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Abstract 

Human activity recognition systems are developed as part of a framework to enable continuous monitoring of hu-

man behaviours in the area of ambient assisted living, sports injury detection, elderly care, rehabilitation, and enter-

tainment and surveillance in smart home environments. The extraction of relevant features is the most challenging 

part of the mobile and wearable sensor-based human activity recognition pipeline. Feature extraction influences the 

algorithm performance and reduces computation time and complexity. However, current human activity recognition 

relies on handcrafted features that are incapable of handling complex activities especially with the current influx of 

multimodal and high dimensional sensor data. With the emergence of deep learning and increased computation 

powers, deep learning and artificial intelligence methods are being adopted for automatic feature learning in diverse 

areas like health, image classification, and recently, for feature extraction and classification of simple and complex 

human activity recognition in mobile and wearable sensors. Furthermore, the fusion of mobile or wearable sensors 

and deep learning methods for feature learning provide diversity, offers higher generalisation, and tackles challeng-

ing issues in human activity recognition. The focus of this review is to provide in-depth summaries of deep learning 

methods for mobile and wearable sensor-based human activity recognition. The review presents the methods, 

uniqueness, advantages and their limitations. We not only categorise the studies into generative, discriminative and 

hybrid methods but also highlight their important advantages. Furthermore, the review presents classification and 

evaluation procedures and discusses publicly available datasets for mobile sensor human activity recognition. Final-

ly, we outline and explain some challenges to open research problems that require further research and improve-

ments. 

Keywords: Deep Learning, Mobile and Wearable sensors, Human Activity Recognition, Feature Representation, 

Review 

1. Introduction 
Human activity recognition is an important area of research in ubiquitous computing, human behaviour 

analysis and human-computer interaction. Research in these areas employ different machine learning algorithms to 

recognise simple and complex activities such as walking, running, cooking, etc. Particularly, recognition of daily 

activities is essential for maintaining healthy lifestyle, patient rehabilitation and activity shifts among the elderly 
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citizens that can help to detect and diagnose serious illnesses. Therefore, human activity recognition framework 

provides mechanism to detect both postural and ambulatory activities, body movements and actions of users using 

different multimodal data generated by variety of sensors(Cao, Wang, Zhang, Jin, & Vasilakos, 2017; Ordonez & 

Roggen, 2016). Previous studies in human activity recognition can be broadly categorised based on diverse devices, 

sensor modalities and data utilised for detection of activity details. These include video based, wearable and mobile 

phone sensors, social network sensors and wireless signals. Video-based sensors are utilised to capture images, vid-

eo or surveillance camera features to recognise daily activity (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; 

Onofri, Soda, Pechenizkiy, & Iannello, 2016). With the introduction of mobile phones and other wearable sensors, 

inertial sensor data (S. Bhattacharya & Lane, 2016; Bulling, Blanke, & Schiele, 2014b) are collected using mobile or 

wearable embedded sensors placed at different body positions in order to infer human activities details and transpor-

tation modes. Alternatively, the use of social network methods (Y. Jia, et al., 2016) that exploit appropriate  users’ 

information from multiple social network sources to understand user behaviour and interest have also been proposed 

recently. In addition, wireless signal based human activity recognition (Savazzi, Rampa, Vicentini, & Giussani, 

2016) takes advantages of signal propagated by the wireless devices to categorise  human activity. However, the use 

of sensor data generated using smartphones and other wearable devices have dominated the research landscape in 

human motion analysis, activity monitoring and detection due to their obvious advantages over other sensor modali-

ties (Cornacchia, Ozcan, Zheng, & Velipasalar, 2017). 

Generally, mobile phones and wearable based sensors for human activity identification are driven by their 

ubiquity, unobtrusiveness, cheap installation procedure and ease of usability. Mobile phones have become part of 

our daily life and can be found in every homes and carried everywhere we go. In this context, mobile phones and 

wearable sensors are popular alternative methods of inferring activity details. For instance, while the video sensor 

extract features such as the Histogram of Oriented Gradient (HOG), Spatio-temporal interest Point (STIP) and Re-

gion of Interest (ROI), mobile sensors utilise statistical and frequency based features to recognise activity details. 

Statistical features provide less computation time and complexity(Figo, Diniz, Ferreira, & Cardoso, 2010). Further-

more, vision based techniques intrude on user privacy, require fixed location implementations and capture non-

target information (Yang, Nguyen, San, Li, & Krishnaswamy, 2015). In addition, video sensors based human activi-

ty recognition are affected by lighting variability  leading to decrease in performances due to visual 

disturbanes(Lukun Wang, 2016). On the other hand, mobile and wearable sensor-based methods provide better ad-
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vantages for real-time implementation of human activity recognition systems. Moreover,  mobile phone and weara-

ble devices are not location dependents, cost effective, easy to deploy and do not pose any health hazard caused by 

radiation (Alsheikh, et al., 2015) unlike wireless signals based method. Considering the obvious advantages of mo-

bile and wearable sensor based implementation of human activity, number of studies have been proposed by lever-

aging on the data generated using these devices(J. Morales & Akopian, 2017).  

The explosion of smartphones era embedded with multi-sensor systems that enable researchers to collect 

human physiological signal for monitoring of activity of daily living, have made human motion analysis integral part 

of our daily life. Smartphones provide access to wide range of sensor such as accelerometer, gyroscope, magnetome-

ter, Bluetooth, Wi-Fi, microphones, proximity and light sensor and cellular radio sensors that can be exploited to 

infer activity details. Sensors such as accelerometer, gyroscope, magnetometer, heart rate, GPS can be deployed for 

coarse grain and context activity recognition, user location and social interaction between users. Motion sensors 

(Accelerometers, gyroscope magnetometer) provide important information that facilitate recognition and monitoring 

of users’ movement such as walking, standing or running. Similarly, proximity and light sensors embedded in mo-

bile devices to enhance user experiences can also be deployed to determine whether the user is in light or dark plac-

es(O. Incel, 2015). Other sensors such as barometers, thermometers, air humidity and pedometers have also been 

applied to maintain healthy status of elderly citizens and for assisted living(J. Gong, Cui, Xiao, & Wang, 2012). For 

instance, the pedometer found in the Samsung Galaxy smartphones and exercises tracking wearable devices are 

essential for step counts, heart rate and pulse monitoring. These are effective for important health conditions identi-

fications which may interfere with user activities (Kanaris, Kokkinis, Liotta, & Stavrou, 2017; Natarajasivan & 

Govindarajan, 2016; Zouba, Bremond, & Thonnat, 2009). 

In human activity recognition, data collection with varieties of sensors installed in mobile phone and wear-

able devices is preceded by other data analytic phases such as pre-processing, data segmentation, extraction of sali-

ent and discriminative features, and finally classification of activity details. Pre-processing involves the removal and 

representation of the raw sensor data. Different methods such as nonlinear, low pass and high pass filter, and Lapla-

cian and Gaussian filter have been utilised for pre-processing. The segmentation procedure divides the signal into 

different window sizes to extract useful features. Generally, sensor data segmentation is achieved using methods 

ranging from sliding windows,  events or energy based activities(Bulling, Blanke, & Schiele, 2014a). Next, relevant 
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feature vectors are extracted from the segmented data to determine lower set of features to minimise classification 

errors and reduce computation time. In addition, the extracted features are often further reduced through feature 

selection methods to the most discriminative features for recognition tasks. Feature vectors for human activity 

recognition can be broadly categorised into statistical and structural features (Bulling, et al., 2014a; Figo, Diniz, 

Ferreira, Jo, et al., 2010). Statistical features (mean, median, time domain, frequency domain, standard deviation, 

etc.) extract quantitative properties of sensor data while structural features use the relationship among the mobile 

sensor data for feature extraction. Likewise, dimensionality reduction reduces the dimension of the extracted fea-

tures to decrease the computational time. The dimensionality reductions widely used in human activity recognition 

are principal component analysis (PCA), linear discriminate analysis (LDA) and empirical cumulative distribution 

functions (ECDF) (Abidine, Fergani, Fergani, & Oussalah, 2016). The activity recognition and classification phases 

help to map extracted features into sets of activities using machine learning or pattern recognition methods (Bulling, 

et al., 2014b). Large varieties of machine learning techniques have played prominent roles in inferring activity de-

tails. These include the Support Vector Machine (Anguita, Ghio, Oneto, Parra, & Reyes-Ortiz, 2012; Kim & Ling, 

2009), Hidden Markov Model(Safi, Mohammed, Attal, Khalil, & Amirat, 2016), Decision Tree, K-Nearest Neigh-

bour (KNN) (Shoaib, Bosch, Incel, Scholten, & Havinga, 2016) and Gaussian Mixture Model (Rodriguez, Orrite, 

Medrano, & Makris, 2016). Studies by (Bulling, et al., 2014b; O. D. Incel, Kose, & Ersoy, 2013; Pires, Garcia, 

Pombo, & Flórez-Revuelta, 2016) provide excellent information on the human activity recognition process using 

handcrafted features with mobile and wearable sensor data. 

 Recently, to overcome the challenges associated with single sensor modalities and increase generalization,  

many studies have proposed information fusion strategies that combine multiple sensors modalities or classifiers to 

increase robustness, reliabilities, derive confidence measures among different classifiers and reduce the complexity 

of recognition system (Pires, et al., 2016). Information fusion in human activity recognition are necessitated by in-

crease in sensor of different modalities (Gravina, Alinia, Ghasemzadeh, & Fortino, 2017).  Information fusion tech-

niques are prevalent in both handcrafted features and automatic feature learning using deep learning (Habib, 

Makhoul, Darazi, & Couturier, 2016; Shoaib, Bosch, Incel, Scholten, & Havinga, 2014; C. Zhu & Sheng, 2009; 

Zouba, et al., 2009). In this review, recent works on information fusion for human activity recognition using auto-

matic feature representation were also analysed.  
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Of all the different phases of human activity recognition framework, feature extraction is the most 

important stage(Domingos, 2012).  This is because of the correlation between performances of activity recognition 

system and extraction of relevant and discriminative feature vectors. Therefore, extensive works have been done on 

how to improve human activity recognition system through extraction of expert-driven features (Figo, Diniz, 

Ferreira, Jo, et al., 2010). However, expert-driven features extraction methods depend on the knowledge of the ex-

perts or guess and applicability of the feature vectors in the problem domains. Even though, conventional handcraft-

ed features learning methods are easy to understand and have been widely utilised for activity recognition, feature 

vectors extracted using such techniques are tasks or applications dependent, and cannot be transferred to similar 

activity tasks. Furthermore, hand-engineered features cannot represent the salient characteristics of complex activi-

ties, and involve time-consuming feature selection techniques to select the optimal features (Yang, et al., 2015). 

Also, there are no universal procedures for selecting appropriate features leading to many studies resort to heuristic 

means using feature engineering knowledge approach. In the nutshell, the major challenges of conventional hand-

crafted features for mobile and wearable sensor based human activity recognition are summarised below:  

 Feature representation techniques in current human activity recognition approaches for mobile and weara-

ble sensors use carefully engineered feature extraction and selections methods that are manually extracted 

using expert domain knowledge. However, such feature extraction approach are task or applications de-

pendent and cannot be transferred to activity of similar patterns. Furthermore, carefully engineered features 

vectors are challenging to model complex activity details and involve time consuming feature selections(C. 

A. Ronao & S.-B. Cho, 2016; Yang, et al., 2015);  

 There are no universal procedures for selecting appropriate features but many studies resort to extensive 

heuristic knowledge to develop and select appropriate tasks for a given human activity recognition system 

(Zdravevski, et al., 2017); 

 Moreover, the current statistical features  such as time or frequency domain features for human activity 

recognition are unable to model and support the dynamic nature of the current seamless and ubiquitous col-

lection of mobile and wearable senor streams(M. Hasan & Roy-Chowdhury, 2015);  

 Also, human activity recognition using expert driven features require large amount of labelled training sen-

sor data to obtain accurate recognition performance. The experimental protocol to collect large amount of 

labelled training data require extensive infrastructural setup that are time consuming. On the contrary, unla-
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belled data are easy to obtain leveraging Internet of Things (IoT), smart homes and mobile crowdsourcing 

from transportation modes (Song-Mi, Sang Min, & Heeryon, 2017);  

   Other challenges of handcrafted features are the issues bothering on intra-class variability and inter-class 

similarities (Bulling, et al., 2014b). In this case, same activities may be performed differently by different 

individuals or different activities appear to have same pattern of executions. Developing generic expert 

driven features that can accurately model these issues are challenging; 

 Furthermore, human activities are hierarchical and inherently translational in nature with ambiguity in tem-

poral segmentation of sub-activities that constitute the main activity. Therefore, capturing spatial and tem-

poral variation of activities are important for accurate detection of complex activity details (Kautz, et al., 

2017); 

 To achieve diversity and robust features for human activity recognition performance generalisation across 

heterogeneous domain, approaches such as multimodal fusion and decision fusion are utilised. However, 

there still exist, uncertainties on the best fusion techniques to achieve higher generalisation with reduced 

computation time for mobile and wearable sensor implementation. 

