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Highlights
– A semantic approach to represent and validate

Big Data analytics is proposed.
– An OWL Ontology and SWRL rules are devel-

oped for reasoning in workflow design.
– The proposal is validated with two real-world

(traffic) and academic cases study.
– Obtained semantized data successfully recom-

mends and validate Big Data tasks.
– We provide actual Big Data practitioners with

software to enhance their analytics.
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Abstract

Knowledge extraction and incorporation is currently considered to be beneficial for efficient Big Data analytics.
Knowledge can take part in workflow design, constraint definition, parameter selection and configuration, human
interactive and decision-making strategies. This paper proposes BIGOWL, an ontology to support knowledge
management in Big Data analytics. BIGOWL is designed to cover a wide vocabulary of terms concerning Big Data
analytics workflows, including their components and how they are connected, from data sources to the analytics
visualization. It also takes into consideration aspects such as parameters, restrictions and formats. This ontology
defines not only the taxonomic relationships between the different concepts, but also instances representing specific
individuals to guide the users in the design of Big Data analytics workflows. For testing purposes, two case studies
are developed, which consists in: first, real-world streaming processing with Spark of traffic Open Data, for route
optimization in urban environment of New York city; and second, data mining classification of an academic dataset
on local/cloud platforms. The analytics workflows resulting from the BIGOWL semantic model are validated and
successfully evaluated.
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1. Introduction

In accordance with the recent Gartner’s re-
port 2 , an emerging challenge in Big Data is to
construct data-driven intelligent applications that
capture and inject domain knowledge in the an-
alytical processes, including context and using a
standardized format. Context refers to all the rel-
evant (meta)-information to support the analysis

2 https://www.gartner.com/doc/3656517/adopt

-datadriven-approach-consolidating-infrastructure
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and to help interpreting its results. This will facil-
itate the integration (in a standardized way) with
third parties’ data, algorithms, business intelli-
gence (BI) and visualization services.

The use of semantics as contextual information
will enhance the analytical power of the algo-
rithms, as well as the reuse of single components
in data analytics workflows (Ristoski & Paulheim,
2016). Therefore, the development of ways to
make the domain knowledge explicit and usable is
needed to improve the data processing and analy-
sis tasks. The Semantic Web technologies can be
used to annotate not only the knowledge domain of
the data, but also the analytics’ meta-data (Keet
et al., 2015), including: algorithms’ parameters,
input variables, tuning experiences, expected be-
haviors and taxonomies. This will facilitate the
reuse and composition of Big Data analytics in a
proper manner, as well as to enhance the quality
of consumed and produced data.

In this regard, ontologies describe concepts,
relationships, classes, individuals, formal logic ax-
ioms and objects of a particular domain (Gruber,
1995). The objects refer to entities and events
(concepts) in the real world, and their relations
represent the semantic links between these enti-
ties. A series of studies have been appearing in the
last few years, in which ontological approaches are
suggested to enhance Big Data analytics (Kuiler,
2014) (Konys, 2016). However, they are presented
as conceptual frameworks, still in an early stage of
development, and mostly oriented to the specific
domain of health system applications.

This motivates us to propose an ontology-driven
approach to support knowledge management in
Big Data analytics workflows. The proposed ontol-
ogy is called BIGOWL (BIG data analytics OWL 3

ontology), which acts as a formal schema for the
representation and consolidation of knowledge in
Big Data analytics. Knowledge incorporation is in
turn beneficial for an efficient algorithmic perfor-
mance, by taking part in operator’s design, pa-
rameter selection, human interactive and decision-
making strategies.

3 OWL refers to the Web Ontology Language described in
Section 2.1

Our scientific hypothesis is as follows: “The se-
mantic annotation of Big Data sources, compo-
nents and algorithms can acts as a link to capture
and incorporate the domain knowledge to guide and
enhance the analytical processes”. In addition, the
semantic annotation can provide the background
for reasoning methods based on axiomatic and rule
logic recommendations.

To test this hypothesis, a semantic model has
been generated, which comprises an RDF 4 (Re-
source Description Framework) repository that fol-
lows the BIGOWL scheme. This repository can be
queried by high level algorithms using SPARQL.
The goal is to properly feed artificial intelligence
procedures capable of guiding the design of Big
Data analytics workflows.

As a proof-of-concept, we show how BIGOWL
can be used to guide the design of real-world and
academic analytic workflows. A first case study
consists in optimizing vehicular routes based on
New York real-time Open Data about urban traffic
(average speeds of vehicles, traffic densities, etc.) 5 .
The data source is managed by streaming process-
ing tasks (Kafka and Spark), after which they are
optimized (jMetalSP 6 ) and visualized. The second
case study is a classification workflow modeled by
using the popular Weka 7 library for data mining,
as well as the BigML in-cloud service 8 .

The main contributions of this study are:
– The proposed ontology, BIGOWL, has been de-

signed and implemented for the representation
and consolidation of knowledge in Big Data an-
alytics. It considers a large and complemented
set of concepts, attributes and relationships that
have been taken from Big Data ecosystem.

– A semantic approach has been implemented to
annotate (i.e. to “semantize”) all the involved
meta-data from multiple data sources, pro-
cessing components and analytic algorithms.
The meta-data are integrated following the
BIGOWL structure and stored in a common
RDF repository.

4 RDF in W3C https://www.w3.org/RDF/
5 https://data.cityofnewyork.us/Transportation/

Real-Time-Traffic-Speed-Data/xsat-x5sa
6 http://jmetal.sourceforge.net/
7 https://www.cs.waikato.ac.nz/ml/weka/
8 https://bigml.com/
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Table 1
Basic OWL-DL semantic syntax used to formally define the proposed ontology

Descriptions Abstract Syntax DL Syntax

Operators
intersection(C1, C2, · · · , Cn) C1 u C2 u · · · u Cn

union(C1, C2, · · · , Cn) C1 t C2 t · · · u Cn

Restrictions

for at least 1 value V from C ∃V.C
for all values V from C ∀V.C
R is Symmetric R ≡ R−

Class Axioms
A partial(C1, C2, · · · , Cn) A v C1 u C2 u · · · u Cn

A complete(C1, C2, · · · , Cn) A ≡ C1 u C2 u · · · u Cn

– The semantic model is evaluated in the context
of two realistic use cases: real-time routing calcu-
lation in urban traffic and classical classification
with decision trees. The proof-of-concept lead us
to test our initial hypothesis.
The remaining of this paper is structured as fol-

lows. In Section 2, background concepts and lit-
erature overview are presented. Section 3 presents
current practices in Big Data analytics. Section 4
describes the semantic model, comprising the on-
tology, RDF repository, mappings and workflow
composition assistant. Section 5 presents the use
case for testing and validation. In Section 6, a se-
ries of discussions are included. Conclusions and
future work are drawn in Section 7.

2. Background and related work

To make this paper self-contained, this section
describes background concepts in the Semantic
Web field. A review of the state of the art is also
provided to point out the main differences of the
related works with the proposed approach.

