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Abstract

With the widespread use of Internet of Tu. os (IoT) applications, the fast
response and efficient data storage hav ool *he main concerns of the service
users and providers. Thus, data offloadiny Fas become a hotspot in both indus-
try and academia, especially for real- . ~e ap ~lications. To achieve efficient data
offloading, a great number of in-depth ~tul‘es have been conducted. Neverthe-
less, when addressing the issue =~ -*= «Toading, few studies have taken into
account the unstable channel condiv. *ns, which is however more practical and
really needs more attention. In this paper, we consider the unstable channel
state in the communicatior mou '. Based on this, we propose the task relia-
bility model, the energy ¢ msumpt >n model, and the device reliability model.
From the perspective of “ptin.. “n- energy consumption, we propose an optimal
task scheduling model. Mor over, an innovative Dynamic Energy-Efficient Data
offloading scheduling .'~c ithr -DEED is proposed. The purpose of DEED is
to as much as possisly rea. > the energy consumption while ensuring the task
reliability. To veri y “he effectiveness of the proposed DEED, extensive experi-
ments are conducted to « mpare it with three comparison algorithms: DRSD,
DEPD, and D ¢#. . The experimental results under different channel condi-
tions demons -ate che superiority of the DEED in terms of the energy saving,
reliability, # 1d ro. “stness.

Keyword: Ir [, T ata Offloading, Edge Computing, Energy-Efficient

1. In. ~oduc ion

The « =velopment of Internet of Things (IoT) has been hailed as an unprece-
a nted s ccess. In the near future, tens of billions of IoT devices will be applied
in hu.aes, schools, companies, hospitals, etc. However, the processing capacity
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of IoT devices cannot totally guarantee the completion of tasks on t me. onse-
quently, offloading tasks to the network edges and processing ther~ in 1.~ edges
has become a mainstream paradigm [7]. Therefore, Edge Computing *C) [18],
Mobile Edge Computing (MEC) [14], Mobile Cloud Computing (M. >C) [2U], Fog
Computing (FC) [25] and other similar concepts have been . rops sed 1a recent
years. To harvest the computing and storage resource of devic - at the edge
environment, both academia and industry have focused on th~ collaboration
between edge network and IoT devices [27, 28]. Thus, d: ta offloz ling becomes
a critical technology for IoT applications, especially for apy ™ ~at* ,ns running on
mobile devices. Nowadays, data are regarded as one of th~ most promising re-
sources, and lots of artificial intelligence systems nee ' = mas y data as possible
to improve its performance. Due to the lack of reli. “ility ~+ . security of storing
data on mobile devices, offloading data to the edge o1 'ata center becomes an
important way to permanently store data.

In ToT applications, collaborative data offi. *ding ...l faces many challenges.
With the increase of application scenarios, IoT dev. =s are going to be expected
to perform more and more sophisticatea “asks such as surveillance, crowd-
sensing, and health monitoring. However, the ba. “ery capacity of IoT devices are
limited, and recharging or replacing its . atve , * 2quently is impractical in most
instances. Besides, for mobile IoT device. chey are often used in the network
where communication quality dynai. « ~lly .ictuates, so data loss or data of-
floading failure is inevitable. As a servi = pitern, the success rate and response
speed of data offloading directly « “~c. "~ Quality of Service (QoS). To improve
the QoS, collaborative data offloadi., is considered to be an effective method
to reduce the communication overhead and energy consumption. Nevertheless,
few works to date have stu .ed ti. > problem of collaborative data offloading at
edge with efficient energy ~unsumyp jion and high reliability under the unstable
channel conditions. For ' he cha'» ges above, we focus on the collaborative data
offloading with high re 1abi’.ty while optimizing the energy consumption under
the unstable channel ¢~ .itio’ 5. Based on the optimal scheduling model, we
design an online scl :duling . "zorithm- DEED, which can reduce the energy con-
sumption as muc! as ~ossible while ensuring the reliability of data offloading.
The main contributions o. this work are summarized as follows:

e We pror ose he overall framework of the mobile device that performs
the data « " oading. This framework details the inherent constraints and
exter .al consu. aints of mobile devices for the data offloading. Based on
the > co stra’ats, the mobile device makes data offloading strategies (End-
to-Clo. ! dr .a offloading or End-to-End data offloading).

e his is 'n innovative work towards efficient energy consumption and high
-eliabilit 7 for the collaborative data offloading under unstable channel con-
di. >, We propose a heuristic algorithm that can reduce the energy
cc. sumption while ensuring task reliability.

e We propose a method to reduce the algorithm complexity which can
.aprove the algorithm efficiency without impairing its performance al-
_nost. Through the algorithm complexity pruning method, the efficiency




of searching optimal strategy can be greatly raised. It is of ¢ -eat signifi-
cance for applying the algorithm into practical applications

e We conduct extensive simulation experiments. Compared with v.. 2e com-
parison algorithms, the reliability, effectiveness, and robiv s;tne < ~f the pro-
posed algorithm are verified.

The rest of this paper is organized as follows. Section z gives a brief discus-
sion on the related work, and Section 3 describes the prcblem for nulation and
basic models. We introduce the task scheduling model ai.' =1- srithm in Sec-
tion 4. Section 5 verifies the proposed algorithm thr ,ugh - -eries of simulation
experiments. The conclusions and future work are g = in S :ction 6.

2. Related Work

Data offloading is an important research "~pic . +*.e mobile data manage-
ment, and a large number of studies have focusea ~ reducing energy consump-
tion and task latency for data offloading - uu 1 industry and academia. In
[13], Li et al. designed a novel offloading straw. v to optimize the performance
of ToT deep learning applications with -u,. ~~mputing. Moreover, to process
the mobile data in real time, Li et al. ach. v :d a fog computing based system in
[16]. By offloading the computation .. *anc. : from the central server to the fog
nodes, the system can process more dec‘a . ‘th low latency. To jointly optimize
the computation latency and er . ;° 0. sumption, minimizing the long-term
average execution cost was widely » died. Xu et al. applied the in-memory
storage and processing in the edge environment to reduce the long-term energy
consumption while keeping .ne . ‘ency in an acceptable range [22]. Xie et al.
proposed a light-weight ar | load-a\ are switch-to-controller selection scheme to
cut the long-tail respons~ late. ~v or the edge environment in [21]. In [12], the
energy-latency tradeof” in ’ [obile Edge Computing systems [11] with hetero-
geneous applications v s "aves igated, including the non-offloadable workload,
cloud-offloadable wr ckloaa, > .d network traffic. Collectively, these studies have
focused on optim’ ...~ the power consumption and latency of data offloading,
but lacking the considera ‘on of reliability.