To solve the above problems, studies have delved into techniques that involve automatic features extraction 

with less human efforts (LeCun, Bengio, & Hinton, 2015) using deep learning techniques. Deep learning, a new 

branch of machine learning that models high-level features in data, has become an important trend in human activity 

recognition. Deep learning comprises multiple layers of neural networks that represent features from low to high 

levels hierarchically. It has become a critical research area in image and object recognition, natural language pro-

cessing, machine translation and environmental monitoring (Y. Guo, et al., 2016). More recently, various deep 

learning methods have been proposed for mobile and wearable sensor based human activity recognition. These 

methods include restricted Boltzmann machine, autoencoder, sparse coding, convolutional neural network and recur-

rent neural network. These deep learning methods can be stacked into different layers to form deep learning models 

that provide enhanced system performance, flexibility, robustness and remove the need to depend on conventional 

handcrafted features. The essence of this study is to review different human activity recognition and health monitor-

ing systems in mobile and wearable sensors that utilise deep neural network for feature representations. We provide 

an extensive review of the recent developments in the field of human activity recognition for mobile and wearable 

sensors using deep learning. Specifically, we present comprehensive review of deep learning methods; taxonomy of 
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the recent studies in deep learning based activity recognition, their advantages, training procedure and popular deep 

learning software frameworks. Based on the reviewed papers, open research issues were derived, and future research 

directions are suggested. 

Deep learning and human activity recognition or activity of daily living as a separate research areas have 

been progressive areas for years. A good number of surveys and reviews have been published. However, these re-

views either focus on deep learning and their applications or activity recognition using conventional features learn-

ing methods. Furthermore, these reviews have become outdated and require urgent research to analyse the high vol-

ume of papers published in the area lately. In deep learning methods, reviews by (Angermueller, Parnamaa, Parts, & 

Stegle, 2016; Benuwa, Zhan, Ghansah, Wornyo, & Kataka, 2016; Dolmans, Loyens, Marcq, & Gijbels, 2016; 

Gawehn, Hiss, & Schneider, 2016; LeCun, et al., 2015; W. Liu, Ma, Qi, Zhao, & Chen, 2017; W. Liu, et al., 2016; 

Mamoshina, Vieira, Putin, & Zhavoronkov, 2016; Ravì, Wong, Deligianni, et al., 2017; Schmidhuber, 2015) provide 

comprehensive knowledge of the development and historical perspective. While studies such as (Ahmad, Saeed, 

Saleem, & Kamboh, 2016; Attal, et al., 2015; Bulling, et al., 2014b; Cornacchia, et al., 2017; R. Gravina, et al., 

2017; O. D. Incel, et al., 2013; Kumari, Mathew, & Syal, 2017; Onofri, et al., 2016; Pires, et al., 2016; Turaga, 

Chellappa, Subrahmanian, & Udrea, 2008) discussed the human activity and action recognition based on handcraft-

ed features, sensor fusion techniques to increase the robustness of recognition algorithms and developmental trends 

on wearable sensors for the collection of activity data. Others presented the use of handcrafted and deep learning 

based features for human activity recognition in video sensor and images (Aggarwal & Xia, 2014; Sargano, 

Angelov, & Habib, 2017; X. Xu, et al., 2013; F. Zhu, Shao, Xie, & Fang, 2016). Recently, authors (Gamboa, 2017; 

Langkvist, Karlsson, & Loutfi, 2014) reviewed deep learning for time series analysis; another closely related area in 

human activity recognition. However, the author took a broader view on the applications of deep learning in time 

series that comprises speech recognition, sleep stage classification and anomaly detection but this review focused on 

deep learning based human activity recognition using sensor data generated by mobile or wearable devices. From 

the available literature, there are no studies on review or survey of deep learning based feature representation and 

extraction for mobile and wearable sensors based on human activity recognition. To fill this gap, this review is a 

timely exploration of the processes for developing deep learning based human activity recognition and provide in-

depth tutorial on the techniques, implementation procedure and feature learning process. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The remainder of this paper is organised as follows: Section 2 discusses Comparison of deep learning fea-

ture representation and conventional handcrafted feature learning approach. Section 3 discusses the deep learning 

methods and their subdivisions. Section 4 review different representative studies in deep learning for human activity 

recognition using mobile and wearable sensors. The section is subdivided into generative feature extraction tech-

niques such as Deep Belief Network (DBN), Deep Boltzmann Machine (DBM), sparse coding, and discriminative 

feature extraction with Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid meth-

ods that combine generative and discriminative deep learning methods. The description, advantages and weakness of 

these studies are also discussed in details. Section 5 discusses the training procedure, classification and evaluation of 

deep learning for human activity recognition. Section 6 reviews common benchmark datasets for human activity 

recognition using deep learning. Section 7 includes the software frameworks for implementation of deep learning 

algorithms. Section 8 provides the open research challenges requiring further improvements and attention while 

Section 9 concludes the review. 

2. Comparison of deep learning Feature Representation and Conventional Feature Learning 

Feature extraction is a vital part of the human activity recognition process as it helps to identify lower sets 

of features from input sensor data to minimise classification errors and computational complexity. Effective perfor-

mance of Human activity recognition system depends on appropriate and efficient feature representation (Abidine, et 

al., 2016). Therefore, extraction of efficient feature vectors from mobile and wearable sensor data helps to reduce 

computation time and provide accurate recognition performance. Feature extraction can be performed manually or 

automatically based on expert knowledge. Manually engineered features follow bottom-up approaches that consist 

of data collection, signal pre-processing and segmentation, handcrafted features extraction and selection, and classi-

fication.  Manually engineered feature processes utilise appropriate domain knowledge and expert-driven approach 

to extract time domain, frequency domain and Hulbert-Huang features using Empirical mode decomposition to rep-

resent signal details (Z. L. Wang, Wu, Chen, Ghoneim, & Hossain, 2016; Zdravevski, et al., 2017). Then, appropri-

ate feature selection methods such as Minimal Redundancy Maximal Relevance, correlation based features selection 

method and RELIEF F are employed to reduce computation time and memory usage due to inability of mobile and 

wearable devices to support computational intensive applications (Bulling, et al., 2014b). Also, data dimensionality 

reduction approach such Principal Component analysis(PCA), Linear Discriminative analysis(LDA), Independent 

Component analysis(ICA) and Empirical Cumulative Distribution Function(ECDF) (Abidine, et al., 2016; Plötz, 

Hammerla, & Olivier, 2011) are utilised to further reduce features dimensionality and produce compact feature vec-

tors representations.   
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However, it is very challenging to measure the efficient performances of manually engineered features 

across different applications and also require time consuming features selection and dimensionality reduction meth-

ods specified above to obtain acceptable results(X. Li, et al., 2017; C. A. Ronao & S.-B. Cho, 2016). Moreover, the 

use of feature selection are often arbitrary and lacks generalisability or ability to model complex activity details. It is 

highly acknowledged that activity in natural environments are abstracts, hierarchical and translational in nature with 

temporal and spatial information(X. Li, et al., 2017). In order to consider these mobile and wearable sensor data 

characteristics for human activity recognition, require intensive feature extraction and selection especially for con-

tinuous sensor streams (Ordóñez & Roggen, 2016). Another pertinent issues with handcrafted features are based on 

the dimensionality reduction commonly used. For instance, principal component analysis (PCA) treat each dimen-

sionality as statistically independent and extract features based on sensor appearance, but activities are performed 

based on activity windows, and this have been found to affect recognition accuracy (Plötz, et al., 2011).  

Clearly, there is need for appropriate techniques to extract discriminative features to achieve optimal per-

formance accuracy. Recent studies in human activity recognition have observed there are no universally best dis-

criminative feature that accurately represent across dataset and applications (Capela, Lemaire, & Baddour, 2015). 

Therefore, automatic feature representations are required to enable extraction of translational invariant feature vec-

tors without reliance on domain expert knowledge. Deep learning methods for automatic feature representation pro-

vide the ability to learn features from raw sensor data with little pre-processing (LeCun, et al., 2015). Using multiple 

layer of abstraction, deep learning methods learn intricate features representation from raw sensor data and discover 

the best pattern to improve recognition performance. Recently, studies have indicated the incredible results of deep 

learning over conventional handcrafted features for human activity recognition (Ordóñez & Roggen, 2016; S. Yao, 

Hu, Zhao, Zhang, & Abdelzaher, 2017). Also, the use of automatic feature representation helps to capture local de-

pendencies and scale invariants features. Thus, deep learning provide effective means to solve the problem of intra-

class variabilities and inter-class similarities that are fundamental challenges for implementing human activity 

recognition with handcrafted features(Bulling, et al., 2014b). Furthermore, deep learning methods apply unsuper-

vised pre-training to learn structure of high dimensional sensor data to prevent overfitting. With the current influx of 

unlabelled sensor streams from Internet of Things (IoT), crowdsourcing and cyber-physical systems, implementing 

efficient human activity recognition would be very challenging without automatic feature representation from raw 

sensor data (Raffaele Gravina, et al., 2017). In Table 1, we summarised the comparison of the two approaches in 
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terms of strengths and weaknesses for mobile and wearable sensor based human activity recognition. The compari-

sons are summarised using five characteristics. These include feature representation method, generalisation, data 

preparation, changes in activity details and execution time.  

Table 1: Comparison of Deep Learning feature Representation and Conventional feature Learning 

Characteristics Deep learning based feature represen-

tation 

Conventional Feature Learning Approach 

Feature extraction 

and Representation 

Ability to learn features from raw sensors 

data and discover the most efficient pat-

terns to improve recognition accuracy 

 

Use manually engineered feature vectors that are 

applications dependent, and unable to model com-

plex activity details 

Generalisation and 

Diversity 

Helps to automatically capture spatial, 

temporal dependencies and scale invariant 

features from unlabeled raw sensor data 

Require labelled sensor data and use arbitrary fea-

ture selection, and dimensionality reduction ap-

proaches that are hardly generalizable 

Data preparations Data pre-processing and normalisation is 

not compulsory in deep learning features 

to obtain improved results 

Extract features based on sensor appearance but 

activities are performed within activity windows. 

Furthermore, manually engineered features require 

extensive data pre-processing and normalization to 

produce improved results 

Temporal and Spa-

tial changes in Ac-

tivities 

The use of hierarchical and translational 

invariant features helps to solve the prob-

lem of intra-class variabilities and inter-

class similarities inherent in handcrafted 

features.   

Handcrafted features are inefficient at handling 

inter-class variabilities and inter-class similarities.  

Model Training and 

Execution time 

Require large amount of sensor dataset to 

avoid overfitting and high computation 

intensive system, therefore require Graph-

ical Processing Unit (GPU) to speed up 

training 

Require small training data with less computation 

time and memory usage. 

 

3. Automatic Feature Extraction Using Deep Learning Methods 

Deep learning as a machine learning method and artificial intelligence techniques for feature extraction has 

come a long way since its resurgence in 2006 with the work of Hinton et al. (G. E. Hinton, S. Osindero, & Y.-W. 

Teh, 2006). The upsurge in deep learning research is fuelled by its ability to extract salient features from raw sensor 

data without relying on laboriously handcrafted features. Furthermore, in the area of human activity recognition, for 

instance, complex human activities are translational invariant and hierarchical in nature, and the same activities can 

be performed in different ways by the same participants. In some cases, activities can be a starting point for other 
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complex activities; running and jogging might not be distinguishable depending on the age and health condition for 

the person performing the activity. 

Deep learning (Bengio, 2009; G. E. Hinton, S. Osindero, & Y. W. Teh, 2006; Hollensen & Trappenberg, 

2015) is a machine learning technique that uses representational learning to discover feature representation in raw 

sensor data automatically. Unlike classical machine learning (support vector machine, k-nearest neighbour, k-mean, 

etc.) that require a human engineered feature to perform optimally (LeCun, et al., 2015). Over the years, deep learn-

ing has provided extensive applications in image recognition (Szegedy, et al., 2015), speech recognition (G. Hinton, 

et al., 2012), medicine and pharmacy (J. Ma, Sheridan, Liaw, Dahl, & Svetnik, 2015), natural language processing 

(Bordes, Chopra, & Weston, 2014; Sutskever, Vinyals, & Le, 2014) and recently in human activity recognition (Y. 