2.1. Background concepts

– Ontology. In accordance with (N. F. Noy,
McGuinness, et al., 2001), an ontology pro-
vides a formal representation of the real world.
It defines an explicit description of concepts
in a domain of discourse (classes or concepts),
properties of each concept describing various
features and attributes of the concept (proper-

ties) and restrictions on properties. Ontologies
are part of the W3C standard stack of the Se-
mantic Web 9 . An ontology together with a set
of individual instances of classes constitutes a
knowledge base and offer services to facilitate
interoperability across multiple heterogeneous
systems and databases.

– RDF. Resource Description Framework (McBride,
2004) is a W3C recommendation that defines a
language for describing resources on the web.
RDF describes resources in terms of triples, con-
sisting of a subject, predicate and object. RDF
Schema (RDFS) (Staab & Studer, 2013) de-
scribes vocabularies used in RDF descriptions.

– OWL. The Ontology Web Language is used to
define ontologies on the Web, which extends
RDF and RDFS, but adding a vocabulary.
From a formal description, OWL is equivalent
to a very expressive description logic DL, where
an ontology corresponds to a Tbox (Gruber et
al., 1993). In this sense, OWL-DL is syntactic
description that gives maximum expressiveness
while retaining computational completeness
and decidability (McGuinness, Van Harmelen,
et al., 2004). In this work, we use OWL-DL
syntax summarized in Table 1 to formalize the
proposed ontology.

– SPARQL is a query language for easy access
to RDF stores. It is the query language recom-
mended by W3C (Harris, Seaborne, & Prudhom-
meaux, 2013) to work with RDF graphs (Prud,
Seaborne, et al., 2006), then supporting queries
and web data sources identified by URIs.

9 https://www.w3.org/standards/semanticweb/
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– SWRL. The Semantic Web Rule Language pro-
vides the OWL-based ontologies with procedural
knowledge, which compensates for some of the
limitations of ontology inference, particularly
in identifying semantic relationships between
individuals (Horrocks, Patel-Schneider, Bech-
hofer, & Tsarkov, 2005). SWRL uses the typical
logic expression “Antecedent ⇒ Consequent”
to represent semantic rules. Both antecedent
(rule body) and consequent (rule head) can be
conjunctions of one or more atoms written as
“atom1 ∧ atom2 ∧ · · · ∧ atomn”. Each atom is
attached to one or more parameters represented
by a question mark and a variable (e.g., ?x). The
most common uses of SWRL include transfer-
ring characteristics and inferring the existence
of new individuals (Grosof & Poon, 2004) 10 .

2.2. Related work

In the last decade, there have been appearing
a series of studies in which ontological approaches
are defined to express the knowledge domain in
data mining and optimization algorithms. A rep-
resentative set of these works are compiled in a re-
cent survey (Dou, Wang, & Liu, 2015), in which
they are organized by categories of algorithms and
applications: association rule discovery (Marinica
& Guillet, 2010), classification (Allahyari, Kochut,
& Janik, 2014) and clustering (Jing, Ng, & Huang,
2010). In these applications, semantics is used with
different objectives, such as: to reduce the search
space by specifying restrictions, to filter results in
the post-processing stage, and to annotate the re-
sults of data mining processes.

Following with this research line, some recent
works include ontologies to guide the processes
in machine learning tasks. For example, in (Pinto
et al., 2015) and (Roldán-Garćıa, Garćıa-Nieto, &
Aldana-Montes, 2017), two different ontologies are
used in the classification process to infer incon-
sistencies between concepts by means of semantic
reasoning. In (Phan, Dou, Wang, Kil, & Piniewski,
2015), an ontology-driven deep learning model is
proposed to predict human behavior.

10https://www.w3.org/Submission/SWRL/

In the field of optimization, an interesting ap-
proach has been recently proposed in (Yaman,
Hallawa, Coler, & Iacca, 2017), where the ECO on-
tology is defined to formally represent knowledge
in evolutionary computation algorithms. This on-
tology can be used for suggesting strategies for
solving optimization problems. At the same time,
an OWL ontology has been proposed in (Li et al.,
2017) to model and systematize the knowledge
of preference-based multi-objective evolutionary
algorithms. These ontologies are validated in use
cases focused on algorithmic and parameter selec-
tion in academic problems.

From a different point of view, a parallel line of
research focuses on defining ontologies for the se-
mantic annotation of data analytic workflows. The
main objective is to model the input and output of
algorithms involved in data mining and knowledge
base discovery (KDD) workflows to generate valid
compositions. To this end, several OWL ontolo-
gies such as: KDDONTO (Diamantini, Potena, &
Storti, n.d.), DMWF (Kietz, Serban, Bernstein, &
Fischer, 2010) and KD (Záková, Kremen, Zelezny,
& Lavrac, 2011), were proposed. However, they
did not describe the problem domain, or those
basic concepts (algorithm, type of analysis, task,
dataset, attribute, etc.) that can be combined to
define entities or constraints. In fact, these on-
tologies were not designed with the objective of
optimizing the performance of the data mining
algorithms, since they do not offer detail enough
to provide support to what is known as meta-
learning. In (Nguyen, Hilario, & Kalousis, 2014),
meta-learning is defined as the KDD procedure
to improve performance in data mining processes,
using information collected during the experimen-
tation phase of these algorithms. In this regard,
the use of semantics is considered not only for the
algorithmic composition, but also for the improve-
ment of data mining processes, taking advantage
of acquired knowledge from past experience.

In this context, the EU-FP7 European initiative
e-LICO 11 proposed the DMOP ontology (Keet et
al., 2015), which is defined to support the ana-
lytic workflow composition by following the stan-
dard CRISP-DM (Shearer, 2000). DMOP is used

11http://www.e-lico.eu/
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Table 2
Summary ontologies’ features

Feature/Ontology CRISP-DM KDDONTO PMOEA ECO (Pinto’2015) (Phan’2015) DMWF KD DMOP BIGOWL

Data Mining X X X X X X X X
Optimization X X X
Big Data environments X
Proof of concepts X X X X X X X X
Aligned to other ontology X X
OWL/RDF X X X X X X X X
Workflow composition X X X X

to define analytical workflows, as well as to de-
scribe algorithms, parameters, inputs/outputs and
a large amount of meta-data included in typical
data mining processes. A step further was taken
by (Kumara, Paik, Zhang, Siriweera, & Koswatte,
2015) that use Automatic Service Composition to
automate the analytic workflow generation.

As a summary, Table 2 outlines the main fea-
tures of the related work with regards to the seman-
tic approach proposed here. These features consist
of specifying whether the existing approaches: fo-
cus on data mining or optimization, are oriented
to Big Data, provide proof-of-concepts, align with
other ontologies, use OWL/RDF in the seman-
tic model and/or describe workflow composition
tasks. Then, it is possible to identify the actual
contributions of the proposed semantic model be-
yond the state of the art, as follows:
– BIGOWL is conceived to semantically model

data analytics in Big Data environments. Sim-
ilarly to other ontologies in the literature, it is
oriented to general KDD procedures, although
considering those Big Data ecosystem elements
with class instances, e.g., ontology individuals.

