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Highlights: 

 

 

 A decision-making model for day trade investments on the stock market is proposed 

 The fusion approach between SVM and portfolio selection showed significant results 

 The greater the defined target gain, the better discriminatory performance of the SVM 

 The results of alternative models were worse than the proposed model 

 The brokerage costs can be a strong constraint to feasibility of the proposed model 
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Abstract 

 

Forecasting stock returns is an exacting prospect in the context of financial time series. This study 

proposes a unique decision-making model for day trading investments on the stock market. In this 

regard, the model was developed using a fusion approach of a classifier based on machine learning, with 

the support vector machine (SVM) method, and the mean-variance (MV) method for portfolio selection. 

The model’s experimental evaluation was based on assets from the São Paulo Stock Exchange Index 

(Ibovespa). Monthly rolling windows were used to choose the best-performing parameter sets (the in-

sample phase) and testing (the out-of-sample phase). The monthly windows were composed of daily 

rolling windows, with new training of the classifying algorithm and portfolio optimization. A total of 81 

parameter arrangements were formulated. To compare the proposed model’s performance, two other 

models were suggested: (i) SVM + 1/N, which maintained the process of classifying the trends of the 

assets that reached a certain target of gain and which invested equally in all assets that had positive 

signals in their classifications, and (ii) Random + MV, which also maintained the selection of those assets 

with a tendency to reach a certain target of gain, but where the selection was randomly defined. Then, 

the portfolio’s composition was determined using the MV method. Together, the alternative models 

registered 36 parameter variations. In addition to these two models, the results were also compared with 

the Ibovespa’s performance. The experiments were formulated using historical data for 3,716 trading 

days for the out-of-sample analysis. Simulations were conducted without including transaction costs and 

also with the inclusion of a proportion of such costs. We specifically analyzed the effect of brokerage costs 

on buying and selling stocks on the Brazilian market. This study also evaluated the classifier’s 

performance, portfolios’ cardinality, and models’ returns and risks. The proposed main model showed 

significant results, although demand for trading value can be a limiting factor for its implementation. 

Nonetheless, this study extends the theoretical application of machine learning and offers a potentially 

practical approach to anticipating stock prices. 
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1. Introduction 

 

Predicting stock returns is considered to be one of the most challenging tasks when dealing with financial 

time series because the stock market is dynamic, complex, evolutionary, nonlinear, nebulous, 

nonparametric, and chaotic by nature. Additionally, the stock market is extremely sensitive to political 

factors, microeconomic and macroeconomic conditions, and investors’ expectations and insecurities 

(Ballings, Van den Poel, Hespeels, & Gryp, 2015; Kara, Boyacioglu, & Baykan, 2011; Tan, Quek, & Ng, 

2007). 

 

According to mainstream financial theory, predicting financial asset prices is impossible. The efficient 

market hypothesis (EMH), which is the literature’s main theoretical pillar, suggests that the task of 

predicting future prices based on financial assets’ past behavior cannot achieve abnormal returns. The 

reason is that the distribution function of a financial time series denotes a Brownian motion, which has 

random, independent, and Gaussian distribution characteristics. 

 

However, some studies reject the EMH, arguing that the stock market is not actually established at 

random and that financial time series have long-term memory. For example, recent studies dispute the 

EMH in the context of different markets and periods. Cervelló-Royo, Guijarro, and Michniuk (2015) 

showed empirical evidence that compromises the premise of the EMH. The authors researched the 

intraday markets of the American Dow Jones Industrial Average (DJIA) index, the German Deutscher 

Aktien 30 Index (DAX), and the British Financial Times Stock Exchange (FTSE) index from 2000 to 

2013. By using a methodology based on flag patterns, they tested 96 different configurations. The results 

were very profitable for all the markets. Chourmouziadis and Chatzoglou (2016) researched daily data 

from the Athens Stock Exchange from 1996 to 2012. They combined technical analysis and fuzzy logic. 

The profitability results of the proposed methodology were surprisingly higher than the baselines. Kim 

and Enke (2016) studied the intraday data of the Korea Composite Stock Price Index (KOSPI) 200 from 

2007 to 2014. They formulated a set of rules based on technical analysis combined with genetic 

algorithms and reported abnormal profits. Chen and Chen (2016) proposed a model based on flag 

patterns for recognizing bullish reversal patterns. They tested the strategy with the National Association 

of Securities Dealers Automated Quotation System (NASDAQ) from 1989 to 2004 and with the Taiwan 

Capitalization Weighted Stock Index (TAIEX) from 1990 to 2004. The results showed high levels of 

profitability. Kampouridis and Otero (2017) studied the intraday foreign exchange market, analyzing a 

10-month period between 2013 and 2014. They proposed a model that combined technical indicators, 

physical time scales, and genetic algorithms. The results guaranteed higher returns than those of the 

baselines. 

 

In this sense, there seems to be strong evidence that once a financial time series’ pattern of behavior has 

been identified, it becomes possible to delineate a predictability model (Huang, Yang, & Chuang, 2008; 

Lo, Mamaysky, & Wang, 2000; Malkiel, 2003; Mandelbrot & Hudson, 2004; Patel, Shah, Thakkar, & 

Kotecha, 2015). Moreover, consensus exists regarding the complexity and lack of definition of a series’ 

general characteristics. For this reason, it is recommended to use robust and appropriate methods to 

handle a financial series (Brabazon & O’Neill, 2006). 

 

Given the foregoing, the use of expert systems is consistently increasing in response to environmental 

characteristics. As such, the challenge is to identify a link between the past and the future with the 

objective of predicting a stock’s price or return. In this regard, the literature has generally considered two 

research fields (Sheta, Ahmed, & Faris, 2015). 

 

I) Econometric models. These are statistical models such as linear regression, autoregressive (AR), 

autoregressive moving average (ARMA), autoregressive conditional heteroscedasticity (ARCH), and 

generalized autoregressive conditional heteroscedasticity (GARCH). A key point in evaluating the use of 

these models focuses on the assumptions that a financial series must fulfill to guarantee the quality and 

reliability of the results. 
 

II) Models based on machine learning. These are models based on artificial intelligence methods. They 

include artificial neural networks, genetic algorithms, fuzzy logic, support vector machines, random 

forests, and particle swarm optimization. Such options are interesting because of their capacity to treat 

complex, imprecise, and large amounts of data. The data’s characteristics, when applied to other models, 

tend to obscure the underlying meaning and restrict attempts to obtain useful information. Additionally, 

artificial intelligence methods enable the use of different types of data (qualitative and quantitative); 

moreover, such methods are not subject to rigid assumptions such as those imposed on econometric 

models. 
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To compare the performance of these two research fields, several comparative studies have been 

conducted. These studies have highlighted the certain advantages of artificial intelligence methods when 

addressing problems linked to financial time series. The results have indicated that artificial intelligence 

methods have a greater capacity to confront problems with nonlinear, nonstationary characteristics than 

econometric models (Kazem, Sharifi, Hussain, Saberi, & Hussain, 2013; Lu, Lee, & Chiu, 2009; Matías & 

Reboredo, 2012; Sheta, Ahmed, & Faris, 2015; Teräsvirta, Van Dijk, & Medeiros, 2005; Yu, Wang, & Lai, 

2009; Zhang, Cao, & Schniederjans, 2004). 

 

Given the potential of the machine-learning methods that could be utilized, we decided to use the SVM 

method in the current study. The SVM method emerged in the 1990s with the goal of decreasing 

structural risks by minimizing empirical risks, thereby resulting in minimizing the upper limit of real 

risk. Thus, the SVM method minimizes the generalization error rather than the training error. Because 

of this capability for generalization, it stands out compared with other machine learning methods. Such a 

characteristic helps overcome overfitting and high-dimensional data problems. Another significantly 

relevant aspect is that the SVM method’s mathematical formulation is restricted to a quadratic 

programming problem, which guarantees the achievement of a global optimal solution (Coussement & 

Van den Poel, 2008; Li, Kwok, Zhu, & Wang, 2003). Nevertheless, SVM method also presents 

disadvantages: it does not present probability prediction values, its sparcity is limited for classification, 

and its generalization ability can be unsuccessful when data sets have a very large imbalanced ratio (He, 

Xiao, Wang, Liu, Yang, Lu, Gui, & Sun, 2017; Cervantes, Garcia-Lamont, Rodriguez, López, Castilla, & 

Trueba, 2017). 

 

We emphasize that the decision to apply the SVM method was influenced by its characteristics and by 

the results of financial studies that have suggested the method’s high potential to address financial 

problems. Wen, Yang, Song, and Jia (2010) researched 442 assets of the Standard & Poor’s (S&P) 500 

index from March 2004 to October 2005. The authors proposed an intelligent stock trading model based 

on market fluctuations and combining stock box theory with the SVM method. The results showed that 

the model performed significantly better than a buy-and-hold strategy. Ni, Ni, and Gao (2011) studied the 

assets of the Shanghai Stock Exchange (SSE) from 2000 to 2008. Fractal feature selection was applied to 

choose the SVM model’s features used in the daily price forecast. The results showed that this selection 

process chooses a number that is slightly lower compared with other selection methods, thereby yielding 

more accurate values. Zhiqiang, Huaiqing, and Quan (2013) studied the assets listed on the SSE and 

DJIA from 2000 to 2004. The locality-preserving projection and particle swarm optimization methods 

were first used to analyze the information. The data were then coupled with the SVM model and 

comparisons were undertaken. During the out-of-sample analysis, accuracy levels of 61.73% and 57.94% 

were achieved for the SSE and DJIA, respectively. Thenmozhi and Sarath Chand (2016) studied a sample 

composed of the indices of global markets (the DJIA, S&P 500, FTSE, National Stock Exchange (NSE) of 

India, Singapore Exchange (SGX), Hang Seng, and SSE) from 1999 to 2011. The predictions obtained 

using the SVM method exceeded those of regression models and of the technical analysis indicators in all 

markets during the full period. Pan, Xiao, Wang, and Yang (2017) studied S&P 500 stocks from June 

2008 to April 2015. The authors used an SVM model to predict price fluctuations that considered 

information in different frequencies. The results indicated that the model outperforms the baselines, 

thereby representing an interesting option for practical applications. 