Q. Chen, Xue, & Ieee, 2015; L. Lin, et al., 2016; Rahhal, et al., 2016; C. A. Ronao & S. B. Cho, 2016; C. Vollmer, 

H. M. Gross, & J. P. Eggert, 2013). 

Deep Learning Methods

Restricted 

Boltzmann 

Machine

Autoencoder Sparse Coding
Convolutional 

Neural Network

Recurrent Neural 

Network

Deep Belief 

Network

Deep Boltzmann 

Machine

Denoising 

autoencoder

Sparse 

Autoencoder

Contrastive 

Autoencoder

Long Short 

Term Memory

Gated 

Recurrent Unit

Gated Feed Forward 

Neural Network

 

Fig. 1: Different Architecture of Deep Learning Algorithms 

Extensive number of deep learning methods (LeCun, et al., 2015; Schmidhuber, 2015) have been proposed 

recently, and these methods can be broadly classified into Restricted Boltzmann Machine, Deep Autoencoder, 

Sparse Coding, Convolutional Neural Network and Recurrent Neural Networks (Fig. 1). These methods are re-

viewed in the subsection below, outlining the characteristics, advantages and drawbacks of each method. 
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3.1 Restricted Boltzmann Machine 

 Restricted Boltzmann Machine (Fischer & Igel, 2014; G. E. Hinton & Sejnowski, 1986) is a generative 

model that serves as a building block in greedy layer by layer feature learning and training of deep neural network. 

The model is trained with contrastive divergence (CD) to provide unbiased estimates of maximum likelihood learn-

ing. However, Restricted Boltzmann Machine is difficult to converge to local minimal and variant of data represen-

tation. Furthermore, it is challenging to know how automatic adaptation parameters settings such as learning rate, 

weight decay, momentum, the size of mini-batch and sparsity can be specified to achieve optimal results (Cho, 

Raiko, & Ihler, 2011; G. E. Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012). Restricted Boltz-

mann Machine is composed of the visible unit and hidden units that are restricted to form bipartite graph for effec-

tive algorithm implementation. Therefore, weights connecting the neurons between visible units and hidden units are 

conditionally independent without visible-visible or hidden-hidden connections. To provide efficient feature extrac-

tion, several RBMs are stacked to form visible to  hidden units, and the top layers are fully connected or embedded 

with classical machine learning to discriminate features vectors (Fischer & Igel, 2014). Although, issues like 

inactive hidden neuron, class variation, intensity and sensitivity to larger dataset make training RBM difficult. Re-

cently, methods such as regularisation using noisy rectified linear unit (Nair & Hinton, 2010) and temperature based 

Restricted Boltzmann Machine (G. Li, et al., 2016) have been proposed to resovle the issue. Restricted Boltzmann 

Machine has been extensively studied in feature extraction and dimensionality reduction (G. E. Hinton & 

Salakhutdinov, 2006), modelling high dimensional data in video and motion sensors (Taylor, Hinton, & Roweis, 

2007), movie rating (Salakhutdinov, Mnih, & Hinton, 2007) and speech recognition (Mohamed & Hinton, 2010). 

Two well know Restricted Boltzmann Machine methods in literature are Deep Belief Network and Deep Boltzmann 

Machine (See Fig. 2). 

 Deep Belief Network (G. E. Hinton, et al., 2006) is a deep learning algorithm trained in a greedy-wise layer 

manner by stacking several Restricted Boltzmann to extract hierarchical features from raw sensor data. Deep Belief 

Network has directed connection between the lower layer and undirected connection at the top layer that helps to 

model observed distribution between the vectors space and hidden layers. Likewise, training involves layer by layer 

at a time with weight fine-tuning using contrastive convergence (CD). Then, the conditional probability distribution 
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of the data is computed to  learn robust features that are invariant to transformation, noise and displacement (G. E. 

Hinton, et al., 2006). 

Deep Boltzmann Machine (DBM) (Salakhutdinov & Hinton, 2009; Salakhutdinov & Larochelle, 2010) is a 

generative model with several hidden layers in undirected connection in the entire network layers. DBM hierarchi-

cally learns features from data in which features learned in the first layer are used as latent variables in the next 

layer. Similar to deep belief network (DBN), Deep Boltzmann machine deploys Markov random field for layer by 

layer pre-training of massive unlabelled data and provide feedback using bottom-up pass approach. Furthermore, 

the algorithm is fined through back propagation approach. Fine-tuning allows variation inference and the algorithm 

to be deployed in specific classification or activity recognition task. Training RBM (Salakhutdinov & Hinton, 

2012; Salakhutdinov & Larochelle, 2010) involves maximising the lower bound of likelihood with stochastic max-

imum likelihood algorithms (Younes, 1999). In this case, training strategies need to adopt a way to determine the 

training statistics, weight initialization and update after each mini-batch by replacing stochastic binary values with 

deterministic real probabilities. The major drawback that has been observed in DBM is the time complexity with 

higher optimisation parameters. In (Montavon & Müller, 2012), a centring optimisation method was proposed for 

stable learning algorithms and Midsized DBM for faster and good generative and discriminative model. 

Visible Layer Hidden Layer1 Hidden Layer N-1 Hidden Layer N Visible Layer Hidden Layer1 Hidden Layer N-1 Hidden Layer N

 

(a)    (b) 

Fig. 2: Representation of Restricted Boltzmann Machine: (a) Deep Belief Network (b) Deep Boltzmann Machine 

3.2 Deep Autoencoder 

The autoencoder method replicates the copies of the input value as output as shown in Fig. 3. Using 

encoder and decoding units, autoencoder methods produces the most discriminative features from unlabeled sensor 
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data by projecting them to lower dimensional space. The encoder transforms the sensor data input into hidden fea-

tures which are then reconstructed by the decoder to approximate values to minimise error rates (Liou, Cheng, Liou, 

& Liou, 2014; Lukun Wang, 2016). The method provides data-driven learning feature extraction techniques to avoid 

problems inherent in handcrafted features. Training autoencoder is done in such a way that the hidden units are 

smaller than the inputs or outputs to provide a lower dimensional discriminative feature for recognition of activities 

with reduced computation time (Ravì, Wong, Deligianni, et al., 2017). Moreover, autoencoder algorithm uses multi-

ple layer of encoder units to transform high dimensional data into the low dimensional feature vectors.  Autoencoder 

algorithm is pre-trained using restricted Boltzmann machine due to its complexity (G. E. Hinton & Salakhutdinov, 

2006) and then obtains higher feature representations by stacking several level of autoencoder algorithms (Jie 

Zhang, Shan, Kan, & Chen, 2014). Generally, different variations of autoencoder have been proposed to ensure 

robust features representation for machine learning applications. These include denoising autoencoder, sparse auto-

encoder and contractive autoencoder. 

 Denoising autoencoder was first introduced by Vincent et al. (Vincent, Larochelle, Bengio, & Manzagol, 2008) 

as method to  stochastically learn robust feature representation from corrupted version of data (e.g sensor values) by 

partial destruction of the raw input sample. Thus, denoising autoencoder is trained to reconstruct sample input data 

from corrupted version by forcing random sample values of the data to zero through stochastic mapping. Similar to 

other unsupervised deep learning model, denoising autoencoder is trained through layer to layer initialisation. Each 

layer of the network is trained to produce input data of the next higher level layer representation. The layer to layer 

training ensure that autoencoder network is able to capture robust structure and observed statistical dependencies 

and regularities about input data distributions. Moreover,  stacked denoising autoencoder can be stacked to learn 

useful representation of corrupted version of input sample data which have been found to give less classification 

error (Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010), and this was recently applied to recognise complex 

activities (Oyedotun & Khashman, 2016). 

Sparse autoencoder (Marc’Aurelio Ranzato, et al., 2007) is unsupervised deep learning model developed for 

sparse and over-complete feature  representation from input data by forcing  sparsity term to the model loss function 

and set some of the active units  close to zero. Sparse autoencoder is highly applicable in tasks that require analysis 

of high dimensional and complex input data such as motion sensors, images and videos. Generally, the use of sparsi-
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ty term allow the model to learn feature representation that are robust, linearly separable and invariant to changes, 

distortion, displacements and  learning applications(Zhou, et al., 2015). Therefore, sparse autoencoder model is very 

efficient for extraction of low dimensional features from high dimensional input data and compact interpretation of 

complex input data using supervised learning approach(H. Liu & Taniguchi, 2014).  

 Recently,  Rifai, Vincent, Muller, Glorot, and Bengio (2011)  propose contrative autoencoder by introducing 

penalty term of partial derivatives for efficient feature representation. The use of sum of square of all partial deriva-

tives for the feature vectors with respect to size of input data, force the features within neighbourhood of the input 

data(Dauphin, et al., 2012). Furthermore, penalty term reduces the dimensional feature space with the training da-

tasets and makes it invariant to changes and distortion. Contractive autoencoder is similar to denoising autoencoder 

as both apply penalty term to the small corrupted data sample. However, unlike the denoising autoencoder, the con-

tractive autoencoder applies an analytic penalty to the whole data instead of the encoding input sample (Mesnil, et 

al., 2012). Section 4.1.3 discusses the applications of autoencoder in mobile and wearable sensor based human activ-

ity recognition and health monitoring.  

INPUT OUTPUT

ENCODE DECODE

 

Fig. 3: Deep Autoencoder encoding and decoding process 

3.3 Sparse Coding 
Sparse coding was first proposed by (Olshausen & Field, 1997) as a machine learning technique for learn-

ing over-complete basis in order to produce efficient data representation. Sparse coding provides an effective means 

of reducing the dimensionality of data and dynamically represent the data as a linear combination of basis vectors. 

This enable sparse coding model captures the data structure and determines correlations between various input vec-
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tors(Y. Guo, et al., 2016). Recently, some studies have proposed sparse coding methods to learn data representation 

particularly in human activity recognition. These include the shift-invariant method (C. Vollmer, H.-M. Gross, & J. 

P. Eggert, 2013) and sparse fusion (Ding, Lei, & Rao, 2016). These algorithms provide feature dimensionality re-

duction strategies to reduce computational complexities for implementation of human activity recognition system 

using mobile phone and wearable devices. 

3.4 Convolutional Neural Network 

Convolutional Neural Network (CNN) (LeCun, Huang, & Bottou, 2004) is a Deep Neural Network with in-

terconnected structures. A convolutional neural network performs convolution operations on raw data (e.g. sensor 

values) and is one of the most researched deep learning techniques which has found extensive applications in image 

classification, sentence modelling, speech recognition and recently in mobile and wearable sensors based human 

activity recognition (Y. Guo, et al., 2016; Karpathy, Johnson, & Fei-Fei, 2015; C. A. Ronao & S.-B. Cho, 2016). 

Generally, convolutional neural network model is composed of convolutional layer, pooling layer and fully connect-

ed layer. These layers are stacked to form deep architecture for automatic feature extraction in raw sensor data 

(Ordóñez & Roggen, 2016; Limin Wang, Qiao, & Tang, 2015). The convolutional layer captures the feature maps 

with different kernel sizes and strides and then pooled the features maps together in order to reduce the number of 

connections between the convolutional layer and the pooling layer. The pooling layer reduces the feature maps, 

number of parameters and makes the network translational invariant to changes and distortion. In the past, different 

pooling strategies have been proposed for Convolutional Neural Network implementation in various area of applica-

tions. These include max pooling, average pooling, stochastic pooling and spatial pooling units (Y. Guo, et al., 

2016). Recently, theoretical analysis and performance evaluations of these pooling strategies have shown superior 

performance of max pooling strategies. Thus, max pooling strategy is extensively applied in deep learning training 

(Boureau, Ponce, & LeCun, 2010; Scherer, Müller, & Behnke, 2010). Moreover, recent studies human activity 

recognition also applies max pooling strategies due to its robustness to small changes (Kautz, et al., 2017; G. Liu, 

Liang, Lan, Hao, & Chen, 2016). However, studies in time series analysis with deep learning observed reduction in 

discriminative ability of max pooling strategies (Abdel-Hamid, Deng, & Yu, 2013). Therefore, further experimental 

analysis and evaluation is required to ascertain the effectives of these pooling strategies in human activity recogni-

tion and time series applications.  
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The fully connected layer is fused with the inference engine such as SoftMax, Support Vector Machine or 

Hidden Markov Model that takes the features vectors from sensor data for activity recognition (Erfani, Rajasegarar, 

Karunasekera, & Leckie, 2016; C. A. Ronao & S.-B. Cho, 2016; Ronaoo & Cho, 2015). In CNN, activation unit 

values are computed for each region of the network in order to learn patterns across the input data(Ordóñez & 

Roggen, 2016). The output of convolutional operation is computed as 

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the layer index, σ is the activation function, b is the bias term for the feature map, M is the kernel/filter size, W is the 

weight of the feature map. The weight may be shared to reduce complexity and make the network easy to train. 

Generally, idea of convolutional neural network (CNN) was inspired by (Hubel & Wiesel, 1962) which noted that 

the human visual cortex consists of maps of the local receptive field that decrease in granularity as the cortex move 

along the receptive fields. Since the proposal, a number of other CNN architectures have been developed by re-

searchers. These include the AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), VGG (Krizhevsky, et al., 2012) and 

GoogleNet (Szegedy, et al., 2015).  