The reliabi’ ¢y . »r the mobile data management has soared much attention
recently. Spec fica’ y, research on the reliability of mobile data management can
be divided i ito tw categories: reliability of mobile data processing and reliabil-
ity of mol ie d .ta storage. On the one hand, mobile data are regarded as tasks
and many 2 ers ! ave studied the optimization of task reliability for the mobile
data pr- ~2ssing .1 [30], Zhu et al. proposed a fault-tolerant scheduling method
for re J-time cientific workflows, which ensured the reliability of tasks in case
of hai 'ware f ilures. In [26], Zhang et al. proposed a parallel task scheduling
m~'" od v .waximize reliability with energy conservation. Moreover, Li et al.
1 roposec. an algorithm that can improve the task reliability for precedence con-
s.ained tochastic tasks in [15]. On the other hand, some papers have studied
the rcuability of mobile data storage. In [9], Ding et al. presented a collabo-
ra «vo WiFi-based mobile data offloading architecture to enable reliable storage




of data on smart phones. Wang et al. studied the impact of self-cc “ter on on
mobile data storage and they proposed a method to optimize the 1ppe. hound
of offloadings throughput in [24]. Nevertheless, these methods abov. “vere not
adaptive for changeable edge environment because they did - .ot ake into ac-
count the change of channel state. In addition, a lot of stv ‘es .ssumed that
the offloading time could be obtained before offloading the data, . ~ as to reduce
the model complexity. However, this assumption was t o strict for practical
applications, especially for those scenes with poor comm nicatior conditions.

In the edge environment, multi-device collaborative da. ofP ,ading is more
applicable. Thus, some studies have tried to solve tl 2 pre' '»m of collaborative
data offloading. In [8], Ding et al. discussed the enery -~ ware :ollaborative data
offloading and introduced the optimization mode.  Sor~ papers applied the
Utility theory to study the collaborative data offloading 10, 19]. They proposed
that when and how to offload data depends on t.. wutility. However, these papers
did not take into account the inevitable unst.™le co. .aunication conditions in
reality. Therefore, our work focuses on energy-c.”~ient and reliability-aware
data offloading of mobile devices in the edy environment while considering the
unstable channel conditions.

3. Modeling and Problem Formulat, 1

Fig. 1 shows the overview of the *‘ai_~t mobile device. The main mod-
ules of the mobile device consist ""~alt. Indicator, Communication Manager,
Task Scheduler, and Offload Engin. The Health Indicator is responsible for
indicating the state of mobile device, and the device state will be regarded as
internal constraints for dat . om. ~ding. Specifically, the Health Indicator can
be divided into two parts: Reliabili y Estimator and Energy Monitor. The En-
ergy Monitor extracts the re.. ~in'ag energy of the mobile device at a regular
interval and sends this mfo mation to the Reliability Estimator. The Reliabil-
ity Estimator calculav. ~ t".e dr vice reliability for data offloading based on the
energy and task inf rmati. ~ Then, the device reliability will be fed back to
the Task Schedule . ~d used as one of the constraints of data offloading. The
Communication Manage. ‘s responsible for real-time monitoring and managing
the dynamic ¢ mu unication network, and the communication network infor-
mation will b tre- ¢ed as the external constraint for data offloading. The main
functions of Com.. 'nication Manager are topology discovery and channel mon-
itoring. T ,pol gy discovery analyzes the topology of communication network
among ™l des.ces based on the Zigbee protocol [3]. Channel monitoring
monitor~ the ¢. ~ inel status and communication rates between different mobile
devic s or be. veen the device and the edge network. Without loss of generality,
we re; ard the edge environment as the cloud. Combined with the external and
int nal co.straints, the Task Scheduler determines the corresponding schedul-
i1g stray gy of data offloading. The input data of the device includes two parts:
o e part s the data generated by the device itself, such as image captured by
the ucvice, user recording and so on. The other part is user data from other
de oo, and they request the device to assist them in offloading data to the




cloud. For a device, we regard these two kinds of data originated fr m d derent
sources as the input data. The device types are generally diverse i» the .. ~ctical
applications, so we assume that data which will be offloaded do not h. = special
requirements for the device type. For data offloading, we pror ose two kinds of
offloading methods: end-to-cloud (D2C in short) data offload” '¢ a-.d end-to-end
(D2D in short) collaborative data offloading. The D2C data o.. ~ading means
that the device directly offloads input data to the cloud, = nereas the D2D data
offloading means that device sends the input data to othe devices and requests
other devices to offload the data to the cloud. To facilitate .. ~ »» ctical applica-
tion, we assume that only the one-hop data transmis s;ion i~ ~onsidered between
devices for collaborative data offloading. The Offloa ' F.igine is responsible for
offloading data to the cloud or devices according *o th~ cheduling strategy.
Meanwhile, it monitors the status of data offloading. Once data are totally
offloaded, it feedbacks task status to the Task . heduler and adjusts resources.
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Wigure 1: The overview of mobile devices

3.1. Prelimina ces

This stud, foruses on the collaborative data offloading, which can be re-
garded as t'.e issuc ~f task scheduling. Thus, we define T' = {t1,t2, -+ ,t,} as
the task ¢ ¢ th .t consists of n non-preemptive and independent tasks. With re-
gard to a v 7' ¢; € T, it is modeled as t; = (A;, D;, S;) where A;, D; and S; are
t;’s arr’ ..l time, deadline, and task size. The task size S; is measured by Bytes.
We a sume t. sre is a device set with m mobile devices, V = {v1,va, -+ ,um},
availa. 'e in t'.e application scene. Generally, mobile devices are in significant
hr .c.ogeneiry. So we define each device as vy, = (Ry, My, W), where Ry, My,
cad Wy, =spectively represent the device reliability, the remaining storage ca-
p. ~ity, a- d the channel state of the device vi. For D2C data offloading, we define
~¢. as the mapping indicator where z§, = 1 denotes that task ¢; is offloaded
te cloud on mobile device vy; otherwise, x5, = 0. For D2D data offloading, we




define xfkj as the mapping indicator where mfkj = 1 denotes that t: "k t. arriv-
ing at device vy, is offloaded to cloud on mobile device v; through colla. ~rative
data offloading; otherwise, xfkj =0.

3.2. Communication Model

The overview of the target communication framework is de, " ‘ted in Fig. 2.
To support the D2C data offloading and D2D collabor- uve data offloading,
we propose two kinds of communication approaches on mobile levices: D2C
communication and D2D communication. For D2D comm. nicat’ on, we assume
the data transmission and reception do not affect eas . other.

-

" Center
- \
iy
Mobile D=zt f— i _J 2| Mobile @
Device /’,,/’ Device

Figure 2: The t- ~~et. con. munication framework

3.2.1. Communication State Model

We define the channel state of D2C communication and D2D communication
of device vy as wj, and wﬁ respec ively. Thus, the channel state of the device
can be expressed as Wy - {w¢,u '}. Typically, the communication channel
state of the device is co .stantly ~.anging, which leads the communication rate
of the device to fluctr ate ¢ al' time. We assume that there are two channel
state sets Q¢ = {Q,Q5, -, 0} and Q¢ = {Q¢, 04, ,Q%,}, which represent
all kinds of the cha mel state of D2C communication and D2D communication,
respectively. We ass. e channel state sets satisfy the following order Qf <
Q5 < - < Q¢ Q4 < ad <o < Q4). Different channel state leads to
different comr unic ition rate r{ (r¢) and energy consumption p§ (pf). The
worse the chaw. - quality, the lower the communication rate but the higher the
energy cons amptio.. 4, 19]. For example, if the channel state of a device is Qf,
then it he , the towest communication rate and the highest energy consumption.

