
for SFP (Czibula, Marian, & Czibula, 2014; Erturk & Sezer, 2015;
2016; Rathore & Kumar, 2017b).

SC methods showed superior performance in extracting use-
ful knowledge from imprecise and unconstrained data when solv-
ing real-life problems. Machine learning (ML) is one of the data-
driven soft computing techniques that has been widely used to
predict the faulty modules in software projects. Representative ML
methods include Logistic Regression (Li & Henry, 1993), Support
Vector Machine (Xing, Guo, & Lyu, 2005), Naive Bayes (Alshayeb
& Li, 2003), Neural Network (Oliveira, Pontes, Sartori, & Em-
birucu, 2017), and Ensemble classifiers (Rathore & Kumar, 2017b;
2017c). Malhotra in Malhotra (2015) conducted a systematic liter-
ature review on several ML techniques that were used in SFP. He
concluded that ML-based SFP methods showed high capability in
predicting the faultiness of a module in a software product and
outperformed the traditional statistical methods.

Artificial Neural Network (ANN) is one of the most widely-used
ML models in predicting the faultiness of software components
in the early stages of the software development lifecycle (SDLC)
(Erturk & Sezer, 2016; Maren, Harston, & Pap, 2014). In general,
ANN comes in several flavors such as feedforward neural network,
radial basis function neural network, and recurrent neural net-
work. Each type of ANN is able to solve complex problems in a
different manner. In particular, recurrent neural network shows a
competitive performance in solving several classification problems
(Maggiori, Charpiat, Tarabalka, & Alliez, 2017), as it considers pre-
vious input values through its training process. For SFP, several re-
searchers applied ANN with predefined metrics (features) as inputs
to ANN (Chatterjee, Nigam, & Roy, 2017; Erturk & Sezer, 2016). It is
difficult to say that these predefined metrics are suitable for de-
veloping a good classifier. As a result, finding the most suitable
metrics will have a significant effect on the ANN performance, de-
pending on the datasets.

One of the major issues that affect the performance of the
learning algorithms is data dimensionality. High dimensional data
may contain irrelevant and/or redundant features, that may mis-
lead the learning algorithm, hence decrease its performance. Elim-
inating these irrelevant or redundant features helps to increase the
learning algorithms’ performance, and to reduce the computational
time required for the prediction process. Feature selection (FS) is
one possible solution to reduce the dimensionality of data with-
out decreasing the performance of the learning algorithm (Liu &
Motoda, 2012). FS plays a vital role in computational intelligence
(Rauber, de Assis Boldt, & Varejdo, 2015). FS aims to reduce the di-
mensionality of data by removing noisy, irrelevant and redundant
data. Moreover, FS promotes better understanding of data (Dash &
Liu, 1997). One of the main findings in a literature review for the
SFP tools (Hall, Beecham, Bowes, Gray, & Counsell, 2012), is that
FS improves the performance of the SFP models that employed ML
techniques.

Several approaches either use a fixed number of features or all
features to predict the fault in software projects. Projects are not
similar to each other, using all features or a fixed number will not
give a high-performance classifier over all the datasets. As a result,
the motivation of this research is to propose a novel approach that
will select the most valuable features by exploring the dataset us-
ing different feature selection algorithms randomly to enhance the
performance of the software fault prediction classifier.

The rest of this paper is organized as follows: a literature re-
view of SFP techniques is presented in Section 2. In Section 3,
a background on feature selection algorithms is presented. A
detailed discussion of the proposed methodology and the em-
ployed SC techniques are presented in Section 4. In Section 5,
the datasets that are used in this study for software fault predic-
tion are described. The performance measurement is presented in
Section 6. The obtained results and results analysis are presented
in Sections 7 and 8. Finally, a summary of our research findings,
conclusions, and future works are presented in Section 9.

2. Related works

In literature, many Machine Learning (ML) techniques used
for tackling the SFP problem can be found, including Decision
Trees (DT) (Khoshgoftaar & Seliya, 2003), Artificial Neural Networks
(ANN) (Thwin & Quah, 2005), Naive Bayes (NB) (Menzies, Green-
wald, & Frank, 2007), Bayesian Network (BN) (Carrozza, Cotro-
neo, Natella, Pietrantuono, & Russo, 2013), Case-based Reason-
ing (CR) (EI Emam, Benlarbi, Goel, & Rai, 2001), Fuzzy Cluster-
ing (FC) (Yuan, Khoshgoftaar, Allen, & Ganesan, 2000), Multilayer
Perceptron (MLP) (Carrozza et al., 2013), Logistic Regression (LR)
(Yuan et al., 2000) and Support Vector Machine (SVM). Different
approaches were followed in designing SC-based methods to solve
the SFP problem. For instance, (Cahill, Hogan, & Thomas, 2013)
used two different classifiers (namely SVM and NB) to classify the
software modules. They proposed a new ranking method called
Rank Sum to validate the obtained results. Different datasets from
NASA repository were used to test the proposed approaches. Their
results suggested that NB performs better than SVM.

Moreover, Carrozza et al. (2013) implemented five different pre-
diction and regression models (i.e.,, DT, BNs, MLP, SVM and NB),
and analyzed their performance based on different datasets from
NASA repository. In addition, they proposed new software com-
plexity metrics for predicting Mandelbugs in complex systems
along with the traditional metrics. K-fold cross-validation and con-
fusion matrix was used. SVM and MLP are reported as the best
approaches. In Malhotra (2014), a comparative study between a set
of SFP methods was provided, where several ML and LR algorithms
were implemented to predict the software faults in AR1 and AR6
datasets from the PROMISE repository. A deep comparison between
implemented methods was presented and DT outperformed the LR
models and other ML algorithms.

A multi-strategy classifier (RB2CBL) that integrates Rule-Based
(RB) model with Case-Based Learning (CBL) model was proposed
by Khoshgoftaar, Xiao, and Gao (2014). Moreover, Genetic Algo-
rithm (GA) was used to optimize the parameters of the CBL mod-
els. In Rathore and Kumar (2017b), the idea of ensemble learn-
ers methods (i.e.,, LRCR and GRCR) was employed, and the perfor-
mance of those models was evaluated based on Average Absolute
Error (AAE) and Average Relative Error (ARE). This ensemble ap-
proach is evaluated on different datasets selected from PROMISE
data repository and Eclipse bug data repository, and it outper-
formed other learning-based methods. Moreover, the GRCR based
ensemble method outperformed the LRCR based method.

In Erturk and Sezer (2016), a two phases system for SFP was
proposed, where Fuzzy Inference System (FIS) was employed at
the first phase (no data available about the project), and then
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iterative Artificial Neural Network (ANN) is employed in the second
phase when some data about the project was collected from the
earlier phases. The iterative model outperformed other models and
the authors claimed that it can be adopted as on-line approach to
predict the faults in software. Recently, Shatnawi (2017) proposed
the use of receiver operating characteristic (ROC) analysis as an SFP
tool, where a threshold is defined to classify software modules to
fault-prone and not fault-prone.

