
Accepted Manuscript

DEED: Dynamic Energy-Efficient Data offloading for IoT applications
under unstable channel conditions

Hui Yan, Xiongtao Zhang, Huangke Chen, Yun Zhou, Weidong Bao,
Laurence T. Yang

PII: S0167-739X(18)32214-3
DOI: https://doi.org/10.1016/j.future.2019.01.014
Reference: FUTURE 4707

To appear in: Future Generation Computer Systems

Received date : 22 September 2018
Revised date : 12 December 2018
Accepted date : 9 January 2019

Please cite this article as: H. Yan, X. Zhang, H. Chen et al., DEED: Dynamic Energy-Efficient Data
offloading for IoT applications under unstable channel conditions, Future Generation Computer
Systems (2019), https://doi.org/10.1016/j.future.2019.01.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.01.014

DEED: Dynamic Energy-Efficient Data Offloading for
IoT Applications under Unstable Channel Conditions

Hui Yana, Xiongtao Zhanga, Huangke Chena, Yun Zhoua, �Weidong Baoa,
Laurence T. Yangb

aCollege of Systems Engineering,
National University of Defense Technology, Changsha 410073, P. R. China
{yanhui13, zhangxiongtao14, hkchen, zhouyun007, wdbao}@nudt.edu.cn

bDepartment of Computer Science,
Francis Xavier University Antigonish, NS, Canada

ltyang@stfx.ca

Abstract

With the widespread use of Internet of Things (IoT) applications, the fast
response and efficient data storage have been the main concerns of the service
users and providers. Thus, data offloading has become a hotspot in both indus-
try and academia, especially for real-time applications. To achieve efficient data
offloading, a great number of in-depth studies have been conducted. Neverthe-
less, when addressing the issue of data offloading, few studies have taken into
account the unstable channel conditions, which is however more practical and
really needs more attention. In this paper, we consider the unstable channel
state in the communication model. Based on this, we propose the task relia-
bility model, the energy consumption model, and the device reliability model.
From the perspective of optimizing energy consumption, we propose an optimal
task scheduling model. Moreover, an innovative Dynamic Energy-Efficient Data
offloading scheduling algorithm-DEED is proposed. The purpose of DEED is
to as much as possibly reduce the energy consumption while ensuring the task
reliability. To verify the effectiveness of the proposed DEED, extensive experi-
ments are conducted to compare it with three comparison algorithms: DRSD,
DEPD, and DRPD. The experimental results under different channel condi-
tions demonstrate the superiority of the DEED in terms of the energy saving,
reliability, and robustness.

Keywords: IoT, Data Offloading, Edge Computing, Energy-Efficient

1. Introduction

The development of Internet of Things (IoT) has been hailed as an unprece-
dented success. In the near future, tens of billions of IoT devices will be applied
in homes, schools, companies, hospitals, etc. However, the processing capacity

Preprint submitted to Future Generation Computer Systems February 1, 2019

of IoT devices cannot totally guarantee the completion of tasks on time. Conse-
quently, offloading tasks to the network edges and processing them in the edges
has become a mainstream paradigm [7]. Therefore, Edge Computing (EC) [18],
Mobile Edge Computing (MEC) [14], Mobile Cloud Computing (MCC) [20], Fog
Computing (FC) [25] and other similar concepts have been proposed in recent
years. To harvest the computing and storage resource of devices at the edge
environment, both academia and industry have focused on the collaboration
between edge network and IoT devices [27, 28]. Thus, data offloading becomes
a critical technology for IoT applications, especially for applications running on
mobile devices. Nowadays, data are regarded as one of the most promising re-
sources, and lots of artificial intelligence systems need as many data as possible
to improve its performance. Due to the lack of reliability and security of storing
data on mobile devices, offloading data to the edge or data center becomes an
important way to permanently store data.

In IoT applications, collaborative data offloading still faces many challenges.
With the increase of application scenarios, IoT devices are going to be expected
to perform more and more sophisticated tasks such as surveillance, crowd-
sensing, and health monitoring. However, the battery capacity of IoT devices are
limited, and recharging or replacing its battery frequently is impractical in most
instances. Besides, for mobile IoT devices, they are often used in the network
where communication quality dynamically fluctuates, so data loss or data of-
floading failure is inevitable. As a service pattern, the success rate and response
speed of data offloading directly affect the Quality of Service (QoS). To improve
the QoS, collaborative data offloading is considered to be an effective method
to reduce the communication overhead and energy consumption. Nevertheless,
few works to date have studied the problem of collaborative data offloading at
edge with efficient energy consumption and high reliability under the unstable
channel conditions. For the challenges above, we focus on the collaborative data
offloading with high reliability while optimizing the energy consumption under
the unstable channel conditions. Based on the optimal scheduling model, we
design an online scheduling algorithm-DEED, which can reduce the energy con-
sumption as much as possible while ensuring the reliability of data offloading.
The main contributions of this work are summarized as follows:

• We propose the overall framework of the mobile device that performs
the data offloading. This framework details the inherent constraints and
external constraints of mobile devices for the data offloading. Based on
these constraints, the mobile device makes data offloading strategies (End-
to-Cloud data offloading or End-to-End data offloading).

• This is an innovative work towards efficient energy consumption and high
reliability for the collaborative data offloading under unstable channel con-
ditions. We propose a heuristic algorithm that can reduce the energy
consumption while ensuring task reliability.

• We propose a method to reduce the algorithm complexity which can
improve the algorithm efficiency without impairing its performance al-
most. Through the algorithm complexity pruning method, the efficiency

2

of searching optimal strategy can be greatly raised. It is of great signifi-
cance for applying the algorithm into practical applications.

• We conduct extensive simulation experiments. Compared with three com-
parison algorithms, the reliability, effectiveness, and robustness of the pro-
posed algorithm are verified.

The rest of this paper is organized as follows. Section 2 gives a brief discus-
sion on the related work, and Section 3 describes the problem formulation and
basic models. We introduce the task scheduling model and algorithm in Sec-
tion 4. Section 5 verifies the proposed algorithm through a series of simulation
experiments. The conclusions and future work are given in Section 6.

2. Related Work

Data offloading is an important research topic in the mobile data manage-
ment, and a large number of studies have focused on reducing energy consump-
tion and task latency for data offloading both in industry and academia. In
[13], Li et al. designed a novel offloading strategy to optimize the performance
of IoT deep learning applications with edge computing. Moreover, to process
the mobile data in real time, Li et al. achieved a fog computing based system in
[16]. By offloading the computation instances from the central server to the fog
nodes, the system can process more data with low latency. To jointly optimize
the computation latency and energy consumption, minimizing the long-term
average execution cost was widely studied. Xu et al. applied the in-memory
storage and processing in the edge environment to reduce the long-term energy
consumption while keeping the latency in an acceptable range [22]. Xie et al.
proposed a light-weight and load-aware switch-to-controller selection scheme to
cut the long-tail response latency for the edge environment in [21]. In [12], the
energy-latency tradeoff in Mobile Edge Computing systems [11] with hetero-
geneous applications was investigated, including the non-offloadable workload,
cloud-offloadable workload, and network traffic. Collectively, these studies have
focused on optimizing the power consumption and latency of data offloading,
but lacking the consideration of reliability.

The reliability for the mobile data management has soared much attention
recently. Specifically, research on the reliability of mobile data management can
be divided into two categories: reliability of mobile data processing and reliabil-
ity of mobile data storage. On the one hand, mobile data are regarded as tasks
and many papers have studied the optimization of task reliability for the mobile
data processing. In [30], Zhu et al. proposed a fault-tolerant scheduling method
for real-time scientific workflows, which ensured the reliability of tasks in case
of hardware failures. In [26], Zhang et al. proposed a parallel task scheduling
method to maximize reliability with energy conservation. Moreover, Li et al.
proposed an algorithm that can improve the task reliability for precedence con-
strained stochastic tasks in [15]. On the other hand, some papers have studied
the reliability of mobile data storage. In [9], Ding et al. presented a collabo-
rative WiFi-based mobile data offloading architecture to enable reliable storage

3

of data on smart phones. Wang et al. studied the impact of self-contention on
mobile data storage and they proposed a method to optimize the upper bound
of offloadings throughput in [24]. Nevertheless, these methods above were not
adaptive for changeable edge environment because they did not take into ac-
count the change of channel state. In addition, a lot of studies assumed that
the offloading time could be obtained before offloading the data, so as to reduce
the model complexity. However, this assumption was too strict for practical
applications, especially for those scenes with poor communication conditions.