For D2C omr anication, since end and cloud are in peer-to-peer connection,
wy, car ve expressed as follows:

For 1 2D communication, however, each mobile device may be connected to
o e or m re mobile devices due to different communication network topologies.
We uoe e(4, §), (i # j) to characterize the edge between device v; and vj, where
el’,,, = 1 denotes that device v; can communicate with device v;; otherwise,




e(i,7) = 0. Hence, we define the topology related device set of vy, ac Vi, which
can be expressed as Vi, = {v; | e(k,j) = 1,v; € V}. Besides, }Fcaus. of the
changeable topology, w,cgl is represented as a dynamic set:

w,‘j = {w,‘fj |wzj = Qfﬂ)]- eVirt,ie{l,2,--- . U} (2)

3.2.2. Communication Rate Estimation Model

Data offloading usually adopts wireless communicatio. methoc 3 such as Wi-
Fi, Bluetooth, 4G, or Zigbee. These approaches have a co. ~ . characteristic
that the communication rate exists the upper limit Bes® ">s, the actual com-
munication rate is often far less than the rated s, =~ ., bu, there is a close
relationship between the communication rate and e chs = el state. Therefore,
we define r{ = f.(w§) and r¢ = fq(w{). For a device, both the external and
internal constraints will affect the communicatio. rate; it is hard to estimate the
communication rate for a single task. As such, “tatic _.timation of the commu-
nication rate has mainly been adopted in previous , ~rk to simplify the problem
complexity [4, 6, 29]. However, the differc. ~e between this estimated and the
actual value significantly affects the quality o. “ask scheduling. Drawing on
the methods of [5, 23], we propose an ¢*ecv: .. ommunication rate estimation
approach for data offloading by considerii. * the following factors:

Factor 1: We assume that the 1. v« 1 co. ‘munication rate is the ideal com-
munication rate 7% under the ideal cha. ne: state @

Factor 2: Because wj, often ~uuc. each the ideal channel state I/UE, we
define the relative ratio of the actual « “mmunication rate rj, to the rated com-

c c
i,
:

munication rate rj as 0 = . Then, the actual static communication
w
k

Tk
rate can be expressed as r, = 65, 7‘%

Factor 3: Consideriag tu.* 0, is closely related to rj, we characterize 7§
by 605, which is assume . to “ollow the Beta distribution 6§ ~ Beta(ag,f5). The
probability density fu.. *ira (P uf in short) of 65 can be expressed as follows:

ST (07) T (1 097, 05 € (0, 1);

fo(65) i T 0. o ¢ (0.1). (3)

Factor 4. “'or .bined with Eq.(3), it can be inferred that r¢ also follows the
similar Bet . distri. “tion with the same af and B{. It is worth noting that r¢
can also F 2 me deled as a Beta distribution Beta(ad, 8{) in the same way.

3.8. Data U),"~a wng Reliability Model

Si ice the Hilure of one device will cause all tasks on it to fail, tasks need to be
backe.' up in " aultiple duplicates to ensure the reliability of the data. However,
dr 0 tuc wiferent reliability requirements of tasks, the number of backups for
¢ ach tas. is varied. To schedule more tasks while ensuring the task reliability
w ‘thin tl : limited battery capacity, we analyze the data offloading reliability in
this scction. The D2C data offloading and D2D collaborative data offloading
ar conprehensively adopted in this paper, so we analyze them respectively.




3.8.1. Reliability of End-to-Cloud Data Offloading

The D2C data offloading means mobile devices use the D2C ¢ mmu.. ~ation
approach to offload data on itself to the cloud. To analyze the reliabii.. - of D2C
data offloading, we introduce following definitions.

Definition 1. Earliest Start Time EST},: For a task t, the eartiest start
time of itself on device vy for D2C data offloading is the earlies. *ime when t;
can be offloaded, which is determined by following expres won:

ESTf, = MAX{ATS,, A}, (4)

where AT}, is the available time of D2C data offloac ing .or 11sk ¢; on vy.
Definition 2. Expected Offloading Time EO7“: For a askt;, the expected
time usage on device vy, for D2C data offloading is dej.. ~d as expected offloading

time EOTY,.
As analyzed in Factor 4, r{ can be moc~led .~ -~ Beta distribution rf ~
- . ag =
Beta(af, B5). The expected communication rate «.” ¢ is E(rf) = o Jfﬁ 6.
k

Thus, EOT}, can be expressed as follows:

EOTS, = 4—) (5)

Definition 3. Available Offloac. .. Tin = AOTS,: For a task t;, the avail-

able offloading time on device vy for L°2C 'ata offloading is determined by the
following expression:

AOTS, = D; — ESTS,. (6)
The available offoading ** ~ AOTY, normally can be used to measure the
reliability of tasks. We de’.ne the haseline offloading time as A, = TA;, which

represents the shortest time . - off vading data ¢;. Based on that, we 1ntroduce
the Theorem 1.

Theorem 1. If tl.- Pr, of '} is denoted as fo(0%), then the Pdf of task of-
floading time OTY, 'y the 2/ approach can be expressed as following function:

Ay Afy c c .
s 1org) = ¢ feloft) om0 2 M (7)
0, OT;, < A%,

Proof. As ¢ sfinea .~ Factor 2 ri, = 05 7:;? is formed Combining with OT], =
Si , we car driv e th t 65 = AOTC , that is 0f = OTC . So the derivative of the 6
versus 75 15 f)ﬁ = (OATZ yz- As mentioned in [17], if the Pdf of a random

varia’ le X is iven as fx(z) and given a new variable Y = ¢g(X) while its func-

tion g "= mor otonic, then the compound Pdf is fy(y) = \dg;;(”)|fx(g’1(y)),

v nere ¢~ '(y) denotes the inverse function. So applying ¢ and dgeT’iu to the
ik

t nction, che theorem is approved. O

1

" probability of which task t; is completed on device vy before its deadline
. = *he reliability of data offloading in essence, and we define it as Rf,. We




denote the cumulative distribution function (Cdf in short) of OTS ¢ Fp'OT5).
Based on that, the Theorem 2 is proposed as follows.