Some preprocessing techniques were employed before
applying the learning algorithm. In Cotroneo, Natella, and
Pietrantuono (2013), different datasets from three projects (Linux
Kernel, MySQL DBMS, and CARDAMOM) were considered to collect
the Aging-Related Bugs. Several classification algorithms were
employed to predict the software faults. The experiments were
conducted in two phases, the first was on the plain datasets
(without preprocessing). In the second phase, the datasets were
preprocessed with a logarithmic transformation. The preprocessing
enhanced the performance of the learning algorithms, such that
NB with logarithmic transformation was reported as the best
performing classifier (Cotroneo et al., 2013).

Fifteen variants of NB classifier were tested on NASA and
Eclipse datasets and compared with many well-known classifi-
cation algorithms by Dejaeger, Verbraken, and Baesens (2013).
Markov blanket feature selection method was used as a prepro-
cessing step. Using AUC and the H-measure as performance mea-
surements, it was found that the augmented NB classifiers perform
similarly or better than the traditional NB classifiers, and both out-
performed the other tested methods. Okutan and Yildiz (2014) pro-
posed a new approach to select the most important metrics based
on the Bayesian networks that were used to define the rela-
tionships among software metrics and defect proneness. Another
similar approach was proposed in Chen et al. (2014), where five
different FS and sample reduction methods were used as prepro-
cessing steps to simplify the training process, and three classifi-
cation algorithms (NB, C4.5, KNN) were tested on Eclipse project
and some datasets from NASA repository. In Jin and Jin (2015),
Quantum based PSO (QPSO) feature selection method was ap-
plied as a preprocessing step, followed by ANN classifier, to pre-
dict software fault-proneness. Using some datasets from NASA
repository, the obtained results showed that ANN with QPSO per-
formed better than other approaches. Recently, Miholca, Czibula,
and Czibula (2018) proposed a hybrid model (called HyGRAR)
that hybridized gradual association rule mining and ANNs. For
more comprehensive studies about SFP tools, readers can refer to
Catal and Diri (2009), Radjenovi¢, Heritko, Torkar, and Zivkovi¢
(2013), Hall et al. (2012), Hoda et al. (2017).

Studying the presented works above, it is clear that using a pre-
processing technique on the dataset significantly affected the per-
formance of learning algorithm. FS is an important preprocessing
step that reduces the number of features in the dataset, which
helps in solving many problems like the overfitting that may com-
promise the performance of the learning algorithm. Moreover, it
was proved that metaheuristic algorithms proved their ability to
tackle FS problems efficiently and better than other search strate-
gies (i.e.,, complete and random strategies).

Due to the stochastic nature of the meta-heuristic algorithms,
they cannot guarantee to find the optimal feature subset, and ac-
cording to the No Free Lunch (NFL) theorem in the optimization
field, there is no algorithm that can solve all optimization prob-
lems efficiently. In this paper, a pool of meta-heuristics-based FS
methods (i.e, GA, PSO and ACO) is used to tackle this problem. The
selection of these three algorithms is due to some characteristics
of each of them, i.e., the exploration process in GA is better than
in PSO and ACO, while PSO makes a balance between the explo-
ration and exploitation process. ACO focuses more on building the
solution (exploitation process) than on exploration.

3. Background on feature selection methods

FS is considered as a combinatorial optimization problem, that
aims to search for the optimal subset of features from the original
dataset, that still faithfully represents the original data. The general
FS process consists of two main steps: (i) searching for the minimal
reducts, and (ii) evaluating the selected features. From evaluation
perspectives, FS algorithms are classified in two main categories:
filter and wrapper. Filter methods consider only the relations be-
tween features to evaluate the feature subsets, which makes them
faster than the wrapper methods that evaluate the feature sub-
sets by employing a learning algorithm according to a validation
method. In general, wrapper methods usually obtain better results
than filter methods (Kudo & Sklansky, 2000).

The main challenge of FS methods is how to search for the best
subset of features that perfectly represents the original data. For-
tunately, FS can be viewed as a search problem, where each point
in the search space represents a feature subset. Formally speaking,
if a dataset contains three features, e.g., (A, B, C), one of the possi-
ble methods to represent a feature subset is to use a binary array
with three elements (i.e., number of features in the dataset). If an
element has a value equal to 1, then the corresponding feature is
included (selected) in the feature subset, otherwise the value is 0,
which means it is not selected. Hence (1, 1, 1) means that the three
features are selected, while (0, 1, 0) indicates that only the second
feature is selected. Since FS is NP-hard problem, large problems
are not easy to be solved by using an exact search method. For ex-
ample, if the dataset includes n features, then 2" subsets will be
generated and assessed. Therefore, heuristic search strategies are
often employed as an alternative solution to reduce the computa-
tional costs.

Meta-heuristic algorithms, the higher level of heuristics,
are stochastic search methods that have demonstrated supe-
rior performances in tackling feature selection problems when
compared to exact methods (Ezgi & Selma, 2016; Guyon & Elis-
seeff, 2003). According to (Talbi, 2009), meta-heuristics can be
classified into two main types depending on the number of so-
lutions to be processed in each iteration of the optimization
process; single-solution based methods (S-based), (e.g., Simulated
Annealing (SA) (Van Laarhoven & Aarts, 1987), Tabu Search (TS)
(Glover, 1986)), and population-based methods (P-based), (e.g.,
Genetic Algorithm (GA) (Holland, 1992), Particle Swarm Opti-
mization (PSO) (Kennedy & Eberhart, 1995), and Ant Colony
Optimization (ACO) (Maniezzo, 1992)). As the names imply, in
single-solution based methods, one solution is manipulated and
transformed into a new solution in each iteration. In contrast,
a set of solutions is evolved in the population-based methods.
The main difference between S-based and P-based is that P-based
methods are more exploration oriented methods; i.e., trying to
explore the search space as broadly as possible in the hope to
find more promising regions, while S-based methods are more ex-
ploitation oriented methods; i.e., trying to fine-tune a specific so-
lution in its neighborhood area in the hope of finding the global
optimal value.

Meta-heuristic algorithms are able to find the optimal or near-
optimal solutions for a certain problem in a reasonable time.
However, each algorithm has some strengths and weaknesses.
For example, S-based algorithms are not able to provide a high-
quality solution for complex problems with high dimensional
search space, where the search space increases in an exponen-
tial manner with the problem size. As a result, S-based algorithms
are not practical for complex problems. While P-based algorithms
are able to search different parts of the fitness landscape, act
as a low-pass filter of the landscape, ignoring local distractions
(Prugel-Bennett, 2010).
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Fig. 1. A pictorial diagram of the proposed methodology.

4. Proposed methodology

As mentioned earlier, SFP is a real-world problem that depends
on historical datasets of previous (completed) projects. In gen-
eral, ML algorithms showed good results when compared with the
traditional algorithms (Talbi, 2009). The performance of ML algo-
rithms is highly dependent on the data dimensionality. Therefore,
finding the most significant features and removing the unnecessary
features will be critical in finding an efficient and robust classifi-
cation or prediction model. Since the goal of using a FS method
is to enhance the performance of the learning algorithm, wrapper
FS methods are more suitable than filters methods. In wrapper FS
methods, the selection criterion is the performance of the learning
algorithm (e.g., classifier).