In the edge environment, multi-device collaborative data offloading is more
applicable. Thus, some studies have tried to solve the problem of collaborative
data offloading. In [8], Ding et al. discussed the energy-aware collaborative data
offloading and introduced the optimization models. Some papers applied the
Utility theory to study the collaborative data offloading [10, 19]. They proposed
that when and how to offload data depends on the utility. However, these papers
did not take into account the inevitable unstable communication conditions in
reality. Therefore, our work focuses on energy-efficient and reliability-aware
data offloading of mobile devices in the edge environment while considering the
unstable channel conditions.

3. Modeling and Problem Formulation

Fig. 1 shows the overview of the target mobile device. The main mod-
ules of the mobile device consist of Health Indicator, Communication Manager,
Task Scheduler, and Offload Engine. The Health Indicator is responsible for
indicating the state of mobile device, and the device state will be regarded as
internal constraints for data offloading. Specifically, the Health Indicator can
be divided into two parts: Reliability Estimator and Energy Monitor. The En-
ergy Monitor extracts the remaining energy of the mobile device at a regular
interval and sends this information to the Reliability Estimator. The Reliabil-
ity Estimator calculates the device reliability for data offloading based on the
energy and task information. Then, the device reliability will be fed back to
the Task Scheduler and used as one of the constraints of data offloading. The
Communication Manager is responsible for real-time monitoring and managing
the dynamic communication network, and the communication network infor-
mation will be treated as the external constraint for data offloading. The main
functions of Communication Manager are topology discovery and channel mon-
itoring. Topology discovery analyzes the topology of communication network
among mobile devices based on the Zigbee protocol [3]. Channel monitoring
monitors the channel status and communication rates between different mobile
devices or between the device and the edge network. Without loss of generality,
we regard the edge environment as the cloud. Combined with the external and
internal constraints, the Task Scheduler determines the corresponding schedul-
ing strategy of data offloading. The input data of the device includes two parts:
one part is the data generated by the device itself, such as image captured by
the device, user recording and so on. The other part is user data from other
devices, and they request the device to assist them in offloading data to the

4

cloud. For a device, we regard these two kinds of data originated from different
sources as the input data. The device types are generally diverse in the practical
applications, so we assume that data which will be offloaded do not have special
requirements for the device type. For data offloading, we propose two kinds of
offloading methods: end-to-cloud (D2C in short) data offloading and end-to-end
(D2D in short) collaborative data offloading. The D2C data offloading means
that the device directly offloads input data to the cloud, whereas the D2D data
offloading means that device sends the input data to other devices, and requests
other devices to offload the data to the cloud. To facilitate the practical applica-
tion, we assume that only the one-hop data transmission is considered between
devices for collaborative data offloading. The Offload Engine is responsible for
offloading data to the cloud or devices according to the scheduling strategy.
Meanwhile, it monitors the status of data offloading. Once data are totally
offloaded, it feedbacks task status to the Task Scheduler and adjusts resources.

Topology Discovery Channel Monitor

Dynamic Communication Network

Task

Scheduler

Communication

Manager

Device State Information

Reliability Estimator Energy Monitor

Health

Indicator

Data Queue

Input Data

End-to-Cloud

Offloading

End-to-End

Offloading

Offload

Engine

Figure 1: The overview of mobile devices

3.1. Preliminaries

This study focuses on the collaborative data offloading, which can be re-
garded as the issue of task scheduling. Thus, we define T = {t1, t2, · · · , tn} as
the task set that consists of n non-preemptive and independent tasks. With re-
gard to a task ti ∈ T , it is modeled as ti = (Ai, Di, Si) where Ai, Di and Si are
ti’s arrival time, deadline, and task size. The task size Si is measured by Bytes.
We assume there is a device set with m mobile devices, V = {v1, v2, · · · , vm},
available in the application scene. Generally, mobile devices are in significant
heterogeneity. So we define each device as vk = (Rk,Mk,Wk), where Rk, Mk,
and Wk respectively represent the device reliability, the remaining storage ca-
pacity, and the channel state of the device vk. For D2C data offloading, we define
xcik as the mapping indicator where xcik = 1 denotes that task ti is offloaded
to cloud on mobile device vk; otherwise, xcik = 0. For D2D data offloading, we

5

define xdikj as the mapping indicator where xdikj = 1 denotes that task ti, arriv-
ing at device vk, is offloaded to cloud on mobile device vj through collaborative
data offloading; otherwise, xdikj = 0.

3.2. Communication Model

The overview of the target communication framework is depicted in Fig. 2.
To support the D2C data offloading and D2D collaborative data offloading,
we propose two kinds of communication approaches on mobile devices: D2C
communication and D2D communication. For D2D communication, we assume
the data transmission and reception do not affect each other.

Edge

Mobile

Device

Mobile

Device

Mobile

Device

Mobile

Device

Data Center

Figure 2: The target communication framework

3.2.1. Communication State Model

We define the channel state of D2C communication and D2D communication
of device vk as wck and wdk, respectively. Thus, the channel state of the device
can be expressed as Wk = {wck, wdk}. Typically, the communication channel
state of the device is constantly changing, which leads the communication rate
of the device to fluctuate at all time. We assume that there are two channel
state sets Ωc = {Ωc1,Ωc2, · · · ,ΩcN} and Ωd = {Ωd1,Ωd2, · · · ,ΩdM}, which represent
all kinds of the channel state of D2C communication and D2D communication,
respectively. We assume channel state sets satisfy the following order Ωc1 ≺
Ωc2 ≺ · · · ≺ ΩcN (Ωd1 ≺ Ωd2 ≺ · · · ≺ ΩdM). Different channel state leads to
different communication rate rck (rdk) and energy consumption pck (pdk). The
worse the channel quality, the lower the communication rate but the higher the
energy consumption [4, 19]. For example, if the channel state of a device is Ωc1,
then it has the lowest communication rate and the highest energy consumption.

For D2C communication, since end and cloud are in peer-to-peer connection,
wck can be expressed as follows:

wck = Ωci , i ∈ {1, 2, · · · , N}. (1)

For D2D communication, however, each mobile device may be connected to
one or more mobile devices due to different communication network topologies.
We use e(i, j), (i 6= j) to characterize the edge between device vi and vj , where
e(i, j) = 1 denotes that device vi can communicate with device vj ; otherwise,

6

e(i, j) = 0. Hence, we define the topology related device set of vk as V tk, which
can be expressed as V tk = {vj | e(k, j) = 1, vj ∈ V }. Besides, because of the
changeable topology, wdk is represented as a dynamic set:

wdk = {wdkj | wdkj = Ωdi , vj ∈ V tk}, i ∈ {1, 2, · · · ,M}. (2)

3.2.2. Communication Rate Estimation Model

Data offloading usually adopts wireless communication methods such as Wi-
Fi, Bluetooth, 4G, or Zigbee. These approaches have a common characteristic
that the communication rate exists the upper limit. Besides, the actual com-
munication rate is often far less than the rated speed, but there is a close
relationship between the communication rate and the channel state. Therefore,
we define rck = fc(w

c
k) and rdk = fd(w

d
k). For a device, both the external and

internal constraints will affect the communication rate; it is hard to estimate the
communication rate for a single task. As such, static estimation of the commu-
nication rate has mainly been adopted in previous work to simplify the problem
complexity [4, 6, 29]. However, the difference between this estimated and the
actual value significantly affects the quality of task scheduling. Drawing on
the methods of [5, 23], we propose an effective communication rate estimation
approach for data offloading by considering the following factors:

Factor 1: We assume that the rated communication rate is the ideal com-
munication rate r̂ck under the ideal channel state ŵck.