 

Consequently, one of the current study’s objectives was to build an algorithm that would recognize 

patterns that arise in the financial time series of stocks part of the São Paulo Stock Exchange Index 

(Ibovespa). This algorithm would then enable the classification of stocks in accordance with their 

potential to reach pre-determined daily returns. In other words, the proposal was to delineate a model 

based on the SVM method that would be able to separate assets into two groups: one that, theoretically, 

would not reach the stipulated profit goal and another that would meet the condition for success in terms 

of achieving the estimated profit. As a result of this classification process, we sought to estimate and 

reduce the set of assets that would be selected for an investment portfolio. 

 

To avoid dividing into daily operations the capital that was to be invested equally (1/N) in the assets that 

had the potential to successfully reach the defined return, we sought to integrate a portfolio selection 

method with the SVM method. This procedure aimed to merge the SVM method’s results with a method 

that was able to analyze the assets that had the potential to reach the expected return. Such an approach 

would help determine which assets should really be part of the investment portfolio and what their 

respective participation should be. We thus decided to use the classic portfolio selection method developed 

by Markowitz (1952), who was awarded a Nobel Prize because of his model’s contribution to this field. 
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The formulation of the Markowitz model, which is also called the mean-variance (MV) model, proposes 

the construction of investment portfolios based on the maximization of expected portfolio returns and the 

simultaneous minimization of investment risk (Fabozzi, Gupta, & Markowitz, 2002). This model 

formulates an efficient frontier, which comes from the asset portfolio that reaches a maximum expected 

return level, given a certain minimum risk. For each desired level of return, the efficiency of the frontier 

indicates the best investment strategies (Deng, Lin, & Lo, 2012). In this sense, the main objective of the 

current study was to structure a decision-making model that integrates the machine learning SVM 

method, which aims to classify the Ibovespa’s assets, with the classic MV method to select portfolio 

investments. 

 

We refer to studies that have essentially similar concepts and thereby relate to our main research 

proposal. Gupta, Mehlawat, and Mittal (2012) presented a model that used the SVM method to categorize 

150 assets from the Indian NSE over 36 months. After categorization, the portfolio selection stage was 

completed with the support of a genetic algorithm. The model yielded good results. Silva, Neves, and 

Horta (2015) studied assets of the S&P 500 index from 2010 to 2014. The authors developed a genetic 

algorithm to select and optimize an investment portfolio. The input used for the model originated in 

fundamental and technical approaches. The simulation yielded returns that were higher than the 

baselines and with compatible volatility. Huang, Chiou, Wu, and Yang (2015) researched the Taiwanese 

stock market from 2006 to 2009. Their work consisted of using financial indices to screen the most 

efficient assets. The authors employed data envelopment analysis in this stage. Based on the preselection 

of assets, a multi-objective algorithm was applied to select a portfolio. The proposal yielded a result that 

was higher than the baselines. Machado, Neves, and Horta (2015) researched multiple markets from 

2006 to 2014 to preclassify the assets using technical indicators in a system of decision trees and genetic 

algorithms; only then was the composition of the portfolio determined. This method displayed good 

profitability, even during times of market turbulence. Petropoulos, Chatzis, Siakoulis, and 

Vlachogiannakis (2017) studied the foreign exchange market, specifically 10 currency pairs traded 

against the US dollar, from 2001 to 2015. They proposed an innovative automated investment decision 

system through the application of several models based on machine learning (the SVM method, random 

forests, dense-layer neural networks, and naive Bayes) to predict currency movement and logarithmic 

returns. In the system’s next stage, in a process that combined a pair-to-pair correlation study and the 

predictive results of the machine learning models, the trend markers were expanded starting at five (the 

number of machine learning methods) up to 50. These decision signals were then added through a 

majority voting system of trends, genetic algorithms, and regression weighting methods. Tests using a 

stop–loss mechanism were also conducted. The results yielded by the authors’ model were significantly 

better than those of other benchmarks. Macedo, Godinho, and Alves (2017) studied multiple markets 

from 2000 to 2015 to verify the performance of a genetic algorithm for portfolio selection, especially when 

used with signals produced by technical analysis indicators. The authors confirmed the positive effect 

that resulted from this combination. 

 

In sum, the current study contributes to the literature by establishing a new approach to decision-making 

models for day trading investments in the stock market. In this regard, the study undertook an 

experimental evaluation covering a period of 15 years as a robust analysis. Moreover, it provides an 

innovative model for the integration of methods. 

 

The rest of this study is organized as follows. In Section 2, we review the SVM method and summarize 

empirical work that has used it to solve problems related to financial series. In Section 3, we discuss a 

general perspective of the MV method used for portfolio selection. In Section 4, we describe the 

configuration of the experiments undertaken. In Section 5, we present the results obtained from the 

experiments and discuss the classifier’s performance, portfolio cardinality, the returns and risks of the 

proposed model, and the baselines. Finally, in Section 6, we state our conclusions and make 

recommendations for future research. 

 
 

2. SVM method 
 
The SVM method first appeared in the mid-1990s as a result of the practical use of concepts developed by 

statistical learning theory. The most prominent researcher in the development of the SVM method is the 

Russian scientist, Vladimir N. Vapnik. He has been at the forefront of related discussions since the late 

1960s when the first studies of statistical learning theory emerged. 

 

The SVM method aims to solve problems of pattern recognition, classification, regression estimation, 

time series, and density estimation (Huang, Nakamori, & Wang, 2005; Vapnik, 1999). According to 
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Vapnik (1999), the basic idea of the SVM method is to map input vectors in a large space by means of a 

defined nonlinear mapping element. Thus, this method applies the concepts of a linear model to separate 

the input from nonlinear mapping in a characteristic high-dimensional space. The linear model 

constructed in this new space can represent a nonlinear decision limit for the original space. 

 

The following characteristics of the SVM stand out (Awad & Khanna, 2015; Burges, 1998; Kim, 2003; 

Sands, Tayal, Morris, & Monteiro, 2015; Sheta, Ahmed, & Faris, 2015; Xu, Caramanis, & Mannor, 2009):  

 

 The convexity of the objective function is one of the advantages of the SVM method because the 

training of this method is equivalent to the solution of a quadratic programming problem, whereby the 

problem’s solution will always be unique and better overall. For example, the artificial neural network 

method demands nonlinear optimization with the ever-eminent risk of the algorithm being held hostage 

to local minimums. 
 

 The SVM method has greater precision than other individual forecasting methods. It has superior 

performance because it is designed to minimize structural risk, while other methods focus on empirical 

risk minimization. In other words, the SVM method seeks to minimize the upper limit of the 

generalization error to the detriment of the training error. 
 

 The SVM method can process large volumes of data robustly, without the occurrence of overfitting. 

 

The SVM method also focuses on establishing optimal separation hyperplanes. The training points 
(       ) closest to the optimal separation hyperplane are called support vectors and establish the limit 

of the decision plane. In general cases, where the data are not linearly separated, the SVM method uses 

nonlinear machines to find the hyperplane that minimizes the number of errors in the training set (Ding, 

Song, & Zen, 2008). 

 

The core of the SVM method’s theory of solving binary classification problems is described below, using 

the notations of Ding, Song, and Zen (2008), Luo and Chen (2013), and Ni, Ni, and Gao (2011). 

 

Assume we have a set of points for training,    *     +   
 , where the vectors of the input are     

(  
( )
     

( )
)       and the vectors of the outputs are      *   + and where n is the amount of training 

data. Then, to separate two classes of data points, the SVM method seeks to find the optimal hyperplane 

of separation by solving the following optimization problem: 
 
   
   

 .
 

 
    /, 

 

Subject:   ( 
  (  )      )        ,   

 

where   represents the weight vector and   the bias variable. The nonlinear function,  ( )          , 

maps the input in the high-dimensional space. However, several classification problems are linearly 

nonseparable. Thus, we need to introduce gap variables (  ) to allow for misclassification. The 

optimization problem then becomes 
 
   
     

 .
 

 
       ∑   

 
   /, 

 

Subject:       .( 
  (  ))   /                 

     ,        ,  

 
where C is the penalty parameter of the error term. The solution of the primary problem is obtained from 

a Lagrangian construction. Then, the primal problem can be converted into a quadratic optimization 

problem with bound constraints and a linear equality constraint (Vapnik, 1999): 
 

    .∑   
 
     

 

 
∑ ∑   

 
        

 
   /, 

 
Subject:                      

        ∑       
 
   , 
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where    is a Lagrange multiplier,           (  )
  (  ). Because of the required computational effort, 

the internal product is replaced by the kernel function, which satisfies the Mercer condition,  (     )  

  (  )
  (  ), and becomes the representation of a measure of similarity or proximity between points. 

Finally, we reach the nonlinear decision function in the primal space for the linearly nonseparable case: 
 

 ( )       (∑     (     )   

 

   

)  

 

The kernel functions map the input data into a larger dimensional space, where the data can be 

separated using a hyperplane, meaning that the data become linearly separable (Cristianini & Shawe-

Taylor, 2000). The kernel functions used in the SVM method are i) Linear Kernel:  (     )     
   ; ii) 

Polynomial Kernel:  (     )   (   
     )

 ; iii) Radial Kernel:  (     )       (          
 ); and iv) 

Sigmoid Kernel:  (     )       (   
     ), where       and        are constants. 

