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Abstract

With the rapid progress of wireless communication and big data, the traditional
Vehicular Ad-hoc Networks (VANETs) gradually evolve into the new Heteroge-
neous Vehicular Networks (HetVNets). Meanwhile, with the combination of mul-
tiple forms of communication modes, it initiates the Vehicle to Everything(V2X)
communication model providing more efficient services. V2X communication
generates much more private data than traditional VANETs, but the concerns over
privacy breaches are increasing. these big data burdens the concerns about. To
protect the privacy in these cloud-based vehicular networks is remained unsolved.
In this paper, we propose Privacy Assessment method with Uncertainty consid-
eration (PAU) to estimate the nodes’ capability in protecting privacy, and then
choose the vehicular nodes with high priority calculated by PAU to improve the
whole network’s privacy protection level. PAU expands subjective logic based on
two-tuple to triad and keeps uncertainty as a constituent element. It evaluates the
nodes by using the historical data from the vehicular cloud and the real-time data
from V2V communications. The experiments and analysis show that the improve-
ment of privacy-preserving capability achieved when applied PAU in Mix-zone
scenarios.

Keywords: Cloud-based Vehicular network, privacy, uncertainty, V2X

1. Introduction

Vehicular Ad-hoc Networks(VANETs) are envisaged to be one of the build-
ing blocks of the Internet of cognitive Things and accelerate the evolution of the
Intelligent Transportation System(ITS). Based on Americans 5G white paper[1],
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vehicle-to-everything(V2X) communication model is mainly composed by Vehicle-
to-Vehicle(V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Network(V2N) and
Vehicle-to-Pedestrian(V2P). The heterogeneous mode [2] accelerates the efficiency
of information dissemination. However, it adds the concerns about privacy breaches.
The long-term storage of historical data on the cloud platform adds to the worries
about privacy issues. The heterogeneous vehicular networks increase the difficul-
ties of privacy protection .

There are three main dimensions taken into account in traditional entropy-
based privacy assessment methods, the specific aspects or types of privacy, the
adversary and capabilities, and the privacy metric[3][4][5]. Those assessment
methods are all considered to be off-line, which are quantitatively evaluated based
on specific information or privacy breaches. In the cloud-based V2X network
environment, on the one hand, it is challenging to evaluate every event with the
high-speed of information dissemination, on the other hand, the results of the
offline evaluation couldn’t make up for the data leakage. In the information in-
teraction, a node’s low awareness of privacy protection will lessen the privacy
protection capability of the entire communication system. To track this problem,
we propose the Privacy Assessment method with Uncertainty consideration (PAU)
metric based on vehicular nodes uncertainty assessment. This method focuses on
evaluating the privacy protection capability of each node, and by selecting inter-
active nodes with high privacy awareness. Thereby achieves privacy-preserving
itself and improves privacy protection level of the network. The contributions of
this paper are as follows:

1)In the privacy assessment process for each vehicle, we proposed a novel
method oriented subjective logic, to predict the nodes privacy breach level by
analyzing the user’s historical behavior under cloud-based V2X scenarios, and
expand subjective logic to uncertainty to measure the undetermined records in the
user’s historical behavior;

2) We capture the real-time privacy capability based on real-time vehicles
communication observations, therefore, present a privacy aggregation algorithm
to combine the real-time and offline opinion to improve the accuracy of privacy
assessment;

3)In the simulation, we design a dynamic Mix-zone construction algorithm
that can efficiently coverage. The experiments and analysis show that the im-
provement of privacy-preserving capability achieved when applied PAU in Mix-
zone scenarios.

The rest of this paper is organized as follows: Section II presents related
works. Section III introduces the architecture, assumption and the formalization
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of our proposed method. Section IV presents the proposed PAU scheme in de-
tails. Section V shows the performance analysis based on Mix-zone. Finally, the
concluding remarks and future work are given in Section VI.