Factor 2: Because wck often cannot reach the ideal channel state ŵck, we
define the relative ratio of the actual communication rate rck to the rated com-

munication rate r̂ck as θck =
rck
r̂ck

=
wc

k

ŵc
k

. Then, the actual static communication

rate can be expressed as rck = θck r̂
c
k.

Factor 3: Considering that θck is closely related to rck, we characterize rck
by θck, which is assumed to follow the Beta distribution θck ∼ Beta(αck, β

c
k). The

probability density function (Pdf in short) of θck can be expressed as follows:

fΘ(θck) =

{
Γ(αc

k+βc
k)

Γ(αc
k) Γ(βc

k) (θck)α
c
k−1 (1− θck)β

c
k−1, θck ∈ (0, 1);

0, θck /∈ (0, 1).
(3)

Factor 4: Combined with Eq.(3), it can be inferred that rck also follows the
similar Beta distribution with the same αck and βck. It is worth noting that rdk
can also be modeled as a Beta distribution Beta(αdk, β

d
k) in the same way.

3.3. Data Offloading Reliability Model

Since the failure of one device will cause all tasks on it to fail, tasks need to be
backed up in multiple duplicates to ensure the reliability of the data. However,
due to the different reliability requirements of tasks, the number of backups for
each task is varied. To schedule more tasks while ensuring the task reliability
within the limited battery capacity, we analyze the data offloading reliability in
this section. The D2C data offloading and D2D collaborative data offloading
are comprehensively adopted in this paper, so we analyze them respectively.

7

3.3.1. Reliability of End-to-Cloud Data Offloading

The D2C data offloading means mobile devices use the D2C communication
approach to offload data on itself to the cloud. To analyze the reliability of D2C
data offloading, we introduce following definitions.

Definition 1. Earliest Start Time EST cik: For a task ti, the earliest start
time of itself on device vk for D2C data offloading is the earliest time when ti
can be offloaded, which is determined by following expression:

EST cik = MAX{AT cik, Ai}, (4)

where AT cik is the available time of D2C data offloading for task ti on vk.
Definition 2. Expected Offloading Time EOT cik: For a task ti, the expected

time usage on device vk for D2C data offloading is defined as expected offloading
time EOT cik.

As analyzed in Factor 4, rck can be modeled as a Beta distribution rck ∼
Beta(αck, β

c
k). The expected communication rate of rck is E(rck) =

αck
αck + βck

r̂ck.

Thus, EOT cik can be expressed as follows:

EOT cik =
Si

E(rck)
. (5)

Definition 3. Available Offloading Time AOT cik: For a task ti, the avail-
able offloading time on device vk for D2C data offloading is determined by the
following expression:

AOT cik = Di − EST cik. (6)

The available offloading time AOT cik normally can be used to measure the
reliability of tasks. We define the baseline offloading time as ∆c

ik = Si

r̂ck
, which

represents the shortest time for offloading data ti. Based on that, we introduce
the Theorem 1.

Theorem 1. If the Pdf of θck is denoted as fΘ(θck), then the Pdf of task of-
floading time OT cik by the D2C approach can be expressed as following function:

fT (OT cik) =

{
fΘ(

∆c
ik

OT c
ik

)
∆c

ik

(OT c
ik)2 , OT cik ≥ ∆c

ik;

0, OT cik < ∆c
ik.

(7)

Proof. As defined in Factor 2, rck = θck r̂
c
k is formed. Combining with OT cik =

Si

rck
, we can drive that θck = Si

r̂ck OT
c
ik

, that is θck =
∆c

ik

OT c
ik

. So the derivative of the θck

versus OT cik is
dθck

dOT c
ik

= − ∆c
ik

(OT c
ik)2 . As mentioned in [17], if the Pdf of a random

variable X is given as fX(x) and given a new variable Y = g(X) while its func-

tion g is monotonic, then the compound Pdf is fY (y) = |dg
−1(y)
dy | fX(g−1(y)),

where g−1(y) denotes the inverse function. So applying θck and
dθck

dOT c
ik

to the

function, the theorem is approved.
The probability of which task ti is completed on device vk before its deadline

Di is the reliability of data offloading in essence, and we define it as Rcik. We

8

denote the cumulative distribution function (Cdf in short) of OT cik as FT (OT cik).
Based on that, the Theorem 2 is proposed as follows.

Theorem 2. If the Cdf of θck is denoted as FΘ(θck), then the reliability Rcik
for D2C data offloading can be expressed as follows:

Rcik = 1− FΘ(
∆c
ik

AOT cik
). (8)

Proof. The detailed inducement is as follows:

Rcik = FT (AOT cik)

=

∫ AOT c
ik

∆c
ik

fT (t) dt

=

∫ AOT c
ik

∆c
ik

fΘ(
∆c
ik

t
)

∆c
ik

t2
dt

= −FΘ(
∆c
ik

AOT cik
) + FΘ(1)

= 1− FΘ(
∆c
ik

AOT cik
).

3.3.2. Reliability of End-to-End Collaborative Data Offloading

The D2D collaborative data offloading means that the mobile device offloads
its data to the nearby device, and requests it to eventually offload data to the
cloud. This method can effectively improve the robustness of data offloading. To
facilitate the analysis, we assume that device vk can communicate with device
vj , and vk requests vj to assist it in collaboratively offloading data ti. In essence,
this approach can be broken down into two phases: D2D data transmission and
D2C data offloading.

For the first phase, the main factors affecting data transmission include the
data size and the D2D communication channel quality. To analyze the reliability
of D2D data offloading, we introduce following definitions.

Definition 4. Earliest Start Time EST tik: For a task ti, the earliest start
time of itself on device vk for D2D data transmission is defined as the earliest
time when ti can be transmitted, which is determined by following expression:

EST tik = MAX{AT tik, Ai}, (9)

where AT tik is the available time of D2D data transmission for task ti on vk.
Definition 5. Expected Transmission Time ETT tikj : For a task ti, the

expected time usage of D2D data transmission from device vk to device vj is
defined as the expected transmission time ETT tikj .

As analyzed in Factor 4, rdkj can be modeled as a Beta distribution rdkj ∼
Beta(αdkj , β

d
kj), so ETT tikj can be expressed as following equation:

9

ETT tikj =
Si

E(rdkj)
. (10)

Definition 6. Expected Finish Time EFT tikj : For a task ti, the expected
finish time of D2D data transmission from device vk to device vj is defined as
EFT tikj, which can be expressed as follows:

EFT tikj = EST tik + ETT tikj . (11)

For the second stage, the method of reliability assessment for D2C offloading
is the same as the Section 3.3.1, except for the task arrival time changes from
Ai to EFT tikj . For example, the initial arrival time and deadline of task ti on
device vk are Ai and Di, respectively. If ti is transmitted from device vk to
vj , the arrival time of ti for vj can be regarded as EFT tikj , but its deadline is

unchanged. We denotes it as tbi = (EFT tikj , Di, Si). For vj , it can be regarded

as a new arrival task. Then, we can get the task reliability Rdikj of task tbi
according to Theorem 2.

To ensure the reliability of data offloading, task ti may be offloaded on
multiple devices. We denote the union reliability of multiple data offloading as⋃

(R∗ik), and it can be expressed as follows:
⋃

(R∗ik) = 1− (1−Rcik xcik)

m∏

j=1
j 6=k

(1−Rdikj xdikj). (12)

3.4. Energy Consumption Model

Different channel state leads to different energy consumption power pck (pdk).
The worse the channel quality, the higher the energy consumption power. We
assume that there is an ideal energy consumption power p̂ck under the ideal

channel state ŵck. The relative ratio of the actual energy consumption power pck
to p̂ck is regarded as εck = 1

θck
. So the actual energy consumption power can be

expressed as pck = εck p̂
c
k. Similarly, pdk = εdk p̂

d
k can be derived. We introduce the

energy consumption model from two aspects: energy consumption of D2C data
offloading and energy consumption of D2D collaborative data offloading.