In this paper, a wrapper feature selection algorithm that de-
pends on a layered recurrent neural network as an evaluator is
proposed, as depicted in Fig. 1. The algorithm starts by taking
the SFP dataset as an input and then executes the proposed al-
gorithm over a number of iterations. At each iteration, one of the
three employed FS algorithms (i.e., BGA, BPSO or BACO) is selected
randomly, in order to find the most valuable metrics. Then the
proposed algorithm will generate the training and testing dataset
based on the selected metrics. A layered recurrent neural network
is iterated for a predefined number of iterations and evaluates the
obtained model using testing data. If the obtained result reaches
an optimal value or the maximum number of iterations, the algo-
rithm will stop. Otherwise, it starts a new iteration.

When designing any optimization algorithm, two key issues
should be taken into consideration; the solution representation
and the fitness function. In this work, the solution is encoded as a
binary vector of length equal to the number of features as shown

in Fig. 2. The 0 value indicates that the feature is not selected,
while 1 indicates that the feature is selected. As FS process aims
to reduce the number of selected features while increasing the ac-
curacy of the classification algorithm, the designed fitness func-
tion should consider both issues. In the proposed FS algorithms
the ANN is used as evaluator. The fitness function can be seen in
Eq. (1):
Fi _ IR|
ztness_E*(1+/3*W (1)
where E is the overall error rate (for training and testing) that
was obtained from the ANN classifier, B is a user defined vari-
able (here, 8 = 5), |R| represents the number of the selected fea-
tures, |N| is the total number of features is a dataset. The training
dataset is used for computing the gradient and updating the net-
work weights and biases. The validation dataset is used through
training process to avoid overfitting problem. The error on the val-
idation set is monitored during the training process. The valida-
tion error normally decreases during the initial phase of training,
as does the training set error. However, when the network begins
to overfit the data, the error on the validation set typically begins
to rise. The network weights and biases are saved at the minimum
of the validation set error. The testing dataset is used to evaluate
the obtained model.
The parameter settings of the employed ANN classifier are pre-
sented in Table 1. In the following subsections, the main compo-
nents of the proposed algorithm are described.

4.1. Binary genetic algorithm

Genetic Algorithm (GA) is an evolutionary algorithm that sim-
ulates the process of natural selection (Holland, 1992). GA is a
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Table 1
Parameters setting for ANN internal classifier.

Parameters Values

Number of neurons input layer Number of selected features
Number of neurons hidden layer 10

Number of neurons output layer 1

Training sample 70% of the data

Testing sample 15% of the data

Validation sample 15% of the data

Fitness function Mean square error

Table 2
The parameters setting for BGA.

Parameters Values

Number of iterations 3000

Population size 40
Crossover rate 0.7
Mutation rate 0.1

Roulette Wheel Selection
single, double or uniform

Selection type
Crossover type

P-based algorithm, and the best solution is obtained after a se-
quence of iterative steps. In GA, the optimization process starts by
generating a set of solutions that represent the initial population,
then genetic operators (i.e., selection, crossover, and mutation) are
applied on selected solutions from the population. This step is re-
peated iteratively until satisfying a stopping condition; i.e., the op-
timal or near optimal solution is found or a predefined number of
iterations is reached. In each iteration, the solutions are evaluated
using a fitness function which estimates the significance of the ob-
tained solution (Huang & Wang, 2006).

Crossover and mutation are the main evolutionary operators
inside GA. During the optimization process, these operators are
applied to the individuals in the population to produce new
solutions, reflecting the performance of GA. Generating new so-
lutions starts by selecting two parents from the population pool,
based on a specific selection mechanism (e.g., random, roulette
wheel, or tournament), then crossover operator (e.g., single, dou-
ble, uniform) is applied to these parents which then produce two
offsprings. In mutation, local changes (e.g., randomly) are applied
to the both offsprings. Then the population is updated by consid-
ering the produced offsprings that replace some solutions in the
population based on an elitism replacement strategy. The updated
population is then considered for the next iteration. Fig. 3 shows
the pseudo-code for GA.

Table 2 shows the parameters setting for the Binary Genetic
Algorithm (BGA) that is used in this paper. A Roulette Wheel
Selection (RWS) is used as a selection approach for selecting two
parents. Three types of crossover (e.g., single, double, uniform) are
implemented and one is randomly selected for each iteration to
enhance the exploration process. Fig. 4 simulates the BGA for a sin-
gle iteration.

Given:
-nP: base population size.
-nl: number of iterations.
-rC: rate of crossover.
-rM: rate of mutation.
Generate initial population of size nP.
Evaluate initial population according to the fitness function.
While (current_iteration < nl)
//Breed rC' x nP new solutions.
Select two parent solutions from current population.
Form offspring’s solutions via crossover.
IF(rand(0.0,1.0) < rM)
Mutate the offspring’s solutions.
end IF
Evaluate each child solution according to the fitness function.
Add offspring’s to population.
//population size is now MaxPop=nPx (1+rC).
Remove the rCx nP least-fit solutions from population.
end While
Output the global best solution

Fig. 3. The pseudo-code for Genetic Algorithm.

4.2. Binary particle swarm optimization

Kennedy and Eberhart (1995) proposed the Particle Swarm Op-
timization (PSO) algorithm. The main idea behind PSO is to mimic
the social behavior of organisms such as bird flocking and fish
schooling. In a PSO algorithm, particles (which represent candidate
solutions) are flying around, in a multi-dimensional search space.
The positions of these particles are adjusted according to particles’
own memories and the best-fit particle of the neighboring parti-
cles. More specifically, each particle adjusts its position x;; and ve-
locity v;; according to the best position visited so far (i.e., p;) and
the best position in the neighborhood (i.e., pg). Note that i is the
index of a particle in the swarm (i=1,...,5n), Sn is the size of
swarm, d is the dimension index of a particle (candidate solution),
(d=1,...,m), and t represents the iteration number. The velocity
and the position of a solution are updated based on Eqs. (2) and
(3), respectively. Note that w is a positive inertia weight, ry and r;
are randomly generated numbers between 0 and 1 at each itera-
tion, and ¢; and c, present the degree of influence of p;y and pgy
on the particles velocity, respectively. To control the velocity from
flying out of the search space, the velocity v is bounded within
range of [Vmin. Vmax]- Every newly visited position represents a new
solution, which is also used for updating the global best solution
pg. Fig. 5 shows the pseudo-code for the PSO algorithm.