 

The kernel functions play an important role when locating complex decision limits between classes; thus, 

their selection is critical for the development of the SVM method. When choosing the potential mappings 

that can be utilized, the first challenge is to identify the best one for a given classification problem in a 

way that minimizes the generalization error. Mainly, the recommendation is to use the radial basis 

function (RBF) kernel. This kernel maps the samples in a nonlinear fashion into a high-dimensional 

space so that it can handle nonlinear problems that cannot be addressed using the linear kernel. The 

sigmoid kernel behaves like the RBF kernel for a given parameter; however, it is not valid under some 

parameters. The second challenge is the number of hyperparameters that influence the complexity of 

model selection. The polynomial kernel has more parameters than the RBF kernel. The RBF kernel has 

fewer computational difficulties regarding processing. The polynomial kernel can accept values that tend 

to infinity or zero when the degree is large, which limits its application. As such, the polynomial core 

requires more time in the training stage and is reported to yield worse results than the RBF kernel 

(Ding, Song, & Zen, 2008; Huang, Davis, & Townshend, 2002). 

 

 
3. Portfolio selection model: MV method 

 

In the seminal paper by Markowitz (1952), the forerunner of modern finance theory, a mathematical 

solution was presented to address the trade-off between maximizing the expected return on investment 

and minimizing the risk. To quantify securities’ returns and risk, Markowitz proposed the mean and 

variance of returns’ distribution as statistical measures (Kolm, Tütüncü, & Fabozzi, 2014). According to 

Santos and Tessari (2012), the core of this solution is that investors make decisions based on risk and 

expected returns when determining the best selection for their portfolios. In this regard, investors choose 

among the lowest variance for portfolios with equal expected returns and for portfolios with the highest 

expected return in terms of options with the same risk level. 
 

Thus, the MV model can be expressed through a multi-objective optimization formulation (Kolm, 

Tütüncü, & Fabozzi, 2014). This generation of a set of optimal solutions is called an efficient frontier of 

investments. The following equations formally describe the model: 
 
   

       
 ∑ ∑   

 
        

 
   , 

 
   

       
 ∑     
 
   , 

 
Subject to:     ∑   

 
      

                                          , 
 

 

where: 

   = proportion of the initial value invested in the portfolio for asset i; 
   = proportion of the initial value invested in the portfolio for asset j; 

    = covariance between assets i and j; 

   = expected return on asset i. 
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The same optimal set of assets can be achieved by means of a mono-objective formulation (Jobst, 

Horniman, Lucas, & Mitra, 2001). In this regard, a variable that represents the investor’s risk aversion is 

introduced into the model as a factor that describes his/her behavior in relation to the risk investment 

options: 
 
   

       
   [∑ ∑   

 
        

 
   ]   (    ),∑     

 
   -, 

 

Subject to:     ∑   
 
      

                                          
 
 

where   = the coefficient of risk aversion. 

 

Thus, if, on the one hand, the solution proposed by Markowitz results in the so-called efficient frontier of 

investments, on the other, it does not indicate an exact point of investment to be considered. Moreover, 

Markowitz (1952) stated that asset averages, variances, and covariance can be estimated by means of 

statistical analysis and the use of the analyst’s judgment. As a result, a set of MV combinations that 

match the desired risk–return balance can be derived and presented to the investor. Hence, the investor 

chooses the point among the possible solutions that accords with his/her risk predisposition (Michaud & 

Michaud, 2008). The foregoing formulation does not have any risk-free assets; consequently, the 

portfolio’s construction is restricted to risky assets. 

 

 
4. The experiment 
 
 

4.1. Data 
 

The assets of companies listed on the Ibovespa were used as the current study’s sample. Data from June 

2001 to December 2016 were collected for analysis and divided into sets in preparation for the model 

attributes: in-sample and out-of-sample. During the studied period, 135 assets were listed on the 

Ibovespa. Of these, between 53 and 73 were members. Appendix B lists the assets utilized in the 

research. Fig. 1 shows the variations in the number of assets on the Ibovespa. 

 

 
 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

Fig. 1. Number of the Ibovespa’s assets 

 

We collected through the Bloomberg terminal the historical series of adjusted opening, closing, 

maximum, and minimum prices, together with the traded volume of assets, to carry out the experiment. 
 

 

 

4.2. Proposed model: SVM + MV 

 
The proposed model is based on technical analysis and anchored on the premise of identifying patterns of 

behavior in the historical series of asset prices. In this regard, “The basic assumption of all technical 

theories is that history tends to repeat itself, i.e., past patterns of price behavior in individual securities 

will tend to recur in the future” (Fama, 1965, 55). Thus, the starting point after data collection was to 

prepare 22 attributes to be tested as inputs. Among the attributes are return measures based on opening, 
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closing, maximum, and minimum prices, as well as indicators of momentum, volatility, and volume as 

follows. 

 
 

# Attribute Details  # Attribute Details 

1       (
            
              

)  
12        (

          
           

) 

2       (
              
              

)  
13        (

            
             

) 

3       (
              
              

)  
14        (

            
             

) 

4       (
              
              

)  
15        (

            
             

) 

5       (
           
           

)  
16 Momentum (close price, period = 10) 

6       (
           
             

)  
17 

Relative strength index (close price, 
period = 14) 

7       (
           
             

)  
18 

Parabolic SAR (high and low price, 
acceleration = 0, maximum = 0) 

8       (
           
             

)  
19 

Average true range (high, low and 
close price, period = 14) 

9       (
             
             

)  
20 

True range (high, low, and close 
price) 

10        (
             
             

)  
21 

Chaikin A/D line (high, low, and close 
price; volume) 

11        (
             
             

)  
22 

On balance volume (close price, 
volume) 

 
 

The calculated attributes are then used as inputs for the SVM method. The objective of the SVM method 

here is to perform a binary classification of the return for day trading operations. For instance, let us 

suppose that we wish to identify whether a predetermined asset has the potential to reach a 1% return in 

t+1. To accomplish this goal, we would collect data from the series of that asset until the closing of the 

trading session at t0. Based on the size of the training window, we would complement the data with the 

series from prior days. The next stage would consist of calculating the attributes and designating them as 

inputs for the SVM method. The target would then be a 1% return for t+1. Thus, we would establish as a 

premise that the investor would be able to open a position only at t+1, expecting to successfully close the 

position on the same day. 

 

Once all the assets are classified, one by one, only those designated as likely to reach the expected return 

are considered to be eligible to participate in the next stage. The objective of this stage is to define the 

proportion of capital allocated to each asset. To execute this stage, the Markowitz MV model is used. For 

simulation purposes, the defined portfolio to which the available resources will be allocated has low 

variance.  

To achieve the optimization and calculation of the minimum-variance portfolio, the measures of the 

classic Markowitz model are used: mean and covariance matrices. It is worth clarifying that we did not 

employ simulations of investment decision-making and risk-free assets. As such, the portfolios were 

composed exclusively of risky assets. Fig. 2 presents the model’s scheme. 
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Fig. 2. Proposed model and the experiment’s stages 

 

 

Several important parameters for the execution of the proposed model were varied and tested to define 

the best overall arrangement. Fig. 3 shows the tested variations. Four parameters are defined; their 

indicators are then varied over three values. The combinatorial arrangement of these variations results 

in 81 model structures. There are variations in the number of data instances used in the learning process 

of the SVM method’s algorithm (60, 75, and 90 days), in the set of attributes that compose the SVM1 

method’s input (Set 1 = 20 attributes, Set 2 = 22 attributes, and Set 3 = 15 attributes), in the return 

expected by the investor for a day trading transaction (1.0%, 1.5%, and 2.0%), and in the number of days 

used to calculate the expected return and the covariance matrix employed for the investment portfolio’s 

optimization process (75, 90, and 105 days). 

 

 

 

 

 

 

                                                 
1 Attributes of the simulation sets: Set 1 (attributes #1 to #20), Set 2 (attributes #1 to #22), and Set 3 (attributes #1 to #15). 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig. 3. Set of the experiment’s parameters 
 

The simulation used monthly rolling windows to verify the structures of the better performing 

parameters. The model with the highest cumulative return was defined as the model with the best 

performance. The monthly windows are the totals of the daily rolling windows for training regarding the 

classification algorithm and for the optimization of the investment portfolio. Thus, in the in-sample stage, 

the set of parameters that reached the highest accumulated monthly return was calculated. This set of 

parameters was then replicated for the following month in the out-of-sample stage. The in-sample stage 

ran from December 3, 2002 to November 30, 2016 and totaled 180 months of simulation, or 3,713 trading 

days. The out-of-sample stage ran from January 2, 2002 to December 29, 2016 and was also for 180 

months, or 3,716 trading days. Fig. 4 details this scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Rolling windows of the experiment 

 

According to Gerlein, McGinnity, Belatreche, and Coleman (2016), the procedure described here tends to 

stall the effects of data snooping. White (2000) stated that a good forecasting model is not always the 

result of real forecasting capacity but of lucky decisions. These lucky decisions can still produce spurious 

results by using data-mining methods. However, Gerlein, McGinnity, Belatreche, and Coleman (2016) 

maintained that the adopted procedure guarantees unbiased results because a temporal separation exists 

between the trained data and testing data. The latter did not allow the selection and optimization of the 
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parameters. Thus, the model tests received data that were not used in the training process. In theory, 

testing was considered for future data points, constructing a scenario in which the model would 

experience real application. This approach avoids the effect of data snooping, namely the use of a future-

focused test mechanism as opposed to a back-testing mechanism. 