Recently, CNN architectures that combine other deep learning techniques or fusion of different CNN archi-

tectures (Jing, Wang, Zhao, & Wang, 2017; Ordóñez & Roggen, 2016) were also proposed. For instance, (Ordóñez 

& Roggen, 2016) proposes DeepConvLSTM, an architecture that replaces the pooling layer of the convolutional 

neural network with Long Short Term Memory (LSTM) of the recurrent neural network. Also, convolutional deep 

belief networks (CDBN) was developed by (Lee, Grosse, Ranganath, & Ng, 2009) which exploit the power of dis-

criminative CNN and pre-training technique of Deep Belief Network. Furthermore, Masci et al (Masci, Meier, 

Cireşan, & Schmidhuber, 2011) proposed deep convolutional autoencoder for feature learning by integrating convo-

lution neural network and autoencoder trained with online stochastic gradient descent optimisation. The architecture 

of Convolutional neural network is shown in Fig. 4. 

3.5 Recurrent Neural Network 

 Recurrent neural network (RNN) was developed to model sequential data such as time series or raw sensor data 

(Fig. 5). RNN incorporates a temporal layer to capture sequential information and then learns complex changes 

using the hidden unit of the recurrent cell. The hidden unit cells can change based on the information available to the 

network, and this information is constantly updated to reflect the current status of the network. RNN computes the 
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current hidden state by estimating the next hidden state as activation of the previously hidden state. However, the 

model is difficult to train and suffer from vanishing or exploding gradients limiting its application for modelling 

long  time activity sequence and temporal dependencies in sensor data (Guan & Ploetz, 2017). Variations of RNN 

such as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) integrate varieties of gates and 

memory cells to capture temporal activity sequence(Graves, 2013).  Long Short Term Memory (Hochreiter & 

Schmidhuber, 1997) incorporated memory cell to store contextual information, thereby control flow of information 

into the network. With the inclusion of memory cells such input gate, function gate and output gate alongside learn-

able weights, allow LSTM model temporal dependencies in sequential data and adequately capture global features to 

boost recognition accuracy (Zaremba, 2015).  

Convolutional and Pooling Layer

Subsampling and feature pooling

Fully Connected Layer

Inputs Walking

Sitting

Running

Walking 
Upstars

Standing

 

Fig. 4: Deep Convolutional Neural Network 

Despite the advantages inherent in LSTM, Cho, et al. (2014) observed that  issues of too many parameters 

that need to be updated during training increases computational complexity of LSTM. To reduce parameter update, 

they introduced Gated recurrent units with fewer parameters that make it faster and less complex to implement. 

LSTM and Gated Recurrent Unit (GRU) differ in the way the next hidden state are updated and  contents exposure 

mechanism (Valipour, Siam, Jagersand, & Ray, 2016). While LSTM updates by summation operation, GRU updates 
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the next hidden state by taking correlation based on the amount of time needed to keep such information in the 

memory. Moreover, recent comparative  analysis of the performance of LSTM and GRU shown that GRU slightly 

outperformed LSTM in most of machine learning applications (Chung, Gulcehre, Cho, & Bengio, 2014). An attempt 

has also been made to improve on GRU by reducing the number of gates in the network and introduce only multipli-

cative gates to control the flow of information (Y. Gao & Glowacka, 2016). The algorithm was compared with 

LSTM and GRU, and it outperformed them in terms of memory requirement and computational time. Recently,  

Chung, Gülçehre, Cho, and Bengio (2015) proposed  Gated Feedback Recurrent Neural Network (GF-RNN) to 

solve the problem of learning at multiplicative scale. This learning process is very challenging in application area 

such as language modelling and programming language sequence evaluation. Specifically, Gated Feedback Recur-

rent Neural Networks is developed by stacking multiple recurrent layers and allow control of the signal flowing 

from upper layer to the lower layer. The mechanism is done by adaptively controlling based on the previously hid-

den state and assign different layer with different timescale.  However, GF-RNN is not popular in human activity 

recognition. For all the studies review, we find no specific work that apply GF-RNN for human activity. Therefore, 

the model is omitted in our review of dep learning based human activity recognition in Section 4.2.2.  
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Fig. 5: Simple Recurrent Neural Network 

3.6 Strengths and Weaknesses of different deep learning methods  

In this section, we compare these methods discussed above noting their strengths and weaknesses for mobile and 

wearable based human activity recognition. The different deep learning methods discussed in this review have pro-
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duce state-of-arts performances in mobile and wearable sensor based human activity recognition (section 4). The 

main advantage of deep learning is the ability to automatically learn from unlabelled raw sensor data. However, 

these methods provide different capabilities for sensor stream processing. For instance, Restricted Boltzmann ma-

chine algorithms are efficient for automatic and efficient unsupervised transformation of sensor data into feature 

vector using layer by layer training leveraging unlabelled data. Also, the methods allow robust feature vectors ex-

traction. Nevertheless, Restricted Boltzmann machine presents major drawback such as high parameter initialisation 

that make training computationally expensive. Considering the computation capabilities of mobile and wearable 

sensor devices, it is difficult to support on-board and real-time activity recognition (Yalçın, 2016). On the other 

hand, Deep autoencoder are efficient for unsupervised feature transformation into lower feature vectors automatical-

ly from raw sensor data. Specifically, deep autoencoder methods are trained using greedy layer by layer approach 

for unsupervised feature learning from continuous sensor streams. Deep autoencoder algorithms are robust to noisy 

sensor data with ability to learn hierarchical and complex features from sensor data.  However, the major drawbacks 

of deep autoencoder are the inability to search for optimal solutions and high computation time due to high parame-

ter tuning. While sparse coding methods are efficient for reduction of high dimensional sensor data into linear com-

bination feature vectors and ensure compact representation of features. Moreover, sparse coding is invariant to sen-

sor transformation and orientation, and effective for modelling changes in activity progression(M. Zhang & 

Sawchuk, 2013). Change in sensor orientation is big challenges in human activity recognition system especially for 

smartphone accelerometers(O. Incel, 2015). In this, accelerometer signal produce by smartphone or wearable devic-

es change with variations in orientation and placement positions.  Nevertheless, it is still challenging to effectively 

perform unsupervised features learning with sparse coding. Convolutional Neural Network are capable of learning 

deep feature vectors from sensor data for modelling complex and high dimensional sensor data. The main advantage 

of CNN is the ability to use pooling layer to reduce training data dimensions and make it translational invariant to 

changes and distortion(C. A. Ronao & S.-B. Cho, 2016). The algorithms is capable of learning long range and repet-

itive activities through multi-channel approach (Zeng, et al., 2014). Convolutional Neural Networks are more in-

clined for image processing, therefore, sensor data are converted to image description to support extraction of dis-

criminative features (Sathyanarayana, Joty, Fernandez-Luque, Ofli, Srivastava, Elmagarmid, Taheri, et al., 2016). 

Convolutional Neural Network are deployed to solve the problem of uncertainty in sensor measurement and con-

flicting correlation in high dimensional sensor data. However, CNN require high number of hyper-parameter tuning 
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to achieve optimal features. Furthermore, it is challenging to support effective on-board recognition of complex 

activity details.  Section 4.2.1 provide comprehensive review of Convolutional Neural Networks implementation for 

human activity recognition. Finally, Recurrent Neural Networks are applied to model temporal dynamics in sensor 

data, thus enable modelling of complex activity details. RNN such as Long Short Term Memory are efficient at 

creating global temporal dependencies in sensor data. The major issue in Recurrent Neural Networks especially long 

short term memory is the high computation time due to large number of parameter update. Techniques such as high 

throughput parameter update approach may help to reduce computation time(Inoue, Inoue, & Nishida, 2016).   
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Table 2 summarises the recent applications domain in mobile and wearable sensor based human activity recogni-

tion, strength and weakness of each deep learning methods, placing emphasis on sensor data processing. Further-

more, the categorisation of each method for human activity recognition is presented in section 4.  
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Table 2: Deep Learning methods 

Methods Descriptions Strengths Weaknesses Recent Application in 

Human activity moni-

toring and Detection 

Deep Belief 

Network  

Has directed connection 

at the lower layer and 

undirected connection 

at two topmost layer 

Unsupervised training with 

unlabelled sensor streams  

which is naturally available 

through cyber-physical sys-

tems and Internet of Things 

and initialisation prevent 

convergence at local minima  

Mobile and wearable sensor on-

board training of the network is 

computationally complex due to 

extensive parameters 

initialization process 

Activity of daily living (ADL) 

localisation, detection of 

posture and hand gestures 

activities in Alzheimer.  

Deep Boltz-

mann Machine  

Has undirected connec-

tion at every layer of 

the network 

Allow feedback mechanism 

for more robust feature ex-

traction through unsupervised 

training.   

Due to resource constraint 

nature of mobile devices, Joint 

optimisations are required to 

reduce operation overhead and 

execution cost. However, DBM 

joint optimisation is practically 

difficult to achieve 

Diagnosis of emotional state 

in elderly and detection of 

irregular heartbeats during 

intensive exercise. 

Denoising 

autoencoder  

Enable correct recon-

struction of corrupted 

input values 

Robust to corrupted sensor 

data streams  

High computational time, lack 

of scalability to high dimen-

sional data, rely on iterative and 

numerical optimisation and 

high parameter tuning (M. 

Chen, Xu, Weinberger, & Sha, 

2012) 

Automatic detection of activi-

ty of daily living (ADL). 

Sparse Auto-

encoder  

Impose sparsity term to 

the loss function to 

produce robust features 

that are invariant to 

learning applications 

Produce more linearly sepa-

rable features 

High computational time due to 

numerous forward pass for 

every example of the data 

sample (Ng, 2011) 

Health rate analysis during 

intensive sports activities and 

health monitoring 

Contractive 

autoencoder  

Add analytic penalty 

instead of the stochastic 

penalty to the recon-

struction error functions 

Reduced dimensional fea-

tures space and is invariant to 

changes and local dependen-

cies 

Difficult to optimise and greedy 

pre-training does not find stable 

nonlinear features especially for 

one layer autoencoder (Schulz, 

Cho, Raiko, & Behnke, 2015) 

Activity of daily living(ADL), 

user location and activity 

context recommendations 

Sparse Coding  Over-complete basis for 

reducing the dimen-

sionality of data as 

linear combination of 

basis vector 

The use of sparse coding 

method for dimensionality 

reduction of input data helps 

to minimise computational 

complexity 

Efficient handling and compu-

tation of feature vectors are 

non-trivial (Harandi, Sanderson, 

Hartley, & Lovell, 2012). It is 

also difficult to develop deep 

architecture with sparse coding 

(He, Kavukcuoglu, Wang, 

Szlam, & Qi, 2014) 

Representation of energy 

related and health monitoring 

smart homes and Activity of 

daily living(ADL) 

Convolutional 

Neural Net-

Deep neural network 

with interconnected 

Widely implemented in deep 

learning with a lot of training 

Require large dataset and high 

number of hyper-parameter 

Predict relationship between 

exercises and sleep patterns, 
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Methods Descriptions Strengths Weaknesses Recent Application in 

Human activity moni-

toring and Detection 

work structure inspired by 

biological visual cortex 

strategies proposed. Auto-

matically learn features from 

raw sensor data. Moreover, 

CNN is invariant to sensor 

data orientation and change 

in activity details.  

tuning to achieve optimal fea-

tures. Maybe difficult to sup-

port effective on-board recogni-

tion of complex activity details.  

automatic pain recognition 

during strenuous sports activi-

ties, energy expenditure 

estimation and tracking of 

personal activities.  

Recurrent 

Neural Net-

work 

Neural network for 

modelling sequential 

time series data. Incor-

porate temporal layer to 

learn complex changes 

in data 

Used to model time depend-

encies in data 

Difficult to train and suffer 

from vanishing or exploding 

gradients. In case of LSTM, 

require too many parameter 

updates. Large parameter up-

date is challenging for real-time 

activity predictions.  

Model temporal patterns in 

activity of daily living (ADL), 

progressive detection of 

activity levels, fall and heart 

failures in elderly.  

4. Deep Learning Approaches for Human Activity Recognition Using Mobile 

and Wearable Sensor Data 
Research on the use of deep learning for feature representations and classification is growing rapidly. Generally, 

deep learning methods can be subdivided into generative model, discriminative model and hybrid model (Deng, 

2014). These subdivisions are presented in Fig. 6 . The generative models are graphical models that represent inde-

pendent or dependent distributions in sensor data where graphs node represent the random variable of the given 

sensor data and arc represent the relationship between variables. Generative models capture higher order correlation 

by identifying joint statistical distributions with associated class. Moreover, generative models use unlabeled da-

tasets that are pre-trained with greedy layer by layer approach and then fine-tuned with labelled data which is then 

classified with classical machine learning such as Support Vector Machine (SVM) or HMM (Bengio, 2009; Hodo, 

Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017; Mamoshina, et al., 2016). Among deep learning methods in 

these categories are Restricted Boltzmann, Autoencoder, Sparse Coding and Deep Gaussian Mixture. In the case of 

the discriminative models, the posterior distribution provides discriminative power in classification and modelling of 

label sensor data. A convolutional neural network is an important category of discriminative deep learning model 

(Mamoshina, et al., 2016). Others are Recurrent Neural Network, Artificial Hydrocarbon and Deep Neural Model. 