Vig(t + 1) = wujg(t) + 111 pig () — Xig (£)] + C212[ Pga (£) — Xiq (£)].
(2)

Xig(t +1) = Xiq(t) + vt + 1). (3)

In the continuous version of PSO, particles’ movements in the
search space are defined by the update rule Eqgs. (2) and (3).
However, FS is a binary optimization problem, where the variable
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Given:
-Sn: swarm size.
-t: number of iterations.
-v: initial velocity.
-x: initial position.
-cl: degree of influence of p;4.
-c2: degree of influence of pyq.
initialize particle( )
While (current_iteration <t)
Evaluate each particle’s position according to the fitness function.
Find the best solution of each particle so far.
update the global best solution.
update the velocity of each particle based on Eq.(2).
update the position of each particle based on Eq. (3).
end While
Output the global best solution

Fig. 5. The pseudo-code for Particle Swarm Optimization.

values are restricted to 0 or 1. In (Kennedy & Eberhart, 1997), a bi-
nary version of PSO (BPSO) that can be used to solve binary opti-
mization problems was proposed. In BPSO, a sigmoid transfer func-
tion (TF) is used to convert the continuous variables to binary ones.
The continuous values of the velocity vector are fed into the TF to
produce a probability value that converts each element of the po-
sition vector to 0 or 1 based on Eq. (4):

1

St+1)) = 15 e®

(4)
where Vid represents the velocity value of the dth dimension in the
ith vector, and t represents the current iteration.

The position of the current particle is updated according to
Eq. (5) based on the probability value S(v;4(t + 1)) obtained from
Eq. (4):

1 if rand(0.0,1.0) < S(vyg(t + 1))

Xig(t+1) = {O otherwise ()

where x;’(t+ 1) represents the element in the dth dimension in
the ith position in the next iteration, rand() is a function that gen-
erates a random number in the interval 0 and 1. Table 3 shows the

Table 3
The parameters setting for BPSO.

Parameters Values

Number of iterations (t) 3000
Swarm size (Sn) 40
degree of influence (c1) 15
degree of influence (c2) 1.5

vmax 1
vmin 0
Inertia weight (w) 0.8

parameters setting used for BPSO in this paper. Fig. 6 simulates the
BPSO for a single iteration.

4.3. Binary ant colony optimization

Ant colony optimization (ACO) is a population-based search al-
gorithm that simulates the behavior of real ants in order to find
the shortest path. Ant movements are based on a pheromone,
which is deposited on some paths by some other ants. ACO is
widely-used for solving pathfinding problems, scheduling prob-
lems, fuzzy control network routing, and image processing, etc.
(Dorigo & Caro, 1999; Mohan & Baskaran, 2012). ACO starts by cre-
ating a set of agents (ants) located at different positions of the
search space, which can be used to build a candidate solution.
Eq. (6) shows the probabilistic transition rule, which is the proba-
bility of ant k to determine the next move (include feature i) in its
built solution at time step t based on the heuristic information and
pheromone values, which is the local trial updates for each ant.

()] . [m:(O)]P .

Pi(t) = Zui,k ok mor ek (6)
0 otherwise

where t; and 7; are two values that present the pheromone value
and heuristic desirability associated with feature i; respectively. J¥
is the set of acceptable features that can be added to the partial
solution. o and B are two values that determine the relative im-
portance of the pheromone value and heuristic information.
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Vi|Va|Vs[Va|Vs|Ve|V7|Vs|Vs|[Vio|Vu|Via|Vis|Via|Vis|Vie | Viz| Vag [ Vio | Voo [==2 Velocity based on Eq. (2)
X1 | X2 | X3 | Xa | X5 [ X6 [ X7 | Xa | Xo | Xa0 [ Xua | X2 | X13 | Xaa | Xs5 | X6 | Xa7 [ X8 | X190 | X20 |[=—3» Position based on Eq. (3)
b’ransfer Function (TF) based on Eq. (4)
[silsa[ss|safss[Se[sr[5s]So[S10]5ulsim|si|salsis|sil]sy]s]sw]sn
lPosition update based on Eq. (5)
[oJoJafofofofoJofaJaJofo[afofJofofJo[ofo]al]
Evaluate Solution by ANN internal classifier
Update global best if improvement occurs
Fig. 6. An example of a BPSO for a single iteration.
Given: setting for BACO used in this paper.
-nA: number of ants. I I 1
-nl: number of iterations. T+ 1) =7() + m (7)
-iP: initial Pheromone. i
Generate initial population of size nA (ants). w(0) ik
Initialize the pheromone trail and parameters. Pik (t) = { Dyegk Tu(t) ifie] (8)
Evaluate initial population according to the fitness function. 0 otherwise

Find the best solution of the population.
While (current__iteration < nl)
Do Until each ant completely builds a solution
local trial update.
End Do
Update the pheromone.
Determine the best global ant.
end While
Output the global best solution

Fig. 7. The pseudo code for Ant Colony Optimization.

Table 4

The parameters setting for BACO algorithm.
Parameters Values
Number of iterations 3000
Number of ants (agents) 20

Initial pheromone 1

Pheromone Exponential Weight («) 0.8
Heuristic Exponential Weight (8) 0.8
Evaporation Rate 0.6

The pheromone values are updated once all agents finish
their movements (constructing solutions) based on Eq. (7), where
f(Pi"(t)) is the cost of the current solution at time step t. This
process is repeated until a stop condition is met. The new solu-
tions found by the agents substitute the old population using an
elitism replacement strategy for the next iteration. Fig. 7 shows the
pseudo-code for the ACO algorithm.

In binary Ant colony optimization (BACO), each individual ant
is represented by a binary bit string x = (x1, X5, ..., %), x;€{0, 1}.
Each ant k at a bit j generates a solution based on a probability dis-
tribution as shown in Eq. (8), where t; represents the pheromone
level for position x; to select s<{0, 1}. Fig. 8 simulates a BACO al-
gorithm for a single iteration, where an ant (agent) starts building
a solution based on touring concept. Table 4 shows the parameters

4.4. Layered recurrent neural network

Artificial Neural Network (ANN) approach is a machine learning
algorithm based on an abstraction model of the human brain. ANN
has been widely used for solving challenging learning or classifica-
tion problems. ANN is able to learn even if the input data is noisy
or incomplete one. Once the ANN is trained, it can perform predic-
tion instantaneously. ANN has been adopted in diverse areas such
as robotics, power system, forecasting, optimization and manufac-
turing (Maren et al., 2014). In this paper, we adopt a Layered Re-
current Neural Network (L-RNN) structure that is able to learn the
previous input data adaptively based on layer recurrence structure.

L-RNN has been successfully applied in several complex do-
mains such as image processing (Zhang, Yin, Zhang, Liu, &
Bengio, 2017), industrial problems (Qin, Yang, Xue, & Song, 2017)
and forecasting (Ruiz, Rueda, Cuéllar, & Pegalajar, 2018; Senjyu,
Takara, Uezato, & Funabashi, 2002), since it considers the past val-
ues through the training process. Moreover, L-RNN is able to solve
complex problems with a set of correct weights. L-RNN has a dy-
namic memory, i.e., the information can be temporally memorized
in the L-RNN model. Basically, the learning process of L-RNN is
a time-varying pattern, applying either feed-forward or feedback
connections. Moreover, training L-RNN is similar to training a stan-
dard neural network, but with a little twist. Each output depends
not only on the calculations of the current time step, but also the
previous time steps. As a result, outputs of some nodes are in-
puts to other nodes providing repeated feedback to the network.
Feedback nodes remember the values of the previous stage; thus,
a new output will depend on previous and current input data
(Lipton, 2015).