Theorem 2. If the Cdf of 05 is denoted as Fg(05), then the rew. “ility RS,
for D2C data offloading can be expressed as follows:

c
Aik

=1 Fol o) 5)

Proof. The detailed inducement is as follows:

Rj, = Pr(AOT},)
AOTS,
- / Fr(t) dt

Ay
s
" c
@(A?)%%’ + Fo(1)
=1- F@(Z/:%kﬁ;)

3.8.2. Reliability of End-to-End Cul'aborative Data Offloading

The D2D collaborative data offloading means that the mobile device offloads
its data to the nearby devir ., a.. ! requests it to eventually offload data to the
cloud. This method can eff :ctively 1 nprove the robustness of data offloading. To
facilitate the analysis, w= ass. me nat device v can communicate with device
v;, and vy requests v; t- ass’sit it 11 collaboratively offloading data t;. In essence,
this approach can be © "ok a dc vn into two phases: D2D data transmission and
D2C data offloading .

For the first p} .. ~ the main factors affecting data transmission include the
data size and the D2D co. “munication channel quality. To analyze the reliability
of D2D data of".0oa 'ing, we introduce following definitions.

Definitio « 4. darliest Start Time ESTfk: For a task t;, the earliest start
time of itse' on . ~wice vy, for D2D data transmission is defined as the earliest
time wher ¢; ¢ n be vransmitted, which is determined by following expression:

whert ATitk is the available time of D2D data transmission for task ¢; on vy.
De. niti-a 5. Expected Transmission Time ETTitkj: For a task t;, the
e pected time usage of D2D data transmission from device vy to device vj; is
cefined a the expected transmission time ETT}. ;.
A~ .aalyzed in Factor 4, rgj can be modeled as a Beta distribution r,‘jj ~

(od pd t ; -
Do g ﬁkj), so ETTj,; can be expressed as following equation:




S

Ty (10)

ETT},; =

Definition 6. Expected Finish Time EFTitkj: For a tas! c¢;, the ewpected
finish time of D2D data transmission from device vy to devi e v; s u.fined as
EFTfkj, which can be expressed as follows:

EFT}; = EST};, + ETT},;. (11)

For the second stage, the method of reliability assessme. * for J2C offloading
is the same as the Section 3.3.1, except for the tas} arriv-! time changes from
A; to EFTitkj. For example, the initial arrival time ar " dea lline of task t; on
device vy are A; and D;, respectively. If t; is ti msmit*e” from device vy to
v, the arrival time of ¢; for v; can be regarded as bﬁﬁfkj, but its deadline is
unchanged. We denotes it as t7 = (EFT},;, Di, ™). For vj, it can be regarded
as a new arrival task. Then, we can get the *ask .cliability R;ikj of task ti-’
according to Theorem 2.

To ensure the reliability of data offloa’ng, task ¢; may be offloaded on
multiple devices. We denote the union reliability of multiple data offloading as

U(RZ,), and it can be expressed as follo 7s:

U( R =1—(1— 0 25, ]_[(1 - ch'l]qj 95?@‘)- (12)
j=1
J#h

3.4. Energy Consumption Model

1

Different channel state le~ " *o different energy consumption power pf, (pg).
The worse the channel qus.ity, the higher the energy consumption power. We
assume that there is an 1u.~1 ene gy consumption power ?3;% under the ideal
channel state ﬂ)\z The - :lative ra.i0 of the actual energy consumption power pf,

to pf, is regarded as €, = . & the actual energy consumption power can be
" k

expressed as pj =€ . ]5;‘; Siw. arly, p{ = &4 p% can be derived. We introduce the
energy consumpti n 1. ~del from two aspects: energy consumption of D2C data
offloading and er~rgy consumption of D2D collaborative data offloading.

For the D C o ita offloading, we define the energy consumption as Ef,
and it is close., 1 .ated to the expected offloading time EOT}; and the energy
consumptic 1 powe. »7. We represent it as following equation:

Ejy, = py EOTy,. (13)

We L fine ta. : energy consumption of D2D collaborative data offloading as

{k;- As men ‘oned above, the D2D collaborative data offloading can be divided
into tw ~ phar s, so B4 y
Iz data transmission EY, ; and the energy consumption of D2C data offloading
2% Sped fically, Ef; can be calculated by Eq.13 and Efkj can be expressed as

for. ~7ir | equation:

Ed
is composed of two parts: the energy consumption of

Efkj = pﬁj ETTfkj- (14)

10




Thus, Eidkj = E?kj + Ej; is formed.

K2

3.5. Device Reliability Model

Data offloading is not only related to the task itself, but als: tot~ reliability
of device. The failure of device during the data offloading . ‘1l - iso cause the
failure of tasks. We denote the device reliability for task *; on Jevice vy as
Rir. To reduce the overhead of device reliability estim: ¢ion, v.» assume that
the device battery life follows the Normal distribution. W » indica 2 the random
variable of device power as Ej. Thus, the Pdf of Ey ¢~ ex,.. _ed as follows:

N2
1B - ep(— 1 (15)
k

1
e
V2T oy,

where pp and oy, are the mean and variance of Ej, resp ctively.

We indicate the amount of power has been co.. med s F¢y and the amount
of power needed for data offloading as Fdy, so "he acvice reliability R;; can be
deduced as follows:

Riy=1-— F(Ek —L < Edk). (16)

4. Optimal Task Scheduling Mod. .. ' Algorithm

The key issue of data offloading i *o ali ~ate tasks to mobile devices so that
the task deadline can be reached. Ho -ev ~ due to the mobility of devices and
the unstable channel conditions it is « great challenge to solve the problem
precisely. Therefore, we propose a . <k scueduling optimization model based on
device state and channel state.

4.1. Optimal Task Scheduli .g mi. el

For mobile devices, su iect to the limitation of battery capacity, energy
consumption has an es ential ¥ .ct for scheduling task. Thus, we take the
energy consumption ac the main objective of the collaborative data offloading.
We denote the energv-¢ ¥ sum' cion minimization problem as an Integer Linear
Programming prob’:m (ILr "a short):

unc B xs, + Z E{ikj xfkj (17)
i=1
Jk
st. | J(Ry) > T, (18)
5 > R, (19)
Rip xi, > Ry wig, Yoy €V, (20)
My — S; x> My wig, Yoy, €V, (21)
ngkﬂ m;'ikj € {07 1}7 (22)

whe. o i = MAX {5, xfkj} represents that task t¢; is ultimately offloaded on
ac .. Vg.
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The optimal objective of the ILP problem is to minimum the ~tal :nergy
consumption for D2C and D2D data offloading as shown in fun~tion .7 The
first constraint (Eq.18) indicates that the union reliability of collabo.. *ive data
offloading must be greater than the lowest union reliability tb esh 4 T;. Since
the failure of data offloading not only wastes resources but alsc affects other
tasks, so we set the minimum task reliability threshold R; as show.. ‘n the second
constraint (Eq.19). The third constraint (Eq.20) repres :nts tl - reliability of
device vg on which data are offloaded must be greater tha » the de ice reliability
threshold Ry. The fourth constraint (Eq.21) indicates that v. ~ =~ aain storage of
t/l_lg device M;;, for offloading task t; must be greater .han ' ~ storage threshold
Mj,. The last constraint (Eq.22) specifies the range « ¢, ar 1 2, ;. Obviously,
the optimal scheduling strategy under current dev. ~ an ..annel state can be
obtained by solving the ILP problem.