2. Related work

Privacy in VANETs involves with special concern because during the commu-
nication human lives are constantly at stake. The deployment of a comprehensive
security system for VANETs is very challenging[6][7] in practice, because the na-
ture of vehicular network is highly dynamic as well as short connection duration.
Most privacy issues are related to position and identifiers[8]. Many existing tech-
niques [9] are available for the privacy protection in VANETs. Privacy metrics
and privacy enhancing technologies(PETs) are proposed to measure the degree
of privacy enjoyed by users. There are several[10][11][12] traditional agreement
on privacy properties in VANETs. Confidentiality describes the possibility of an
adversary obtains the privacy data. The higher the impossibility represents higher
privacy level. In cloud-based Vehicular network [13], it is implemented by en-
cryption. Anonymity [14][15] refers to the adversary cant distinguish the target
from the anonymity set. In VANETs, the anonymity set could be a collection of
vehicles at a specific location, such as an intersection. Unlinkability [16] indi-
cates that the adversary couldnt establish a connection between two or more ob-
jects, actions, or locations. In VANETs, the higher privacy means that the attacker
cannot link the identity to the pseudonym of the vehicle. We usually place a Mix-
zone [17] at road intersections since vehicle trajectories aren’t predictable. Within
the Mix-zone, vehicles must change their pseudonyms and encrypt the messages.
Undetectabiltiy [18] describes the adversary can’t distinguish the information it
interested from the big data generated by the communication system.

However, referring to the cloud-based V2X communication system, little re-
search has been done in this domain, because comparatively it is a new field. 3GPP
Released 15[19] to describe the architectural enhancements for V2X services and
provides more details about privacy issues. It is indispensable, but this can not
resolve the concerns about insider attack. Feng[20]proposed a scheme involving
with physical layer technique, in which the signatures or other unique identifiers
are implanted in messages to identify legitimate nodes. Vuk[21] presented cross-
layer techniques to schedule messages for the purpose of enhancing distributed
security awareness.

The method we proposed focuses on the individual privacy-preserving capa-
bility. For example, if one node in the Mix-zone breaches the privacy, it not only
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Figure 1: Architecture of the cloud-based vehicular network

reveals the identity itself but also the nodes communicate with it. Therefore, ma-
jority metrics in research cannot handle the practical situation. We take account of
the historical behavior for individual node and update the assessment. And when
applied the technology in the construction of Mix-zone, we would sort out the
higher privacy-preserving nodes to improve the effects.

3. System model

In this section, we describe the system model in heterogeneous Vehicular net-
work. Based on this model, we proposed our architecture of PAU, three attack
models, and the research objectives. To measure the privacy, we present a formal
mathematical description of the system.

3.1. System Model for cloud-based V2X
3GPP [22] and 5G Americas[1] describe the current V2X landscape, includ-

ing standards and industry status with expected benefits. In this paper, as shown
in Figure 1, the architecture of cloud-based V2X involves four entities and four
main communication modes. The four entities are Cloud, Vehicle, Pedestrian,
and Infrastructure. To connecting these entities, it specifies vehicular commu-
nications for Vehicle-to-Everything (V2X) services, which includes Vehicle-to-
Vehicle (V2V), Vehicle-to-Pedestrian (V2P), Vehicle-to-Infrastructure (V2I), and
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Vehicle-to-Network (V2N). In the communication systems, vehicles should be
able to communicate with not only other vehicles (V2V) but also with nearby
infrastructure (V2I), Internet-based networks (V2N) and even pedestrians (V2P).
Collectively these use cases have become known as vehicle-to-everything (V2X)
connectivity, which forms a significant part of the Intelligent Transport System(ITS).
The cloud platform can store a large amount of data generated by the network,
and the V2N increases the storable, queryable and usable of the data stored in
the cloud. However, V2V and V2P expand the source of transport data as well
as the complexity, meanwhile, raise users concerns about data privacy. After all,
more individual data contains in the traffic information, and the disclosure of in-
formation, in addition to privacy threats, may bring about the threaten of life and
properties.