An example of the basic structure of L-RNN is shown in Fig. 9.
Here we illustrate L-RNN at time t. Given an input sequence L =
(Ly,...,Lt), a standard L-RNN computes the hidden vector se-
quence P = (P, ..., ) and output vector sequence y = (¥1,...,Yt)
by iterating over Eqs. (9) and (10).

P = f(WpLe + WppP,_1 + bp) (9)
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Fig. 8. An example of BACO for a single iteration.
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Fig. 9. An example of Layer Recurrent Neural Network (L-RNN).

e = f(WP + by) (10)

where f{) is an activation function (sigmoid function), three weight
matrices: (i) Wp;: which is a matrix that presents the conventional
weights between input layer and a hidden layer, (ii) Wpp: which
is a matrix that presents the weights between a hidden layer and
itself at adjacent time steps and (iii) Wy;,: which is a matrix that
presents the weights between a hidden layer and output layer. bp
and by are vectors that present bias parameters which help each
recurrent neuron to learn an offset.

Generally speaking, there are two types of training algorithms
for L-RNN, back-propagation through time and real-time recurrent
learning. Back-propagation through time is used to alter the net-
work structure between feedback structures to feed-forward struc-
tures. Whilst real-time recurrent learning applies the same set of
weights recursively over the network structure. In this paper, we
use back-propagation through time. Table 5 shows the parameters
settings for L-RNN used in this paper. A threshold value 0.5 is used
to transform the final output. The output of L-RNN can be used
to categorize classes into either faulty ( > threshold) or not faulty
(<threshold).

Table 5

The parameters setting for L-RNN.
Parameters Values
Number of iterations 1000

Number of neurons in Input layer number of features
Number of neurons in Hidden layer =~ number of features /2
Number of neurons in Output layer 1

Threshold value to transfer output 0.5

5. PROMISE datasets for software fault prediction

Several public datasets are available in the field of software
fault prediction, such as the PROMISE (Tera-Promise., 2017), NASA
(M.D.P, 2017) and AEEEM (D’Ambros, Lanza, & Robbes, 2010)
datasets. Several software metrics have been proposed to inves-
tigate the quality of developed software such as object-oriented
metrics, which are known as CK metrics suite (Chidamber &
Kemerer, 1994). In this paper, we examined 19 real software fault
projects from the PROMISE public software engineering reposi-
tory (Jureczko & Madeyski, 2010; Tera-Promise., 2017), which are
highly recommended by several researchers in software engineer-
ing. These datasets are noise free and have no missing values.
Moreover, the selected projects have various sizes (i.e., having
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Table 6
The details of the selected datasets.

Dataset # of Instances  # of Defective  Rate of defective
Instances Instances
ant-1.7 745 166 0.223
camel-1.0 339 13 0.038
camel-1.2 608 216 0.355
camel-1.4 872 145 0.166
camel-1.6 965 188 0.195
jedit-3.4 272 90 0.331
jedit-4.0 306 75 0.245
jedit-4.2 367 48 0.131
jedit-4.3 492 1 0.022
log4j-1.0 135 34 0.252
log4j-1.1 109 37 0.339
log4j-1.2 205 189 0.922
lucene-2.0 195 91 0.467
lucene-2.2 247 144 0.583
lucene-2.4 340 203 0.597
xalan-2.4 723 110 0.152
xalan-2.5 803 387 0.482
xalan-2.6 885 411 0.464
xalan-2.7 909 898 0.988

109-909 instances) and different percentages of defective instances
(i.e., ranging from 2.2% to 98.8%). A brief summarization of all se-
lected data is presented in Table 6. Each dataset has 20 differ-
ent object-oriented metrics as input and a single fault value as an
output variable. Table 7 presents the description of the 20 object-
oriented metrics.

6. Performance measure

Several criteria are used to evaluate a classifier such as accu-
racy, precision, recall, F-measure and area under ROC curve (AUC).
However, all mentioned criteria except AUC are influenced by a
cut-off value on the predicted probability of defect instances. The
default value of cut-off is 0.5, which may not be the best cut-off
value while evaluating a classifier (Zhang, Mockus, Keivanloo, &
Zou, 2016). While ROC is not related to the cut-off value and not
affected by the skewness of faulted data (the ROC curves are insen-
sitive to changes in class distributions. If the proportion of negative
to positive cases changes in the test dataset, the ROC curves will
not change) (Fawcett, 2004). Several researchers suggest using the
AUC value for better evaluating any classifier since AUC is not af-
fected by changing data distributions (Ghotra, McIntosh, & Hassan,
2015; Lessmann, Baesens, Mues, & Pietsch, 2008), hence we select
the AUC value to evaluate the proposed classifier in this paper.

In short, AUC depends on the trade-off between True Positive
(TP) rate against False Positive (FP) rate. The final AUC value can
be calculated based on a confusion matrix formed as in Table 8.
Where:

1. TP: Correctly predicted positive values where actual and predic-
tive values are both Yes.

2. TN: Correctly predicted negative values where actual and pre-
dictive values are both No.

3. FN: When actual class is yes but predicted class in No.

4. FP: When actual class is no and predicted class is Yes.

From confusion matrix, two important values are used to calculate
the AUC value: sensitivity and specificity, which are defined as fol-
lows.

Sensitivity = TPgee = % (11)

Specificity = TNyge = % (12)

where P is the number of actually positive samples and N is
the number of actually negative samples. Moreover, AUC mea-
sures the probability that a randomly chosen defective entity ranks
higher than a randomly chosen clean entity. Fig. 10 shows the
proposed rules to evaluate any classifier using AUC (Hosmer &
Lemeshow, 2000). AUC measures enable researchers to generalize
the results even if the data distribution is changed (Koru, Emam,
Zhang, Liu, & Mathew, 2008).

7. Experimental results

In this paper, we examine the performance of different feature
selection algorithms in enhancing the software fault prediction
system. To achieve this, several experiments were performed us-
ing MATLAB-R2014a. We applied the proposed iterated feature se-
lection algorithms with L-RNN classifier over 19 different datasets
from PROMISE repository (see Table 6). Two sets of experiments
were performed (i) L-RNN without cross-validation, where the data
is divided 80% for training and 20% for testing; (ii) L-RNN with
cross-validation, where self-training is applied based on k cross-
validation (k =5). Each dataset is divided into 5 parts, where 4
parts (80%) were used for training and the remaining one (20%)
was used for testing. Each set of experiments were tested with and
without feature selection. Incase of without feature selection, all
features were used as input to L-RNN. Each dataset has been ex-
amined 11 times. The following subsections present the obtained
results.