4.2. Algorithm Complezity Pruning

For the scenario with few devices, the ILP .. ~blem can be solved directly

by the Enumeration or Implicit Enumerati . .,....u acceptable overhead. How-
ever, as the device number increases, the couw.~lexity of searching the optimal
solution will increase exponentially. T . _ *ce the overhead, we propose the

following complexity pruning method. 1 ‘ve.ly, we classify all constraints into
three categories: device constraint. ‘Fq.z. Eq.21), task constraints (Eq.18,
Eq.19) and range of solutions (Eq.22, ™= define device constraints as hard
constraints, because the schedul’ ~ metind will be the feasible solution only if
all device constraints are satisfied . the same time. However, task constraints
are usually affected by multiple devices, so we define the task constraints as
soft constraints. Based on t’ ¢ u.“nitions above, we propose to reduce the com-
plexity through two stage . For tl » first stage, we apply the hard constraints
to narrow the feasible sclutio. rar se. For the second stage, we use the relative
utility to accelerate pre oler solving under the soft constraints.

For the hard const ~in's, tb . Branch and Bound method [2] is used to elim-
inate inferior solutir as. ke Vo, € V, we assume that x;, = 1, then we investi-
gate whether devir _ . satisfies the hard constraints. Specifically, we first check
whether Eq.20 and Eq.. are both satisfied. If they are satisfied, we regard vy
as the pending o1 “ion and let it enter the pending solution set Vpy; otherwise,
it will be elin- nate 1.

For the soft « ‘nstraints, Eq.19 has an important impact on Eq.18, so we
first verify whe her rq.19 is satisfied. If the constraint is satisfied, then we cal-
culate the “won 1 dability | J(R],) according to Eq.12. As the union reliability
increases the ~*al energy consumption will inevitably increase. However, our
objec ve is 1~ reduce energy consumption as much as possible while ensuring
the te "k relial lity. Thus, we propose a novel approach to search the optimal so-
luti-n. _.etely, we define the ratio of task reliability to energy consumption
for the ¢ ~vice as I}, which is expressed as following function:

c

i c __ .
ik x8, = 1;

* Ck
ik — rRe (23)
ikj d 1
pas, Tig; =L




Obviously, I}, represents the reliability utility of the schedul’ ‘a s rategy
under unit energy consumption. The greater the I7;, the higher *he rc."ability
utility under unit energy consumption. Hence, we calculate the reliab..“v utility
17, for all pending solutions in Vp, and sort them in descenc .ng >rder oy the
reliability utility. Then, we progressively traverse the devir : in /pg ror data
offloading. Once the Eq.18 and Eq.19 are satisfied at the same ti..~ the solution
is the optimal solution for the problem. Based on the two s ages ahove, searching
the optimal solution does not need to traverse the whole pending solutions, so
the algorithm complexity can be significantly reduced.

4.8. Dynamic Energy-Efficient Data Offloading Alg rith~.  DEED

Based on the data offloading mechanisms discnisseu abov ;, we design an in-
novative Dynamic Energy-Efficient Data offloading sc” ~duung algorithm- DEED
which takes into account the unstable communi-ation ste se. DEED uses heuris-
tic approaches to optimize the energy consumptic. wh’ e ensuring the task re-
liability. For data offloading, the First Come Fu.* Service principle is adopted.

Algorithm 1 specifies how the optime' ' _I.l.g strategy is selected. It
firstly updates the topology and the channe. ~tate of vg. Then it determines
the topology related device set Vit (. 'ne 3). To reduce the complexity,
it selects devices that satisfy hard cons -a’its (see lines 4-6) and determines
the pending device set Vpi. In t! venc'ng device set Vpy, the algorithm
respectively calculates the paramete. " tasks for D2C data offloading (see
lines 8-14) and D2D data offloac»o (sec lines 15-23). The algorithm sorts the
Vpi according to I} (see line 24). Winauy, the algorithm successively verifies
whether the Eq.18 and Eq.19 are all satisfied in the Vpg. Once they are satisfied,
the optimal solution Sv} is ... ‘ned (see lines 25-33). According to Sv}, the
Offload Engine, as shown i-. the Fig 1, allocates the task t; to the corresponding
device so that the optimal a. “a of oading is achieved.

4.4. Algorithm Compl: city Analysis

We analyze the time - mp’ xity of DEED in this section. Totally, the time
complexity of DEF ) is dete. nined by the device constraints and the task con-
straints, respectiv ly. " facilitate the analysis, we first make following assump-
tions: (1) There are M c.ements in the topology related device set Vity; (2)
There are N €' :me; ts in the pending device set Vpg, where 0 < N < M. Based
on the assumy ‘or s above, we introduce the Theorem 3.

Theore .n 3. .7 » time complexity of DEED is O(M + N?).

Proof. Tc det rmir 2 the pending device set Vpy, all devices belonging to the
topology re.. “ed levice set Vi need to be checked according to the device
consty unts, £o tue time complexity is O(M). Once the related device set Vi
is det 'rmined it needs to use the complexity of O(V) to calculate the I} of all
device, “nd t'.e time complexity becomes O(M + N). Then the algorithm takes
t' e Bubhle Sort method [1] to sort the Vipj, in the descending order of I, which
vill lead o the time complexity of O(N?2). Thus, the overall time complexity
is MM - N%). To obtain the optimal strategy, the task constraints should be
“>oted. which will cause the time complexity of O(N). However, O(N) is an
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Algorithm 1: Optimal scheduling strategy selection

[ 3L S VU R
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30
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32
33

Vit < null;Vpi < null;Svi < null;U(R},) < 0,1, < nul’,
while task t; arrives at device vi, do

Update the topology Vit and channel state Wy of vi;
foreach v; € Vit U, do
if Ri; > R; && M;; — S; > Mj, then

L Vpr < Vpr Uwvy;

foreach v; € Vp, do
if v; == vi, then
Update the available time AT};
Estimate the D2C communication rav. ~%;
Calculate ESTY,, EOTy,, AO7". l..cw viv Eq.4, 5, 6;
Calculate Ry, according to Theor. ™ 2;
Ejy < px EOTY;
* * g Rik.
Iy < Iy U B

else

Update the available time . Ty,

Estimate the D2D c. “ui.. = “ion rate r,‘f]-;

Calculate EST}y, ETT;,,. EF'Tka based on Eq.9, 10, 11;

t < (EFT};, Di. Ss);

Calculate EST ;, kL5, AOTY; based on Eq.4, 5, 6;
Calculate anv accordi: g to Theorem 2;

Eidkj — pi- 2T, + /5 EOT;
RY .