Conversely, hybrid models are used to classify data by deploying the feature output generated by generative models. 

This involves pre-training of the data to enhance computational time and then classify with classical machine learn-
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ing algorithms. The generative model reinforces hybrid models through optimisation and regularisation procedures 

(Deng, 2014). In this review, the studies categorised as a hybrid models are those that combine generative and dis-

criminative or both methods for human activity recognition. Notable examples in this area are Convolutional Re-

stricted Boltzmann Machine(Sarkar, Reddy, Dorgan, Fidopiastis, & Giering, 2016), Convolutional Recurrent Neural 

Network (Ordóñez & Roggen, 2016) and an ensemble of homogenous convolutional neural network features (Ijjina 

& Mohan, 2016). 

In human activity recognition, deep learning is used in diverse tasks such as estimating changes in the 

movement pattern for the elderly (Yi, Cheng, & Xu, 2017), labelling of human activity sequence(R. Yao, Lin, Shi, 

& Ranasinghe, 2017), recognition of emotion in people in need using electroencephalogram (EEG) (Yanagimoto & 

Sugimoto, 2016) and health anomaly detection using physiological signals. To efficiently achieve these, require 

automatic feature representation. Therefore, deep learning methods provide effective features representation ap-

proach to improve classification errors and reduce computational complexity in human activity recognition. For 

instance, the variants of Restricted Boltzmann Machine methods play vital role in features dimension reduction and 

automatically discover discriminative features using a layer by layer pre-training to increase recognition accuracy. 

Restricted Boltzmann Machine provides an excellent method for learning improved features from unlabeled data 

and then pre-trained for complex activity recognition. The high-order dependencies and localisation among group 

activities features are extracted with different deep learning methods (Alsheikh, et al., 2015).  

Sensor data processing are classical time series learning and require high input sensor data adaptation to 

enable efficient processing. Mobile and wearable sensor data generate time series sensor data in one dimension (1D) 

(Zeng, et al., 2014). It is challenging to processing motion sensor with high dimensional deep learning architectures. 

Two approaches have been proposed to convert the sensor streams to fit into deep learning algorithms. These in-

clude channel or model based approaches. Channel based approach utilise the sensor dimension as the dimension of 

the network architecture and extract features from each axis for activity recognition and fall detection (Khan & 

Taati, 2017; Ordóñez & Roggen, 2016). The sensor axes are used to perform 1D convolution for extraction of salient 

feature and then combined at the fully connected layers (Sathyanarayana, Joty, Fernandez-Luque, Ofli, Srivastava, 

Elmagarmid, Arora, et al., 2016). Model based methods use temporal correlation of sensor data to convert the sensor 

data into 2-D image descriptions and apply 2-D convolution operation to extract features. These are common in 
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Convolutional Neural Network for human activity recognition (Jiang & Yin, 2015; Ravì, Wong, Lo, & Yang, 2017). 

For instance, Ravì, Wong, Lo, et al. (2017) propose spectrogram representation to transform the motion sensor data 

(accelerometer and gyroscope) into local temporal convolution to reduce computational complexity. The types of 

input adaptation employ for motion sensor in human activity recognition depends application domains. Other works 

modified the convolutional kernel of Convolutional Neural Network to capture temporal dependencies from multiple 

sensors (Yuqing Chen & Xue, 2015). Therefore, previous studies on deep learning implementation for human activi-

ty recognition adopt these input data adaptation approaches to automatically extract relevant features from raw sen-

sor data. 

In this section, we discuss recent studies for deep learning implementation of human activity recognition 

for mobile and wearable sensors.  In Fig. 6, these methods are depicted while subsequent sections outline their 

uniqueness for feature extraction in mobile and wearable sensor based human activity recognition.  
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Fig. 6: Taxonomy of Recent Deep Learning Methods for Human Activity Recognition 

4.1 Generative Deep Learning Methods 

As stated earlier, generative deep learning methods model independent or dependent distributions in data and 

high order correlation by identifying the joint statistical distribution with associated classes. In the past decade, vari-

ous studies have been conducted using generative feature extraction models for human activity recognition. Here, 

we analysed these and their implementation advantages 

4.1.1 Deep Restricted Boltzmann Machine methods 

 Pioneering the use of deep learning based generative feature extraction for human activity recognition was 

started by (Plötz, et al., 2011) when they proposed the performance evaluation of different generative feature extrac-

tion and dimensionality reduction techniques such as autoencoder, principal component analysis, empirical cumula-

tive distribution function and statistical features. An extensive experiment using sensor based on public datasets 

showed that autoencoder outperforms other feature extraction techniques including handcrafted features. A number 

of other deep learning methods for human activity recognition have since followed suit. For instance, the deep belief 
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network proposed by (Geoffrey E Hinton, et al., 2006) was used to extract hierarchical features from motion sensor 

data and then model stochastic temporal activity sequence using Hidden Markov Model(Alsheikh, Niyato, Lin, Tan, 

& Han, 2016). The work was later extended for on-board mobile phone implementation using mobile Spark plat-

form (Alsheikh, et al., 2016). Also, studies by (Yalçın, 2016; L. Zhang, Wu, & Luo, 2015a)  introduce deep belief 

network for online and real-time feature extraction for human activity recognition. However, due to the 

computationally intensive nature of deep learning, the algorithm was trained offline with generative backpropaga-

tion initialized parameters and activity classification done with SoftMax Regression. Deep learning has also provid-

ed feature representation for the online classification task, contextual information provision for sensor and real-time 

recognition of simple to complex activities details using datasets collected with the aid of mobile devices (L. Zhang, 

Wu, & Luo, 2015a, 2015b; L. Zhang, et al., 2015a; L. Zhang, Wu, & Luo, 2015b). However, the use of large win-

dow size and storing previous data to provide contextual information in some of the studies aid increased computa-

tional time and memory usage. Deep Belief Network has also provided excellent means to model temporal depend-

encies and observable posterior distribution in sensor data with Hidden Markov model for diagnosis and recognition 

of emotions state in  elderly using wearable sensor worn on the patients’ scalp (X. Jia, Li, Li, & Zhang, 2014; L. 

Zhang, et al., 2015b).  Also, Z. Y. Wu, Ding, and Zhang (2016) proposed unsupervised feature extraction and recog-

nition of irregular heart beat during intensive exercise by stacking various layers of Restricted Boltzmann machine. 

The stacked layers enable hierarchical extraction of discriminative features that clearly describe complex activity 

details. The objective is to provide automatic health monitoring in special cases such as brain activity detection 

(Electroencephalogram), eye movement (Electrocochleogram), skeletal muscle activity (Electromyogram) and heart 

rate (Electrocardiogram). This will ensure appropriate independent living and overall health status for the elderly 

(Längkvist, Karlsson, & Loutfi, 2012; Z. Y. Wu, et al., 2016; H. Xu & Plataniotis, 2016). 

 Y. Zhao and He (2014) explored  implementation of  deep Restricted Boltzmann Machine  for detection of 

hand activity in elderly with Alzheimer’s disease using Electroencephalogram dataset collected with wearable de-

vices worn by patients. They leverage on incremental learning and support vector machine to classify what features 

may lead to accurate diagnosis of the disease. In recent study, S. Bhattacharya and Lane (2016) investigated 

smartwatch-centric activity recognition and the possibility of implementing deep learning in wearable devices. They 

concluded that GPU-enabled smartwatch could provide deep learning implementation. The framework implemented 

on Snapdragon 400 SoC wristwatch achieved high accuracy for common daily activity such as hand gesture, in-
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door/outdoor localisation, and transport model using public datasets. Another key study was presented by H. Fang 

and Hu (2014), to learn automatic features for recognition of human activities in constrained environment. The da-

taset was gathered for a fifty (50) day period, leveraging on current and previous activity, and the duration of the 

activity to ascertain the individual activities. The problem of recognising interleaved and overlapped activities was 

examined by Radu, et al. (2016), for  multimodal and  Deep Boltzmann Machine  based human activity recognition 

using pattern mining. With this, the unannotated activity can be discovered by deploying sensors of different mo-

dalities. 

4.1.2 Deep Autoencoder Methods 

Autoencoder, another generative feature learning technique has also dominated human activity recognition 

landscape. For instance, Plötz, et al. (2011) had earlier argued the superiority of autoencoder over PCA, ECDF and 

statistical feature extraction methods. Other researchers have also developed autoencoder techniques for human 

activity recognition. Recent studies by (Mahmudul Hasan & Roy-Chowdhury, 2014; M. Hasan & Roy-Chowdhury, 

2015) propose the use of sparse autoencoder for human activity recognition. The algorithm was proposed to learn 

features from continuous data streams and then activity details were classified using multi-logistic regression classi-

fier (SoftMax). Learning of features in stream sensors are very challenging due to the scarcity of label data, class 

invariant and concept drift. However, with incremental learning and sparse autoencoder, they automatically learn 

features without relying on manually annotated data. Performance evaluation of sparse autoencoder, deep autoen-

coder and principal component analysis was examined by (H. Liu & Taniguchi, 2014). They observed that the use 

high depth deep sparse autoencoder enable extraction of more discriminative features compared to deep autoencoder 

and PCA using a dataset from CMU Lab. In Y. Li, Shi, Ding, and Liu (2014), three basic autoencoder methods were 

evaluated for human activity recognition from data collected using smartphones. They concluded that sparse autoen-

coder outperformed other feature learning techniques in terms of accuracy. However, due to the small size of the 

smartphone dataset and computational platform used in the study, the performance cannot be accurately generalised. 

Similarly,  Harasimowicz (2014) evaluated effects of pre-processing  on the performance of generative models for 

feature extraction, examining algorithms comparatively using sparse autoencoder and concluded that pre-processing  

has a strong influence on the performance of activity classification especially normalisation techniques. 

Besides works that parameters evaluation of autoencoder for and preprocessing for human activity recogniton, 

other studies have further examined mobile based implementation of stacked autoencoder for human motion 
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analysis using motion sensors (accelerometer, gyroscope, gravity sensors etc.) with high performance 

accuracy(Zhou, et al., 2015). Similarly, Lukun Wang (2016) extracts features from the accelerometer and magnetic 

sensors using continuous autoencoder for the development of automatic human activity recognition. The proposed 

continuous autoencoder adds randomness and converts the high dimension inputs into low dimensional vectors by 

encoding and decoding process at the hidden layers. To increase the learning rate of the algorithm, stochastic gradi-

ent descent optimisation was introduced in the hidden layer, and the algorithm was compared with statistical features 

with enhanced performance obtained. Shared-based autoencoder for separation of multiple input modalities sensors 

into hierarchical component was proposed by(A. Shahroudy, Liu, Ng, & Wang, 2016). In the study, factorised input 

modalities were stacked to convert complex and nonlinear input representation into linear vectors for classification. 

The main advantage of this method is its robustness to noise and ability to extract hierarchical and complex features. 

Furthermore,  Zhou, et al. (2015) proposed stacked autoencoder for feature extraction for Android smartphone based 

motion recognition using sensor data modalities with high-performance accuracy. In addition to checking human 

activity to promote a healthy life, mobile sensor data can further help in the diagnosis of lifestyle related illnesses. 

Related work for such application was recently proposed by(Unger, Bar, Shapira, & Rokach, 2016) using stacked 

autoencoder. The proposed stacked autoencoder was developed for recognition and recommendation of online based 

activity leveraging mobile sensor data. The deep learning method helped to reduce the dimensionality of the data 

and select the feature that best provides the context-aware recommendation, user location and users preference. 

Stacked autoencoder has also been extended to generate a sequence of time series to characterise human movement 

pattern based on time elapse window properties (Munoz-Organero & Ruiz-Blazquez, 2017). Related implementation 

for fall detection using sensor data generated by radar was presented in (Jokanovic, Amin, & Ahmad, 2016). The 

stacked autoencoder provides mechanism to reduce the dimensionality of the data into lower dimensional features 

that are feed into SoftMax regression for fall identification. The use of dimensionality reduction strategies helps to 

reduce computational complexity notably for mobile based implementation. 

 Stacked denoising autoencoder when combined with active learning provide excellent means for automatic la-

belling and feature extraction for activity recognition and heart rate analysis during intensive exercise. Moreover, 

stacked denoising autoencoder implementation are important for morbidity rate prediction(Al Rahhal, et al., 2016; 

Q. Song, Y.-J. Zheng, Y. Xue, W.-G. Sheng, & M.-R. Zhao, 2017). There is a great need to enable independent 

living for elderly in different parts of the world due to the high rate of ageing populations. With such assistance, 
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elderly citizens can function optimally by utilising sensor-equipped smart homes. One major challenge is how to 

increase the performance of the algorithm and automatically extract feature vectors. More so, obtaining labelled data 

that will be exploited by features engineers is difficult. To solve the problem and improve the performance of human 

activity recognition in the smart home environment,  A. Wang, Chen, Shang, Zhang, and Liu (2016) proposed de-

noising autoencoder techniques to learn underlying feature representation in sensor data and then integrate it with a 

classifier trained into single architecture to obtain powerful recognition model. In general, autoencoder methods 

have demonstrated excellent approaches for automatic feature representation to learn latent feature representation for 

human activity monitoring and detection approach. Generally, stacked autoencoder provide compact feature repre-

sentation from continuous unlabelled sensor streams to enable robust and seamless implementation of human activi-

ty recognition system. 