 

In sum, once the assets and their respective investment ratios had been indicated, the next step was to 

allocate monetary resources at the opening of the next day. With regard to the exit strategy (the sale of 

the asset), two possibilities were proposed: first, the asset would be sold during the investment day if it 

reached the expected gain; second, if the target was not reached, the sale of the asset would occur at the 

opening of the day subsequent to its purchase. 
 

 

4.3. Baseline strategies 

 

These were based on the research model proposed in the prior section and used for comparison with this 

model’s performance and its variations. 
 

 

4.3.1. Alternative model 1: SVM + 1/N 
 

This model’s design reproduces the structure of the SVM + MV model, with the exception of the 

optimization step in the investment portfolio. The proportions of investment in each asset occur in an 

equitable way; in other words, assets with a true classification signal produced by the SVM method 

receive the same proportion of investment. As a result of the non-application of the MV model stage for 

diversification, the parameter variations are as follows: the number of data instances used in the 

learning process of the SVM method’s algorithm, the set of variables for input in the SVM method, and 

the return expected by the investor for day trading transactions. Thus, there are 27 combinatorial 

arrangements. 
 
 

4.3.2. Alternative model 2: Random + MV 
 

The Random + MV model differs from the SVM + MV model in terms of the asset classification phase and 

features a tendency to reach the expected return. The asset classification is undertaken naively. 

However, the number of assets chosen randomly must be equal to the number defined by the SVM + MV 

model. The investment portfolio optimization stage using the Markowitz method is retained. Parameter 

variations are related to the return expected by the investor for day trading operations, the number of 

days used to calculate the expected return, and the covariance matrix in the diversification stage, thereby 

resulting in nine combinatorial arrangements. Additionally, given that the selection of assets during the 

classification stage is randomized, 51 iterations are performed for each data set. The median is assumed 

to be the expected result for this model. Hence, the set of parameters to be used in the out-of-sample 

stage is chosen. Again, 51 iterations are performed and we assume that the median is the expected 

result. 

 

 
4.4. Transaction costs 
 

Two simulation blocks regarding transaction costs were conducted. Section 5 describes the simulations 

where transaction costs were disregarded and simulations where we added a proportion of the costs. 

These costs aimed to cover the fees paid to brokers for transactions, including the purchase and sale of 

stocks, in the Brazilian market. 

 

The official operational costs of the Brazilian stock market, in general terms, are as follows. I) The 

variable amount: fees and emoluments (day trading = 0.025%, swing trading = 0.0325%) and income tax 

(day trading = 20%, swing trading = 15%). II) The fixed amount: the brokerage cost, which is a set figure 

per purchase and sale order, although the amount varies in accordance with the number of orders that 

are issued. Thus, the variable amount has its values calculated on the basis of the operation (fees and 

emoluments) and the gain (income tax). With regard to the fixed amount, the unit cost is set regardless of 

the amount invested or whether the operation is profitable. For example, an investment of BRL 1 million 

applied for operations involving 1, 10, or 20 shares will have the same expenses in terms of total taxes, 

fees, and income taxes regardless of the number of orders issued. By contrast, brokerage incurs a direct 

impact in terms of the number of issued orders. Each brokerage company has a value table for its service. 

For example, a reasonable value for an average of 20 daily orders would be approximately BRL 2.50 per 
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order.2 Consequently, an investor issuing 20 orders (10 for purchase and 10 for sale) at BRL 2.50 each 

would have a total cost of BRL 50.00. If the total amount invested3 is BRL 500 thousand, brokerage 

expenses will represent 0.01%; for an investment of BRL 1 million, the expenses will be 0.005%; for an 

investment of BRL 5 million, expenses will be 0.001%; etc. Based on these calculations, we simulated 

transaction costs as 1.00, 0.50, 0.10, and 0.05 basis points (bps)4 to show the effects produced on return on 

investment. 
 

We decided to evaluate only the effects of brokerage costs because taxes, emoluments, and income tax 

have a direct relation with investment performance: the greater the profit and capital invested, the 

greater such expenses. Moreover, brokerage costs are under the direct control of the investor. Proper 

management implies minimizing such costs to maximize investment profitability. None of the performed 

simulations considered bid–ask spread costs. 
 

 

5. Results 
 

Once the data for the simulation were collected and processed, the formulation of the classifier model 

based on the SVM method was undertaken to identify assets that had the potential to reach a certain 

gain target. The daily set of assets classified as having the potential to reach the expected return 

continued to the optimization stage of the portfolio through the MV method. This process, repeated daily, 

underwent a monthly evaluation of cumulative returns to identify the list of parameters with the best 

results to be used as the basis of the out-of-sample test. Table A1 in Appendix A shows the best monthly 

sets of the model parameters and Fig. 5 summarizes this result, illustrating the division between the 

configuration options for the SVM + MV model, with the exception of the target, which was chosen as 2%. 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

Fig. 5. Results of parameter selection 
 

With regard to the classification algorithm in the in-sample stage, the result of the precision5 measure 

was initially presented. To calculate the precision of the historical series of the assets and have a basis of 

comparison for the SVM method’s result, the probability of reaching the target daily was obtained. Table 

B1 (Appendix B) shows the precision result per asset. On average, 40.70% of assets reach the target of 

defined gain in the strategy. By using the SVM method, an average precision of 54.97% was achieved. In 

other words, the use of the SVM method as a resource to classify trades with the potential to reach the 

                                                 
2 This figure considers operations via a home broker, without the collaboration of the trading desk of the brokerage company that 

houses the investor’s account. 
3 To evaluate the magnitude of these investment values for the Brazilian stock market, see Fig. E1 in Appendix E regarding the 

average daily trading values of the Ibovespa’s assets. For example, in 2016, this average was approximately BRL 5.7 billion. 
4 1 basis point = 0.01%. 
5            

  

     
, where tp and fp mean, respectively, true and false positive. “Positive” and “negative” refer to the forecast and 

“true” and “false” refer to the judgment of that forecast in relation to the observed value. 
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target improves the likelihood of success by 35.06%. The Mann–Whitney test was subsequently 

conducted to assess whether equality existed between the medians of the outcome of the precision 

measure for the historical series and the SVM method. Given a p-value of 3.12e-37, the null hypothesis of 

equality was rejected at the 5% significance level. 
 

The specificity6 measure showed the effectiveness of the model at predicting the days when the expected 

return would not be achieved. In this regard, the average result was 70.29%. Thus, the classification 

highlighted the negative signals more effectively than the positive ones with results of 70.29% and 

54.97%, respectively. 
 

Table B2 in Appendix B presents the results of the classification phase for the out-of-sample period, 

which are similar to those for the in-sample window. The data show a 40.42% probability of the assets 

reaching the target of the gain defined in the strategy for the analyzed trading days. The SVM method 

achieves an average precision of 54.19%. The Mann–Whitney test showed that we can reject the null 

hypothesis on the equality of the performance of the SVM method’s results and the complete set of assets 

(p-value = 3.99e-37) at the 5% significance level. The Mann–Whitney test was conducted again for assess 

the classification equality in the in-sample and out-of-sample periods. The result confirmed the equality 

of performance for the precision and specificity measures at the 5% significance level, with p-values of 

0.08 and 0.50, respectively. 
 

In Table B2, the number of positive signals (the forecast for reaching the target) produced by the SVM 

method per asset stands out: there are 60,589 positive signals from 231,513 possible signals (the number 

of trading days × the number of the Ibovespa’s assets each day). This result indicates an approximate 

average of 16 signals per day, or 26.02% of all feasible signals. The active TIMP3 has the highest number 

of positive signals, 1,361, and a participation rate of 2.26% for the total number of signals. Further, the 

number of signals was weighted by the number of days during which an asset was in the Ibovespa. Only 

six assets proved to have signals greater than 50% of the days during which they were present on the 

index. 
 

In Table 1, we stratify the classification results in accordance with the targets of the test window (out-of-

sample). As the target value increases, the precision of the SVM method’s classifier improves compared 

with the observed data and assumes that the target will be reached every day by all assets. In other 

words, with a target of 1%, the classifier based on the SVM method is 5.49% better than the observed 

data. With a target of 2%, this figure rises to 44.33%. The relative number of trades also reduces 

considerably as a higher target is used. Of the possible trades, deals are suggested for 76.20% with a 1% 

target. With a 2% target, the rate reduces to 15.83% of the investment in available assets.7 
 

Table 1 

    Classification performance and number of signals by target 

Descriptive Statistics 
Target 

1% 1.5% 2% 

Observed Data (1) 60.16% 44.86% 33.77% 

SVM (2) 63.46% 54.95% 48.74% 

   (2 - 1)/(1) 5.49% 22.49% 44.33% 

Observed Data’s Signals 22,298 55,893 15,322 

SVM Signals 16,992 19,328 24,269 

 

Table 2 presents the performance of the SVM + MV model in relation to the proposed alternative models, 

as described in Section 4. All subsequent results refer to the out-of-sample period. The table summarizes 

the number of deals (the purchase and sale of assets) that each model handled. The SVM + MV model has 

a much lower number of transactions per day than the others, which in practice would result in lower 

transaction costs. The Random + MV model has 63.59% more transactions than the SVM + MV model. 
 

Table 2 

Trades (buy and sell) per model 
Descriptive Statistics SVM + MV SVM + 1/N Random + MV 

Total Trades 49,290 121,016 80,632 

Daily Minimum 0 0 2 

Daily Maximum 78 132 72 

                                                 
6              

  

     
 , where tn means true negative. 