For the D2C data offloading, we define the energy consumption as Ecik,
and it is closely related to the expected offloading time EOT cik and the energy
consumption power pck. We represent it as following equation:

Ecik = pck EOT
c
ik. (13)

We define the energy consumption of D2D collaborative data offloading as
Edikj . As mentioned above, the D2D collaborative data offloading can be divided

into two phases, so Edikj is composed of two parts: the energy consumption of

D2D data transmission Etikj and the energy consumption of D2C data offloading

Ecij . Specifically, Ecij can be calculated by Eq.13 and Etikj can be expressed as
following equation:

Etikj = pdkj ETT
t
ikj . (14)

10

Thus, Edikj = Etikj + Ecij is formed.

3.5. Device Reliability Model

Data offloading is not only related to the task itself, but also to the reliability
of device. The failure of device during the data offloading will also cause the
failure of tasks. We denote the device reliability for task ti on device vk as
Rik. To reduce the overhead of device reliability estimation, we assume that
the device battery life follows the Normal distribution. We indicate the random
variable of device power as Ek. Thus, the Pdf of Ek can expressed as follows:

f(Ek) =
1√

2π σk
exp(− (Ek − µk)2

2σ2
k

), (15)

where µk and σk are the mean and variance of Ek, respectively.
We indicate the amount of power has been consumed as Eck and the amount

of power needed for data offloading as Edk, so the device reliability Rik can be
deduced as follows:

Rik = 1− F (Ek − Eck < Edk). (16)

4. Optimal Task Scheduling Model and Algorithm

The key issue of data offloading is to allocate tasks to mobile devices so that
the task deadline can be reached. However, due to the mobility of devices and
the unstable channel conditions, it is a great challenge to solve the problem
precisely. Therefore, we propose a task scheduling optimization model based on
device state and channel state.

4.1. Optimal Task Scheduling Model

For mobile devices, subject to the limitation of battery capacity, energy
consumption has an essential effect for scheduling task. Thus, we take the
energy consumption as the main objective of the collaborative data offloading.
We denote the energy-consumption minimization problem as an Integer Linear
Programming problem (ILP in short):

min : Ecik x
c
ik +

m∑

j=1
j 6=k

Edikj x
d
ikj (17)

s.t.
⋃

(R∗ik) ≥ T̂i, (18)

R∗ik ≥ R̂i, (19)

Rik xik ≥ R̂k xik,∀vk ∈ V, (20)

Mik − Si xik ≥ M̂k xik,∀vk ∈ V, (21)

xcik, x
d
ikj ∈ {0, 1}, (22)

where xik = MAX{xcik, xdikj} represents that task ti is ultimately offloaded on
device vk.

11

The optimal objective of the ILP problem is to minimum the total energy
consumption for D2C and D2D data offloading as shown in function 17. The
first constraint (Eq.18) indicates that the union reliability of collaborative data

offloading must be greater than the lowest union reliability threshold T̂i. Since
the failure of data offloading not only wastes resources but also affects other
tasks, so we set the minimum task reliability threshold R̂i as shown in the second
constraint (Eq.19). The third constraint (Eq.20) represents the reliability of
device vk on which data are offloaded must be greater than the device reliability
threshold R̂k. The fourth constraint (Eq.21) indicates that the remain storage of
the device Mik for offloading task ti must be greater than the storage threshold
M̂k. The last constraint (Eq.22) specifies the range of xcik and xdikj . Obviously,
the optimal scheduling strategy under current device and channel state can be
obtained by solving the ILP problem.

4.2. Algorithm Complexity Pruning

For the scenario with few devices, the ILP problem can be solved directly
by the Enumeration or Implicit Enumeration within acceptable overhead. How-
ever, as the device number increases, the complexity of searching the optimal
solution will increase exponentially. To reduce the overhead, we propose the
following complexity pruning method. Firstly, we classify all constraints into
three categories: device constraints (Eq.20, Eq.21), task constraints (Eq.18,
Eq.19) and range of solutions (Eq.22). We define device constraints as hard
constraints, because the scheduling method will be the feasible solution only if
all device constraints are satisfied at the same time. However, task constraints
are usually affected by multiple devices, so we define the task constraints as
soft constraints. Based on the definitions above, we propose to reduce the com-
plexity through two stages. For the first stage, we apply the hard constraints
to narrow the feasible solution range. For the second stage, we use the relative
utility to accelerate problem solving under the soft constraints.

For the hard constraints, the Branch and Bound method [2] is used to elim-
inate inferior solutions. For ∀vk ∈ V , we assume that xik = 1, then we investi-
gate whether device vk satisfies the hard constraints. Specifically, we first check
whether Eq.20 and Eq.21 are both satisfied. If they are satisfied, we regard vk
as the pending solution and let it enter the pending solution set V pk; otherwise,
it will be eliminated.

For the soft constraints, Eq.19 has an important impact on Eq.18, so we
first verify whether Eq.19 is satisfied. If the constraint is satisfied, then we cal-
culate the union reliability

⋃
(R∗ik) according to Eq.12. As the union reliability

increases, the total energy consumption will inevitably increase. However, our
objective is to reduce energy consumption as much as possible while ensuring
the task reliability. Thus, we propose a novel approach to search the optimal so-
lution. Concretely, we define the ratio of task reliability to energy consumption
for the device as I∗ik, which is expressed as following function:

I∗ik =





Rc
ik

Ec
ik
, xcik = 1;

Rd
ikj

Ed
ikj

, xdikj = 1.
(23)

12

Obviously, I∗ik represents the reliability utility of the scheduling strategy
under unit energy consumption. The greater the I∗ik, the higher the reliability
utility under unit energy consumption. Hence, we calculate the reliability utility
I∗ik for all pending solutions in V pk and sort them in descending order by the
reliability utility. Then, we progressively traverse the device in V pk for data
offloading. Once the Eq.18 and Eq.19 are satisfied at the same time, the solution
is the optimal solution for the problem. Based on the two stages above, searching
the optimal solution does not need to traverse the whole pending solutions, so
the algorithm complexity can be significantly reduced.

4.3. Dynamic Energy-Efficient Data Offloading Algorithm – DEED

Based on the data offloading mechanisms discussed above, we design an in-
novative Dynamic Energy-Efficient Data offloading scheduling algorithm-DEED
which takes into account the unstable communication state. DEED uses heuris-
tic approaches to optimize the energy consumption while ensuring the task re-
liability. For data offloading, the First Come First Service principle is adopted.

Algorithm 1 specifies how the optimal scheduling strategy is selected. It
firstly updates the topology and the channel state of vk. Then it determines
the topology related device set V tk (see line 3). To reduce the complexity,
it selects devices that satisfy hard constraints (see lines 4-6) and determines
the pending device set V pk. In the pending device set V pk, the algorithm
respectively calculates the parameters of tasks for D2C data offloading (see
lines 8-14) and D2D data offloading (see lines 15-23). The algorithm sorts the
V pk according to I∗ik (see line 24). Finally, the algorithm successively verifies
whether the Eq.18 and Eq.19 are all satisfied in the V pk. Once they are satisfied,
the optimal solution Sv∗i is obtained (see lines 25-33). According to Sv∗i , the
Offload Engine, as shown in the Fig. 1, allocates the task ti to the corresponding
device so that the optimal data offloading is achieved.

4.4. Algorithm Complexity Analysis

We analyze the time complexity of DEED in this section. Totally, the time
complexity of DEED is determined by the device constraints and the task con-
straints, respectively. To facilitate the analysis, we first make following assump-
tions: (1) There are M elements in the topology related device set V tk; (2)
There are N elements in the pending device set V pk, where 0 ≤ N ≤M . Based
on the assumptions above, we introduce the Theorem 3.

Theorem 3. The time complexity of DEED is O(M +N2).