– It is aligned with the DMOP ontology, which is in
turn aligned with CRISP-DM. They have been
validated to construct data mining workflows.

– Besides data mining, BIGOWL is also focused
on optimization algorithms, although with spe-
cial interest on covering multi-objective meta-
heuristics in Big Data environments.

– The proposed approach is validated on two
real-world use-cases consisting of classical data
mining and streaming data processing for multi-
objective optimization.

3. Current practices in Big Data analytics

In current Big Data technology ecosystems,
when facing a specific data analytic task, it is
usual to support on already existing tools. Some of
those consist in commercial services often provided
through cloud computing Software-as-a-Service
(SaaS), which can be used by no skilled people
by means of workflow compositions (e.g., Azure
ML, Amazon ML, BigML, Data Mining Cloud
Framework, and Kognitio); other tools are open-
source frameworks requiring skilled users who
prefer to program their application using more
technical approaches. Additional factors (such as:
data format, data source, volume and velocity re-
quired to analyse data) are also determinant when
choosing the proper technology (Zomaya & Sakr,
2017). Hadoop ecosystem represents the most used
framework for developing distributed Big Data
analytic applications. However, it is conceived for
high skilled users, so even the standard workflow
composition service of Hadoop (Oozie) requires
certain programming ability to be properly used.

Besides technological or commercial aspects,
current Big Data platforms still follow the common
procedure when facing data analytics tasks (ACM-
SIGKDD, 2014), which comprises typical steps
of classical KDD: data collection, data trans-
formation, data mining, pattern evaluation, and
knowledge presentation.

Keeping this in mind, the proposed semantic
approach is oriented to general KDD procedures,
then leading the underlying Big Data technological
platform to be semantically annotated with class
instances, e.g., individuals in the ontology.

6
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Figure 1. Overview of the BIGOWL ontology. Continuous arrows refer to subclasses, whereas dotted ones refer to properties.

4. Semantic model

One of the main goals in this study is to cap-
ture all the needed semantics to guide the smart
design of Big Data analytics workflows and to en-
hance their performance. For this reason, we opted
to design an OWL 2 ontology to describe analytic
algorithms, datasets, problems, and workflows in
the Big Data context.

To this end, the standard Ontology 101 devel-
opment process (N. Noy & (Hrsg.), 2001) has been
followed, which comprises seven steps:

(i) Determine the domain and scope of the on-
tology. The main scope of BIGOWL is data
processing and data analytics in Big Data
environments. This considers not only clas-
sical data analytic procedures, but also spe-
cific data processing and underlying software
platform features oriented to Big Data.

(ii) Consider reusing existing ontologies. As
commented before, the proposed ontology
is aligned with DMOP, which has been suc-
cessfully validated to construct data mining
workflows. DMOP is in turn aligned with
the foundational ontology DOLCE (Masolo,

Borgo, Gangemi, Guarino, & Oltramari,
2003) and follows the standard CRISP-DM
in the definition of data mining processes.

(iii) Enumerate important terms in the ontology.
Important terms were selected from the lit-
erature related to Big Data and optimiza-
tion. In addition, terms from the ontologies
aligned (Keet et al., 2015) (Yaman et al.,
2017) were also incorporated. Examples of
such terms are: Component, Workflow, Task,
Data, DataProcessing and Software.

(iv) Define the classes and the class hierarchy.
We have followed a top-down approach in
developing the class hierarchy. This fact fa-
cilitates among others, the alignment with
DMOP and DOLCE, the design of anno-
tation mappings and the use of a seman-
tic reasoner. Figure 1 shows the ontology
core classes and hierarchy. For instance, the
class Component has several subclasses, in-
cluding DataAnalysing and DataCollection.
Classes modeling algorithms, components
and workflows are aligned with the class
dmop:DataType. BIGOWL has been devel-

7
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Table 3
Component: object and data properties

Object Properties Description Logic

hasAlgorithm ∃ hasAlgorithm.Thing v Component

hasParameter ∃ hasParameter.Thing v Workflow t Algorithm t Component

isConnected ∃ isConnected.Thing v Algorithm t Component t Task

isCorrect ∃ isCorrect.Thing v Algorithm t Component

specifiesInputClass ∃ specifiesInputClass.Thing v Algorithm t Component t Task

specifiesOutputClass ∃ specifiesOutputClass.Thing v Algorithm t Component t Task

Data Properties Description Logic

author ∃ author.Datatype Literal v Workflow t Algorithm t Component t Problem t Software

hasDataValue ∃ hasDataValue.Datatype Literal v DataType t IO-Class t Parameter t Workflow

t Algorithm t Component t Problem

numberOfInputs ∃ numberOfInputs.Datatype Literal v Algorithm t Component

numberOfOutputs ∃ numberOfOutputs.Datatype Literal v Algorithm t Component

path ∃ path.Datatype Literal v IO-Class t Algorithm t Component

oped using Protégé 12 and OWL 2.
(v) Define the properties of classes and slots.

With the purpose of relating classes and
defining attributes, we have included object
and data properties. A representative set
of properties are shown in Table 3, where
the class Component is related to class Al-
gorithm by means of the object property
hasAlgorithm. Data properties of class Com-
ponent are path, author, numberOfInputs
and numberOfOutputs.

(vi) Define the facets of the slots. This step
includes the definition of cardinality con-
straints and value restrictions for the ontol-
ogy’s properties. For example, the range of
the property order is restricted to integer
(to specify in which step this task is carried
out), when the class Task is its domain.

(vii) Create instances. Instances or individuals in
BIGOWL are specific of the Big Data analyt-
ics domain. For example,GeneratorDataTraffic
is an instance of the class Kafka, which is a
subclass of DataIngestion. The class Kafka
has a property topicKafka (with range
”string”) to indicate streams of records of
Apache Kafka 13 services.

12https://protege.stanford.edu/
13Data Streaming Processing https://kafka.apache.org/

4.1. The BIGOWL Ontology

BIGOWL has been developed following the
steps described above, producing 184 classes,
16 object properties (binary relationships be-
tween individuals), 20 data properties (individ-
ual attributes), 488 axioms, 66 individuals and
growing. It is worth mentioning that classes DM-
DataClass≡DMDataClass and IO-Class≡Data
are declared as equivalent (with relation ≡) to
align with those classes from other ontologies
(DMOP) that describe similar concepts. We use
OWL-DL syntax (see Table 1) to formalize the
proposed ontology. The complete ontology is de-
veloped in “bigowl.owl” file and available in the
GitHub repository 14 .

A representative set of the main classes are de-
scribed here, together with their object and data
properties. These classes are: Component, Task, Al-
gorithm, Data, and Workflow. Each class has de-
fined a set of properties or conditions in order to be
conceptualized. That is, an individual that satis-
fies those properties is considered to be a member
of that class.