7 Available assets are those part of the Ibovespa on the investment decision date. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 15 

Daily Mean 13 33 22 

Std. Dev. 7.12 30.00 7.10 

 
Fig. 6 shows the average daily cardinality of the portfolios for each of the investment models and each 

simulation month. The high dispersion of the SVM + 1/N model is due to the variation in the targets 

because the number of assets selected to compose the portfolio varies significantly, given the expected 

target for gain. 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

Fig. 6. Average cardinality of portfolios per model 

 

The average cardinality of the portfolios was approximately seven assets for the SVM + MV, 16 for the 

SVM + 1/N, and 11 for the Random + MV models. According to the Kruskal–Wallis test, the null 

hypothesis of the equality of strategy distributions was rejected (p-value = 2.19e-30). This test does not 

indicate the stochastic dominance relation in pairs; thus, Dunn’s test was conducted (see Table 3). It can 

be concluded that there is no equality in the distributions between the Random + MV and SVM + 1/N 

models at a significance level of 5%. 
 

              Table 3 

                Dunn’s test for cardinality (p-value) 

  SVM + MV SVM + 1/N 

SVM + 1/N 0.001 - 

Random + MV 0.001 0.397 

 
We then analyzed the distribution of the daily returns for the strategies of the investment models. Table 

4 presents the results. The SVM + MV model has the highest daily return average: 0.11%. The SVM + 

1/N model follows, with a return of 0.06% and a difference of 54.54% between the average returns of the 

two models. The other two benchmarks, Random + MV and the Ibovespa, have lower daily average 

returns and greater return dispersions, thus exposing investors to greater risks. The several outlier 

points featured in all the models are also worth mentioning. At the same time, we emphasize that stop–

loss mechanisms were not implemented in any of the models. 
 

    Table 4 

    Descriptive statistics per model 

Descriptive Statistics SVM + MV SVM + 1/N Random + MV 
 

Ibovespa 

 
Mean % 0.11 0.06 0.03 0.04 

Std. Deviation % 1.42 0.95 1.44 1.78 

Pearson Coef. % 13.04 15.44 54.44 45.22 

Minimum % -9.53 -5.14 -9.61 -12.10 

Maximum % 3.21 2.22 3.63 13.68 

 
To better describe the results of the simulation that add to the discussion about Table 4, Fig. 7 shows the 

box plot of the series of daily returns for each model. The SVM + 1/N model least exposes the investor to 

greater volatility; however, the Ibovespa registers the highest volatility. Despite the lower standard 

deviation of SVM + 1/N, upon analyzing the relationship between standard deviation and mean and the 

binomial risk–return relationship, the SVM + MV model has a better outcome. The Kruskal–Wallis test 

was then conducted and the null hypothesis of the equality of strategy distributions was rejected (p-value 

= 1.04e-09). 
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Fig. 7. Box plot of daily returns per model 
 

A Dunn’s test was conducted to evaluate the significance of the pairs of differences. According to the 

results presented in Table 5, we can reject the null hypothesis of equality between the distributions of the 

returns of the SVM + MV, Random +MV, and SVM +1/N models and the Ibovespa. 
 

                     Table 5 

                    Dunn’s test for daily returns (p-value) 

  SVM + MV SVM + 1/N Random + MV 

SVM + 1/N 0.015 - - 

Random + MV 0.001 0.001 - 

Ibovespa 0.001 0.001 0.001 

 

Subsequently, more detailed information on daily performance, shown in Table 6, was extracted. All 

models have a similar number of days with a return greater than zero; however, the SVM + MV model is 

the best option, considering the numerous variables involved in the decision process. With regard to the 

average daily return on days when the return is equal to or greater than zero, the Ibovespa shows the 

highest return. By contrast, the Ibovespa has the lowest number of days with a return greater than zero 

and the highest average value for days with a return below zero. The Random + MV model shows the 

lowest average loss. In sum, the model that shows the greatest balance between average gain and loss, as 

well as the number of days of gain and loss, is the SVM + MV. 
 

        Table 6 

         Additional descriptive statistics per model 

Descriptive Statistics SVM + MV SVM + 1/N Random + MV Ibovespa 

(1) % days of return >= 0  60.74 60.17 58.40 52.02 

(2) % days of return < 0  39.26 39.83 41.60 47.98 

(3) Average return on profit days % 1.00 0.92 0.69 1.28 

(4) Average return on loss days % -1.27 -1.32 -0.81 -1.32 

Ratio (1)/(2) 1.55 1.51 1.40 1.09 

Ratio (4)/(3) 1.27 1.43 1.17 1.02 
 

 

Fig. 8 shows the cumulative return for each of the models and the Ibovespa. The SVM + MV model has an 

appreciably higher result and achieves a profitability of 3,809.90% during the analyzed period. The 

profitability of the Random + MV model follows, with 736.79%, and then the Ibovespa, with 139.55%, and 

the SVM + 1/N model, with 80.85%. 
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Fig. 8. Cumulative return per model without transaction costs 

 
We already know that the SVM + MV model performs better than the other investment strategies, even 

after including brokerage costs, since the cumulative return is significantly higher over the studied 

period (see Fig. 8) and is beneficially associated with the management of a lower number of trades (see 

Table 2 and Fig. 6). However, it remains pertinent to determine how the performance of the SVM + MV 

model has a cumulative return higher than the Ibovespa. To this end, we used the Ibovespa as a baseline 

in the buy-and-hold format. Moreover, it is possible to verify how the SVM + MV and other models 

behave at different levels of brokerage costs, noting that the weight of these costs is inversely 

proportional to the invested volume. 

 

In accordance with Figs. 9 and 10, which show the cumulative returns of the simulations involving 

transaction costs of 0.05 and 0.10 bps, respectively, the SVM + MV model maintains a strong 

accumulated result. The cumulative return on transactions with a cost of 0.05 bps is 2,956.32%, while for 

a transaction cost of 0.10 bps it is 2,289.09%. With regard to operations involving transaction costs of 0.50 

and 1.00 bps, as shown in Figs. 11 and 12, respectively, the accumulated returns are strongly reduced. 

Indeed, there is a loss of 61.74% in the simulation with transaction costs of 1.00 bps. Appendix C presents 

a data set that complements the transaction cost simulations. 

 

 

 
  
 

 

 

 

 

 

 
 

Fig. 9. Cumulative returns including transaction costs (0.05 bps)    Fig. 10. Cumulative returns including transaction costs (0.10 bps) 
 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 11. Cumulative returns including transaction costs (0.50 bps)   Fig. 12. Cumulative returns including transaction costs (1.00 bps) 
 

The performance of the cumulative returns of the SVM + MV model, compared with the other models and 

the Ibovespa, triggers the issue of whether performance is really the result of winning operations 

throughout the studied period or would have occurred only during a specific period. As shown in Fig. 13, 

we use the performance of the models and the Ibovespa every three years. Thus, we can observe that, of 
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the 13 surveyed triennia, eight of them show that the cumulative returns of the SVM + MV model 

perform better than 150% during the respective periods. Moreover, in none of the triennia do the 

cumulative returns of the other models exceed 150%, except for the Ibovespa, which surpasses the 150% 

barrier for one period but shows a significant reversal in the following periods. Overall, we find the 

following average profitability and standard deviations, respectively, for the triennia: 140.08% and 

92.43% for the SVM + MV model, 61.41% and 30.73% for the Random + MV model, 29.70% and 62.08% 

for the Ibovespa, and 27.80% and 51.14% for the SVM + 1/N model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

   Fig. 13. Cumulative returns of each triennium per model without transaction costs 
 

Appendix D presents the accumulated return data per triennium with the inclusion of transaction costs. 

The SVM + MV model, with transaction costs of 0.05 and 0.10 bps, behaves similarly to Fig. 13, as shown 

previously in the cumulative return analysis over the entire studied period. With regard to the 

simulations with transaction costs of 0.50 and 1.00 bps, the performance of the SVM + MV model makes 

it unfeasible for adoption. 

 

Fig. 14 shows the result of the calculation for the ratio between return and average monthly risk for each 

triennium. In addition to having shown a remarkable performance regarding the return metric, the SVM 

+ MV model also obtained the best performance for the return–risk ratio for most periods in the analysis. 

We find the following average result: 0.40% for the SVM + MV model, 0.32% for the Random + MV model, 

0.10% for the SVM + 1/N model, and 0.09% for the Ibovespa. The SVM + MV model stopped having the 

highest ratio in 2014, which ended up compromising the result for the 2012–2014 triennium and that of 

the following years. This outcome coincides with the troubled political and economic momentum that 

Brazil has been dealing with since 2014, given the discovery of various corruption schemes involving 

public officials and large companies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

       
 

             Fig. 14. Monthly average return to the volatility of each triennium  

              per model without transaction costs 
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Fig. 15 shows the total trades per triennium for each model because this quantification of trades 

influences models’ net profitability. Thus, the Random + MV model, with the second-largest accumulated 

profitability, would not achieve a net profitability higher than the SVM + MV model even if we 

considered the transaction costs, given that the average of trades per triennium of the latter is 9,594 as 

opposed to 16,268 for the former. In other words, the Random + MV model has 69.56% more transactions 

than the SVM + MV model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 15. Total trades of each triennium per model 
 

 

6. Conclusions 
 

This study extends the theoretical literature on machine learning and stock return prediction. It also 

provides a practical foundation for a model that can optimize day trading investments. In this regard, the 

study proposed an investment decision model based on the SVM method to classify assets with a 

tendency to reach a certain daily return of gain and integrated this classification with the MV 

diversification method to compose the optimal investment portfolio. The proposed model was referred to 

as the SVM + MV model. The test period ran from January 2002 to December 2016, totaling 3,716 

trading days. Over the studied period, the assets of the Ibovespa were used as the sample. From 135 

assets, only 19 were present on all trading days. 