Proof. To determine the pending device set V pk, all devices belonging to the
topology related device set V tk need to be checked according to the device
constraints, so the time complexity is O(M). Once the related device set V tk
is determined, it needs to use the complexity of O(N) to calculate the I∗ik of all
device, and the time complexity becomes O(M +N). Then the algorithm takes
the Bubble Sort method [1] to sort the V pk in the descending order of I∗ik, which
will lead to the time complexity of O(N2). Thus, the overall time complexity
is O(M + N2). To obtain the optimal strategy, the task constraints should be
tested, which will cause the time complexity of O(N). However, O(N) is an

13

Algorithm 1: Optimal scheduling strategy selection

1 V tk ← null;V pk ← null;Sv∗i ← null;∪(R∗
ik)← 0;I∗ik ← null;

2 while task ti arrives at device vk do
3 Update the topology V tk and channel state Wk of vk;
4 foreach vj ∈ V tk ∪ vk do

5 if Rij ≥ R̂j &&Mij − Si ≥ M̂k then
6 V pk ← V pk ∪ vj ;

7 foreach vj ∈ V pk do
8 if vj == vk then
9 Update the available time AT c

ik;
10 Estimate the D2C communication rate rck;
11 Calculate EST c

ik, EOT c
ik, AOT c

ik based on Eq.4, 5, 6;
12 Calculate Rc

ik according to Theorem 2 ;
13 Ec

ik ← pck EOT c
ik;

14 I∗ik ← I∗ik ∪ Rc
ik

Ec
ik
;

15 else
16 Update the available time AT t

ik;

17 Estimate the D2D communication rate rdkj ;
18 Calculate EST t

ik, ETT t
ikj , EFT t

ikj based on Eq.9, 10, 11;

19 tbi ← (EFT t
ikj , Di, Si);

20 Calculate EST c
ij , EOT c

ij , AOT c
ij based on Eq.4, 5, 6;

21 Calculate Rd
ikj according to Theorem 2 ;

22 Ed
ikj ← pdkj ETT t

ikj + pcj EOT c
ij ;

23 I∗ik ← I∗ik ∪
Rd

ikj

Ed
ikj

;

24 Sort V pk in descending order according to I∗ik;
25 foreach vj ∈ V pk do
26 if vj == vk then
27 ∪(R∗

ik)← 1− (1− ∪(R∗
ik))(1−Rc

ik));

28 else

29 ∪(R∗
ik)← 1− (1− ∪(R∗

ik))(1−Rd
ikj));

30 Sv∗i ← Sv∗i ∪ vj ;
31 if Eq.18 and Eq.19 are all satisfied then
32 return Sv∗i ;
33 break ;

14

order of magnitude lower than O(N2), so the overall time complexity is not
affected. Totally, the time complexity of DEED is O(M +N2).

5. Performance Evaluation

In order to verify the performance of DEED, we quantitatively compare
DEED with three comparison algorithms: Dynamic Random Selection Data of-
floading scheduling algorithm-DRSD, Dynamic Energy Priority Data offloading
scheduling algorithm-DEPD, and Dynamic Reliability Priority Data offloading
scheduling algorithm-DRPD. The three comparison algorithms are briefly de-
scribed as follows:

• DRSD adopts the random scheduling strategy. The algorithm randomly
selects a device as the target device, and then verifies whether the device
constraints (Eq.20, Eq.21) are satisfied. If the device constraints are not
satisfied, the device can not be used for task scheduling; otherwise, the
algorithm calculates the union reliability and task reliability according to
the idea of DEED. Once the task constraints (Eq.18, Eq.19) are satisfied,
the optimal solution is found.

• DEPD is a variant of DEED, but it adopts the greedy scheduling strategy.
The difference between DEPD and DEED is that DEPD considers energy
consumption priority in task scheduling. The algorithm first finds the
pending device set in the same way as DEED, but it sorts the pending
device set in ascending order of energy consumption. Then the algorithm
calculates the union reliability and task reliability in the same way with
DEED. Once the task constraints (Eq.18, Eq.19) are satisfied, the optimal
solution is found.

• DRPD is also a variant of DEED, but the greedy scheduling strategy
is adopted. The difference between DRPD and DEED is that DRPD
considers reliability priority in task scheduling. The algorithm first finds
the pending device set in the same way as DEED, but it sorts the pending
device set in descending order of task reliability. Then the algorithm
calculates the union reliability and task reliability in the same way with
DEED. Once the task constraints (Eq.18, Eq.19) are satisfied, the optimal
solution is found.

5.1. Experimental Setup

Through extensive experiments, we find that these algorithms are not sensi-
tive to the union reliability threshold T̂i, task reliability threshold R̂i and host
reliability threshold R̂k which are mentioned in Section 4.1. Therefore, we set
T̂i = 0.75, R̂i = 0.7, and R̂k = 0.7. To reflect the heterogeneity of mobile
devices, we divide mobile devices into four types. The storage of each device
type is set to 500MB, 1000MB, 1500MB, 2000MB. As mentioned in Section
3.5, the device power follows the Normal distribution with different µk and
σk. Thus, we set µk as 1000mAh, 1500mAh, 2000mAh and 2500mAh, and we
respectively set σk as 5mAh, 7.5mAh, 10mAh and 12.5mAh. To reflect the

15

diversity of channel states, we assume that there are four channel states for
D2C and D2D communication, that is, Ωc = {2, 4, 6, 8} and Ωd = {2, 4, 6, 8},
respectively. We assume that the ideal channel state ŵck = 10, and the corre-

sponding ideal communication rate r̂ck = 2MB/s and corresponding communi-

cation power p̂ck = 0.1mAh/s, respectively. Similarly, we set the ideal channel

state ŵdk = 10, and the corresponding ideal communication rate r̂dk = 3MB/s

and corresponding communication power p̂dk = 0.12mAh/s, respectively. As
analyzed in Section 3.2.2, rck and rdk are characterized by Beta distribution. For
D2C communication, we set βck as 18, and we set αck as 4.5, 12, 27, and 72 for
different channel states respectively. For D2D communication, we set βdk as 12,
and we set αdk as 3, 8, 18, and 48 for different channel states respectively. The
Pdfs of the D2C and D2D communication rate are shown in Fig. 3.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

Communication rate

p
d

f

(a) D2C

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

Communication rate

p
d

f

(b) D2D

Figure 3: The Pdf of the communication rate

As shown in Fig. 3, the Beta distribution has the similar shape like the
Normal distribution, but it has the communication rate upper and lower bound,
which is more realistic. Besides, the given parameters above can ensure different
channel states correspond to different communication rates. The worse the
channel state, the larger the variance of the distribution, indicating the lower
the stability of the communication rate.

Based on the experimental setup, we compare the performance of these al-
gorithms on following metrics:

• Task Completion Ratio (TCR): TCR is defined as the percentage of tasks
that are finished before deadlines among all tasks, which represents the
reliability of algorithm.

• Task Acceptance Ratio (TAR): TAR represents the percentage of tasks
that are accepted among all tasks, which represents the robustness of
algorithm.

• Ratio of Task time over Hosts time (RTH): RTH is defined as the ratio
of total task execution time over the total active time of devices, which
represents the resource utilization of algorithm.

16

5.2. Experiments and Analysis

On the whole, the topology and communication quality are constantly chang-
ing, but they can be regarded as the static state for a short period of time.
Therefore, to demonstrate the performance of these algorithms, we divide ex-
periments into two parts: experiments under static communication conditions
and experiments under dynamic communication conditions.