- Component . This class represents each pro-
cessing step in the analytic workflow. It is used to

14URL link https://github.com/KhaosResearch/BIGOWL
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Table 4
Task: object and data properties

Object Properties Description Logic

compatibleWith ∃ compatibleWith.Thing v Task > v ∀ compatibleWith.Task

hasComponent > v ∀ hasComponent.Component

isConnected ∃ isConnected.Thing v Algorithm t Component t Task

specifiesInputClass ∃ specifiesInputClass.Thing v Algorithm t Component t Task

specifiesOutputClass ∃ specifiesOutputClass.Thing v Algorithm t Component t Task

Data Properties Description Logic

order ∃ order.Datatype Literal v Task > v ∀ order.Datatype

Table 5

Algorithm: object and data properties

Object Properties Description Logic

hasComponent > v ∀ hasComponent.Component

hasParameter ∃ hasParameter.Thing v Workflow t Algorithm t Component

specifiesInputClass ∃ specifiesInputClass.Thing v Algorithm t Component t Task

specifiesOutputClass ∃ specifiesOutputClass.Thing v Algorithm t Component t Task

implements Transitive Property implements ∃ implements.Thing v Algorithm > v ∀ implements.Strategy

manages ∃ manages.Thing v Algorithm > v ∀ manages.DataType

resolves ∃ resolves.Thing v Algorithm > v ∀ resolves.Problem

Data Properties Description Logic

author ∃ author.Datatype Literal v Workflow t Algorithm t Component t Problem t Software

hasDataValue ∃ hasDataValue.Datatype Literal v DataType t IO-Class t Parameter t Workflow

t Algorithm t Component t Problem

numberOfInputs ∃ numberOfInputs.Datatype Literal v Algorithm t Component

numberOfOutputs ∃ numberOfOutputs.Datatype Literal v Algorithm t Component

dealWith ∃ dealWith.Datatype Literal v Algorithm > v ∀ dealWith.Datatype

encapsulate one concrete functionality, its param-
eters and the corresponding inputs and outputs
it considers. The class Component has four sub-
classes that are oriented to define specific function-
alities in typical data analytics processing chains:
DataCollection, to connect to data sources; Dat-
aProcessing, to clean, curate, fuse and consolidate
data; DataAnalysis, to perform the algorithmic
function; and DataSink, to represent final steps in
the data flow, e.g., store and visualization. Table 3
contains the object and data properties defined for
Component. In accordance with these, a compo-
nent can specify Input classes and Output classes,
to define the type of data it is accepting and gen-
erating, respectively. Therefore, a component can

connect with other one if their linking inputs and
outputs are compatible among them.

- Task . A task represents a instance of a compo-
nent that is used in a workflow and can be run. As
shown in Table 4, the class Task has similar prop-
erties to those of Component, but including the ob-
ject property compatibleWith, to specify compati-
bility among connected tasks, and the data prop-
erty order, which indicates the specific step of exe-
cution in which this task is scheduled, in the scope
of the workflow. A Component is then a template
for one or more tasks, which will be used to carry
out its specific functionality in a workflow.

- Algorithm . This class is devoted to cover
all possible kinds It has two main subclasses:

9
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Table 6
Data: object and data properties

Object Properties Description Logic

hasDataType ∃ hasDataType.Thing v Parameter t Data > v ∀ hasDataType.DataType

path ∃ path.Datatype Literal v IO-Class t Algorithm t Component

Table 7
Workflow: object and data properties

Object Properties Description Logic

hasTask ∃ hasTask.Thing v Workflow > v ∀ hasTask.Task

hasParameter ∃ hasParameter Thing v Workflow t Algorithm t Component

Data Properties Description Logic

author ∃ author.Datatype Literal v Workflow t Algorithm t Component t Problem t Software

hasDataValue ∃ hasDataValue.Datatype Literal v DataType t IO-Class t Parameter t Workflow

t Algorithm t Component t Problem

isCorrectWorkflow ∃ isCorrectWorkflow.Datatype Literal v Workflow > v ∀ isCorrectWorkflow.Datatype

numTasks ∃ numTask.Datatype v Workflow > v ∀ numTask.Datatype

DataMiningAlgorithm and OptimizationAlgo-
rithm; which are used to distinguish between these
two families of algorithms. The former one is in-
cluded in form of equivalence with the class DM-
Algorithm, which is linked from DMOP. This way,
all subclasses deriving from this class in DMOP
are also used in BIGOWL. For the later, i.e., Op-
timizationAlgorithm, a new hierarchical classifica-
tion of classes has been elaborated in this study
for the annotation of this family, which comprises:
Exact, Heuristic, and Metaheuristic algorithms as
main subclasses.

Table 5 includes the object and data properties
of Algorithm. Among its main object properties it
is worth mentioning: implements, which is referred
to a learning model or search strategy; manages,
to annotate the type of data it works; and resolves,
which is related to the Problem it is oriented to
solve. This is a useful mechanism to relate classes
Algorithm and Problem, which also share the data
property dealWith that indicates the specific fea-
tures an algorithm should fulfill to deal with a
problem.

In this regard, the class Problem defines a se-
ries of data properties like: numberOfConstraints,
numberOfObjectives, encodedBy, and numberOf-
Variables, that will lead a future reasoner to rec-
ommend the correct algorithm to solve it. These

two classes have to be declared as DisjointWith, in
order to avoid future inconsistencies when query-
ing the annotated data in a workflow.

- Data . The class Data is devoted to annotate
all the data flowing throughout the analytic work-
flow. It is declared as EquivalentTo IO-Class of
DMOP. This aligning enables datatypes defined by
third parties’ ontologies to be contextualized in the
analysis. Table 6 contains the main data properties
defined for this class, namely: path, to annotate the
origin of data; and hasDataType, which defines the
relation with class DataType. This last is used to
define the type of data, i.e. PrimitiveType (Double,
Integer, Boolean, etc.) or StructuredType (Graph,
Tree, Matrix, Vector, Tuple, etc.).

- Workflow . It is used to guide the correct or-
chestration of those tasks involved in a data anal-
ysis job. Its main object properties are hasTask
and hasParameter, which are formally described
in Table 7. These properties are used by the work-
flow to obtain the execution order, as well as the
input/output specifications of each task. This in-
formation, together with the data properties num-
Tasks and isCorrectWorkflow, is then used in rea-
soning time to check whether the workflow is cor-
rectly composed or not, i.e., to address semantic
validation of the analytic workflow.
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Figure 2. General overview of the semantic model that follows the ontology’s scheme of BIGOWL. The analytic operational
model address the workflow composition driven by the semantic model

4.2. Overall Approach

An overview of the proposed semantic model is
illustrated in Figure 2, which is arranged together
with the underlying operational model, hence en-
abling actual composition of analytic workflows.

In this approach, BIGOWL is the ontological
scheme driving the whole process. It is the termi-
nological box (TBox) that defines the vocabulary
with concepts and properties in the domain of Big
Data analysis. As explained before, BIGOWL is
developed in OWL 2 according to which, concepts
are represented by classes and relations are rep-
resented by data properties or object properties.
As represented in Figure 2, BIGOWL is conceived
as an abstract top-level ontology that enables not
only subontology replication e.g., to focus on spe-
cific use cases or algorithmic families, but also link-
age with external domain knowledge ontologies,
which are oriented to the specific problem domain
(Smart Cities, Biology, etc.).