3.2. Research goal and Threaten model
In heterogeneous VANETs, vehicles and networks are likely to undertake a va-

riety of attacks, such as jam, eavesdrop, forge, and modify. In our paper, we focus
on the assessment for the nodes privacy-preserving capability, and by selecting
communication nodes based on evaluating values to reduce the risk of network
privacy breaches. To this end, the design goals of this paper are different from the
existing methods of privacy protection. We take advantages of the historical be-
haviors of users accumulated by the cloud platform to obtain the evaluation of the
privacy protection capability. Meanwhile, we take account of the real-time com-
munication data to improve the accuracy of privacy assessment. Raya et al.[23]
identified four groups of security threats, in which insider attackers are considered
to be the hardest part to detect, because the adversaries may propagate valid mes-
sages that cannot easily be detected using cryptographic signatures alone, pose a
viable threat to information dependability[24]. The most basic security threats are
summarized in [25], there are three common insider attacks can be restrained by
our scheme.

1) Bad mouth attack: The attackers collude to give negative feedback on the
victim in order to lower or destroy its reputation. This type of attack against the
assessment system is common in trust evaluations[26], and it is difficult to deal
with such attacks when the evaluation system does not collect enough historical
data and is one of the primary sources for assessing uncertainty.

2) Conflicting behavior attack: In this attack, malicious nodes perform dif-
ferently to different neighbor nodes, or randomly generate inconsistent privacy
value for benign nodes. Conflicting opinions will decrease the assessment credi-
bility. This kind of attack can only be detected when the network scale and running
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duration is reaching the threshold.
3)Newcomer attack: In newcomer attack, the malicious node registers as a

new user and removes its bad history, thus, this kind of attack would significantly
destroy the trust management of VANETs[27]. The defense against newcomer
attacks does not rely on the design of trust management, but establishes the au-
thentication scheme to distinguish the faked or copied ID.

Therefore, the scheme we designed can resist the attacks described above, and
we will explain the privacy breaching level against those attackers knowledge.

4. System formalization

In VANETs, the mobility increases the difficulty of measuring the vehicle’s
privacy disclosure value. However, vehicle’s cloud accumulates sufficient histori-
cal data, the already existing and growing data make privacy assessment possible.
The privacy assessment of this article is divided into four steps to implement.

privacy calculation based on historical data: Analyzing historical data for all
vehicles in the cloud-based platform, therefore, we will classify the nodes on the
basis of Definition 1, and operate further calculation relying on Lemma 1.

Privacy modification adapted from real-time data: VANETs is dynamic, and
in the network, the neighbor nodes keep changing. Historical data is helpful, but
they may not reflect the nodes real-time surrounding environment. Therefore, the
estimation of the vehicle has to consider the real-time communication status. It
will described in Section 4.2.

Privacy aggregation: With the consideration of historical and modifiable data,
our scheme aggregates the real-time and off-line assessment opinion to a compre-
hensive value. It can be applied in Algorithm 1 to decide whether or not the node
is authorized to join in the network.

Privacy prediction: Based on privacy aggregation, prediction will be applied
to the experiment when we discuss how privacy domains the establishment of
Mix-zone in Section 5.

4.1. Privacy calculation based on historical data
The vehicle set donated as ’V’, for vehicle A, we evaluate privacy-preserving

capability for vehicle A, denoted as P(A), We define P(A) as follows:

Definition 1. For any vehicle A in the vehicle set V, its privacy protection capa-
bility P(A) is a triplet of three attributes:

P(A) = (p, l, u). (1)

6



where p, l, u ≤ 1 and p + l ≤ 1 .

In definition 1, ’p’ represents the probability of vehicles in set N’s belief on
vehicle A depending on A’s benign behaviors. Similarly, ’l’ represents the prob-
ability of vehicles in set N’s disbelief on vehicle A depending on A’s malicious
behaviors, ’u’ denotes the percentage of vehicles in set N’s uncertainty on vehicle
A, and uncertainty means ignorance or lack of enough evidence, which is a core
dimension of privacy assessment.