 

First, the classification process using the SVM method presented significant results. The classification 

performance of the proposed model was higher than the probability of the occurrence of the events 

delineated and calculated using our sample. The findings confirmed that the snooping data effect was 

outweighed by the rolling window strategy because there were no statistical differences between the in-

sample and out-of-sample results. According to the results, the classifier has a greater discriminatory 

power when it is required to work with higher targets. Additionally, it proportionately reduces the 

number of trades among potential businesses. 

  

The cardinality of the daily portfolios in the SVM + MV model also presented an interesting result: a 

daily average of seven assets per portfolio. The SVM + 1/N model used a higher number of assets (129%), 

while in the Random + MV model this number was 57.14% higher. The lower the cardinality of the 

portfolio, the lower are the transaction costs. The two alternative models were derived from the 

fragmentation of the SVM + MV model: one only maintains a similar classification method and the other 

only the optimization method. The merger of the classification and optimization processes seemed to 

converge positively to lower portfolio cardinality. To further portray this process of bottlenecking in the 

number of assets that composed, on average, the portfolio of the SVM + MV model during the studied 

period, the Ibovespa was given a theoretical portfolio of 61 assets on average. In the classification stage, 

these 61 assets were reduced, on average, to 16 assets with the potential to reach the expected gain. 

Then, the next step of portfolio optimization restricted the average number of assets to seven (i.e., a 

reduction of approximately 89% in the number of assets for investment). 

 

With regard to cumulative return performance without the inclusion of transaction costs, the SVM + MV 

model was satisfactorily better than the other models and the Ibovespa. A three-year cumulative return 

verification confirmed the better performance of the SVM + MV model. Following the inclusion of 

transaction costs, the SVM + MV model still showed a better result than the other models up to a certain 

level of such costs, specifically brokerage costs. Thus, the feasibility of the model’s implementation is 

directly related to the amount of financial resources that the investor is willing to apply. Such 

implementation is also related to demand for a more significant contribution of financial resources to 
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dilute the proportion of brokerage costs and thereby make the model viable. This situation may, however, 

find a barrier in the form of the market’s liquidity. 

 

The highest performance for the SVM + MV model when faced with all baselines might be checked by 

different forms of comparison: less portfolio cardinality, higher returns, and/or a better return–risk ratio. 

Taking account of these results, it is thus important to indicate that there is a side gain given by using 

the SVM method for asset selection, followed by the MV method for portfolio selection (SVM + MV), since 

the simple SVM technique selection and equally weighted investment distribution (SVM + 1/N) or the 

random selection of assets, followed by the MV method (Random + MV) application have shown 

significantly lower results.  

 

Such a potential barrier means that the study has a possible limitation. The study is also limited because 

it uses only the Ibovespa’s assets. Thus, future research could compare the model with regard to market 

liquidity indicators and develop simulations on other stock markets. In addition, there is significant scope 

for research on the application of other categorical predictive methods of machine learning, 

implementation of stop–loss mechanisms, expansion of the parameter sets for modeling, and use of other 

investment portfolio optimization techniques. 
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APPENDIX A. Selected sets for simulation 

 
Table A1 

Best performance of the simulation parameters over the in-sample window 

Month 2001 2002 2003 2004 

January  Set2_75d_90d_200p Set1_90d_90d_150p Set1_90d_90d_200p 

February  Set2_75d_75d_200p Set1_60d_90d_200p Set1_60d_75d_150p 

March  Set2_90d_75d_150p Set2_90d_90d_200p Set1_90d_75d_150p 

April  Set2_75d_90d_200p Set1_90d_75d_200p Set2_90d_90d_200p 

May  Set1_75d_105d_150p Set3_90d_75d_200p Set1_60d_75d_200p 

June  Set3_75d_105d_150p Set1_90d_105d_200p Set2_90d_75d_200p 

July  Set1_75d_105d_200p Set3_90d_90d_150p Set3_75d_90d_200p 

August  Set3_90d_90d_200p Set3_75d_105d_200p Set1_60d_75d_200p 

September  Set2_75d_75d_200p Set1_60d_105d_200p Set3_75d_75d_200p 

October  Set3_60d_75d_200p Set3_75d_75d_200p Set2_60d_90d_100p 

November  Set1_60d_90d_200p Set3_90d_90d_200p Set3_90d_105d_200p 

December Set2_60d_105d_200p Set3_90d_105d_150p Set1_90d_75d_200p Set3_75d_105d_200p 

     Month 2005 2006 2007 2008 

January Set2_90d_75d_200p Set1_75d_90d_200p Set1_60d_105d_150p Set1_60d_75d_150p 

February Set3_90d_75d_200p Set3_90d_90d_200p Set3_90d_75d_150p Set2_75d_105d_200p 

March Set3_90d_75d_200p Set2_60d_90d_200p Set2_75d_75d_100p Set3_90d_105d_200p 

April Set1_90d_90d_200p Set1_60d_105d_200p Set3_90d_75d_200p Set3_60d_75d_200p 

May Set2_60d_105d_200p Set3_75d_75d_200p Set3_60d_75d_200p Set3_60d_75d_200p 

June Set2_60d_90d_150p Set2_90d_90d_100p Set1_60d_75d_100p Set3_90d_75d_100p 

July Set3_90d_75d_150p Set1_90d_75d_200p Set1_60d_75d_200p Set3_60d_75d_200p 

August Set3_75d_90d_200p Set2_75d_105d_150p Set1_60d_75d_200p Set3_90d_105d_200p 

September Set3_90d_105d_150p Set3_75d_90d_200p Set3_60d_75d_200p Set3_75d_75d_150p 

October Set2_75d_90d_200p Set2_60d_105d_150p Set2_90d_75d_200p Set3_60d_105d_200p 

November Set3_60d_105d_200p Set2_60d_90d_200p Set2_75d_75d_200p Set1_90d_75d_100p 

December Set1_60d_75d_200p Set2_60d_90d_200p Set1_90d_75d_150p Set1_60d_75d_200p 

     Month 2009 2010 2011 2012 

January Set1_60d_105d_100p Set2_75d_90d_100p Set1_75d_75d_200p Set1_60d_90d_200p 

February Set3_90d_90d_200p Set3_90d_90d_200p Set3_75d_90d_150p Set3_60d_105d_200p 

March Set2_60d_90d_200p Set3_75d_90d_200p Set1_60d_75d_200p Set1_75d_105d_200p 

April Set1_75d_105d_200p Set3_75d_105d_200p Set1_60d_90d_200p Set3_90d_90d_100p 

May Set2_60d_105d_150p Set3_90d_75d_200p Set1_60d_90d_150p Set3_90d_75d_100p 

June Set3_60d_75d_100p Set3_90d_75d_150p Set1_75d_105d_150p Set1_90d_105d_200p 

July Set1_75d_75d_200p Set3_90d_105d_200p Set2_60d_75d_200p Set1_75d_105d_200p 

August Set2_90d_105d_150p Set2_60d_105d_100p Set2_90d_90d_200p Set3_60d_75d_200p 

September Set1_60d_105d_150p Set1_75d_75d_150p Set3_90d_75d_100p Set1_90d_105d_200p 

October Set1_90d_75d_200p Set1_90d_75d_200p Set1_90d_75d_150p Set1_75d_105d_150p 

November Set1_75d_90d_200p Set2_90d_105d_150p Set2_90d_90d_100p Set1_75d_90d_200p 

December Set3_90d_75d_150p Set3_75d_75d_200p Set3_75d_90d_200p Set1_90d_105d_200p 

     Month 2013 2014 2015 2016 

January Set2_60d_75d_150p Set1_75d_105d_150p Set2_90d_75d_200p Set1_90d_90d_200p 

February Set2_75d_105d_200p Set2_75d_75d_150p Set3_75d_75d_200p Set2_60d_90d_150p 

March Set3_75d_105d_150p Set3_90d_75d_200p Set1_60d_105d_200p Set3_60d_90d_200p 

April Set1_90d_90d_200p Set3_60d_75d_200p Set2_90d_75d_200p Set3_90d_75d_150p 

May Set2_60d_75d_200p Set3_90d_75d_150p Set2_90d_105d_100p Set1_90d_75d_100p 

June Set2_60d_75d_150p Set3_60d_75d_200p Set3_60d_105d_200p Set2_60d_105d_200p 

July Set3_60d_105d_200p Set1_75d_105d_150p Set3_60d_75d_100p Set1_75d_75d_200p 

August Set3_75d_75d_200p Set3_90d_105d_200p Set2_60d_105d_200p Set3_75d_90d_150p 

September Set1_75d_105d_200p Set1_60d_105d_200p Set3_75d_75d_200p Set3_90d_105d_200p 

October Set3_60d_75d_200p Set3_90d_75d_200p Set2_60d_90d_200p Set3_75d_90d_200p 

November Set3_90d_105d_200p Set2_60d_75d_200p Set3_90d_75d_150p Set3_90d_75d_200p 

December Set2_90d_75d_150p Set1_75d_75d_150p Set2_90d_75d_200p  

 
Note: The simulation coding is (Set of input for SVM)_(Training days for SVM)_(Days for calculating the covariance 

matrix)_(Target for SVM) 
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APPENDIX B. Results of the performance metrics for the SVM classifier 

 
Table B1 

Classification metrics of the in-sample period 

Ticker 
Precision 

Specif. 
Signals 

Total 
 Ticker 

Precision 
Specif. 