5.2.1. Experiments under Static Communication Conditions

For static communication conditions, many factors affect the performance of
the algorithms, for instance, device number, task number, task size, task arrival
rate, task deadline urgency, and the probability of device communication. By
analyzing the impact of these factors, the algorithm performance under the
static communication conditions can be effectively verified.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 4 5 8 10

DEED DRSD DEPD DRPD

(a) TCR

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 4 5 8 10

DEED DRSD DEPD DRPD

(b) TAR

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

3 4 5 8 10

DEED DRSD DEPD DRPD

(c) RTH

Figure 4: The impact of the device number

The experimental results in Fig. 4 specify that the device number is closely
related to algorithm performance. As the device number increases, TCR and
TAR increase therewith, but there is no obvious increasing trend of RTH. When
the device number increases, the number of devices which are available for of-
floading data increases correspondingly, so TCR and TAR increase. However,
the increase of device number will also cause the device to be idle, so RTH does
not increase significantly. It is worth noting that when the device number is
greater than 8, the increment of device number is not meaningful for improving
TCR and TAR. Totally, DEED and DRPD have better performance.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1000 1500 2000 2500 3000

DEED DRSD DEPD DRPD

(a) TCR

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1000 1500 2000 2500 3000

DEED DRSD DEPD DRPD

(b) TAR

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

1000 1500 2000 2500 3000

DEED DRSD DEPD DRPD

(c) RTH

Figure 5: The impact of the task number

17

Fig. 5 shows the relationship between the task number and the algorithm
performance. As the task number increases, TCR and TAR remain unchanged
firstly, but when the task number is greater than 2000, TCR and TAR decrease
rapidly. Nevertheless, RTH shows the opposite trend that it firstly drops and
then stays steady when the task number is greater than 2000. By analyzing
the log files, we find that when the number of tasks is about 2500, the battery
capacity of device will be insufficient for data offloading. Many tasks are rejected
because the device reliability is not satisfied, which results in the rapid decline
of TCR and TAR. However, the increase of task number will result in devices
with poor channel state being idle for a long time, which causes the RTH to
drop. When task number is greater than 2,500, since all devices have insufficient
power for data offloading, almost all devices are in idle state, so RTH remains
stable. With the increase of task number, the performance of DEED gradually
exceeds DRPD. As the task number increases, the device worktime increases
accordingly, so the scarcity of battery capacity becomes the main limitation
of data offloading. Because DEED takes into account energy optimization, it
shows the best performance.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5000 7500 10000 12500 15000

DEED DRSD

DEPD DRPD

(a) TCR

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5000 7500 10000 12500 15000

DEED DRSD

DEPD DRPD

(b) TAR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

5000 7500 10000 12500 15000

DEED DRSD

DEPD DRPD

(c) RTH

Figure 6: The impact of the task size

As shown in Fig. 6, task size has a significant impact on algorithm perfor-
mance. We set the lower limit of the task size to 1000KB. When the upper
limit of the task size is 5000KB, all algorithms show good performance on TCR
and TAR. As the task size increases, TCR and TAR decrease rapidly, but RTH
shows the increasing trend. When the task size becomes larger, the offloading
time of the task is increasing, which results in the decrease of TAR and TCR,
and leads to the increase of RTH under the same task arrival rate. In general,
DEED has the best performance with the increase of task size. It is worth
noting that when the upper limit of the task size is 5000KB, the RTH of DRSD
is significantly higher than other algorithms. This phenomenon does not mean
that the resource utilization of DRSD is higher. On the contrary, it indicates
that the random selection strategy leads to excessive resource waste.

The impact of the task arrival rate for each algorithm is shown in Fig. 7.
we assume that the task arrival follows the Poisson distribution and the X-axis
represents the average task arrival interval. The smaller the task arrival interval,
the higher the task arrival rate. As the task arrival interval grows, the TCR and
TAR become larger, but RTH becomes smaller. This is because when the task

18

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4 6 8 10 12

DEED DRSD DEPD DRPD

(a) TCR

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4 6 8 10 12

DEED DRSD DEPD DRPD

(b) TAR

0.20

0.30

0.40

0.50

0.60

0.70

0.80

4 6 8 10 12

DEED DRSD DEPD DRPD

(c) RTH

Figure 7: The impact of the task arrival rate

arrival interval becomes larger, the device has enough time to offload the data,
making TCR and TAR larger, but RTH smaller. When task arrival interval is
small, DRPD shows the best performance; DRPD adopts the reliability priority
strategy, which can guarantee higher reliability for data offloading when task
arrival rate is high. When task arrival interval is large, DEED shows the best
performance; DEED comprehensively considers the energy consumption and
reliability, which can extend the worktime of mobile devices when task arrival
rate is low.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 4 5 6 7

DEED DRSD DEPD DRPD

(a) TCR

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 4 5 6 7

DEED DRSD DEPD DRPD

(b) TAR

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

3 4 5 6 7

DEED DRSD DEPD DRPD

(c) RTH

Figure 8: The impact of the task deadline urgency

Fig. 8 depicts the relationship between deadline urgency and algorithm per-
formance. The X-axis represents the deadline urgency of the task. The higher
the deadline urgency, the smaller the TCR and TAR, but the larger the RTH.
As the deadline urgency decreases, TCR and TAR gradually increase, but RTH
gradually decreases. This is because when the deadline is tight, the device will
be very busy. It causes many tasks to dissatisfy the optimization model con-
straints, so the TCR and TAR are smaller, but the RTH is larger. However,
as the urgency decreases, there will be more idle devices to offload data, so
TCR and TAR increase, but RTH decreases. Deadline urgency has a great in-
fluence on DRSD. When deadline urgency is high, DRSD ’s TAR is relatively
high, but DRSD ’s TCR is low. Although DRSD accepts a lot of tasks, the
number of tasks completed on time is small. It indicates that a large amount of
resources are wasted by DRSD. Besides, DRPD has the best performance when
the deadline urgency is higher, but DEED shows the best performance when
the urgency is lower. These all above are determined by the scheduling strategy

19

of each algorithm.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.6 0.7 0.8 0.9 1

DEED DRSD DEPD DRPD

(a) TCR

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.6 0.7 0.8 0.9 1

DEED DRSD DEPD DRPD

(b) TAR

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.6 0.7 0.8 0.9 1

DEED DRSD DEPD DRPD

(c) RTH

Figure 9: The impact of the probability of device communication

Fig. 9 shows the relationship between the probability of device communi-
cation and algorithm performance. The X-axis represents the probability of
device communication, and the smaller the value, the lower the the probability
that mobile device can communicate with others by the D2D communication.
As shown in Fig. 9, TCR and TAR are closely related to the probability of
device communication. As the probability of device communication increases,
TCR and TAR increase accordingly. The reason is that with the increase of the
probability of device communication, the number of devices which are capable
of collaborative data offloading increases, so more tasks can be accepted and
completed before its deadline. As a result, TCR and TAR relatively increase.
On the whole, DRPD has the best performance when the probability of device
communication is lower, but DEED is the best when the probability of device
communication is higher. This is because DRPD adopts the reliability-priority
strategy and it is more suitable for small-scale device set; DEED considers en-
ergy consumption and reliability comprehensively, so it has better adaptability
for the higher probability of device communication. It is worth noting that when
the probability of device communication is 0.6, DRSD ’s RTH obviously exceeds
other algorithms. However, when the probability of device communication is
0.7, its RTH declines rapidly, and then it increases with the increase of the
probability of device communication. The reasons behind this phenomenon are
complicated. When the probability of device communication is 0.6, the ability
of mobile device communicating with others is weak, which means the device set
is divided into multiple small subsets that are isolated from each other. DRSD
adopts the random selection method, which leads to the increase in the proba-
bility of selecting a device with poor D2C communication in these small subsets.
To satisfy the task constraints, DRSD has to increase the number of backups,
so its RTH is significantly greater than other algorithms. However, in the same
situation, the TAR and TCR of the DRSD are the smallest, which indicates
that DRSD not only wastes resources, but also has poor adaptability to the
smaller probability of device communication. When the probability of device
communication is 0.7, the ability of mobile device communicating with others
is slightly enhanced, and the number of backups is reduced. Thus, the RTH of
DRSD declines. When the probability of device communication is greater than

20

0.7, with the increase of TAR and TCR, the resource utilization of each device
increases, so the RTH of DRSD increases accordingly.

In general, under the static communication conditions, DEED performs bet-
ter reliability and adaptability than other algorithms, and DRPD has a good
performance while the task arrival rate and task deadline urgency are high.
DEPD has a good performance in saving energy, whereas DRSD not only wastes
resources but also has low reliability and adaptability.

5.2.2. Experiments under Dynamic Communication Conditions

For dynamic communication conditions, we study the influence of channel
state on the performance of all algorithms. The change of channel state involves
D2C state and D2D state. We study the performance of all algorithms in 7200
seconds where the channel state is updated every 360 seconds. The adaptability
and elasticity of each algorithm are verified under the continuous deterioration,
continuous improvement, and severe fluctuation communication conditions. To
characterize the channel conditions, we define Sc (Sd) as the average of the
D2C (D2D) channel states of all devices. Based on the experimental setup, we
compare these algorithms with respect to the TCR, TAR and RTH. It should
be mentioned that the bar represents the mean channel state measured by the
main Y-axis, the curve represents the metrics of each algorithm measured by
the secondary Y-axis, and the X-axis represents the update time in the figures
below.