Our paper is inspired by [28], in which the author infers the value of uncer-
tainty by the Bayesian formula based on Beta distribution and constantly update
newly evidence when observations have emerged. Combining the above ideas
with the application scenario of this paper, Lemma 1 defines the privacy assess-
ment formula for vehicle A.

Lemma 1. ’E’ denotes the set of privacy events participated by vehicle A, Where
’E1’ and ’E2’ are two mutually disjoint subsets of E. Subset ’E1’ and ’E2’ contain
the privacy-preserving and the privacy-leakage events respectively. The value P(A)

of privacy-preserving for A can be defined as follows:

p =
||E1||
||E|| . (2)

l =
||E2||
||E|| . (3)

u =
12 · ||E1|| · ||E2||

(||E1|| + ||E2||)2 · (||E1|| + ||E2|| + 1)
. (4)

where ’||E1||’ indicates the cardinality of the set, that is, the number of members
in the set E.

The uncertainty ’u’ in Lemma 1 is based on privacy-preserving and the privacy-
leakage events. To start with, we set the prior as Beta(1, 1). The value of ||E1||, ||E2||
relates to the node’s privacy assessment in two important attributes. Firstly, when
||E1|| + ||E2|| is higher, it implies that there is more evidence to support our as-
sessment value. Secondly, when the evidence for privacy-preserving or privacy-
leakage events dominates, uncertainty value will consequently descends. The un-
certainty value will be at the peak when privacy-preserving and privacy-disclosure
events have the equal value[28]. We will do some details discuss for the For-
mula(5) based on Lemma 1.

||E1|| + ||E2|| = ||E|| . (5)
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When compared with the physical situation of ITS, there are exceptional cases
where we are unable to determine whether the participating vehicles have privacy
disclosure. Therefore, the Formula (5) can be false. Studies on uncertainty are
essential when the ignorance emerges. To address the problem, privacy-preserving
capability of nodes is denoted as discrete interval.

Inference 1. Denoted A’s privacy-preserving capacity as P(A) = (p, l, u), when
A participates in a new event, the probability will be in the interval.

arg min
u

p ≤ p ≤ arg max
u

p . (6)

where

arg max
u

p = 1 − l × (1 − u)

arg min
u

p = p × (1 − u)

In definition 1, Formula (7),(8),(9) satisfy the constraint: p, l, u ≤ 1 , p+l ≤ 1 ,
and, p + l + u = 1.

4.2. Privacy modification adapted from real-time data
In V2V, the node’s privacy-preserving capability can be estimated through the

upcoming events observed by neighbors, that is, the real-time modified privacy
opinion is originated from neighbor nodes within the communication range.

Definition 2. ’N’ denoted the neighbors set of vehicle A , obviously, N is a subset
of V, x is an arbitrary vehicle in the set N. The real-time privacy-preserving
capability of A derives from set N, the definitions of Pr (A) = (pr, lr, ur) are as
follows:

pr =
||{x|T A

x ≥ σ1, x ∈ N}||
||N|| (7)

lr =
||{x|T A

x ≤ σ2, x ∈ N}||
||N|| (8)

ur =
||{x|σ2 < T A

x < σ1, x ∈ N}||
||N|| (9)

where T A
x represents node x’s opinion on node A, σ1 ≥ σ2 are thresholds for the

system.
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There is a possibility that definition 2 fails to square up the influences for the
number of observed nodes. As we mentioned before, the scales of observed nodes
will greatly increase the confidence of assessment. Following the analysis above,
We would update the Formula (9) to Formula (10).

ur =
12 · p · l

(p + l)2 · (||N|| · p + ||N|| · l + 1)
(10)

In definition 2, T A
x is derived from the aggregation of first-hand and second-hand

opinions. The first-hand opinion is derived from the nodes privacy-disclosure
during the direct V2V communication,while the second-hand opinion is a kind of
trust transitivity. The two kinds of opinions will be calculated by the algorithm in
[9]

4.3. Privacy aggregation algorithm
As the analysis above, vehicle A has two aspects of privacy assessments, one is

P(A) which is calculated in accordance with historical cloud data, and the other one
Pr(A) is obtained by the real-time neighborhood observed data. Even though the
physical meaning of the parameters used in P(A) and Pr(A) are completely different,
they effectively reflect the privacy-preserving capability of vehicle A. Eventually,
by the aggregation algorithm, we acquire the mathematical unity of the numerical
formulas.