At bottom-level, the Assertional Box (ABox) de-
fines all the instances in the knowledge domain (in

OWL 2 an instance is represented by an individual)
involving the analytic workflows’ meta-data. These
instances are stored in RDF triple format in a Star-
dog 15 repository, which is a commercial version
of the Pellet OWL 2 reasoner (Sirin, Parsia, Grau,
Kalyanpur, & Katz, 2007), but enhanced with per-
sistence capabilities. Once the ontology (Tbox) has
been loaded together with SWRL rules, a series of
reasoning tasks are launched by using the Stardog
OWL 2 reasoner to derive new information that
is not explicitly expressed in the knowledge base.
The new information will indicate, when applica-
ble and among others, whether an analytic work-
flow is correctly composed, or not.

In this model, the Annotation Module is used to
populate the RDF repository with new instances
that involve the required meta-data (annotated)
to be used in workflows, for example: algorithms,
operators, parameters, input/output (paths), data
sources, database connections, data sinks, soft-
ware, execution order, etc.

15http://www.stardog.com/
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The Operational Model will make use of these
annotated meta-data for driving the workflow com-
position. In this process, each step a new compo-
nent is to be selected and used, a SPARQL query
is launched to obtain the required meta-data and
to suggest the next possible component/s to be in-
cluded.

A very simple (hypothetical) case of use would
comprise the following steps:

(i) A user desires to extract patterns from a
dataset and visualize the results;

(ii) Then, the user selects one algorithm from
a list of data mining algorithms (in form of
analysis component) queried throughout the
semantic model;

(iii) The selected algorithm requires specific in-
put parameters and data to train, so the se-
mantic model will supply them;

(iv) The initial dataset should be then formated
in form of data collection task;

(v) In case collected data need transformation,
an intermediate data processing component
is included between collection and analysis;

(vi) The semantic model will suggest suitable
output component (visualization) to be
linked after the analytic algorithm.

It is worth mentioning that each step in the
workflow is instantiated by a task, which entails an
execution order. Then, the entire workflow is ar-
ranged according to all the ordering values in tasks.

In summary, the semantic model acts as a medi-
ator between data provider components and data
consumers. It also acts as a data source and meta-
data registry with functions to make “agreements”
on the provision and traceability of the whole data
value chain.

5. Validation

For validation purposes, two different cases of
study have been developed to show how the pro-
posed semantic approach is used for driving the
composition of data analytic workflows. The first
one is focused on Big Data streaming processing
and optimization of real-world traffic routes in the
domain of Smart Cities. The second case study is

centered on classic data mining analysis on aca-
demic problem instances, although considering lo-
cal and cloud computing environments. In this way,
we aim at covering, as much as possible, different
aspects in Big Data applications: algorithmic anal-
yses (optimization and data mining), velocity and
volume issues (streaming processing), real-world
and academic data problems, and Big Data ecosys-
tems (Apache Spark local and on-premise cluster,
BigML cloud SaaS API).

In these two cases, a similar semantic an-
notation and querying procedure has been fol-
lowed, which consists in the manual annotation
(guided by domain experts) of: algorithms, tech-
nological/platform features, and attributes of
problem domain of knowledge; and automatic
querying by means of SPARQL sentences. To
distinguish individuals belonging to each case
study, two different namespaces has been de-
fined, i.e. traffic: http://www.khaos.uma.es/

perception/traffic/khaosteam# and weka:
http://www.khaos.uma.es/perception/weka/

khaosteam#, respectively.

5.1. Case Study 1: Streaming processing of New
York city traffic open-data

The first case study consists in a dynamic ver-
sion of the bi-objective Traveling Salesman Prob-
lem (TSP), to minimize the travel time and the
distance to cover certain routing points in a urban
area. The algorithm for solving it is a dynamic vari-
ant of the well-known mult-objective metaheuristic
NSGA-II provided in jMetalSP (Barba-González
et al., 2017) 16 , which allows parallel processing
of evaluation functions in Apache Spark environ-
ment.

In the case of the dynamic bi-objective TSP,
which is formulated in terms of a distance ma-
trix and a time travel matrix, the periodic changes
can affect any of them. Our particular dynamic
TSP problem instance is based on real-world data.
Specifically, it is feed from the Open Data API
provided by the New York City Department of

16https://github.com/jMetal/jMetalSP
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Figure 4. BIGOWL’s individuals annotated in the workflow for dynamic bi-objective optimization of TSP problem

Transportation 17 , which updates traffic informa-
tion several times per minute. The information is
provided as a text file where each line includes the
average speed to traverse the two end points defin-
ing a link in the most recent interval. The goal is
then, given a list of nodes in New York city and
the distances between each pair of nodes, calculate
the shortest possible route that visits each node.

New York’s traffic data is read periodically by
an external application that writes a file in HDFS
whenever new data are acquired, so we have imple-
mented a streaming data component for that pur-
pose. This component reads periodically the new
data appeared in the specific directory (this is done
automatically by Spark) and makes a simple pro-

17https://data.cityofnewyork.us/Transportation/

Real-Time-Traffic-Speed-Data/xsat-x5sa

cessing: if a change in a link is detected (time or
distance), then the corresponding problem matri-
ces are updated.

The analysis of the streaming data sources can
be carried out in parallel by using Spark. In fact,
we used a Hadoop cluster composed of 100 cores
in the previous study where the Big Data opti-
mization model was presented (Barba-González et
al., 2017). In addition, two other streaming data
sources where used as separate components, which
based on Twitter and Kafka. In the first one, tweets
are read from Twitter API with the topic “New
York traffic” and a processing of each tweet is sim-
ulated, so the problem is updated in accordance
with it (for testing purposes we set random changes
in traffic scenario). This way, we combine a differ-
ent streaming source with the possibility of adjust-
ing the processing time, which will serve for perfor-
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Table 8
SPARQL queries for case study of streaming processing of New York city traffic open-data

Step SPARQL Result

(1)

SELECT DISTINCT ?problem WHERE {

?problem rdf:type ?type .

?type rdfs:subClassOf* dmop:OptimizationProblem .}
TSP, ZDT1, ZDT2, ZDT3, ZDT4,

ZDT5, ZDT6, Kursawe..

(2)

SELECT DISTINCT ?algorithm

(count(DISTINCT ?propertiesAlgorithm) AS numProperties)

WHERE {

traffic:TSP bigowl:encodedBy ?solution.

?algorithm rdf:type ?type.

?type rdfs:subClassOf* bigowl:OptimizationAlgorithm.

?entity bigowl:manages ?solution .

?algorithm bigowl:dealWith ?propertiesAlgorithm .

traffic:TSP bigowl:hasFeature ?propertiesTSP .

FILTER ( ?propertiesTSP in (?propertiesAlgorithm)).

} GROUP BY ?algorithm ORDER BY DESC(?numProperties)

NSGAII, MOCell,
SMSEMOA,SPEA2, IBEA, PAES,

PESA2, WASFGA

(3)

SELECT distinct ?comp ?task WHERE {

?comp bigowl:hasProblem traffic:TSP .

?comp bigowl:hasAlgorithm traffic:NSGAII .