The impacts of the degrading D2C channel state on each algorithm are shown
in Fig. 10 (a)(b)(c). With the deterioration of Sc, the TCR and TAR of all al-
gorithms show the significant downward trend, which means the D2C channel
state has an important impact on the TCR and TAR. However, the RTH firstly
rises slowly, then falls quickly as shown in Fig. 10 (c). This is because when
the channel quality begins to decline, to ensure the reliability, algorithms need
to increase the backups of task, which leads to the increase of RTH. However,
when the channel quality is too low, many tasks are rejected because they can-
not be completed, so the RTH drops. Fig. 10 (d)(e)(f) show the performance
of algorithms when the channel quality is gradually improved. With the im-
provement of D2C channel quality, the TCR and TAR of all algorithms increase
rapidly and marginally close to 1. On the contrary, RTH shows the tendency
to rise at first, then slowly decline. This is because when Sc is small, the TAR
is low, so many devices are idle. Nevertheless, when Sc is large, the number
of task backups is reduced, so many devices are idle. When the update time
is more than 4680 seconds, the TAR and TCR of DRSD drop significantly,
which means the random selection strategy shows poor adaptability. As shown
in Fig. 10 (g)(h)(i), we evaluate the performance of each algorithm when the
D2C channel quality is in violent fluctuations. When Sc soars quickly, TAR and
TCR increase accordingly. Conversely, when Sc rapidly deteriorates, TAR and
TCR also decrease quickly. Before 4320 seconds, the RTH of DEED, DEPD
and DRPD are all in fluctuation. This phenomenon further proves the poor or
good channel quality will lead to the decrease of RTH. Compared with other
algorithms, DEED is more suitable for fast changing channel conditions.

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(a) TCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(b) TAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(c) RTH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(d) TCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(e) TAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(f) RTH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(g) TCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(h) TAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(i) RTH

Figure 10: The impact of the D2C channel state

Totally, each algorithm is closely related to the D2C channel state. The per-
formance of DEED, DEPD and DRPD is generally the same when the channel
quality is good, but DEED has the better adaptability for the poor channel
quality.

Compared with the D2C channel state, the D2D channel state has smaller
impact on the performance of the algorithms. The impacts of deterioration D2D
channel state on all algorithms are shown in Fig. 11 (a)(b)(c). With the deterio-
ration of Sd, the TCRs and TARs of all algorithms decrease in fluctuations, and
the RTHs show the tendency to fluctuate first and then decrease. This indicates
the deterioration D2D channel state has little impact on the performance of al-
gorithms, but when Sd is less than a certain threshold, it will lead to the rapid
performance degradation. It is worth noting that the performance of all algo-
rithms drops abnormally at the 1800 second. This is because the D2D channel
quality of devices with good D2C channel quality is too poor, so it results in
the rapid decline of the performance. Fig. 11 (d)(e)(f) show the performance of
algorithms when the channel quality is gradually improved. With the increase

22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

DEED

DRSD

DEPD

DRPD

(a) TCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

DEED

DRSD

DEPD

DRPD

(b) TAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

DEED

DRSD

DEPD

DRPD

(c) RTH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(d) TCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(e) TAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(f) RTH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(g) TCR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(h) TAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

9

10

DEED

DRSD

DEPD

DRPD

(i) RTH

Figure 11: The impact of the D2D channel state

of the D2D channel quality, TCR and TAR generally show the growing trend,
and RTH increases first and then fluctuates. As shown in Fig. 11 (g)(h)(i), we
evaluate the performance of each algorithm when the D2D channel quality is
in violent fluctuations. There is no obvious correlation between Sd and TCR,
TAR and RTH especially when Sd is large than 3. This phenomenon indicates
that Sd will have a significant impact on the performance of algorithms only
when it is below a certain threshold.

In general, the D2D channel state has little effect on the performance of
the algorithms. However, once the D2D channel state of a device with a good
D2C channel state deteriorates, the performance of the algorithm will be greatly
degraded.
6. Conclusions and Future Work

In this paper, we focus on the data offloading for the IoT applications under
unstable channel conditions. We propose a dynamic energy-efficient data of-
floading scheduling algorithm DEED, which can effectively deal with the prob-
lem of collaborative data offloading under unstable channel conditions. We

23

propose a novel method to model the unstable channel quality. Meanwhile,
we propose an optimal task scheduling model and a method to reduce the algo-
rithm complexity, which can improve the algorithm efficiency without impairing
its performance almost. Through a large number of simulation experiments, we
evaluate the performance of DEED. We set up three performance metrics to
measure the reliability, robustness, and resource utilization of DEED. Com-
pared with three comparison algorithms DRSD, DEPD, and DRPD, the pro-
posed DEED shows better performance under both the static and dynamic
communication conditions.

The following issues will be studied in our future work. Firstly, we will study
the fault tolerance model for data offloading to further enhance the data relia-
bility from the perspective of hardware. Secondly, we will study the topology
discovery and channel quality-awareness model based on the Zigbee protocol to
facilitate the implementation of distributed scheduling algorithms. Finally, we
plan to apply DEED to the IoT application what we are researching, such as
Cooperative Reconnaissance of Drones, to test its performance.

7. Acknowledgements

This work was supported in part by the National Natural Science Foun-
dation of China under Grants 61872378, 61572511, and 91648204, in part by
Science Fund for Distinguished Young Scholars in Hunan Province under grant
2018JJ1032, in part by the China Postdoctoral Science Foundation under Grant
2016M602960 and Grant 2017T100796.

Reference

[1] Astrachan, O., 2003. Bubble sort: An Archaeological Algorithmic Analysis.
ACM Sigcse Bulletin 35 (1), 1–5.

[2] Balas, E., Toth, P., 1987. Branch and bound methods. Ioe.engin.umich.edu
149 (1), 361–401.

[3] Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., Hu, Y. F.,
2007. Wireless sensor networks: A survey on the state of the art and the
802.15.4 and zigbee standards. Computer Communications 30 (7), 1655–
1695.

[4] Chen, C. A., Won, M., Stoleru, R., Xie, G. G., 2015. Energy-Efficient Fault-
Tolerant Data Storage and Processing in Mobile Cloud. IEEE Transactions
on Cloud Computing 3 (1), 28–41.

[5] Chen, H., Zhu, X., Liu, G., Pedrycz, W., 2018. Uncertainty-Aware Online
Scheduling for Real-Time Workflows in Cloud Service Environment. IEEE
Transactions on Services Computing, DOI:10.1109/TSC.2018.2866421.

24

[6] Chen, H., Zhu, X., Qiu, D., Liu, L., Du, Z., 2017. Scheduling for workflows
with security-sensitive intermediate data by selective tasks duplication in
clouds. IEEE Transactions on Parallel and Distributed Systems 28 (9),
2674–2688.

[7] Chiang, M., Zhang, T., 2017. Fog and IoT: An Overview of Research Op-
portunities. IEEE Internet of Things Journal 3 (6), 854–864.

[8] Ding, A. Y., Han, B., Xiao, Y., Hui, P., 2013. Enabling energy-aware col-
laborative mobile data offloading for smartphones. In: Sensor, Mesh and
Ad Hoc Communications and Networks. pp. 487–495.

[9] Ding, A. Y., Hui, P., Kojo, M., Tarkoma, S., 2012. Enabling energy-aware
mobile data offloading for smartphones through vertical collaboration. In:
ACM Conference on CONEXT Student Workshop. pp. 27–28.

[10] Han, Y., Zhu, Y., Yu, J., 2015. Utility-maximizing data collection in crowd
sensing: An optimal scheduling approach. In: IEEE International Confer-
ence on Sensing, Communication, and NETWORKING. pp. 345–353.