The consistency of mathematical form for P(A) and Pr(A) can be applied to
aggregate the privacy assessment value. The aim of Definition 3 is to gradually
reduce the uncertainty. By integrating P(A) and Pr(A), we will obtain the com-
prehension privacy-preserving capability on historical cloud data and observed
real-time opinions.

Theorem 1. Let the vehicle A’s historical opinion of privacy-preserving denoted
as P(A) = (p, l, u), and the real-time opinion is Pr (A) = (pr, lr, ur), then the
aggregation opinion will be Pagg(A) =

(
pagg, lagg, uagg

)
. The opinions of vehicle A

satisfy the piecewise functions as follows:

pagg ∈
{

(p(1 − u), 1 − l ∗ (1 − u)) ∩ (pr(1 − ur), 1 − lr ∗ (1 − ur)) Ω , φ
(p(1 − u), 1 − l ∗ (1 − u)) ∪ (pr(1 − ur), 1 − lr ∗ (1 − ur)) Ω = φ

(11)

where

Ω = (p(1 − u), 1 − l ∗ (1 − u)) ∩ (pr(1 − ur), 1 − lr ∗ (1 − ur))
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lagg ∈
{

(l(1 − u), 1 − p ∗ (1 − u)) ∩ (lr(1 − ur), 1 − pr ∗ (1 − ur)) Ψ , φ
(l(1 − u), 1 − p ∗ (1 − u)) ∪ (lr(1 − ur), 1 − pr ∗ (1 − ur)) Ψ = φ

(12)

where

Ψ = (l(1 − u), 1 − p ∗ (1 − u)) ∩ (lr(1 − ur), 1 − pr ∗ (1 − ur))

Proof. According to Inference 1, p ∈ (p(1 − u), 1 − l ∗ (1 − u)),

pr ∈ (pr(1 − ur), 1 − lr ∗ (1 − ur))

pagg is derived from p and pr, therefore pagg is a union set of p and pr. In
reference to the assessment for uncertainty, pagg ∈ (p(1 − u), 1 − l ∗ (1 − u)) ∪
(pr(1 − ur), 1 − lr ∗ (1 − ur)). Since the result of the Inference 1 has fully consid-
ered its historical behavior, the value space of uncertainty equals zero. Further-
more, if Ω , φ, pagg should be the intersection, denoted as pagg ∈ Ω. By taking
account of uncertainty behaviors, we could compress the value space described
by Inference 1. The uncertainty will be (1 − (1 − u) ∗ (1 − ur)). Therefore, For-
mula (11) is proved. Considering the symmetry of the problem and the formula,
Formula (12) can be proved, too. �

Inference 2. Let the vehicle A’s historical opinion of privacy-preserving be eval-
uated as P(A) = (p, l, u), and the real-time opinion is Pr (A) = (pr, lr, ur), then the
aggregation opinion will be Pagg(A) =

(
pagg, lagg, uagg

)
. When

Ω = (p(1 − u), 1 − l ∗ (1 − u)) ∩ (pr(1 − ur), 1 − lr ∗ (1 − ur))

and
Ω , φ

the approximate privacy-preserving opinion of A is:

pagg ≈ [
min (1 − lr ∗ (1 − ur), 1 − l ∗ (1 − u)) + max (pr(1 − ur), p(1 − u))