7.1. Results without cross-validation

In this subsection, we present the experimental results of L-
RNN classifier without cross-validation, as shown in Table 9. Two
types of experiments have been performed, the first one with-
out feature selection, while the second one with feature selection.
Table 9 reports 4 values for each experiment: average AUC, best
AUC, minimum AUC and median of AUC, respectively.

It is clear that L-RNN classifier without cross-validation and
without feature selection is able to find acceptable results (AUC
>0.7) in 14 datasets out of 19 based on best AUC value. While
with feature selection only 3 datasets are acceptable. For exam-
ple, L-RNN classifier without feature selection is able to obtain ex-
cellent results on jedit-4.0 dataset, where the average, best, mini-
mum and median are 0.8442, 0.9655, 0.4310, 0.9023, respectively.
While the results for the same dataset with feature selection are
not good enough since best ROC value is 0.6364 which indicates a
fair classifier. Figs. 11 and 12 present the boxplots diagram for test-
ing datasets without and with feature selection, respectively; based
on the average values, it is obvious that the overall performance is
a poor classifier for both cases. However, the obtained results indi-
cate that FS is not always able to enhance the performance of the
classifier. Moreover, splitting the datasets into two parts (training
and testing) may also create an over-learning problem (training for
a long time, where the neural network extracts too much informa-
tion from the individual cases forgetting the relevant information
of the general case). To overcome this problem, a cross-validation
has been applied by dividing dataset into k-fold number.

7.2. Results with cross-validation

The results of the L-RNN with cross-validation are presented in
Table 10. The performance of the proposed algorithm with feature
selection over camel-1.0, jedit-3.4, jedit-4.3, log4j-1.1 and xalan-2.7
datasets is outstanding based on the average AUC results. While
without feature selection only one dataset (jedit-4.3) has an out-
standing result. Based on the best AUC values, it is clear that
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Fig. 12. Boxplots diagram with feature selection and without cross validation.
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Table 7
Metrics description.

Metric Description

wmc Number of methods defined in a class.

dit Depth of a class within the class hierarchy from the root of inheritance.

noc Number of immediate descendants of a class.

cbo Count the number of classes coupled to class.

rfc Count the number of distinct methods invoked by a class in response to a received message.
Icom Count the number of methods that do not share a field to the method pairs that do.

ca Count the number of dependent classes for a given class.

ce Count the number of classes on which a class depends.

npm Number of public methods defined in a class.

lcom3 Count the number of connected components in a method graph.

loc Count the total number of lines of code of a class.

dam Computes the ratio of private attributes in a class.

moa Count the number of data members declared as class type.

mfa Shows the fraction of the methods inherited by a class to the methods accessible by the functions defined in the class.
cam Computes the cohesion among methods of a class based on the parameters list.

ic Count the number of coupled ancestor classes of a class.

cbm Count the number of new or redefined methods that are coupled with the inherited methods.
amc Measures the average method size for each class.

max_cc  Maximum counts of the number of logically independent paths in a method.

avg_cc Average counts of the number of logically independent paths in a method.

Table 8
The confusion matrix.

Predicted class

Class = No
False Negative (FN)
True Negative (TN)

Class = Yes
True Positive (TP)
False Positive (FP)

Actual class
Class = Yes
Class = No

with feature selection outperforms without feature selection in 17
datasets.

Figs. 13 and 14 show the performance of the datasets based on
boxplots diagram. The results demonstrate that the feature selec-
tion plays an important role in enhancing the results and robust-
ness.

8. Result analysis

In this section, we present a detailed analysis of the obtained
results with a comparison with the results of the well-known ap-
proaches in the literature. To evaluate the obtained results and
to show how the number of used features affects the classifiers’

Table 9
Results of L-RNN classifier without cross-validation.

performance, a statistical comparison using the Wilcoxon statisti-
cal test with a significance level of 0.05 was conducted as well.
Table 11 presents the p-values of the obtained results. In this table,
a p-value less than 0.05 indicates that there is a statistical differ-
ence between results. We can see that the obtained p-value is less
than 0.05 for both tests.

By investigating the average of ROC results from Table 9, it
is clear that the performance of the LRNN with all features out-
performs the same approach with feature selection in all datasets
except camel-1.2 and lucene-2.0 datasets. While comparing the av-
erage of ROC results from Table 10, we can see that applying fea-
ture selection is able to outperform the same approach without
feature selection in all datasets. Moreover, the obtained average
results with cross validation combined with feature selection al-
gorithms outperforms all other reported results.

The models that do not use the cross validation strategy are
simpler in implementation, require less training models and low
computational time compared to those use the cross validation
strategy. However, the cross validation strategy enables the model
to be trained on all samples in the dataset, which yields to more
accurate model. Adding feature selection approach reduces the

Dataset Results on testing without feature selection Results on testing with feature selection
AvgROC  Best ROC  Min.ROC  Median ROC  Avg.ROC  Best ROC  Min.ROC  Median ROC

ant-1.7 0.6047 0.7151 0.4470 0.6110 0.5234 0.6154 0.4316 0.5359
camel-1.0 0.6396 0.9621 0.0303 0.7727 0.6074 0.8015 0.2811 0.5902
camel-1.2 0.4262 0.5182 0.2955 0.4295 0.4432 0.5922 0.3246 0.4309
camel-14 0.6023 0.7443 0.4275 0.6003 0.5214 0.5793 0.4366 0.5278
camel-1.6 0.5423 0.7422 0.4163 0.5403 0.5045 0.6114 0.3963 0.5010
jedit-3.4 0.6540 0.9623 0.0377 0.7642 0.5180 0.6585 0.4053 0.5232
jedit-4.0 0.8442 0.9655 0.4310 0.9023 0.5494 0.6364 0.4104 0.5675
jedit-4.2 0.6178 0.9310 0.4459 0.5758 0.5185 0.6862 0.2801 0.5046
jedit-4.3 0.6955 0.9742 0.2320 0.6443 0.6838 0.9012 0.2161 0.6994
log4j-1.0 0.6832 0.8918 0.3351 0.6944 0.5354 0.6795 0.3377 0.5234
log4j-1.1 0.7061 0.8070 0.6316 0.7018 0.5222 0.6923 0.3513 0.5281
log4j-1.2 0.4583 0.7611 0.2000 0.4306 0.3614 0.7153 0.1495 0.3450
lucene-2.0  0.5105 0.6721 0.3766 0.5032 0.5531 0.6650 0.4305 0.5664
lucene-2.2  0.4905 0.6718 0.3231 0.4833 0.4630 0.5829 0.3842 0.4571
lucene-2.4  0.4919 0.7231 0.3608 0.4867 0.4851 0.6383 0.3834 0.4739
xalan-2.4 0.5587 0.7481 0.4043 0.5714 0.5364 0.6710 0.4256 0.5171
xalan-2.5 0.5515 0.6294 0.4644 0.5553 0.5098 0.5668 0.4547 0.5082
xalan-2.6 0.6584 0.7322 0.5798 0.6619 0.5064 0.5617 0.4372 0.5076
xalan-2.7 0.4432 0.6920 0.1503 0.4760 0.4201 0.5775 0.2732 0.4087
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Results of L-RNN classifier with cross-validation.