F oy’

I« I J

Sort Vi in escendiny order according to I};
foreach v; - v, do

if v; == vy, the..
| VR 1= (1= U(R})(1 - R3,));
else

| Uk e 1= (1= U(RR)) (1 — Ré:,));
Svi — 8§ Uwy;
L “q.1° and Eq.19 are all satisfied then

re.urn Sv;;
Yreak;
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order of magnitude lower than O(N?), so the overall time comp! ity is not
affected. Totally, the time complexity of DEED is O(M + N?). O

5. Performance Evaluation

In order to verify the performance of DEFED, we quartitai. ~ly compare
DEFED with three comparison algorithms: Dynamic Ranc om Sel <tion Data of-
floading scheduling algorithm- DRSD, Dynamic Energy P fority L ita offloading
scheduling algorithm-DEPD, and Dynamic Reliabilitv Prio. ;- ata offloading
scheduling algorithm-DRPD. The three comparison alge ... ms are briefly de-
scribed as follows:

e DRSD adopts the random scheduling strateg, The algorithm randomly
selects a device as the target device, and then ver. ies whether the device
constraints (Eq.20, Eq.21) are satisfied. It .o de ice constraints are not
satisfied, the device can not be used for .>sk scheduling; otherwise, the
algorithm calculates the union reliabili+-- -~ sk reliability according to
the idea of DEED. Once the task cons.. ~ints (Eq.18, Eq.19) are satisfied,
the optimal solution is found.

e DEPD is a variant of DEED, but it ~d pts the greedy scheduling strategy.
The difference between DEPD ~d D. KD is that DEPD considers energy
consumption priority in task schew ling. The algorithm first finds the
pending device set in the ~me wcv as DEED, but it sorts the pending
device set in ascending order . € energy consumption. Then the algorithm
calculates the union reliability and task reliability in the same way with
DEED. Once the task ou. aints (Eq.18, Eq.19) are satisfied, the optimal
solution is found.

e DRPD is also a varian. of OFED, but the greedy scheduling strategy
is adopted. The diff rence between DRPD and DEED is that DRPD
considers reliabi. “v rior’sy in task scheduling. The algorithm first finds
the pending d vice sc. . the same way as DEED, but it sorts the pending
device set i* ~scending order of task reliability. Then the algorithm
calculates tne unio.. reliability and task reliability in the same way with
DFEED. C .ace “he task constraints (Eq.18, Eq.19) are satisfied, the optimal
solutior s fc und.

5.1. Exper mertal Sctup

Throu " r ten 1ve experiments, we find that these algorithms are not sensi-
tive to "2 un.. - reliability threshold Tl, task reliability threshold R and host
relial lity th. ~shold Rk which are mentioned in Section 4.1. Therefore, we set
TZ- = .75, R =0 7, and Rk = 0.7. To reflect the heterogeneity of mobile
de " -es, ... uivide mobile devices into four types. The storage of each device
t /pe is .t to 500MB, 1000MB, 1500MB, 2000MB. As mentioned in Section
5 5, the .ievice power follows the Normal distribution with different pj and
Ok aaus, we set pg as 1000mAh, 1500mAh, 2000mAh and 2500mAh, and we
re: pocdively set op as SbmAh, 7.5mAh, 10mAh and 12.5mAh. To reflect the
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diversity of channel states, we assume that there are four chann * str.es for
D2C and D2D communication, that is, Q¢ = {2,4,6,8} and Q¢ = {2, " 6,8},
respectively. We assume that the ideal channel state 171\; = 10. and "= corre-
sponding ideal communication rate ﬁi = 2M B/s and corresp ndii © ~ommuni-
cation power 12% = 0.1mAh/s, respectively. Similarly, we sev “he ideal channel

state wg = 10, and the corresponding ideal communicati- .. rate 1 k = 3MB/s

and corresponding communication power pg = 0.12m4 /s, res ectively. As
analyzed in Section 3.2.2, 7¢ and r¢ are characterized by L *a di cribution. For
D2C communication, we set 3; as 18, and we set a as 4 & 12, 27, and 72 for
different channel states respectively. For D2D comm i atio , we set 3¢ as 12,
and we set ag as 3, 8, 18, and 48 for different chz ~nel stat s respectively. The
Pdfs of the D2C and D2D communication rate are sh.  in Fig. 3.

pdf
I R SR

1 1.4 . 15
Communication rate Communication rate
(a) D2C (b) D2D

Figure - The Pd of the communication rate

As shown in Fig. 3 the ‘- distribution has the similar shape like the
Normal distribution, b .t it 1as the communication rate upper and lower bound,
which is more realistic. - sides, the given parameters above can ensure different
channel states cor’ :spond . different communication rates. The worse the
channel state, thr la._~r the variance of the distribution, indicating the lower
the stability of the communication rate.

Based on t’.e e: perimental setup, we compare the performance of these al-
gorithms on i.'ov .ng metrics:

e Task _omplev. n Ratio (TCR): TCR is defined as the percentage of tasks
tha’ are dnisied before deadlines among all tasks, which represents the
reliab.. v o’ algorithm.

e ".ask A-ceptance Ratio (TAR): TAR represents the percentage of tasks
‘hat are accepted among all tasks, which represents the robustness of
Tt m.

e Ri'io of Task time over Hosts time (RTH): RTH is defined as the ratio
of 1> tal task execution time over the total active time of devices, which

_presents the resource utilization of algorithm.
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5.2. Ezperiments and Analysis

On the whole, the topology and communication quality are con.’ ~ntly = “ang-
ing, but they can be regarded as the static state for a short »erioa ~f time.
Therefore, to demonstrate the performance of these algorith’ s, v~ divide ex-
periments into two parts: experiments under static commui. ~at’on conditions
and experiments under dynamic communication conditions

5.2.1. Experiments under Static Communication Condit s

For static communication conditions, many factors affe. * the - erformance of
the algorithms, for instance, device number, task nur oer, t~sk size, task arrival
rate, task deadline urgency, and the probability of 'ev’_.e cc nmunication. By
analyzing the impact of these factors, the algor *hm perf rmance under the
static communication conditions can be effectively ve..%ed.

1.00 1.00 1 o
®DEED mDRSD =DEPD ® DRPD =DEED mDRSD =DEPD - DRPD ®DEED ®DRSD = DEPD ®DRPD

0.90 o0 f(—— i
0.70

0.80

0.80 |, 0.65 ]
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1 070 M 0.60
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Figure 4: The 1.. ~act o the device number

The experimental results © Tig. 4 specify that the device number is closely
related to algorithm perfo mance. As the device number increases, TCR and
TAR increase therewith, bu. “here s no obvious increasing trend of RTH. When
the device number incr ases. the aumber of devices which are available for of-
floading data increase . cor espr adingly, so TCR and TAR increase. However,
the increase of devic nu.. “er vill also cause the device to be idle, so RTH does
not increase signif antly. 1t is worth noting that when the device number is
greater than 8, tk - inc. ment of device number is not meaningful for improving
TCR and TAR T tally, UEED and DRPD have better performance.