4.1.3 Sparse Coding methods 

Sparse coding proposed in (Olshausen & Field, 1997) provides a means to reduce sensor data dimension and 

represent them as an efficient linear combination of basis vectors. Due to the efficient data representation ability of 

sparse coding, a number of studies have used it to develop feature extraction and representations for human activity 

recognition. For instance, sparse coding method was presented Y. Zhu, Zhao, Fu, and Liu (2010) to convert feature 

in activity recognition into linear combination vector trained with dictionary algorithm. Additionally, Sourav 

Bhattacharya, Nurmi, Hammerla, and Plötz (2014) examined the use of sparse coding algorithm trained on self-

taught theorem and codebook basis for combination of feature vectors. The sensor data were converted into a linear 

combination, and the dimension was reduced to generated movement patterns computed from raw sensor signals. 

The algorithm outperformed other well-known dimensionality reduction feature learning algorithms such as PCA 

and semi-supervised En-co Training. Sparse Coding was also used to pre-process and learn basic function that 

captures high representation in sensor data. Then, activity details were classified using neural network classifier for 

wireless sensor network based health monitoring(J. Guo, Xie, Bie, & Sun, 2014). A major problem in activity 

recognition is how to solve the problem of intra-class and inter-class variation and complex nature of human body 

movement (Bulling, et al., 2014b). To minimize intra-class and inter-class variation, M. Zhang and Sawchuk (2013) 

proposed sparse representation techniques that employ the use of an over-complete dictionary to represent the 

human signal as a sparse linear combination of activity classes. In the algorithm, class membership was determined 

by solving the L1 minimisation problem. The authors compare the technique with other established classical machine 
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learning method (logistic regression, multinomial regression and decision tree) with impressive results obtain with 

sparse coding. Sparse coding methods provide the possibility for constrained linear coding representation of energy-

related activities in smart home environments using sensor streams. Therefore, sparse coding inherently apply sparse 

dictionary to reduce manual annotation of data(Q. Zhu, Chen, & Soh, 2015).  

4.1.4 Stacked Deep Gaussian methods 

Recently, various studies have developed deep learning model by stacking a classical generative model to form 

a deep architecture. Typical examples are Gaussian process classifier (X. M. Wang, et al., 2016), molecular complex 

detection method (Lu, et al., 2016), and the Deep Gaussian Model. The Gaussian process model provides unsuper-

vised feature extraction by stacking several layers of Gaussian processes to produce robust features. Lu, et al. (2016) 

explored the issue of gathering huge amount of sensor data, complex and diverse activities by proposing the molecu-

lar complex detection method. The technique was first introduced to study protein interaction by (Bader & Hogue, 

2003) and the authors extended  the algorithm for effective recognition and detection daily activity, product recom-

mendation and sports activity using accelerometer data. Recent work by Feng, Yuan, and Lu (2017), proposed Deep 

Gaussian Mixture Model that adaptively uses multilayer nonlinear input transformation to extract salient features 

from motion sensors for human activity recogniton.  

However, majority of the generative models have fully connected layer and cannot capture local and temporal 

dependencies in sensor data. In general, generative models have difficult optimisation procedures, computationally 

expensive training processes and suffer from vanishing gradient problem (G. E. Hinton, et al., 2012). Table 3 sum-

marises the different generative deep learning methods for feature extraction in human activity recognition. 
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Table 3: Generative deep learning methods for human activity recognition 

References Methods Description Advantages 

(Alsheikh, et al., 2016; 

Alsheikh, et al., 2015; 

Erfani, et al., 2016; H. 

Fang & Hu, 2014; X. Jia, 

et al., 2014; Längkvist, et 

al., 2012; Z. Y. Wu, et al., 

2016; Yalçın, 2016; L. 

Zhang, et al., 2015a, 

2015b; L. Zhang, et al., 

2015a, 2015b) 

Deep Belief 

Network 

Generative model that learn greedy 

layer-wise compact representation 

of sensor data and learn high-

dimensional manifold from unla-

belled data 

Generate feature from unla-

belled sensor data that are in-

variant to irrelevant variation. 

Used for nonlinear dimension-

ality reduction of high dimen-

sional sensor data 

(S. Bhattacharya & Lane, 

2016; Radu, et al., 2016; 

Y. Zhao & He, 2014) 

Deep Boltz-

mann Machine 

Generative undirected bipartite 

graphs composed of stochastic 

visible and hidden units. The layers 

are stacked into deep layers for 

extracting salient features from 

sensor observations 

Use sparse representation tech-

niques to reduce data sensitivi-

ty. Allow cross-correlation 

feature extraction and sensor 

fusion for innate feature repre-

sentation 

(Al Rahhal, et al., 2016; 

Jokanovic, et al., 2016; 

Munoz-Organero & Ruiz-

Blazquez, 2017; Plötz, et 

al., 2011; Amir 

Shahroudy, Ng, Gong, & 

Wang, 2016; Shimizu, et 

al., 2016; Unger, et al., 

2016; Zhou, et al., 2015) 

 Deep Autoen-

coder 

Unsupervised feature algorithm 

that discovers correlation between 

features and extracts low dimen-

sional representation using back-

propagation to reconstruct sensor 

sample  

Reduce feature dimensionality, 

minimise undesirable activities 

and extract hierarchical fea-

tures. Learn identity approxi-

mation and compressed version 

to select the most suitable fea-

ture vectors 

(Q. Song, Y. J. Zheng, Y. 

Xue, W. G. Sheng, & M. 

R. Zhao, 2017; A. Wang, 

et al., 2016) 

Denoising Au-

toencoder 

Generative model for partial recon-

struction of raw sensor input cor-

rupted by adding stochastic map-

ping term 

Learn robust and compressed 

representation of features from 

raw sensor data 

 

(Harasimowicz, 2014; M. 

Hasan & Roy-

Chowdhury, 2015; Y. Li, 

et al., 2014; H. Liu & 

Sparse Autoen-

coder 

Introduce sparsity penalty to Auto-

encoder hidden units to extract 

robust and compressed features 

from the visible units 

Extract high-level features from 

high-dimensional sensor data 

and select the most suitable 

feature by sparsity penalty to 
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References Methods Description Advantages 

Taniguchi, 2014; Lukun 

Wang, 2016) 

the reconstructed inputs sensor 

(Sourav Bhattacharya, et 

al., 2014; J. Guo, et al., 

2014; M. Zhang & 

Sawchuk, 2013; Q. Zhu, 

et al., 2015; Y. Zhu, et al., 

2010) 

Sparse Coding The techniques help to extract 

salient features and convert feature 

vectors for human activity recogni-

tion from raw sensor data into 

linear vectors 

Enable location of optimal 

feature, reduce computational 

complexity and time, and speed 

up data annotation from unla-

belled data 

(Feng, et al., 2017; 

Jänicke, Tomforde, & 

Sick, 2016; L. Liu, Cheng, 

Liu, Jia, & Rosenblum, 

2016; X. M. Wang, et al., 

2016) 

Stacked Deep 

Gaussian mod-

els 

Deep fusion of generative and 

probabilistic models for nonlinear 

transformation and adaptive ex-

traction of salient and robust fea-

tures from sensor data.  

Reduce number of parameters 

and model complexity during 

feature extraction. Furthermore, 

helps to convert high dimen-

sional vectors to enhance com-

plex activity detection 

 

4.2 Discriminative Deep Learning Methods 

Discriminative feature learning algorithms are modelled with posterior distribution classes to provide discrimi-

native powers for activity classification and recognition. In recent years, there has been a tremendous growth in the 

amount of activity recognition that deploys the use of discriminative deep learning methods. The methods traverse 

from Convolutional Neural Network to Recurrent Neural Networks. Researchers in ubiquitous sensing have pro-

posed different algorithms in this regard. In this section of the review, we discuss these implementations for human 

activity recognition using mobile and wearable sensor data.  

4.2.1 Convolutional Neural Networks 

 A comprehensive implementation of Convolutional Neural Network (CNN) for human activity recognition us-

ing mobile phone sensor data was reported by (C. A. Ronao & S.-B. Cho, 2016; Ronaoo & Cho, 2015). In their 

study, Convolutional Neural Network was deployed to extract hierarchical and translational invariant features from 

accelerometer and gyroscope sensor data and activity details classified using Multinomial Logistic regression 

(SoftMax). However, the method failed to capture temporal variance and change in complex activity detail and gen-

eralisation to different activity models. Furthermore, intra-class and inter-class variations can be solved by incorpo-

rating time-frequency convolution which was not implemented in the study. In study by Yuqing Chen and Xue 
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(2015), instead of developing new CNN architecture modified the convolutional kernel using transfer learning to 

suit the tri-axial characteristics of acceleration signal for human activity recognition. While Charalampous and 

Gasteratos (2016) examined the use of the convolutional neural network for online deep learning feature extraction 

using the whole data sequence. Moreover, they introduce Viterbi algorithm using optimisation criterion and a 

network of computational nodes in hierarchical form to increase performance of the network. However, the pro-

posed approach applied entire sample of the sensor dataset to implement the CNN and this may increase the compu-

tation time for mobile and wearable devices implementation. On the other hand, Ha, Yun, and Choi (2015) proposed 

a 2-D kernel convolutional neural network to capture local dependencies over time and spatial dependencies over 

sensors and this is important where multiple sensors are attached to different part of the body. When using 1-D ker-

nel convolution, it will be difficult to capture features from different sensor modalities. The use of a convolutional 

neural network can also predict the relationship between physical exercises and sleep pattern using accelerometer 

and gyroscope sensors. In recent study,  Sathyanarayana, Joty, Fernandez-Luque, Ofli, Srivastava, Elmagarmid, 

Taheri, et al. (2016) observed that convolutional neural network outperformed handcrafted features in terms of ro-

bust feature generation, high dimensional data and classification accuracy when applied to predict the link between 

exercises and sleep. Furthermore, similar studies have comparatively explore the performances of convolutional 

neural network and handcrafted features(Egede, Valstar, & Martinez, 2017; H. Gjoreski, Bizjak, Gjoreski, & Gams, 

2015). The experimental analysis showed convolutional neural network conveniently outperform handcrafted fea-

tures using sensor data generated by wearable devices attached to the wrist for human activity recognition and auto-

matic pain detection during intensive sports activities. However, wrist sensor placement produce irregular movement 

pattern and it is challenging to ascertain best feature combinations to achieve higher performance accuracy(M. 

Gjoreski, Gjoreski, Luštrek, & Gams, 2016) for such location placement. Therefore, the results obtain by the com-

parative analysis cannot be active generalised.  

 Implementation of deep learning algorithm on low-power wearable devices was recently reported in (D. Ravi, 

C. Wong, B. Lo, & G. Z. Yang, 2016). They proposed a temporal convolutional neural network that limits the num-

ber of hidden layer connections with few input nodes to avoid computational complexity and enable real-time activi-

ty recognition. Furthermore, the authors applied spectral representation of the inertial sensor to achieve invariance to 

sensor placement, orientation and data collection rate. The authors later reported successive implementation com-

bined handcrafted features to reduce computation time and enhance on-board wearable devices implementation 
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(Ravì, Wong, Lo, et al., 2017). In other way, scale invariant features and local dependencies can also be achieved 

through weight sharing in convolutional layer (Zeng, et al., 2014).  Weight sharing helps to reduce the number of 

training parameters and computational complexity as closely related filters share similar weights. The issue of com-

putational complexity of convolutional neural network algorithm implemented on low power devices was also ana-

lysed by (Jiang & Yin, 2015). The sensor data were transferred and transformed into activity image that has descrip-

tive information about the data. The activity image is then transferred to the deep convolutional neural network to 

extract discriminative features. They noted that to reduce computational complexity, there is a need to adopt careful-

ly chosen techniques such as feature selection and extraction, sensor selection and use of frequency reduction. 