?comp rdf:type bigowl:Optimization .

?task rdf:type bigowl:Task . ?task bigowl:hasComponent ?comp. }

OptmimizationComponent,
OptimizationTask

(4)

SELECT distinct ?data WHERE {

?comp bigowl:hasProblem traffic:TSP .

?comp bigowl:hasAlgorithm traffic:NSGAII .

?comp rdf:type bigowl:Optimization .

?task rdf:type bigowl:Task . ?task bigowl:hasComponent ?comp.

?task bigowl:specifiesInputClass ?data . }

MatrixNY

(5)

SELECT distinct ?dataCollection WHERE {

?dataCollection rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataCollection.}

ReadWebNYDataTraffic,
DataCollectionHDFS,

DataCollectionDataTrafficKafka,
DataCollectionTwitter,
DataCollectionDB, ...

(6)

SELECT distinct ?taskProcessing ?compProcessing WHERE {

?taskCollection bigowl:hasComponent bigowl:ReadNYDataTraffic.

?taskCollection bigowl:specifiesOutputClass ?out.

?dataProcessing rdf:type ?typeProcessing .

?typeProcessing rdfs:subClassOf* bigowl:DataProcessing.

?taskProcessing bigowl:hasComponent ?dataProcessing .

?taskProcessing bigowl:specifiesInputClass ?out.

?taskProcessing bigowl:specifiesOutputClass traffic:MatrixNY. }

SparkTask, ComponentSpark

(7)

SELECT distinct ?dataSink WHERE {

?dataSink rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataSink.}

VisualizationPlot,
DataSinkHDFSStore,

DataSinkOracleStore, ...

(8)

SELECT distinct ?task1 ?task2 WHERE {

?task1 rdf:type bigowl:Task . ?task2 rdf:type bigowl:Task .

?task1 bigowl:specifiesOutputClass ?output .

?task2 bigowl:specifiesInputClass ?output . }

GeneratorDataTrafficTask,
SparkTask, TwitterCollectorTask,

KafkaMGTask,
ReadNYDataTrafficTask,

OptimizationTask, VisualizationTask
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mance evaluation purposes. In the second source,
the idea is to enrich the case study with another
data source that will produce artificial data. Then
we created a Kafka message producer that gener-
ates, following uniform and normal distributions,
a series of random messages with data to update
the problem. Every 5 seconds at least 1,000 mes-
sages are produced, but on average about 10,000
messages are created. Both the Twitter and Kafka
streaming source classes have the same behavior as
the HDFS based one: they iteratively collect and
analyze the data to somehow update the problem.

After data processing, the analytic task is then
carried out, which entails dynamic optimization
computed by NSGAII algorithm of the jMetalSP
library. The results of the analysis are used to feed
data sinks. In this case study, we consider two of
them: one that stores the produced Pareto fronts
in HDFS, and other one that visualizes informa-
tion about the Pareto front approximation (as the
number of solutions and the number of generated
fronts) using R-plot library.

The workflow implementing this case study is
represented in Figure 3 18 , where all the compo-
nents are arranged according to data flow. In this
workflow, the numeric indexes (1) to (7) corre-
spond to those steps as indicated in Table 8, which
contain the required SPARQL queries the seman-
tic model apply to recommend forthcoming com-
ponent/s to use, in design time. For this case study,
the main set of individuals annotated in the se-
mantic model and their relationships, are shown in
Figure 4. Then it is possible to follow the complete
process step-by-step:
– Step (1). The workflow designer fetch all the

optimization problems from BIGOWL to select
the implementation that better fits the required
model for TSP instances. Interestingly, they are
all subclasses of OptimizationProblem, which is
integrated from DMOP. As a result, (s)he selects
TSP.

– Step (2). Given a problem to solve, TSP in this
case, the semantic model recommends a series
of optimization algorithms that could deal with
it, i.e., those annotated algorithms that better

18Ontology instances available at https://github.com/

KhaosResearch/BIGOWL/blob/master/traffic.owl

adapt to the problem in terms of properties, such
as: solution encoding, manages, dealWith, etc.
After this, the designer selects NSGAII.

– Step (3). This is an intermediate step followed
by the semantic model to recommend specific
annotated component and task instancing the
underlying software that implements TSP and
NSGAII.

– Step (4). Now, the objective of this query is to
obtain the specific data model to properly host
data in problem and algorithm tasks. This step
is though to use specific domain knowledge infor-
mation (traffic routes in this case) coming from
external ontologies. The resulting annotated in-
stance here is MatrixNY, which refers to a data
model comprising a matrix of points and dis-
tances in the scenario of New York city.

– Step (5). Once the workflow designer has a
clear idea about the data model, (s)he can set
data sources and connect them to feed the anal-
ysis. The semantic model is then queried to show
all possible data collectors, i.e., those previously
annotated. Among all the resulting possibilities,
ReadWebNYDataTraffic, DataCollectionData-
TrafficKafka and DataCollectionTwitter are
selected for this case study.

– Step (6). Before connecting data sources to an-
alytic component, a previous task is required for
data processing and consolidation. In this case
study, the corresponding component is imple-
mented as a Spark processing task to join Kafka
messages, Tweets and traffic data streams.

– Step (7). Last steps usually correspond to data
sink tasks to allocate results from analyses. For
this case study, VisualizationTask and HDFS-
StoreTask are selected, which implement R-plot
visualization and storage in HDFS, respectively.

– Step (8). Finally, the semantic model is queried
to obtain the corresponding task instances that
are mutually compatible among them. The an-
alytic workflow is now ready to be launched on
the underlying running platform.
Moreover, once the whole process is completed,

a further reasoning procedure can now be started
to check whether the generated workflow is seman-
tically consistent, or not. This reasoning task will
be explained in Section 5.3.
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Figure 5. BIGOWL’s individuals in workflow for Irish flower classification with J48 decision tree instanced from Weka

Figure 6. Workflow for Irish flower classification with J48

decision tree instanced from Weka and BigML

5.2. Case Study 2: Classification with Iris flower
dataset

As commented before, the second case study
consists in the academic problem of Irish flower
classification by means of decision tree J48, a clas-
sical algorithm for data mining analytics. For ma-
terialization, two different approaches have been
used in this case: the well-known library for data
mining Weka and the BigML SaaS API for analysis
on-cloud. The aim is to illustrate how similar an-
notation and querying procedures with BIGOWL
can be used to compose workflows on different plat-
forms when solving the same problem.

Figure 5 shows the individuals (and their re-
lationships) annotated in the ontology, and Fig-

ure 6 19 represents graphically the analytic work-
flow for this case study. The numeric labels (1) to
(5) are aligned with their corresponding steps in
Table 9 that contain the SPARQL queries used and
their results.

In a nutshell, steps (1), (2), and (3) are used
to guide the workflow designer on the selection of
data model, algorithm, and analysis components
and tasks, respectively. Step (4) is used to query
suitable data collector components, in this case the
designer selects DataCollectionBigML for BigML
API instance and DataCollectorFS for Weka in-
stance dataset. Step (5) queries are devoted to se-
lect possible data sink components, and specifically
DataSinkFSStore and VisualizationPlot, which im-
plement orders to save results in file system and
API method for plotting in BigML, respectively.
Finally, step (6) obtains the corresponding task in-
stances that are mutually compatible among them
throughout the complete workflow.