WDEED mOD7SD mD. = DRPD =DEED mDRSD =DEPD mDRPD W DEED MDRSD ®DEPD M DRPD

oso HI—0 3 =9

100 1500 J00 2500 3000 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000

‘a) TCR (b) TAR (c) RTH

Figure 5: The impact of the task number
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Fig. 5 shows the relationship between the task number and tl » alg brithm
performance. As the task number increases, TCR and TAR rems‘n un.~anged
firstly, but when the task number is greater than 2000, TCR and TA." decrease
rapidly. Nevertheless, RTH shows the opposite trend that it asy v drops and
then stays steady when the task number is greater than 27 10. 3y analyzing
the log files, we find that when the number of tasks is about 25" the battery
capacity of device will be insufficient for data offloading. M any ta~ks are rejected
because the device reliability is not satisfied, which resu. s in the rapid decline
of TCR and TAR. However, the increase of task number . ‘1 » ;ult in devices
with poor channel state being idle for a long time, whic> ~auses the RTH to
drop. When task number is greater than 2,500, since "1l .evic s have insufficient
power for data offloading, almost all devices are i. idle c*- .e, so RTH remains
stable. With the increase of task number, the performc. ~ce of DEED gradually
exceeds DRPD. As the task number increases, “he dev ce worktime increases
accordingly, so the scarcity of battery capac.~ bec .aes the main limitation
of data offloading. Because DEED takes into acc. 't energy optimization, it
shows the best performance.
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Figurc °: Tt . impact of the task size

As shown in Fig. © ta‘ « sir : has a significant impact on algorithm perfor-
mance. We set the iowe. i .t of the task size to 1000KB. When the upper
limit of the task si is 5000k B, all algorithms show good performance on TCR
and TAR. As the cask ». = increases, TCR and TAR decrease rapidly, but RTH
shows the incre ... ¢ trend. When the task size becomes larger, the offloading
time of the te k is .ncreasing, which results in the decrease of TAR and TCR,
and leads to the "icrease of RTH under the same task arrival rate. In general,
DFEED har the besy performance with the increase of task size. It is worth
noting th + w'.en t'.e upper limit of the task size is 5000KB, the RTH of DRSD
is significant., hi her than other algorithms. This phenomenon does not mean
that t 1e resc-wce utilization of DRSD is higher. On the contrary, it indicates
that he rand: m selection strategy leads to excessive resource waste.

The "~ .t of the task arrival rate for each algorithm is shown in Fig. 7.
v ¢ assu: ~e that the task arrival follows the Poisson distribution and the X-axis
1 present the average task arrival interval. The smaller the task arrival interval,
the ” *~" or the task arrival rate. As the task arrival interval grows, the TCR and
L. 7 hecome larger, but RTH becomes smaller. This is because when the task
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Figure 7: The impact of the task arri al rat-

arrival interval becomes larger, the device has enoug. time to offload the data,
making TCR and TAR larger, but RTH small~r. When task arrival interval is
small, DRPD shows the best performance; DRPL . lor’ s the reliability priority
strategy, which can guarantee higher reliability “~r data offloading when task

arrival rate is high. When task arrival int . I l..ge, DEED shows the best
performance; DEFED comprehensively consiu. s the energy consumption and
reliability, which can extend the workt _ - ~f movile devices when task arrival
rate is low.

mDEED ®DRSD =DEPD mDRPD =DEED . R. DEPD & DRPD =DEED mDRSD = DEPD mDRPD

0.70 - 0.70

(a) TCR (b) TAR (c) RTH

Figui. 2 The " npact of the task deadline urgency

Fig. 8 depicts ne  ~lationship between deadline urgency and algorithm per-
formance. The X-axis rep.esents the deadline urgency of the task. The higher
the deadline u gen: y, the smaller the TCR and TAR, but the larger the RTH.
As the deadli.. wr zency decreases, TCR and TAR gradually increase, but RTH
gradually d crease. This is because when the deadline is tight, the device will
be very b .sy. .t causes many tasks to dissatisfy the optimization model con-
straints, s. '« T _R and TAR are smaller, but the RTH is larger. However,
as the ..gency .ecreases, there will be more idle devices to offload data, so
TCR and TA 2 increase, but RTH decreases. Deadline urgency has a great in-
fluence on D .SD. When deadline urgency is high, DRSD’s TAR is relatively
hi ., but vRSD’s TCR is low. Although DRSD accepts a lot of tasks, the
1 umber tasks completed on time is small. It indicates that a large amount of
re ources are wasted by DRSD. Besides, DRPD has the best performance when
the deadline urgency is higher, but DEED shows the best performance when
th : urgency is lower. These all above are determined by the scheduling strategy
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of each algorithm.
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Figure 9: The impact of the probability of device comm iication

Fig. 9 shows the relationship between the nrobabili y of device communi-
cation and algorithm performance. The X-axis . nre :nts the probability of
device communication, and the smaller the valu. the lower the the probability
that mobile device can communicate with -*' . the D2D communication.
As shown in Fig. 9, TCR and TAR are clo. ~ly related to the probability of
device communication. As the probab’ -~ af device communication increases,
TCR and TAR increase accordingly. The ver son is that with the increase of the
probability of device communicatior the 1. '‘mber of devices which are capable
of collaborative data offloading incre.se. so more tasks can be accepted and
completed before its deadline. A< a res.1t, TCR and TAR relatively increase.
On the whole, DRPD has the bes, ~ertormance when the probability of device
communication is lower, but DEED is .he best when the probability of device
communication is higher. T" ., I because DRPD adopts the reliability-priority
strategy and it is more su’ able fo1 small-scale device set; DEED considers en-
ergy consumption and reliau ity ¢ mprehensively, so it has better adaptability
for the higher probabilit ; of device communication. It is worth noting that when
the probability of dev’ -e ¢r mmv aication is 0.6, DRSD’s RTH obviously exceeds
other algorithms. Fowev.~ r hen the probability of device communication is
0.7, its RTH decl’ ~s rapidly, and then it increases with the increase of the
probability of device co. munication. The reasons behind this phenomenon are
complicated. W... * the probability of device communication is 0.6, the ability
of mobile devi e co amunicating with others is weak, which means the device set
is divided irto . ttiple small subsets that are isolated from each other. DRSD
adopts the random sclection method, which leads to the increase in the proba-
bility of ¢ lect ag a levice with poor D2C communication in these small subsets.
To satisfv tne +a< g constraints, DRSD has to increase the number of backups,
so its {TH is significantly greater than other algorithms. However, in the same
situat on, the TAR and TCR of the DRSD are the smallest, which indicates
that D.2°D Lot only wastes resources, but also has poor adaptability to the
¢ naller ~robability of device communication. When the probability of device
¢ ymmuni ation is 0.7, the ability of mobile device communicating with others
is 5. -*y enhanced, and the number of backups is reduced. Thus, the RTH of
L. 7" declines. When the probability of device communication is greater than
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0.7, with the increase of TAR and TCR, the resource utilization of ~ack device
increases, so the RTH of DRSD increases accordingly.

In general, under the static communication conditions, DEED pei. rms bet-
ter reliability and adaptability than other algorithms, and D .1 has a good
performance while the task arrival rate and task deadline rge .cy are high.
DEPD has a good performance in saving energy, whereas DRSD . ~t only wastes
resources but also has low reliability and adaptability.