For full implement of automate activity recognition techniques for wearable, Vepakomma, De, Das, and 

Bhansali (2015) proposed “A-Aristocracy”, a wristband platform to recognise simple and complex activity using a 

Deep Neural Network (DNN) classifier for the elderly health monitoring. The propose platform was tested for its 

performance on detection of daily living and instrumental activity of daily living (cooking, washing plates, doing 

laundry) (ADL/IADL). The use of wearable sensors ensures the privacy of the elderly are maintained, which is a big 

issue when camera-based sensors are deployed for activity recognition. Moreover, the work employed affordable 

wearable devices and multimodal information such as locomotion sensing, environmental condition and contextual 

location signal sensing to achieve high recognition accuracy. However, the study only used a Deep Neural Network 

with two layers for classification and extracted statistical and manual features defeating the purpose of automatic 

feature extraction. Sheng, et al. (2016) proposed quick and short time activity recognition using convolutional neural 

network for wearable devices. Long time activities comprise series of short-term activity which is segmented using 

short window length. Therefore, by constructing an over-complete pattern library of long time activities into short 

time activities using sliding window techniques, feature extraction was implemented offline and learning for recog-

nition was performed online to ensure real-time and continuous activity description. However, the use of short time 

window length may result in loss of vital information for complex activity recognition (O. Banos, et al., 2015). 

Autism Spectrum Disorder can affect the functional ability and activity performance by individuals, social in-

teraction and communication ability. Recognition of such activities can help seamless management of the condition. 

However, detection of stereotypical motor movement (SMM) is challenging due to intra-subject and inter-subject 

variability, and may portray different degree of mental and physical health behaviour. For this, the convolutional 
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neural network has been utilised to learn movement such as hand tapping, body rocking or simultaneous 

combination of body movement to detect stereotypical motor movement(Rad, et al., 2015; Rad & Furlanello, 2016). 

In the same way, studies conducted by (Castro, et al., 2015; Singh, Arora, & Jawahar, 2016) developed the first 

person and egocentric activity recognition using the wearable sensor. They combined contextual information and 

egocentric cues to capture human motion and extract robust and discriminative features using the convolutional 

neural network. The incorporation of cues and contextual information enable the techniques to capture time-

dependent activities and variation in viewpoints.  

Conversely, J. Zhu, Pande, Mohapatra, and Han (2015) examined how features extracted by a convolutional 

neural network can lead to the high estimation of energy expenditure during intensive physical exercises. Energy 

expenditure estimations enable tracking of personal activity to prevent chronic diseases common in individuals liv-

ing a sedentary lifestyle. Combining accelerometer sensor and heart rate data, they developed online mechanisms to 

track daily living activity. Energy expenditure prediction was done on the feature extracted using a backpropagation 

neural network. However, the dataset used for prediction were collected from sensors placed at the waist which does 

not indicate movement location.  Therefore, there is need to test data collected from sensors placed on the wrist, 

chest or ankle that accurately detect and monitor total body movements. G. Liu, et al. (2016) modelled binary sensor 

based human activity recognition by converting the sensor value into a binary number and extracting discriminative 

features with convolutional neural network. The far-reaching effect of the study is the ability to reduce computation-

al time using fewer binary values during feature extraction from sensor data. Gait assessment based Convolutional 

Neural Network in a patient with Sclerosis was presented by (J. Q. Gong, Goldman, & Lach, 2016) with body-worn 

sensors. Convolutional Neural Networks were implemented to learn the temporal and spectral association among the 

multichannel time series motion data and learn holistic gait patterns for robust and efficient feature representation. In 

related study, Eskofier, et al. (2016) propose deep learning algorithm for assessment of movement disorders for  

patients with idiopathic Parkinson diseases. Patients were attached with inertial measurement unit sensor nodes to 

collect accelerometer data and extract salient features with two convolutional neural network layers and achieved 

90.9% accuracy. However, due to the limited number of sensor data used for training the Convolutional Neural net-

work, it may be challenging to generalise the performances accuracy achieved.  
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In some cases, convolutional neural network are optimised with classical machine learning techniques such as 

meta-heuristic algorithms to model hyper-parameter tuning to obtain higher accuracy. This techniques were recently 

implemented for detection of Parkinson disease and measurement of calories consumption to combat obesity and 

recommend physical activities  (Pereira, Pereira, Papa, Rosa, & Yang, 2016; Pouladzadeh, Kuhad, Peddi, Yassine, 

& Shirmohammadi, 2016). In a related research for the elderly, Yin, Yang, Zhang, and Oki (2016) proposed the 

cascade convolutional neural network for monitoring of heart-related diseases using impulse radio ultra-wideband 

radar data. Different convolutional neural network modules were implemented to extract robust ECG features and 

impulse radio ultra-wideband radar feature, which are then combined to form a cascade to distinguish normal heart 

bits from abnormal ones. The essence of the cascade is to take care of the different sampling rate and dimensionality 

of the various data source. Also, Junming Zhang and Wu (2017) proposed the use of the convolutional neural net-

work for automatic stage sleep classification using electrocardiography data.  

Other similar Convolutional Neural networks approach were lately implemented for automatic data labelling, 

variable sliding window segmentation and multi-sensor and multi-channel time series fusion. For instance, Zebin, 

Scully, and Ozanyan (2016) introduce multichannel sensor time series to acquire sensor data from body-worn iner-

tial sensors. The authors modelled feature extraction using a convolutional neural network and monitored different 

hyperparameter setting at the pooling layer, rectified linear units and max pooling to achieve high accuracy. R. Yao, 

et al. (2017) proposed the use of CNN for dense labelling in human activity recognition. The use of dense labelling 

provides an approach to avoid missing information, and the algorithm was implemented using publicly available 

datasets with an overall accuracy of 91.2%. Another important applications of convolutional neural network is in 

multi-sensor fusion for human activity detection. Fusion of multiple sensor are essential for enhanced activity 

recognition rate (R. Gravina, et al., 2017). However, many issues are yet unresolved, such as imprecision and uncer-

tainty in measurement, noise and conflicting correlation, high data dimensions and the best techniques to select the 

fusion level. To that effect, Jing, et al. (2017)  propose adaptive multi-sensor fusion using the deep convolutional 

neural network. The proposed techniques learn features and optimise the combination of sensor fusion level such as 

extraction, selection, data, features, and decision fusion levels to build complex recognition patterns for higher activ-

ity detections. These processes go through from the lower layer of the network to the higher layer and implement the 

robust feature extraction process. 
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 Automatic feature extraction in wearable sensors with the convolutional neural network  provide means to 

monitor beach volley ball players’ skills from a tri-axial accelerometer (Kautz, et al., 2017). To achieve that, the 

authors deploy data collected from 30 subjects wearing sensors attached to the right hand with a thin wristband. 

However, the proposed architecture of the CNN suffered from overfitting as it performed better on training data than 

on testing data.  Therefore, the use improve regularisation techniques, increase the training datasets and use batch 

normalisation (Ioffe & Szegedy, 2015) may enhance the performance of the proposed model. Moreover, adding 

artificial noise to the data may also improve the prediction accuracy (G. E. Hinton, et al., 2012). 

4.2.2 Recurrent Neural Networks 

Human activity recognition is a classical time series classification problem made up of complex motor 

movements and vary with time. Capturing the temporal dynamic in movement pattern will help to model complex 

activity details and enhance the performance of recognition algorithms. Convolutional neural network architecture 

can only extract translational invariant local features but become ineffective when modelling global temporal de-

pendencies in sensor data. However, Recurrent Neural Network (RNN) is naturally designed for time series data in 

which sensor data is a prominent part.  

Recently various studies have explored different recurrent neural network models for modelling human ac-

tivity recognition. For instance, studies such as (Yuwen Chen, Zhong, Zhang, Sun, & Zhao, 2016; X. Ma, Tao, 

Wang, Yu, & Wang, 2015) proposed long short term memory (LSTM) for feature extraction to recognise activity of 

daily living using WISDM data, a publicly available dataset by Wireless Sensor Data Mining Lab (Kwapisz, Weiss, 

& Moore, 2011) and achieved a classification accuracy of 95.1%. Despite the high performance obtained, the result 

cannot be generalised due to the simplicity of the specified activities and small sample sizes of the dataset. There-

fore, larger datasets are required to improve the robustness of the algorithm. Large-scale study on the prediction of 

activity of daily living was examined by (Moon & Hamm, 2016) with Long Short Term Memory to capture the ran-

domness in activity patterns and model the temporal dependencies using multi-step look ahead approach. Long short 

memory provides the possibility to automatically detect and characterise eating pattern using the wearable necklace, 

and early or progressive detection of activities (S. Ma, Sigal, & Sclaroff, 2016; Nguyen, Cohen, Pourhomayoun, & 

Alshurafa, 2016). However, issues on the modelling of motion movement of head and neck are difficult as piezoe-

lectric sensors do not detect such motions. Furthermore, Long short term memory methods provide technique to 
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rank activity progression and penalise incorrect activity prediction that may lead to serious consequence especially 

for detection of fall in elderly (S. Ma, et al., 2016).  

 Inoue, et al. (2016) investigated the use of the deep recurrent neural network for human activity recogni-

tion in real time scenario. They looked at the best combination of architecture and optimal parameter values for in-

creased performance. The authors noted that, increasing the layer of deep RNN will greatly increase computational 

time and memory usage and recommend a three-layer architecture for optimal performance. To reduce memory 

usage, (Edel & Köppe, 2016) developed optimised binary version of Bidirectional LSTM for human activity recog-

nition in a resource constrained environment such as mobile or wearable devices. The extended version of Bidirec-

tional LSTM (Graves & Schmidhuber, 2005) achieved real-time and online activity recognition by applying binary 

values to the network weight and activation parameters. 

Subsequent studies introduced other aspects of the recurrent neural network. Notably, Palumbo, Gallicchio, 

Pucci, and Micheli (2016) proposed the Recurrent Neural Network for real-time human activity recognition trained 

with echo state network leveraging smartphones and Reciprocal Received Signal Strength (RSS). Echo State Net-

work is a Recurrent Neural Network with a non-trainable reservoir and linear readout in which the weights are 

randomly generated during training (Rodan & Tino, 2011). However, a number of issues have deterred the practical 

application of the Echo State Network. These include the unclear properties of the reservoir and lack of training 

strategies to achieve optimal performance but rely on a game of chance. Furthermore, Choi, Schuetz, Stewart, and 

Sun (2016) develop the Gated Recurrent Unit Model (Cho, et al., 2014) to detect heart failure from clinical time 

series data. Gated recurrent unit is an RNN model that is similar in structure to LSTM but with  simple parameter 

update and  recently achieved superior results in similar classification tasks (Zaremba, 2015). 

4.2.3 Other Discriminative Deep Learning Models 

Various studies have also proposed other discriminative feature extraction methods for human activity 

recognition.  For instance, studies in (Ponce, de Lourdes Martínez-Villaseñor, & Miralles-Pechúan, 2015; Ponce, 

Martínez-Villaseñor, & Miralles-Pechuán, 2016) proposed and analysed the use of Artificial Hydrocarbon Network 

(AHN) for human activity recognition. Artificial Hydrocarbon Network is an algorithm inspired by an organic 

chemistry that use heuristic mechanism to generate organise structure to ensure modularity and stability in activity 

recognition. The algorithm is tolerant to noisy sensor data. However, it needs to be combined with heuristic feature 
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extraction and selection techniques to increase recognition time. Similarly, Rogers, Kelleher, and Ross (2016) ex-

ploited deep neural language model for the discovery of interleaved and overlapping activities. The model builds 

hierarchical activities and captures the inherent complexities in activity details. Similarly, Hongqing Fang, He, Si, 

Liu, and Xie (2014) initiated backpropagation techniques to train feedforward neural for complex human activity 

recognition in smart home environment. Although the algorithm outperformed the Hidden Markov Model and Naïve 

Bayes, it requires combined handcrafted feature extraction for high-performance accuracy.  Y.-L. Chen, et al. (2016)  

proposed manifold elastic network for feature extraction and dimensionality reduction by mapping motion sensor 

data from high dimensional to low dimensional subspace through minimization algorithm. Table 4 summarises re-

cently discriminative model for human activity recognition and their advantages. 
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Table 4: Discriminative Deep Learning Methods for human Activity Recognition 

References Methods Description Advantages 

(Castro, et al., 2015; 

Charalampous & Gasteratos, 2016; 

Yuqing Chen & Xue, 2015; 

Eskofier, et al., 2016; M. Gjoreski, 

et al., 2016; J. Q. Gong, et al., 

2016; Ha, et al., 2015; Jiang & 

Yin, 2015; Jing, et al., 2017; 

Kautz, et al., 2017; G. Liu, et al., 

2016; Page, et al., 2015; Pereira, et 

al., 2016; Pouladzadeh, et al., 

2016; Rad, et al., 2015; D. Ravi, et 

al., 2016; C. A. Ronao & S.-B. 