[11] Jararweh, Y., Doulat, A., Darabseh, A., Alsmirat, M., Al-Ayyoub, M.,
Benkhelifa, E., 2016. SDMEC: Software Defined System for Mobile Edge
Computing. In: IEEE International Conference on Cloud Engineering
Workshop. pp. 88–93.

[12] Kwak, J., Kim, Y., Lee, J., Chong, S., 2015. DREAM: Dynamic Resource
and Task Allocation for Energy Minimization in Mobile Cloud Systems.
IEEE Journal on Selected Areas in Communications 33 (12), 2510–2523.

[13] Li, H., Ota, K., Dong, M., 2018. Learning IoT in Edge: Deep Learning
for the Internet of Things with Edge Computing. IEEE Network 32 (1),
96–101.

[14] Li, H., Shou, G., Hu, Y., Guo, Z., 2016. Mobile edge computing: Progress
and challenges. In: IEEE International Conference on Mobile Cloud Com-
puting.

[15] Li, K., Tang, X., Veeravalli, B., Li, K., 2014. Scheduling Precedence Con-
strained Stochastic Tasks on Heterogeneous Cluster Systems. IEEE Trans-
actions on Computers 64 (1), 191–204.

[16] Li, L., Ota, K., Dong, M., 2018. Deep Learning for Smart Industry: Effi-
cient Manufacture Inspection System with Fog Computing. IEEE Transac-
tions on Industrial Informatics PP (99), 4665–4673.

[17] Olkin, I., Gleser, L. J., Derman, C., 1980. Probability models and applica-
tions. Free Press.

[18] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., 2016. Edge Computing: Vision
and Challenges. IEEE Internet of Things Journal 3 (5), 637–646.

25

[19] Wang, J., Zhu, X., Bao, W., Liu, L., 2017. A Utility-Aware Approach to
Redundant Data Upload in Cooperative Mobile Cloud. In: IEEE Interna-
tional Conference on Cloud Computing. pp. 384–391.

[20] Xiao, W., Bao, W., Zhu, X., Zhou, W., Peizhong, L., 2016. Improving the
Performance of Data Sharing in Dynamic Peer-to-Peer Mobile Cloud. In:
IEEE 22nd International Conference on Parallel and Distributed Systems
(ICPADS). pp. 743–752.

[21] Xie, J., Guo, D., Li, X., Shen, Y., Jiang, X., 2018. Cutting Long-tail La-
tency of Routing Response in Software Defined Networks. IEEE Journal
on Selected Areas in Communications PP (99), 1–1.

[22] Xu, J., Ota, K., Dong, M., 2018. Saving Energy on the Edge: In-Memory
Caching for Multi-Tier Heterogeneous Networks. IEEE Communications
Magazine 56 (5), 102–107.

[23] Yan, H., Zhu, X., Chen, H., Guo, H., Zhou, W., Bao, W., 2019. DEFT:
Dynamic Fault-Tolerant Elastic scheduling for tasks with uncertain runtime
in cloud. Information Sciences 477, 30–46.

[24] Yang, W., Li, H., Wu, J., 2011. ACK Offloading for Reliable Multipath
Transfer over Self-Contention Wireless Network. In: Third International
Conference on Communications and Mobile Computing. pp. 165–169.

[25] Yi, S., Hao, Z., Qin, Z., Li, Q., 2015. Fog computing: Platform and ap-
plications. In: Third IEEE Workshop on Hot Topics in Web Systems and
Technologies.

[26] Zhang, L., Li, K., Xu, Y., Mei, J., Zhang, F., Li, K., 2015. Maximizing
reliability with energy conservation for parallel task scheduling in a hetero-
geneous cluster. Information Sciences 319 (C), 113–131.

[27] Zhang, Q., Lin, M., Yang, L. T., Chen, Z., Khan, S. U., Li, P., 2018. A
Double Deep Q-learning Model for Energy-efficient Edge Scheduling. IEEE
Transactions on Services Computing, DOI:10.1109/TSC.2018.2867482.

[28] Zhang, Q., Yang, L. T., Li, P., Bu, F., 2018. An Adaptive Dropout
Deep Computation Model for Industrial IoT Big Data Learning with
Crowdsourcing to Cloud Computing. IEEE Transactions on Industrial
Informatics, DOI:10.1109/TII.2018.2791424.

[29] Zhu, X., Sim, K. M., Jiang, J., Wang, J., Chen, C., Liu, Z., 2017. Agent-
Based Dynamic Scheduling for Earth-Observing Tasks on Multiple Airships
in Emergency. IEEE Systems Journal 10 (2), 661–672.

[30] Zhu, X., Wang, J., Guo, H., Zhu, D., Yang, L. T., Liu, L., 2016. Fault-
Tolerant Scheduling for Real-Time Scientific Workflows with Elastic Re-
source Provisioning in Virtualized Clouds. IEEE Transactions on Parallel
and Distributed Systems 27 (12), 3501–3517.

26

Hui Yan received the B.S. degree from the College of Systems Engineering at National University of

Defense Technology, China, in 2017. He is currently working toward his M.S. degree at the College of

Systems Engineering, National University of Defense Technology. His research interests include cloud

computing, edge computing, system reliability, and multi-objective optimization.

Xiongtao Zhang received his B.S. degree from the College of Systems Engineering at National University

of Defense Technology, China, in 2018. Currently, he is working toward his M.S. degree at the College of

Systems Engineering, National University of Defense Technology. His research interests include cloud

computing, edge computing, swarm intelligence and evolutionary algorithms.

Huangke Chen received his B.S. and M.S. degree from the College of Information and System

Management at National University of Defense Technology, China, in 2012 and 2014, respectively.

Currently, he is working toward his Ph.D. degree at the College of Systems Engineering, National

University of Defense Technology. He was a visiting Ph.D. student at University of Alberta, Edmonton, AB,

Canada, from Mar. 2017 to Mar. 2018. His research interests include computational intelligence,

multi-objective evolutionary algorithms, large-scale optimization, task and workflow scheduling.

Yun Zhou received her Ph.D degree in Mechatronics Engineering and Automation from National

University of Defense Technology in 2010. She is currently an associate professor in the College of

Systems Engineering at National University of Defense Technology, Changsha, China. Her recent research

interests include modeling and simulation and cloud computing. She has published more 30 research

articles in referred journals and conference proceedings.

Weidong Bao received the Ph.D. degree in information system from the National University of Defense

Technology in 1999. He is currently a professor in the College of Systems Engineering at National

University of Defense Technology, Changsha, China. His recent research interests include cloud computing,

information system, and complex network. He has published more than 100 research articles in refereed

journals and conference proceedings such as IEEE TC, IEEE TPDS, IEEE CLOUD and so on. He serves

on the editorial board of AIMS Big Data and Information Analytics.

Laurence T. Yang has published around 300 papers in refereed journals, conference proceedings and book

chapters. His research fields include networking, high performance computing, embedded systems,

ubiquitous computing and intelligence. He has been involved in more than 100 conferences and workshops

as a program/general/steering conference chair and more than 300 conference and workshops as a program

committee member. Currently is the chair of IEEE Technical Committee of Scalable Computing (TCSC),

the chair of IEEE Task force on Ubiquitous Computing and Intelligence, the co-chair of IEEE Task force on

Autonomic and Trusted Computing. He is also in the executive committee of IEEE Technical Committee of

Self-Organization and Cybernetics for Informatics, and of IFIP Working Group 10.2 on Embedded

Systems.

Hui Yan Xiongtao Zhang Huangke Chen

 Yun Zhou Weidong Bao Laurence T. Yang

Highlights

1. We proposed an intricate device framework to facilitate the decision making of

data offloading for mobile Internet of Things applications.

2. We proposed a novel method to model the unstable channel quality that makes it

more realistic. Based on that, we proposed an optimal task scheduling model.

3. We proposed an innovative dynamic energy-efficient data offloading scheduling

algorithm, DEED, to as much as possibly reduce the energy consumption while

ensuring task reliability.

4. We proposed a method to reduce the algorithm complexity which could improve

the algorithm efficiency without impairing its performance almost.

5. Extensive experiments were conducted to verify the performance of data

offloading among DEED and other algorithms both under the static and dynamic

communication conditions.