Dataset Results on testing without feature selection Results on testing with feature selection
AvgROC  Best ROC  Min.ROC  Median ROC  Avg.ROC Best ROC  Min.ROC  Median ROC
ant-1.7 0.7382 0.7850 0.6888 0.7369 0.8842 0.9048 0.8724 0.8794
camel-1.0 0.8772 0.8921 0.8518 0.8869 0.9052 0.9235 0.8853 0.9042
camel-1.2 0.6136 0.6239 0.5908 0.6174 0.6484 0.6544 0.6414 0.6510
camel-14 0.7877 0.7913 0.7807 0.7895 0.7807 0.8575 0.7069 0.7747
camel-1.6 0.6350 0.6726 0.6123 0.6303 0.6914 0.7391 0.6556 0.6934
jedit-3.4 0.8912 0.9087 0.8777 0.8872 0.9177 0.9287 0.9081 0.9189
jedit-4.0 0.8301 0.8328 0.8247 0.8317 0.8700 0.8953 0.8307 0.8783
jedit-4.2 0.8555 0.8978 0.8326 0.8418 0.8913 0.9249 0.8647 0.8886
jedit-4.3 0.9091 0.9333 0.8805 0.9061 0.9131 0.9372 0.8939 0.9131
log4j-1.0 0.8844 0.8976 0.8620 0.8936 0.8759 0.9105 0.8531 0.8712
log4j-1.1 0.8708 0.8754 0.8660 0.8720 0.9145 0.9241 0.9067 0.9127
log4j-1.2 0.8411 0.8500 0.8322 0.8431 0.8522 0.8957 0.8222 0.8449
lucene-2.0  0.8219 0.8407 0.8047 0.8261 0.8677 0.8881 0.8251 0.8741
lucene-2.2  0.7632 0.7819 0.7445 0.7624 0.8236 0.8542 0.8022 0.8270
lucene-2.4  0.7892 0.8187 0.7488 0.7942 0.8259 0.8547 0.8010 0.8185
xalan-2.4 0.8121 0.8356 0.7981 0.8064 0.8270 0.8419 0.8101 0.8277
xalan-2.5 0.6414 0.6837 0.6047 0.6460 0.7493 0.7743 0.7151 0.7537
xalan-2.6 0.6406 0.6779 0.6153 0.6259 0.7125 0.7318 0.7044 0.7055
xalan-2.7 0.8009 0.8335 0.7725 0.7959 0.9295 0.9461 0.9177 0.9241
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Table 11

P-value results based on Wilcoxon test.
Compared approaches p_value
Without cross-validation with FS vs. Without cross-validation without FS ~ 9.81E-05
Cross-validation with FS vs. Cross-validation without FS 1.52E-04

Table 12

Comparison between the proposed method and the sate-of-the art methods based on the average AUC values.

Dataset Our results (Erturk and Sezer, 2016) (Shatnawi, 2017) (Okutan and
Yildiz, 2012)
With Without NB* ANN ANFIS LR NB 5NN C4.5 Bayesian
cross-validation cross-validation Networks
ant-1.7 0.8842 0.5234 0.7261 0.8468 0.8184 0.83 0.79 0.76 0.74 0.82
camel-1.0 0.9052 0.6074 0.8881 0.9242 0.8939 - - - - -
camel-1.2 0.6484 0.4432 0.5531 0.6008 0.6009 0.57 0.56 0.64 0.52 -
camel-1.4 0.7807 0.5214 0.6603 0.7911 0.8132 0.7 0.67 0.67 0.6 -
camel-1.6 0.6914 0.5045 0.6878 0.6807 0.7143 0.65 0.59 0.66 0.54
jedit-3.4 0.9177 0.5180 0.6777 0.8796 0.8997 - - - - -
jedit-4.0 0.8700 0.5494 0.7055 0.8246 0.7826 0.77 0.7 0.81 0.72 -
jedit-4.2 0.8913 0.5185 0.8352 0.8750 0.9755 0.84 0.75 0.77 0.64 -
jedit-4.3 0.9131 0.6838 0.8273 0.4613 0.9115 - - - - 0.658
log4j-1.0 0.8759 0.5354 0.8455 0.8929 0.8857 - - - - -
log4j-1.1 0.9145 0.5222 0.8970 0.9018 0.9018 - - - - -
log4j-1.2 0.8522 0.3614 0.8058 0.7804 0.7719 - - - - -
lucene-2.0 0.8677 0.5531 0.8136 0.8492 0.8651 0.77 0.75 0.7 0.67 -
lucene-2.2 0.8236 0.4630 0.7174 0.7628 0.7457 0.62 0.61 0.7 0.58 -
lucene-2.4 0.8259 0.4851 0.7723 0.8248 0.8148 0.75 0.69 0.73 0.68 0.633
xalan-2.4 0.8270 0.5364 0.7621 0.8186 0.8197 - - - - -
xalan-2.5 0.7493 0.5098 0.6575 0.6747 0.6633 - - - - 0.624
xalan-2.6 0.7125 0.5064 0.6400 0.6821 0.6782 - - - - -
xalan-2.7 0.9295 0.4201 0.8054 0.8167 0.8589 - - - - -
Average 0.8358 0.5138 0.7515 0.7836 0.8113 - - - - -
search space for training process. Moreover, cross validation is bet- Table 13

ter approximation approach either with or without feature selec-
tion. As a result, determining the most effective features is an im-
portant issue to gain an acceptable classifier and it is not accurate
to select a fixed set of features or take all features.

Table 12 presents the results of the proposed algorithm com-
pared with several methods in the literature that used feature se-
lection algorithms or fixed size of features based on AUC values.
In this paper, Naive Bayes (NB*) algorithm was applied with cross-
validation, where k = 5, to explore Naive Bayes performance. Only
3 features were selected (i.e., cbo, wmc and rfc) to make fair com-
pression with (Erturk & Sezer, 2016). It is clear that NB algorithm
with three features is not performing well. Moreover, Erturk and
Sezer (2016) used only three features based on the suggestion
coming from Radjenovic, Hericko, Torkar, and Zivkovic (2013).
Shatnawi (2017) used all features in his work, while Okutan and
Yildiz (2014) applied Bayesian Network to find the relation be-
tween features and select the most effective features.

By investigating the results in Table 12, it can be obvi-
ously seen that the results in Shatnawi (2017) and Okutan and
Yildiz (2014) were outperformed by the proposed approach.
Moreover, the proposed approach outperformed the results in
Erturk and Sezer (2016) in 14 datasets out of 19 datasets. Its worth
mentioning that (Erturk & Sezer, 2016) used a fixed number of fea-
tures that were recommended in a previous study. However, in the
proposed approach, the features were selected automatically based
on a set of well-known metaheuristics algorithms. Thus, the ob-
tained results can be interpreted due to the fact that each project
is quite different from another one in the real world. Observing
the average results of all approaches, it can be seen that the re-
sults of iterated feature selection algorithms with L-RNN classifier
with cross-validation outperforms all other approaches based on
AUC values. Based on the previous results, it can be concluded that

Number of selections by feature selection algo-
rithms for each metric.