]
/2
(13)

when
Ψ = (l(1 − u), 1 − p ∗ (1 − u)) ∩ (lr(1 − ur), 1 − pr ∗ (1 − ur))

for the situation Ψ , φ, the approximate privacy-preserving opinion of A is

lagg ≈ [
min (1 − p ∗ (1 − u), 1 − pr ∗ (1 − ur)) + max (l(1 − u), lr(1 − ur))

]
/2
(14)
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the uncertainty is

uagg =
min (1 − lr ∗ (1 − ur), 1 − l ∗ (1 − u)) −max (pr(1 − ur), p(1 − u))

(1 − (1 − u) ∗ (1 − ur))
(15)

We deduce Inference 2 by the proof of Theorem 1. The approximation opinion
is assigned by the midpoint of the scope in which Theorem 1 declared, and the
source of uncertainty defined by the length of values. The further discuss about
Ω = φ indicates that there is a big difference between the historical data opinion
and the real-time opinion. Under the constraints p, l, u ≤ 1 and p + l ≤ 1 , one of
the forms listed below establishes.

p(1 − u) > 1 − lr ∗ (1 − ur)

or

1 − l ∗ (1 − u) < pr(1 − ur)

according to the symmetry of formula, we will discuss

p(1 − u) > 1 − lr ∗ (1 − ur)

obviously,

p(1 − u) = (1 − l)(1 − u)
= 1 − l ∗ (1 − u) − u

when it satisfies
1 − u − l ∗ (1 − u) > 1 − lr ∗ (1 − ur)

which is
u + l ∗ (1 − u) < lr ∗ (1 − ur)

In our simulation experiments, the changing trend of uncertainty ’u’ and ’ur’
keeps consistent, because we derive ’u’ and ’ur’ from the same vehicle. It will be
safely concluded that with the descend of uncertainty, we have more confident for
the assessment value. There is a tiny chance that the adversary deceives the cloud
but exposes to the real-time assessment, or conversely, it exposes to the cloud.
Then, there is a big gap between ’l’ calculated by historical data and ’lr’ obtained
by real-time observations. To theoretically implementing the tiny possibility, we
make up the gap with Proposition 1.
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Proposition 1. Let the vehicle A’s historical opinion of privacy-preserving be
evaluated as P(A) = (p, l, u), and the real-time opinion is Pr (A) = (pr, lr, ur), then
the aggregation opinion will be Pagg(A) =

(
pagg, lagg, uagg

)
where

Ω = (p(1 − u), 1 − l ∗ (1 − u)) ∩ (pr(1 − ur), 1 − lr ∗ (1 − ur))

similarly, when Ω = φ ,
the approximate privacy-preserving opinion of A is:

pagg ≈ [
max (1 − lr ∗ (1 − ur), 1 − l ∗ (1 − u)) + min (pr(1 − ur), p(1 − u))

]
/2
(16)

if
Ψ = (l(1 − u), 1 − p ∗ (1 − u)) ∩ (lr(1 − ur), 1 − pr ∗ (1 − ur))

and Ψ = φ ,
the approximate privacy-preserving opinion of A is

lagg ≈ [
max (1 − p ∗ (1 − u), 1 − pr ∗ (1 − ur)) + min (l(1 − u), lr(1 − ur))

]
/2
(17)

and the uncertainty is:

uagg =
max (1 − lr ∗ (1 − ur), 1 − l ∗ (1 − u)) −min (pr(1 − ur), p(1 − u))

1 − u ∗ ur
(18)

5. Performance evaluation in Mix-zone

In this section, we aim to investigate the privacy-preserving capability for pro-
posed PAU scheme. The simulations performance on NS-2 [29]. We consider a
region of 1000km2 with 100 vehicles. Table 1 gives the definition of the basic pa-
rameters. The radio coverage radius of V2N transmission is 5 km while the V2V
is 1 km, which is a typical range of the 5G protocol [1]. It is worth paying atten-
tion that the proposed scheme can be deployed in a more complex environment
cause the propagation computing is operated in the cloud.
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Table 1: Simulation parameters