5.3. Reasoning with BIGOWL

Reasoning procedure is built in BIGOWL with
formulation of semantic rules on top of the OWL
ontology, to deduce new information from the
existing knowledge. These rules are formulated

19Ontology instances available at https://github.com/

KhaosResearch/BIGOWL/blob/master/weka.owl
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Table 9
SPARQL queries for case study Irish flower classification on Weka, as well as on BigML

Step SPARQL Result

(1)

SELECT DISTINCT ?individual

WHERE {

?individual rdf:type ?type .

?type rdfs:subClassOf* bigowl:DMDataClass .

}

Iris, Contact-lens, CPU, Diabetes,
Glass, Ionosphre, Labor,
ReutersCorn, Segment,..

(2)

SELECT ?algorithm

WHERE {

weka:Iris rdf:type ?typeD .

?typeD rdfs:subClassOf* ?classSomePropertyAlgorithm.

?algorithm rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataMiningAlgorithm.

bigowl:DataMiningAlgorithm rdfs:subClassOf* [

a owl:Restriction ;

owl:onProperty bigowl:manages ;

owl:someValuesFrom ?classSomePropertyAlgorithm ] .

}

J48, LogisticRegression, NaiveBayes,
RepTree, IBk, LinearNNSearch,

SMO, ...

(3)

SELECT distinct ?comp ?task

WHERE {

?comp bigowl:hasAlgorithm weka:J48 .

?task rdf:type bigowl:Task .

?task bigowl:hasComponent ?comp. }

ClassificationJ48Component,
ClassificationJ48Task

(4)

SELECT distinct ?dataCollection WHERE {

?dataCollection rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataCollection.}

DataCollectionOpenData,
DataCollectionBigML,
DataCollectionHDFS,
DataCollectorFS, ...

(5)

SELECT distinct ?dataSink WHERE {

?dataSink rdf:type ?type.

?type rdfs:subClassOf* bigowl:DataSink.}

VisualizationPlot,
DataSinkHDFSStore,
DataSinkOracleStore,
DataSinkFSStore, ...

(6)

SELECT distinct ?task1 ?task2 WHERE {

?task1 rdf:type bigowl:Task . ?task2 rdf:type bigowl:Task .

?task1 bigowl:specifiesOutputClass ?output .

?task2 bigowl:specifiesInputClass ?output . }

ClassAsignerIrisTask,
ClassificationJ48Task,

ClassifierPerformanceEvaluatorTask,
CrossValidaionFolderMarkerTask,

TextViewerTask

in SWRL and used to perform semantic reason-
ing jobs mainly devoted to check correctness of
workflows, e.i., to discover those components and
tasks with (non-)compatible connectivity of in-
puts/outputs, execution orders, data domains,
data formats, data types, etc. SWRL rules are
then evaluated by the reasoner after classifying
Big Data components in accordance with axioms,
as defined in Table 1. In concrete, there are two
types of axioms associated with OWL-DL classes
for reasoning, namely: subClassOf, which is used
to define the necessary conditions for a class to be

considered a member of a given OWL class; and
equivalentClass, for annotating when two classes
can be considered as equivalent, if they comply
the conditions.

BIGOWL imports subClassOf axioms from
DMOP to specify taxonomy classification of Data
Mining contexts and their data. In this sense,
subclasses are also the natural way of describing
hierarchy of algorithmic families and versions in
optimization analyses. For instance, Genetic Algo-
rithms are subclasses of Evolutionary Algorithms
and these in turn, are subclasses of Population
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Table 10
OWL axioms for algorithmic subclass classification

Class Classification rule

Optimization Algorithm

OptimizationAlgorithm subClassOf

((implements some OptimizationStrategy) and

(resolves some OptimizationProblem)) or Algorithm

DataMining Algorithm
OptimizationAlgorithm subClassOf

(manages some DMDataClass) or Algorithm

Optimization Component
Optimization subClassOf (hasAlgorithm only

(OptimizationAlgorithm or MachineLearning))

DataMining Component
DataMining subClassOf (hasAlgorithm only

(DataMiningAlgorithm or MachineLearning))

Based Algorithms. This structural information is
then considered in reasoning time for algorithm
recommendation. The main axioms for subclass
classification are defined in Table 10, which corre-
spond to Data Mining and Optimization algorith-
mic families.

Furthermore, a series of specific SWRL rules are
described for assessing the compatibility of com-
ponents. As commented before, the main goal is
to address the generation of well-formed Big Data
workflows. A description of these rules is as follows:

- Compatibility between task, component
and Data Mining algorithm. This rule is used
to check that input data model is compatible with
the task that is indeed an instance (or implemen-
tation) of a component. In this specific case, the
used component refers to a Data Mining Algo-
rithm to perform a specific analysis. In short, this
rule is used by the reasoner to validate compati-
bility between data mining component and data
source. The result is a predicate indicating that
data “feeding” the component are compatible with
the analytic algorithm, so a task can be launched
to run it on the underlying platform.

bigowl:specifiesInputClass(?task, ?data) ^

bigowl:hasComponent(?task, ?comp) ^

bigowl:hasAlgorithm(?comp, ?alg) ^

bigowl:DataMiningAlgorithm(?alg) ^

bigowl:DMDataClass(?data)

-> bigowl:isCorrect(?alg, ?data)

Note that a similar rule is defined in the semantic

model to consider optimization algorithms.
- Compatibility between tasks of a work-

flow. This rule is applied to a complete workflow.
It is used to check that input/output data connec-
tions of each pair of consecutive tasks are “seman-
tically” similar. The outcome is a new predicate
indicating whether each two consecutive tasks are
mutually compatible, or not.

Workflow(?w) ^

bigowl:hasTask(?w, ?task1) ^

bigowl:order(?task1, ?ord1) ^

bigowl:hasTask(?w, ?task2) ^

bigowl:order(?task2, ?ord2) ^

swrlb:add(?ord2, ?ord1, 1) ^

bigowl:specifiesInputClass(?task2, ?data)^

bigowl:specifiesOutputClass(?task1, ?data)

-> bigowl:compatibleWith(?task1, ?task2)

- Connectivity between tasks and data.
Similarly to the previous one, this rule is used to
indicate that two instances of tasks are properly
linked, that is to say, it checks that the input
data of task2 are covered with the output data
of task1, according to the execution order estab-
lished in the workflow.

Workflow(?w) ^

bigowl:hasTask(?w, ?task1) ^

bigowl:order(?task1, ?ord1) ^

bigowl:hasTask(?w, ?task2) ^

bigowl:order(?task2, ?ord2) ^

swrlb:add(?ord2, ?ord1, 1) ^

bigowl:specifiesInputClass(?task2, ?data) ^

bigowl:specifiesOutputClass(?task1, ?data)

-> bigowl:isConnected(?task2, ?data)
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- Workflow correctness. Finally, this rule
validates that all the components, instanced by
corresponding tasks and data sources, are cor-
rectly arranged and connected. The result is then
a new predicate indicating whether the complete
workflow is correct, or not.