Sequence #  Metrics Number of selections
1 wmc 84
2 dit 85
3 noc 67
4 cbo 96
5 rfc 99
6 lcom 73
7 ca 98
8 ce 87
9 npm 83
10 Icom3 81
1 loc 94
12 dam 88
13 moa 84
14 mfa 79
15 cam 79
16 ic 78
17 cbm 81
18 amc 89
19 max_cc 72
20 avg_cc 72

the proposed approach could select the most informative features
(i.e., object-oriented metrics) that yield to the highest AUC results.

Table 13 shows the number of times that each object-oriented
metric has been selected by feature selection algorithms. The num-
bers presented in this table are obtained after 11 runs over each
dataset. The total number of runs is 209. For example; feature
number 4 (cbo) has been selected 96 times over all datasets, which
means that cbo metric has a high impact on the prediction process.
As a result, to generate a good classification model for software
faults prediction cbo metric should not be ignored during collect-
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Table 14
Execution time for all datasets in seconds.
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Dataset Without feature selection With feature selection

Without cross validation ~ With cross validation ~ Without cross validation ~ With cross validation
ant-1.7 301.34 1536.52 6325.82 25570.23
camel-1.0 150.82 752.29 5842.41 20174.82
camel-1.2 285.14 1184.13 6021.88 23865.74
camel-1.4 360.58 1925.16 677723 27012.37
camel-1.6 125.39 539.87 7529.53 40021.51
jedit-3.4 140.21 675.00 4827.20 17520.30
jedit-4.0 144.21 756.37 5297.61 22281.28
jedit-4.2 158.22 788.21 4961.82 22652.37
jedit-4.3 96.22 491.48 5371.85 20086.44
log4j-1.0 85.61 415.38 3985.25 16650.00
log4j-1.1 115.82 677.57 3527.83 1527753
log4j-1.2 132.45 705.84 4521.36 26336.42
lucene-2.0  130.57 791.40 4991.75 25362.85
lucene-2.2  169.32 1058.32 4652.88 19216.32
lucene-24  172.38 1038.25 5482.11 27157.77
xalan-2.4 378.51 1603.69 7125.33 32514.29
xalan-2.5 420.76 2752.50 7432.96 40275.81
xalan-2.6 432.72 2652.89 7952.60 37790.20
xalan-2.7 475.39 3484.05 7932.22 41849.42
Average 225.03 1254.15 5818.93 26400.82

Table 15
Metrics used for best AUC results for each dataset.

Dataset Features Algorithm  AUC
ant-1.7 3 5 6 8 11 13 14 17 19 PSO 0.904833
camel-1.0 1 5 7 12 14 15 16 19 ACO 1
camel-1.2 1 3 4 5 8 9 10 1 12 14 GA 0.6919
camel-14 1 2 3 5 6 8 10 1 12 17 GA 0.857479
camel-1.6 1 2 4 7 12 13 17 20 PSO 0.739072
jedit-3.4 1 5 6 8 12 13 17 18 PSO 0.928652
jedit-4.0 1 2 5 6 7 8 12 19 20 GA 0.895276
jedit-4.2 1 2 3 4 5 6 9 12 14 18 19 20 GA 0.9953
jedit-4.3 1 5 6 0 12 13 16 17 ACO 0.9841
log4j-1.0 1 2 7 10 1 13 15 16 17 18 20 GA 1
log4j-1.1 1 2 3 7 10 1 15 ACO 0.924139
log4j-1.2 2 5 7 12 13 14 19 20 GA 0.895727
lucene-20 2 3 6 12 14 15 16 17 19 PSO 0.854152
lucene-22 1 4 5 7 18 PSO 0.854152
lucene-24 3 4 5 8 10 1 20 ACO 0.854696
xalan-2.4 1 2 3 4 5 6 7 8 14 15 16 18 20 GA 0.7095
xalan-2.5 1 3 4 5 7 8 13 GA 0.774263
xalan-2.6 3 6 11 12 13 14 ACO 0.786
xalan-2.7 2 5 6 9 1 13 15 18 PSO 0.946099

ing data for any new project. While feature number 3 (noc) has
been selected 67 times, which is less important compared with cbo
feature. However, it is hard to ignore any feature during software
fault prediction since the difference between numbers reported in
Table 13 is not too big. As a result, each project has specific fea-
tures that have a high impact value on the performance of the
classifier.

Table 15 shows the metrics (features) that are selected for
each dataset and the algorithm which selected these features. It is
clear that each dataset has different metrics based on the dataset
complexity. For example, the most effective metrics for jedit-4.3
dataset are 1=wmc, 5=rfc, 6=Icom, 10=lcom3, 12=dam, 13=moa,
16=ic and 17=cbm. As a result, it is important to have an algo-
rithm that is able to determine which features that have a high
impact value on the classifier performance, which is the main mo-
tivation of our paper.

Moreover, our experimental results show that the proposed al-
gorithm is able to improve the performance of the classification
rate as compared with other approaches. However, software faults
prediction process is performed off-line, where the execution time
is increased exponentially with the size of datasets. In our pro-
posed algorithm, two main processes are performed, one for fea-

ture selection and L-RNN classifier. As a result, the execution time
is high for large datasets such as xalan-2.7, while it is acceptable
for small datasets such as log4j-1.1. Table 14 shows the execution
time for all datasets in seconds.

Finally, we can summarize that the performance of L-RNN de-
pends on the characteristics of input data. Feature selection works
as data compression. Some data is useless and have little or no
effects on classification process. As a result, finding the important
and relevant metrics will enhance the training process. Three dif-
ferent FS algorithms are implemented to achieve a balance be-
tween exploration and exploitation through searching process to
avoid getting stuck in local optima. Feature selection plays a vital
role in the training process to enhance the classification rate. This
enhancement is achieved by reducing the size of search space (in-
put data) and complexity of L-RNN.

9. Conclusion and future work

In this paper, we have proposed an iterated feature selection
algorithm with a layered recurrent neural network for solving the
software faults prediction problem. The proposed algorithm is able
to select the most important software metrics using different fea-
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ture selection algorithms. The classification process is carried out
by a layered recurrent neural network. The proposed algorithm
is able to obtain an excellent classification rate (with an average
of 0.8358 over all datasets) based on AUC results, which outper-
forms existing results found in the literature such as Naive Bayes
(NB), Artificial Neural Network (ANN), logistic regression (LR), the
k-nearest neighbors (k-NN) and C4.5. The obtained results support
our claim of the importance of feature selection in building a high-
quality classifier rather than using a fixed set of features or all fea-
tures.

For future work, we plan to investigate the performance of dif-
ferent classifiers such as genetic programming to build a computer
model that is able to predict faults based on a selected metrics.
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