Notation Definition
Simulation 500s

Simulation area 1000*1000km
Total number of nodes 100

Intersections 10
V2N transmission range 5km
V2V transmission range 1km

Proportion of malicious nodes 50%
Moving Speed 0-10m/s

Packet rate 4 pkt/sec
The minimum number of vehicles joined

in Mix-zone
K

τ 0.6

Table 2 is the rule of selecting nodes to join in the Mix-zone. According to
threshold τ, we classify the nodes into five types, respectively tagged as NI , NII ,
NIII , NVI , NV . NI represents that the nodes are absolute privacy[30] which can join
in Mix-zone immediately. Nodes tagged NII will be suspended to the network. But
when the number of vehicles involved in Mix-zone is less than K, they will join
in the communication. The procedure is implemented in Algorithm 1. Nodes NIII

will be suspended and requested to verify. Nodes NVI will be rejected but allowed
for the second application. NV indicates that the nodes might expose and can’t
join in the network.

Table 2: Regulation for vehicle nodes selection

Pagg lagg uagg Procedure
> τ – – Join in Mix-zone immediately. Tag NI

≤ τ ≤ τ ≤ τ Suspend the request. Tag NII

≤ τ ≤ τ > τ
Suspend the request, request to verify.
Tag NIII

≤ τ > τ ≤ τ Reject the request, allow for the second
application. Tag NVI

≤ τ > τ > τ Distrust and reject the request. Tag NV

13



Algorithm 1 is a general procedure for dynamic Mix-zone construction. The
sampling of threshold depends on the scale of vehicles involved in the network and
interaction between nodes. To meet the requirements for participation in real-time
communication, we set τ = 0.6 in the simulation. Thus, The baseline threshold is
not suitable for all scenarios. If the minimum number of vehicles joined in Mix-
zone doesn’t meet expectations, We should adjust τ in companion with the scale
of the network.

Algorithm 1 Algorithm 1 Dynamic Mix-zone Construction
Require: Input: A vehicles set V1

Ensure: Output: Mix-zone(a set of VMZ)
1: for Vi ∈ V1 do
2: if pagg > τ; then
3: VMZ ← V1 + Vi;
4: num← num + 1;
5: Vi ← NI;
6: end if
7: end for
8: while Num ≤ K do
9: for Vi ∈ V1 do

10: if pagg ≤ τ ; lagg ≤ τ ; uagg ≤ τ then
11: Vi ← NII;
12: VMZ ← V1 + Vi;
13: num← num + 1;
14: end if
15: if pagg ≤ τ ;lagg ≤ τ ; uagg > τ then
16: Vi ← NIII;
17: end if
18: if pagg ≤ τ ; lagg > τ ; uagg ≤ τ then
19: Vi ← NVI;
20: end if
21: if pagg ≤ τ ; lagg > τ ; uagg > τ then
22: Vi ← NV ;
23: end if
24: end for
25: end while

14



0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time 

D
is

tr
ib

ut
io

n 
of

 n
od

es
(%

)

 

 
Malicious nodes in network
Benign nodes in network
Malicious nodes in Mix−zone 

Figure 2: Simulated analysis of distribution of nodes

5.1. Analysis of simulation
In the cloud-based V2X scenario, we acquire historical data from V2N, and

real-time privacy opinion from V2V. In the simulation, the historical data need to
accumulate in the measurable time snippets. For example, in the time-line, t = 0
means for the first snippet there is no historical data in the cloud, while t = 100,
the cloud server has accumulated data for 99-time snippets. In Figure 2, during
the time snippets from 0 to 100, and the vertical axis represents this proportion of
low privacy-preserving nodes joined in the Mix-zone. Thus we can conclude that,
with the time and historical data increasing, the malicious nodes are gradually ex-
posed, meanwhile, the percentage of the malicious nodes involved in the mix-zone
decreases steadily. When the proportion of malicious nodes is more than 30% ,
the reduction results from the alliance of the bad mouth attack and the conflicting
behavior attack. That is because, in our simulation setup, the bad mouth attack
gives positive or negative evaluations for nodes with 50% probability.