Signals 

Total 
 Ticker 

Precision 
Specif. 

Signals 

Total Observed SVM 
 

Observed SVM 
 

Observed SVM 

ABEV3 26.41 56.31 76.47 325 
 

CTIP3 20.52 46.00 87.05 50 
 

OIBR4 41.53 54.61 61.26 954 

ACES4 25.90 45.40 90.69 163 
 

CYRE3 46.00 59.72 73.55 916 
 

PCAR4 33.27 58.53 71.31 422 

AEDU3 33.50 58.33 64.83 24 
 

DASA3 37.22 56.76 73.49 111 
 

PDGR3 45.94 55.22 70.40 536 

AELP3 56.41 53.33 70.73 15 
 

DTEX3 39.58 58.58 78.73 338 
 

PETR3 35.81 54.83 69.26 777 

AGEI3 66.67 100.00 56.00 13 
 

DURA4 48.54 58.82 34.69 221 
 

PETR4 30.93 54.61 73.04 531 

ALLL11 44.68 58.23 43.44 316 
 

EBTP3 43.32 57.38 79.77 359 
 

POMO4 44.98 53.75 66.06 80 

ALLL3 35.04 52.41 73.89 145 
 

EBTP4 43.32 55.13 76.72 448 
 

PRML3 45.75 54.76 75.36 420 

ARCE3 34.86 56.52 92.26 92 
 

ECOR3 37.95 57.32 87.26 164 
 

PRTX3 33.33 76.92 95.60 13 

ARCZ6 37.80 54.38 85.04 480 
 

EGIE3 42.94 56.95 65.56 518 
 

PTIP4 43.07 56.06 20.29 462 

BBAS3 39.30 52.51 65.07 918 
 

ELET3 39.03 50.74 63.30 875 
 

QUAL3 43.63 56.25 89.58 240 

BBAS4 45.78 43.55 98.65 62 
 

ELET6 39.66 51.67 61.99 838 
 

RADL3 34.95 52.63 76.72 57 

BBDC3 36.56 51.55 72.41 161 
 

ELPL4 35.05 51.00 76.30 400 
 

RDCD3 40.67 62.33 89.89 361 

BBDC4 29.85 48.83 72.36 385 
 

ELPL5 50.34 56.03 85.35 589 
 

RENT3 37.91 55.51 69.43 254 

BBSE3 33.24 38.98 93.12 118 
 

LBR3 35.56 57.12 69.07 653 
 

RLOG3 59.68 58.49 92.83 53 

BISA3 42.67 59.84 68.58 366 
 

LBR4 35.67 46.96 81.28 115 
 

RSID3 48.97 55.68 57.15 792 

BNCA3 32.78 58.76 45.88 177 
 

ENBR3 40.10 48.31 74.67 236 
 

RUMO3 51.57 60.98 96.77 164 

BRAP4 37.94 54.59 66.86 828 
 

EQTL3 38.19 60.38 84.27 53 
 
SANB11 38.01 58.06 85.93 341 

BRDT4 37.27 43.33 87.99 30 
 

ESTC3 45.71 55.47 80.17 256 
 

SBSP3 38.89 53.42 65.15 803 

BRFS3 34.34 53.18 69.40 440 
 

EVEN3 37.08 46.15 74.02 39 
 

SDIA4 45.04 57.93 32.08 347 

BRKM5 40.97 58.28 65.52 1,009 
 

FIBR3 38.15 56.45 85.59 372 
 

SMLE3 44.78 52.59 91.54 135 

BRML3 38.21 55.08 76.22 305 
 

GFSA3 48.13 58.31 73.61 902 
 

SUZB5 34.54 51.80 67.07 139 

BRPR3 34.80 48.94 85.89 94 
 

GGBR4 39.19 58.04 66.68 877 
 

TAMM4 45.17 57.04 84.28 540 

BRTP3 46.42 53.80 83.96 790 
 

GOAU4 42.34 57.66 67.50 907 
 

TCOC4 43.06 48.48 12.89 328 

BRTP4 45.64 56.70 25.45 709 
 

GOLL4 46.58 58.03 66.91 903 
 

TCSL4 41.91 48.20 78.26 724 

BTOW3 46.59 60.30 68.15 728 
 

HGTX3 40.96 57.81 73.42 301 
 

TDBH4 54.82 53.10 59.10 113 

BVMF3 37.17 54.75 83.92 442 
 

HYPE3 37.27 54.14 80.51 314 
 

TESA3 53.08 70.75 75.39 465 

CCPR3 45.86 59.18 85.40 98 
 

INEP4 51.00 56.69 55.02 127 
 

TIMP3 44.57 54.22 61.06 1,363 

CCRO3 38.96 53.85 68.41 624 
 

ITSA4 29.85 42.99 71.43 328 
 

TLCP4 52.97 57.40 7.20 655 

CESP5 48.28 53.33 74.37 465 
 

ITUB4 30.07 50.84 72.57 417 
 

TMAR5 39.28 54.15 40.90 663 

CESP6 42.55 57.23 78.29 788 
 

JBSS3 46.10 56.07 77.64 815 
 

TMCP4 40.11 48.06 82.58 412 

CGAS5 42.01 53.86 73.33 583 
 

KLBN11 27.00 42.86 95.19 35 
 

TNEP4 47.10 54.65 7.36 269 

CIEL3 29.78 58.06 87.38 186 
 

KLBN4 39.62 51.97 66.37 787 
 

TNLP3 43.76 51.77 35.59 902 

CLSC4 40.29 53.46 73.29 621 
 

KROT3 43.03 55.51 78.87 236 
 

TNLP4 32.78 51.93 46.04 441 

CMET4 32.12 40.48 82.51 42 
 

LAME4 38.25 54.24 64.23 483 
 

TRPL4 38.21 53.00 67.74 800 

CMIG3 42.00 46.81 65.69 282 
 

LIGH3 44.59 49.03 11.72 359 
 
UBBR11 41.44 54.21 85.30 273 

CMIG4 35.53 51.57 68.42 731 
 

LIGT3 37.95 56.61 76.19 507 
 

UGPA3 24.42 52.59 74.89 135 

CPFE3 32.26 57.01 78.48 428 
 

LREN3 41.97 54.65 74.05 763 
 

UGPA4 33.56 57.36 84.16 129 

CPLE6 39.59 51.90 64.65 948 
 

MMXM3 49.22 58.66 71.47 554 
 

USIM3 47.15 53.82 66.45 589 

CRTP5 37.96 50.79 16.09 189 
 

MRFG3 45.64 56.38 77.52 603 
 

USIM5 43.90 57.07 62.79 1,244 

CRUZ3 36.96 54.83 71.32 808 
 

MRVE3 49.24 55.42 74.03 803 
 

VALE3 34.27 56.61 70.41 620 

CSAN3 40.25 57.18 75.55 689 
 

MULT3 42.62 58.33 77.60 132 
 

VALE5 28.34 58.39 75.43 411 

CSNA3 43.57 60.16 63.85 1,142 
 

NATU3 39.43 56.61 72.51 643 
 

VCPA4 39.17 56.75 84.75 437 

CSTB4 44.57 50.14 92.28 353 
 

NETC4 48.82 62.13 76.73 1,014 
 

VIVO4 44.47 54.36 62.84 802 

CTAX3 50.20 58.04 76.81 112 
 

OGXP3 48.00 64.90 71.80 433 
 

VIVT4 32.96 49.77 70.62 649 

CTAX4 40.16 49.25 72.08 67 
 

OIBR3 50.00 55.52 66.70 317 
 

WEGE3 39.91 57.14 72.80 63 
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Table B2 

Classification metrics of the out-of-sample period 

Ticker 
Precision 

Specif. 
Signals 

Total 
 Ticker 

Precision 
Specif. 

Signals 

Total 
 Ticker 

Precision 
Specif. 