Workflow(?w) ^

bigowl:hasTask(?w, ?task) ^

bigowl:numberOfInput(?task, ?nIn) ^

bigowl:isConnected(?task, ?data) .

sqwrl:makeSet(?set, ?data) ^

sqwrl:groupBy(?set, ?task) .

sqwrl:size(?cont, ?set) ^

swrlb:equal(?cont, ?nIn)

-> sqwrl:select(?cont, ?nIn, ?task) ^

bigowl:isCorrectWorkflow(?w, true)

In summary, these case studies are used as a
“proof of concept” to somehow highlight that the
proposed semantic model is able to support in
the design of Big Data analytics. In this regard,
BIGOWL enables automatic SPARQL querying
for component recommendation, as well as reason-
ing procedures for workflow validation.

6. Discussions

One of the main research findings we claim
with the design and implementation of BIGOWL
is the ability to represent and consolidate knowl-
edge involving Big Data analytics. This semantic
approach allows us to annotate (i.e. to “seman-
tize”) all the meta-data flowing from multiple
data sources, processing components and analytic
algorithms. The meta-data are integrated follow-
ing the BIGOWL structure and stored in an RDF
repository.

On the one hand, the results obtained in the
two case studies indicate that, driven by the onto-
logical model, it is possible to progressively deliver
component recommendations for the construction
of Big Data analytics workflows. The resulting
workflows are indeed enhanced with semantic
knowledge that explicitly describes and registers
the data lineage (data provenance in database sys-
tems), from sources to results. It also would enable
to replay specific portions or inputs of the data

flow for step-wise debugging or regenerating lost
outputs. In the BIGOWL semantic model, data
linage is mapped with RDF triples referring to
records of the inputs, entities, systems, algorithms
and processes that influence data of interest, hence
providing a historical record of the data obtained
(as results) and its origins (as sources).

Based on the analysis provided in the two cases
studies, the user is able to identify the correct path
the data follow and how they are modified to ob-
tain added value, for a given domain of knowledge.
For example, in the first case study, a series of data
sources involving information about urban traffic
in the city of New York (with geo-locations, travel
times, densities, tweets, etc.) are semantically re-
lated (or linked) to the results obtained, in form of
optimized routes in a problem characterization of
the classical TSP. In this case study, the outputs
are encoded in form of routes, where the travel time
and the routing distance are optimized. This way,
the resulting routes are linked to the traffic densi-
ties and the Twitter messages, so the data lineage
is registered with semantic annotations.

Similarly, in the second case study, it is possible
to connect prediction accuracies with classification
algorithms, for the Irish flower database. In addi-
tion, the running experiences acquired when using
different execution frameworks, e.g., in-house/in-
cloud, are also annotated as results.

Another important finding lies in the possibility
of using the semantic knowledge-base, now consoli-
dated in the RDF repository, to perform reasoning
tasks, hence to infer new knowledge. In this study,
a series of SWRL rules are used to train the rea-
soner. In this study, a reasoner is used to evaluate
a set of SWRL rules defined for the specific task
of workflow validation. In this regard, the valida-
tion analysis performed by the reasoner required
644 milliseconds for case study 1 and 673 millisec-
onds for case study 2. Taking into account that we
used the Stardog OWL 2 reasoner, the time spent
in reasoning tasks is acceptable for workflow vali-
dation.

On the other hand, the main constraint of the
proposed semantic model is that it needs a do-
main ontology to cover the problem knowledge
domain. This domain ontology contains the spe-
cific concepts for a given case, so it can be reused
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in domains where previous efforts provided such
model. However, if such ontology is not avail-
able, then its design is required. As explained in
Section 4.1, the class Data in BIGOWL is used,
not only to annotate all the data flowing in the
analytic workflow, but also to allow alignment
with third parties’ ontologies covering the specific
problem domain of knowledge. Additionally, the
general ontology could miss concepts that would
be needed in some cases and are not described in
the current model. This constraint can be solved
by proposing an extension, in form of new version
release of BIGOWL, though a collaborative por-
tal. In this sense, BIGOWL is publicly available
at WebProtégé 20 , where any registered user can
introduce changes. These changes will be reviewed
in a regular basis to approve or reject them. The
last stable version of the ontology will be provided
in the project GitHub repository 21 .

In addition, a secondary constraint arises when
a new workflow is generated or executed by a user,
since a series of new annotations are required to
store all the meta-data involved in the data ana-
lytic process, in form of RDF triples. This makes
the RDF repository to increase significantly, which
would promote, not only future reasoning proce-
dures to infer new knowledge from these data,
but also their connection with other Linked Data.
In this sense, the efficient management of large
RDF repositories has become a challenging task
attracting many scholars to research (Zomaya &
Sakr, 2017), which means a clear implication for
academia.

In terms of practical implications, the proposed
semantic model represents an initial demonstrator
for the experimental piloting of Big Data frame-
works enhanced with semantics. The objective is
to obtain “Smart Data” and promote the data
value chain in industry processes, which is a key
challenge nowadays as reflected in the Strategic
Research and Innovation Agenda of the Big Data
Value Association (EU SRIA 4.0 BDVA) 22 . Sev-
eral industrial projects in this association, like Big-

20WebProtégé https://goo.gl/F6fYUc
21GitHub https://github.com/KhaosResearch/BIGOWL
22http://bdva.eu/sites/default/files/BDVA SRIA v4

Ed1.1.pdf

DataEurope 23 and BigOceanData 24 , are focused
on exploiting semantics in Big Data analytics, so
they could partially take advantage of BIGOWL
as reference ontological model.

7. Conclusions

In this work, an ontological approach called
BIGOWL is proposed to provide a conceptual
framework for the annotation of Big Data analyt-
ics. The proposed semantic model is materialized
by means of an RDF repository, and programmatic
querying and reasoning functions.

To test the initial hypothesis, two case studies
have been developed, which consist in: (1) real-
world streaming traffic data processing for route
optimization in urban environment, and (2) aca-
demic data mining classification on local/on-cloud
platforms. The experience on these cases revealed
that BIGOWL approach is useful when integrating
knowledge domain concerning a specific analytic
problem. Consequently, the integrated knowledge
is used for guiding the design of Big Data analyt-
ics workflows, by recommending next components
to be linked, and supporting final validation.

It is worthy to declare that the proposed seman-
tic model is currently populated with those anno-
tated elements required to set the case studies re-
ported in this work, although it can be feed with
new instances regarding other Big Data workflows.

This motivates our future research agenda,
which entails a first phase to provide automatic
facilities for ontology population, hence to enrich
the semantic approach; second, to provide new
mechanisms to promote the use of contextual do-
main of knowledge in the generation of Big Data
analytic solutions; and third, to generate new and
heterogeneous use cases of analytics workflows
that would led us to find and solve new possible
deficiencies, as well as to enrich the knowledge
base.

23https://www.big-data-europe.eu/
24http://www.bigoceandata.com/
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