5.2. Analysis of different attacks
Figure 3 shows the comparison for different attacks. To start with, we set the

the percentage for conflicting behavior, sybil and bad mouth attack is 15% sepa-
rately. From Figure 3(a), we could conclude that with historical data accumulated
in the cloud, the behavior and sybil attacks are efficiently restrained. However, the
bad mouth nodes are still involved in the communication with a higher proportion
in Mix-zone. To track the bad mouth attack, we design another comparative test
and add the percentage for bad mouth attack to 30% , meanwhile decrease the
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(a) Attacks with 15% bad mouth nodes
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(b) Attacks with 30% bad mouth nodes

Figure 3: Performance comparison under different attack pattern

conflicting behavior, sybil attacks to 10% separately. The result is shown in Fig-
ure 3(b), we can conclude that even with the increase of bad mouth nodes, attacks
are controlled and our scheme can discriminate the bad mouth nodes for more
than 95% .

5.3. Comparison with existing schemes
The simulation is carried out to evaluate the effectiveness of our scheme. We

compare our scheme with AODV[31] and DMZ [32]. For VANETs scenario,
AODV is highly dynamic in nature and reducing overhead, because packet head-
ers are not included in routes. Therefore, AODV seems to be theoretical because
nodes in VANETs don’t have any safety aware scheme. DMZ increases privacy
significantly because it changes Pseudonym synchronously with dynamic privacy
metric as well as location-based routing protocol. Thus, AODV and DMZ can rep-
resent the efficiency and privacy respectively. As shown in Figure 4(a), the packet
delivery ratio for DMZ and AODV declines greatly with the increasing number
of malicious nodes. Because the characteristic of DMZ and AODV schemes can-
not distinguish malicious behaviors. As a result, our scheme performs better due
to its privacy aggregation algorithm as mentioned in Section 4.3. Figure 4(b) re-
veals the probability of detection for malicious nodes. For Figure 4(c),the packet
loss ratio for DMZ, AODV, and PAU is rising fast when the malicious number
increases. The reason rests on the computing time for schemes to establish a valid
communication route. As expected in Figure 4(d), it confirms that packet latency
for DMZ and AODV schemes is fallen steeply as the malicious nodes increasing.

16



Our scheme could capture the evidence of malicious nodes overhead due to the
historical data stored in the cloud.
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Figure 4: Performance Analysis of PAU, DMZ and AODV

In summary, the simulation results confirm that our scheme performs better
due to its ability to discriminate against malicious nodes and eliminate the issues
related to three attack patterns.

6. Conclusion

In this paper, we present a Privacy Assessment Method with Uncertainty Con-
sideration(PAU) to address the privacy breach problems in cloud-based V2X com-
munication. By taking cognitive computing in the historical data, offline assess-
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ment oriented uncertainty could be accumulated in the cloud. PAU also cap-
tures the privacy-preserving capability based on real-time vehicles communica-
tion. Further, we present a privacy aggregation algorithm to combine the real-time
and off-line opinion to improve the accuracy of privacy assessment. In the simu-
lations, we design an algorithm by selecting nodes with high privacy awareness to
establish the Mix-zone. The feature of experiments could verify our scheme in dif-
ferent aspects. Due to the usage of historical data stored in the cloud, our scheme
performs well when defends against conflicting behavior and bad mouth attack.
Comparison with existing privacy-preserving scheme, our scheme achieves high
privacy-preserving and improves privacy protection level for the cloud-based V2X
scenario.
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1) Proposing a novel method oriented subjective logic to predict the node’s privacy breach level 

by analyzing the user's historical behavior;   

2) Capturing  the  online  privacy  capability  based  on  real‐time  vehicles  communication 

observations, 

3) Presenting a privacy aggregation algorithm to combine the online and offline opinion ; 

4) Designing  a dynamic Mix‐zone  construction  algorithm  to  efficiently  coverage  and  improve 

privacy protection level.   
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