5.2.2. Experiments under Dynamic Communication Con. tions

For dynamic communication conditions, we stud- vae inuuence of channel
state on the performance of all algorithms. The char e o cha nel state involves
D2C state and D2D state. We study the performance of all ilgorithms in 7200
seconds where the channel state is updated every 360 . ~conds. The adaptability
and elasticity of each algorithm are verified un/er the co tinuous deterioration,
continuous improvement, and severe fluctuati-n cc. ~m» aication conditions. To
characterize the channel conditions, we define . (S4) as the average of the
D2C (D2D) channel states of all devices. ... oi vhe experimental setup, we
compare these algorithms with respect to the TCR, TAR and RTH. It should
be mentioned that the bar represents t . ~~an cnannel state measured by the
main Y-axis, the curve represents the n. tr cs of each algorithm measured by
the secondary Y-axis, and the X-ax" vepre. »nts the update time in the figures
below.

The impacts of the degrading ™2 ch. nnel state on each algorithm are shown
in Fig. 10 (a)(b)(c). With the dete. ~ration of S., the TCR and TAR of all al-
gorithms show the significant downwaru trend, which means the D2C channel
state has an important imp# _. v. the TCR and TAR. However, the RTH firstly
rises slowly, then falls qui kly as ¢ 1own in Fig. 10 (¢). This is because when
the channel quality begins to decl’ ie, to ensure the reliability, algorithms need
to increase the backupr of task, which leads to the increase of RTH. However,
when the channel qua tv *, toc 1ow, many tasks are rejected because they can-
not be completed, s, the ™T7 drops. Fig. 10 (d)(e)(f) show the performance
of algorithms whe . “he channel quality is gradually improved. With the im-
provement of D2C chan.. ! quality, the TCR and TAR of all algorithms increase
rapidly and ms g, ally close to 1. On the contrary, RTH shows the tendency
to rise at first the . slowly decline. This is because when S, is small, the TAR
is low, so many  ~vices are idle. Nevertheless, when S, is large, the number
of task ba kup 1is reduced, so many devices are idle. When the update time
is more 1 an 468( seconds, the TAR and TCR of DRSD drop significantly,
which means [~ random selection strategy shows poor adaptability. As shown
in Fir. 10 (g'(h)(i), we evaluate the performance of each algorithm when the
D2C  hannel « uality is in violent fluctuations. When S, soars quickly, TAR and
TC® inc. -~ ¢ accordingly. Conversely, when S, rapidly deteriorates, TAR and
T CR al » decrease quickly. Before 4320 seconds, the RTH of DEED, DEPD
e d DRF D are all in fluctuation. This phenomenon further proves the poor or
goo. .annel quality will lead to the decrease of RTH. Compared with other
ay; - “hms, DEED is more suitable for fast changing channel conditions.
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Figure 10: 1. ir pact of the D2C channel state

Totally, each algr cith.. is ¢ .osely related to the D2C channel state. The per-
formance of DEEI" DEPD and DRPD is generally the same when the channel
quality is good, Lut L 7D has the better adaptability for the poor channel
quality.

Compared with the D2C channel state, the D2D channel state has smaller
impact on the p. - ormance of the algorithms. The impacts of deterioration D2D
channel st7 .e or all w.gorithms are shown in Fig. 11 (a)(b)(c). With the deterio-
ration of <, t.e T/ Rs and TARs of all algorithms decrease in fluctuations, and
the RTHs shc 7 t! ¢ tendency to fluctuate first and then decrease. This indicates
the dr .erioration D2D channel state has little impact on the performance of al-
goritl ms, but when Sy is less than a certain threshold, it will lead to the rapid
perforn. »ee Jegradation. It is worth noting that the performance of all algo-
r'vhms crops abnormally at the 1800 second. This is because the D2D channel
¢ 1ality o devices with good D2C channel quality is too poor, so it results in
the =" decline of the performance. Fig. 11 (d)(e)(f) show the performance of
«., ~ithms when the channel quality is gradually improved. With the increase
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Figure 11: 1. ip pact of the D2D channel state

of the D2D channel qua.. v. T R and TAR generally show the growing trend,
and RTH increases drst and Jhen fluctuates. As shown in Fig. 11 (g)(h)(i), we
evaluate the perf rma.. - of each algorithm when the D2D channel quality is
in violent fluctr “‘ons. There is no obvious correlation between Sy and TCR,
TAR and RTT . esp cially when Sy is large than 3. This phenomenon indicates
that Sy will ha - a significant impact on the performance of algorithms only
when it is " elow a ¢ tain threshold.

In ge eral the D2D channel state has little effect on the performance of
the algorith.. ~ F owever, once the D2D channel state of a device with a good
D2C c .annel stave deteriorates, the performance of the algorithm will be greatly
degra led.

6. Co. ~lus’Hns and Future Work

In thy paper, we focus on the data offloading for the IoT applications under
u. “table channel conditions. We propose a dynamic energy-efficient data of-
floading scheduling algorithm DFEED, which can effectively deal with the prob-
le'a or collaborative data offloading under unstable channel conditions. We
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propose a novel method to model the unstable channel quality. Vea .while,
we propose an optimal task scheduling model and a method to re‘uce v. ~ algo-
rithm complexity, which can improve the algorithm efficiency withou, "mpairing
its performance almost. Through a large number of simulatior exj sriments, we
evaluate the performance of DEED. We set up three perfo mar .e metrics to
measure the reliability, robustness, and resource utilization o, NEED. Com-
pared with three comparison algorithms DRSD, DEPD. and DRF0D, the pro-
posed DEED shows better performance under both tl static and dynamic
communication conditions.

The following issues will be studied in our future v ork. ™ rstly, we will study
the fault tolerance model for data offloading to furt. »» .nha .ce the data relia-
bility from the perspective of hardware. Secondly we wi! study the topology
discovery and channel quality-awareness model based ¢. the Zigbee protocol to
facilitate the implementation of distributed sci.. Tuling 7 Igorithms. Finally, we
plan to apply DEED to the IoT application . hat . are researching, such as
Cooperative Reconnaissance of Drones, to test its . ~rformance.
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Highlights

. We proposed an intricate device framework to facilitate the decision making of
data offloading for mobile Internet of Things applications.

. We proposed a novel method to model the unstable channel quality that m..'zes it
more realistic. Based on that, we proposed an optimal task schedul’ag 1 10del.

. We proposed an innovative dynamic energy-efficient data offloau.~a scheduling
algorithm, DEED, to as much as possibly reduce the energ’, cc ~>'mption while
ensuring task reliability.

. We proposed a method to reduce the algorithm comple; ity wh >h could improve
the algorithm efficiency without impairing its perforn ...ce ani0st.

Extensive experiments were conducted to vei.% th~ performance of data
offloading among DEED and other algorithms both un.er the static and dynamic
communication conditions.