Signals 

Total Observed SVM 
 

Observed SVM 
 

Observed SVM 

ABEV3 25.30 48.41 76.61 283 
 

CTIP3 19.55 21.43 86.71 14 
 

OIBR4 41.47 56.31 61.89 927 

ACES4 25.26 45.74 90.69 129 
 

CYRE3 45.45 58.78 73.65 934 
 

PCAR4 32.76 56.15 72.07 447 

AEDU3 33.00 65.00 64.37 20 
 

DASA3 37.22 54.08 72.94 98 
 

PDGR3 45.72 57.44 70.82 484 

AELP3 53.85 55.00 71.43 20 
 

DTEX3 38.96 52.82 78.46 337 
 

PETR3 35.84 57.72 70.31 816 

AGEI3 59.52 100.00 55.65 7 
 

DURA4 46.59 58.38 34.47 197 
 

PETR4 31.59 57.73 73.07 563 

ALLL11 44.49 58.57 43.39 321 
 

EBTP3 43.72 57.49 80.11 367 
 

POMO4 44.18 47.62 65.92 63 

ALLL3 34.77 51.40 74.44 179 
 

EBTP4 42.66 56.18 77.45 461 
 

PRML3 45.66 56.50 75.03 400 

ARCE3 34.59 50.00 92.12 76 
 

ECOR3 39.70 54.60 87.10 174 
 

PRTX3 34.96 37.50 95.47 8 

ARCZ6 38.31 53.18 85.29 534 
 

EGIE3 42.34 53.40 64.88 530 
 

PTIP4 44.33 54.06 19.24 468 

BBAS3 39.37 52.84 65.04 916 
 

ELET3 39.46 52.24 63.64 894 
 

QUAL3 42.40 53.60 89.44 250 

BBAS4 45.18 43.08 98.71 65 
 

ELET6 39.63 50.79 62.17 827 
 

RADL3 34.24 51.92 76.97 52 

BBDC3 36.59 56.32 72.56 174 
 

ELPL4 35.25 50.50 75.74 398 
 

RDCD3 41.36 62.93 89.40 348 

BBDC4 29.79 51.36 72.85 405 
 

ELPL5 50.93 56.07 85.37 585 
 

RENT3 36.54 52.31 69.59 260 

BBSE3 34.72 45.83 92.99 120 
 

LBR3 34.82 50.48 68.34 624 
 

RLOG3 58.06 59.18 92.47 49 

BISA3 42.87 58.19 68.18 397 
 

LBR4 35.58 44.30 81.70 158 
 

RSID3 49.33 57.97 58.00 790 

BNCA3 33.23 59.68 45.67 186 
 

ENBR3 41.37 53.16 75.25 237 
 

RUMO3 51.38 60.22 96.83 186 

BRAP4 37.89 56.51 67.72 860 
 

EQTL3 40.30 60.78 83.79 51 
 

SANB11 38.46 56.23 85.84 361 

BRDT4 35.79 46.88 88.27 32 
 

ESTC3 45.63 54.15 79.82 277 
 

SBSP3 39.10 53.18 65.07 850 

BRFS3 34.60 55.73 69.71 454 
 

EVEN3 37.08 54.35 74.17 46 
 

SDIA4 44.74 58.18 31.99 318 

BRKM5 40.93 53.92 64.42 1,085 
 

FIBR3 37.76 52.56 85.42 390 
 

SMLE3 44.20 54.11 91.68 146 

BRML3 38.29 54.35 75.40 322 
 

GFSA3 47.32 59.41 74.18 877 
 

SUZB5 35.45 49.34 67.03 152 

BRPR3 35.85 48.60 85.90 107 
 

GGBR4 39.29 56.54 66.24 902 
 

TAMM4 44.89 59.44 84.37 498 

BRTP3 46.10 55.05 85.11 841 
 

GOAU4 41.86 56.20 67.49 911 
 

TCOC4 42.87 46.15 12.36 351 

BRTP4 45.49 57.26 25.43 723 
 

GOLL4 45.82 56.94 66.89 850 
 

TCSL4 42.84 51.80 78.25 695 

BTOW3 45.26 56.70 68.06 739 
 

HGTX3 40.26 56.85 73.39 292 
 

TDBH4 54.22 53.78 58.83 119 

BVMF3 36.79 55.48 84.29 456 
 

HYPE3 35.94 53.53 80.73 312 
 

TESA3 51.43 69.43 75.45 458 

CCPR3 48.12 62.50 85.33 96 
 

INEP4 48.59 60.94 55.55 128 
 

TIMP3 44.48 54.15 61.10 1,361 

CCRO3 37.55 52.85 69.58 632 
 

ITSA4 30.19 48.08 71.75 364 
 

TLCP4 52.60 58.09 7.15 680 

CESP5 48.63 53.19 74.80 470 
 

ITUB4 30.14 51.27 72.65 433 
 

TMAR5 39.55 52.98 40.22 638 

CESP6 42.43 54.77 77.84 796 
 

JBSS3 45.92 58.06 77.79 794 
 

TMCP4 40.05 49.64 83.16 421 

CGAS5 42.21 51.22 71.98 572 
 

KLBN11 26.63 42.86 95.21 42 
 

TNEP4 46.39 51.61 7.10 279 

CIEL3 29.52 53.71 86.87 175 
 

KLBN4 39.36 53.04 67.00 807 
 

TNLP3 43.60 51.54 35.64 846 

CLSC4 40.19 51.62 72.40 585 
 

KROT3 42.30 58.23 79.15 249 
 

TNLP4 32.47 55.40 46.44 417 

CMET4 33.33 48.15 82.80 54 
 

LAME4 37.21 53.80 64.95 461 
 

TRPL4 37.81 52.28 67.87 790 

CMIG3 42.72 48.76 65.65 322 
 

LIGH3 44.69 51.92 11.87 364 
 

UBBR11 41.96 58.94 85.43 263 

CMIG4 36.11 49.50 67.55 798 
 

LIGT3 37.91 55.87 76.16 537 
 

UGPA3 23.20 44.85 75.31 136 

CPFE3 32.11 55.36 78.07 392 
 

LREN3 41.93 56.14 73.92 725 
 

UGPA4 32.77 49.58 84.01 119 

CPLE6 39.80 51.12 64.01 935 
 

MMXM3 50.00 60.49 71.29 529 
 

USIM3 47.01 56.63 66.54 581 

CRTP5 38.05 49.47 15.88 190 
 

MRFG3 45.85 57.88 77.89 641 
 

USIM5 43.35 55.62 62.77 1,237 

CRUZ3 36.99 54.36 71.15 780 
 

MRVE3 47.14 56.60 75.32 795 
 

VALE3 34.53 54.77 69.88 608 

CSAN3 40.07 57.26 75.99 709 
 

MULT3 40.61 48.55 77.75 138 
 

VALE5 28.28 53.94 74.98 419 

CSNA3 43.06 58.04 63.93 1,182 
 

NATU3 38.99 53.56 72.65 674 
 

VCPA4 38.17 57.52 85.29 419 

CSTB4 44.26 50.67 92.76 375 
 

NETC4 48.50 60.50 76.44 995 
 

VIVO4 44.04 52.98 62.45 821 

CTAX3 46.59 54.46 76.87 101 
 

OGXP3 47.79 63.38 71.27 396 
 

VIVT4 32.29 48.54 71.14 649 

CTAX4 38.96 50.00 71.30 54 
 

OIBR3 51.01 56.04 66.44 298 
 

WEGE3 38.15 50.00 72.62 64 
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APPENDIX C. Analysis of daily returns for strategies with transaction costs 
 

 

 

 

 

 

 

 

 

 

  
 

Fig. C1. Daily returns including transaction costs (0.05 bps)             Fig. C2. Daily returns including transaction costs (0.10 bps) 

 

 

 

 

 

 

 

 

 

 
 
Fig. C3. Daily returns including transaction costs (0.50 bps)            Fig. C4. Daily returns including transaction costs (1.00 bps) 

 

 
     Table C1 

     Average daily return for each strategy (%) 

Characteristic SVM + MV SVM + 1/N Random + MV Ibovespa 

Without transaction cost 0.11 0.03 0.06 0.04 

Transaction cost (0.05 bps) 0.10 0.01 0.05 0.04 

Transaction cost (0.10 bps) 0.10 -0.01 0.04 0.04 

Transaction cost (0.50 bps) 0.04 -0.05 -0.14 0.04 

Transaction cost (1.00 bps) -0.02 -0.30 -0.16 0.04 
 

 

      Table C2 

     Normality test for daily returns (p-value) 
Characteristic SVM + MV SVM + 1/N Random + MV Ibovespa 

Without transaction cost 0.00 0.00 0.00 0.00 

Transaction cost (0.05 bps) 0.00 0.00 0.00 0.00 

Transaction cost (0.10 bps) 0.00 0.00 0.00 0.00 

Transaction cost (0.50 bps) 0.00 0.00 0.00 0.00 

Transaction cost (1.00 bps) 0.00 0.00 0.00 0.00 

 
 

Table C3 

Kruskal–Wallis test for daily returns 

Characteristic p-value 

Without transaction cost 1.04e-09 

Transaction cost (0.05 bps) 2.30e-09 

Transaction cost (0.10 bps) 4.05e-09 

Transaction cost (0.50 bps) 3.66e-12 

Transaction cost (1.00 bps) 1.42e-27 

  

 

 

 

 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 27 

    Table C4 
    Dunn’s test for daily returns including a transaction cost of 0.05 bps (p-value) 

 
SVM + MV SVM + 1/N Random + MV 

SVM + 1/N 0.001 - - 

Random + MV 0.001 0.001 - 

Ibovespa 0.001 0.001 0.983 
 

 

    Table C5 
    Dunn’s test for daily returns including a transaction cost of 0.10 bps (p-value) 

 
SVM + MV SVM + 1/N Random + MV 

SVM + 1/N 0.001 - - 

Random + MV 0.001 0.001 - 

Ibovespa 0.001 0.012 0.764 
 

 

    Table C6 
    Dunn’s test for daily returns including a transaction cost of 0.50 bps (p-value) 

 
SVM + MV SVM + 1/N Random + MV 

SVM + 1/N 0.001 - - 

Random + MV 0.001 0.387 - 

Ibovespa 0.001 0.043 0.001 
 

 

    Table C7 
    Dunn’s test for daily returns including a transaction cost of 1.00 bps (p-value) 

 
SVM + MV SVM + 1/N Random + MV 

SVM + 1/N 0.001 - - 

Random + MV 0.001 0.180 - 

Ibovespa 0.044 0.001 0.001 
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APPENDIX D. Cumulative returns for strategies with transaction costs 

 
 

 

 

 

 

 

 

 

 

 

 
    

Fig. D1. Cumulative returns of each triennium per model including transaction costs (0.05 bps) 
 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. D2. Cumulative returns of each triennium per model including transaction costs (0.01 bps) 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. D3. Cumulative returns of each triennium per model including transaction costs (0.50 bps) 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. D4. Cumulative returns of each triennium per model including transaction costs (1.00 bps) 
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APPENDIX E. Average daily trading value for the Ibovespa’s assets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. E1. Average daily trading value for the Ibovespa’s assets (Brazilian real (BRL)) 

 

 

 

 

 

 

 