Cho, 2016; Ronaoo & Cho, 2015; 

Sathyanarayana, Joty, Fernandez-

Luque, Ofli, Srivastava, 

Elmagarmid, Taheri, et al., 2016; 

Sheng, et al., 2016; Singh, et al., 

2016; Vepakomma, et al., 2015; 

Yang, et al., 2015; R. Yao, et al., 

2017; Yin, et al., 2016; Junming 

Zhang & Wu, 2017; Zheng, Ling, 

& Xue, 2014; J. Zhu, et al., 2015) 

Convolutional 

Neural Net-

work 

Multilayer neural network that 

combines convolution and pool-

ing operations to extract transla-

tion invariant, temporally corre-

lated and hierarchical feature 

vectors from sensor data. The 

architecture use convolutional 

operation to handle and extract 

local features and cancel the 

effect of translation and dis-

placement in sensor data 

Extract hierarchical and 

translational invariant 

features from sensor 

data with or without pre-

processing to enhance 

performance and recog-

nition accuracy 

(Y. Chen, et al., 2016; Inoue, et al., 

2016; S. Ma, et al., 2016; X. Ma, 

et al., 2015; Moon & Hamm, 2016; 

Nguyen, et al., 2016) 

Long Short 

Term Memory 

Recurrent neural network 

(RNN) that incorporate memory 

block to overcome backpropa-

gation problem and detect activ-

ities with long-term temporal 

dependencies 

Capture temporal de-

pendencies and complex 

activities dynamic in 

raw sensor data 

(Edel & Köppe, 2016) Binarise-

Bidirectional 

Long Short 

Term Memory 

Recurrent Neural Network in 

which the network parameters 

are binary values trained and 

evaluated with bits logics 

Has low computational 

complexity and 

applicable in resource 

constrained environment 

such as mobile and 
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References Methods Description Advantages 

wearable devices with 

low energy resources. 

The extracted features 

are invariant to distor-

tion and transformation 

(Choi, et al., 2016) Gated Recur-

rent Unit 

Recurrent Neural Network with 

reduced parameter for detection 

and recognition of time sensi-

tive events  

Gated Recurrent unit has 

fewer parameters and 

easy to train 

(Ponce, Miralles-Pechuán, & 

Martínez-Villaseñor, 2016) 

Artificial Hy-

drocarbon 

Network 

Nature inspired meta-heuristic 

and chemical organic algorithm 

that organise activity details in 

modules 

Ability to model noisy 

and unlabelled data and 

also robust to sensor 

data characteristics and 

data point 

(Rogers, et al., 2016) Deep Neural 

Model 

 A form of deep learning for 

modelling natural language 

problem. The algorithm is 

trained to approximate model 

distribution by taking encoding 

of sensor distribution and pro-

duce posterior distribution of all 

possible values 

Can handle problem of 

multiple activities occur-

ring in parallel (inter-

leaved activities) 

(Y.-L. Chen, et al., 2016) Manifold Elas-

tic Network 

Dimensionality reduction 

methods that encode local ge-

ometry to find best feature rep-

resentation in raw sensor data  

Minimise error mecha-

nisms to select appropri-

ate feature subspace 

 

4.3 Hybrid Deep Learning Methods 
Various research efforts have been geared toward obtaining robust and effective features for human activity 

recognition by combining generative, discriminative or both methods. From the available literature on hybrid im-

plementation, the convolutional neural network seems to be the best choice method for many studies to be hybrid-

ised with other generative or discriminative models for human activity recognition. For instance, Convolutional 

Neural Network and Denoising Autoencoder (G. Ma, Yang, Zhang, & Shi, 2016), Convolutional Neural Network 

and Sparse Coding (S. Bhattacharya & Lane, 2016), Convolutional Neural Network and Recurrent Neural Network 
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(Ordóñez & Roggen, 2016; Sathyanarayana, Joty, Fernandez-Luque, Ofli, Srivastava, Elmagarmid, Taheri, et al., 

2016), Convolutional Neural Network and Restricted Boltzmann Machine (J. Gao, Yang, Wang, & Li, 2016). 

In most of these studies, the convolutional neural network is incorporated to produce hierarchical and transla-

tional invariant features. To reduce the source of instability and extract translational invariant features,  J. Gao, et al. 

(2016) introduce the centred factor Convolutional Restricted Boltzmann Machine (CRBM) while in Sarkar, et al. 

(2016), a combination of Deep Belief Network and convolutional neural network were examined for activity recog-

nition in prognostic and health monitoring related services. The authors compare the performance using electroen-

cephalogram sensor data with deep learning outperforming handcrafted features. However, the result deteriorated 

when it was tested on four recognition tasks due to the limited amount of training and testing data. Recently, other 

studies incorporated the convolutional neural network and sparse coding to produce sparse representation and reduce 

computational time. This can be seen in recent work by S. Bhattacharya and Lane (2016), which proposed sparse 

coding-based convolutional neural network for mobile based activity recognition. To reduce computation time, 

memory and processor usage, they introduced sparsification of the fully connected layer and separation of the 

convolutional kernel. The techniques ensure full optimisation of CNN to be implemented for mobile devices.  

Another work for hybridization of deep learning methods for robust features extraction was reported in (G. Ma, 

et al., 2016). In the work, the authors proposed the fusion of features extracted with deep autoencoder to obtain more 

abstract features. While Khan and Taati (2017)proposed a channel-wise ensemble of autoencoder to detect unseen 

falls using wearable devices. In the study, stacked autoencoder was used to learn accelerometer and gyroscope data 

separately, using interquartile range and then training a new autoencoder on data with no outliers to accurately iden-

tify unseen fall.  Ijjina and Mohan (2016) developed ensemble deep learning approach based on Convolutional Neu-

ral network by altering the inputs and weights of network of each convolutional neural network to create network 

structures variabilities and then combined the results with different ensemble fusion techniques. Recently, an en-

semble of diverse long short term memory (Guan & Ploetz, 2017) was evaluated on publicly available datasets for 

human activity recognition. The proposed method outperformed other methods in real life activity prediction. 

To recognise and detect complex activity details, there is a need to capture spatial and temporal dependencies 

involve in human activity recognition. The convolutional neural network and recurrent neural network are important 

deep learning methods in this regard. The techniques are common in multimodal and multi-sensor activity recogni-
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tion frameworks.  X. Li, et al. (2017) investigated the use of CNN and LSTM for recognition of concurrent activi-

ties. The authors introduced encoder to output binary code prediction that denotes whether the activity is in progress 

or not in progress. Furthermore, the architecture can accept input from the sensor of different modalities. Similarly, 

Ordóñez and Roggen (2016) proposed a convolutional neural network and long short term memory to automatically 

learn translational invariant features and model temporal dependencies in multimodal sensor comprise of accelerom-

eter and gyroscope sensor. The pooling layer in the network was replaced with a recurrent layer (LSTM) that models 

the temporal sequence, whereas the final layer is the SoftMax regression that produces the class prediction. The 

technique was compared with baseline CNN using OPPORTUNITY and Skoda datasets with 0.61F1 score perfor-

mance. The ensemble of Convolutional neural network and bidirectional long short term memory (BLSTM) were 

proposed for health monitoring using the accelerometer and acoustic emission data. CNN extract local features, and 

while BLSTM encodes temporal dependencies and model sequential structure, past and present contextual infor-

mation (R. Zhao, Yan, Wang, & Mao, 2017). 

Furthermore, other authors have also proposed fusion along multimodal and multi-sensor lines. For instance, 

Song, et al. (2016) proposed the fusion of the video and accelerometer sensor model using the convolutional neural 

network and long short term memory. CNN extract spatial-temporal features from video data while the LSTM mod-

els temporal dependencies features from the accelerometer and gyroscope. These feature vectors were integrated 

using a two-level fusion approach for egocentric activity recognition. However, the result obtained in multimodal 

fusion performed below expectation due to the small number of training examples. In Neverova, et al. (2016), the 

authors proposed the recurrent neural network and convolutional neural network to extract feature vectors optimised 

with shift-invariant dense mechanism to reduce computation complexity. In order to develop effective deep learning 

fusion approach,  Nils Y Hammerla, Halloran, and Ploetz (2016) explored the effect of hyper-parameter setting such 

as regularisation, learning process, the number of architecture on the performance of deep learning for human activi-

ty recognition. The authors concluded that hyper-parameters have great impact on the performance of deep architec-

tures and recommend extensive hyper-parameter tuning strategies to obtain enhance activity recognition rate. To 

develop a multi-fusion architecture of CNN and LSTM, F. J. O. Morales and Roggen (2016) examined the effect of 

transfer learning at the network kernel between users, applications domains, sensor modalities and sensor place-

ments in human activity recognition. They noted that transfer learning greatly reduced training time and are sensitive 

to sensor characteristics, placement and motion dynamic. They utilised the above automatic feature representation 
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method to develop a hybrid of CNN and LSTM for extraction of robust features for human activity recognition in a 

wearable device. In Sathyanarayana, Joty, Fernandez-Luque, Ofli, Srivastava, Elmagarmid, Taheri, et al. (2016), 

CNN-LSTM was used to model the impact of sleep on physical activity detection with actigraphy dataset. CNN 

models robust feature extraction while LSTM was used to build sleep prediction. Alternatively, a convolutional 

neural network with Gated Recurrent Unit (GRU) was proposed by (S. Yao, Hu, Zhao, Zhang, & Abdelzaher, 2016) 

for activity recognition and car tracking using accelerometer, gyroscope and magnetometer data. CNN and GRU 

were integrated to extract local interaction among identical mobile sensor, merged into global interaction and then 

extract temporal interaction to model signal dynamics. 

 Various studies have proposed fusion of deep learning model and handcrafted features for human activity 

recognition. Fusion of handcrafted features and deep learning are effective for increased recognition accuracy, real 

time and on-board human activity recognition in wearable devices. Furthermore, the techniques allow extraction of 

interpretable feature vectors using spectrogram and to capture intensity among data points(Ravì, Wong, Lo, et al., 

2017). Interestingly, some studies have also found that such fusion are important means to model lateral and tem-

poral variation in activity details by adaptively decomposing complex activity into simpler activity details and then 

train the algorithm using radius margin bound for network regularisation and improve performance 

generalisation(Liang Lin, et al., 2015). In recent work, Alzantot, Chakraborty, and Srivastava (2017) explored gen-

eration of artificial activity data by fusion of mixture density network and long short term memory. The approach 

was proposed to resolve the issue of lack of training data using mobile phones and discriminate robust feature vec-

tors. Developing protocol to collect large training data for human activity recognition project is very tedious and 

may result to privacy violations. Therefore, the study generated synthetic data to augment the training sensor data 

generated using mobile phone. Moreover, the developed fusion of mixture density networks and long short term 

memory will help to reduce reliance on real training data for evaluation of deep learning. Table 5 summarises the 

different hybrid deep learning based feature extraction techniques for human activity recognition. 
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Table 5: Hybrid deep learning methods for human activity recognition 

References  Methods Descriptions Advantages 

(J. Gao, et al., 2016; Sarkar, et 

al., 2016) 

CNN, RBM Propose integration of Deep 

Belief Network and Convolu-

tional Neural Network for real-

time multimodal feature extrac-

tion in unconstrained environ-

ment 

Provide automatic feature 

extraction and selection 

without extensive pre-

processing  procedure 

(S. Bhattacharya & Lane, 

2016) 

Sparse coding 

and Convolution-

al Neural Net-

works 

Automatically produce com-

pact representation of features 

vectors from raw sensor data 

for mobile based activity 

recognition. 

The use of sparse coding 

helps to reduce computation 

time and memory usage by 

utilising sparsification ap-

proach to separate fully 

connected layer and convo-

lutional kernel.  

(Khan & Taati, 2017) Ensemble of 

Channel-wise 

Autoencoder 

Channel-wise autoencoder 

algorithms fusion of autoen-

coder trained separately with 

accelerometer and gyroscope 

sensor data and combine with 

reconstruction error values 

Automatically learn generic 

features from raw sensor 

data.  

(Ijjina & Mohan, 2016)  Ensemble of 

Deep Convolu-

tional Neural 

Networks 

Develop fusion of extracted 

features of homogenous CNN 

architecture built by alternating 

the initialisation of the network 

parameters.  

Achieve high model diver-

sity and enhance perfor-

mance generalisation  

(Guan & Ploetz, 2017; X. Li, 

et al., 2017; F. J. O. Morales 

& Roggen, 2016; Neverova, 

et al., 2016; Ordóñez & 

Roggen, 2016; 

Sathyanarayana, Joty, 

Fernandez-Luque, Ofli, 

Srivastava, Elmagarmid, 

Convolutional 

Neural Network 

(CNN) and Re-

current Neural 

Networks (RNN) 

Propose multimodal and spa-

tial-temporal feature extraction 

with CNN and LSTM for con-

current activity recognition 

Suitable for multimodal, 

Multi-feature and multi-

sensory for recognition of 

complex and concurrent 

activity details 
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References  Methods Descriptions Advantages 

Taheri, et al., 2016; Song, et 

al., 2016; R. Zhao, et al., 

2017) 

(S. Yao, et al., 2016) CNN, Gated 

Recurrent Unit 

(GRU) 

Integrate convolutional neural 

network and Gated recurrent 

unit that exploits local interac-

tion within activities and 

merges them into global inter-

action to extract temporal rela-

tionship 

Provide low energy con-

sumption and low latency 

services for implementation 

in mobile and wearable 

devices. Gated recurrent 

unit has expressible terms 

with reduce network com-

plexity for mobile based 

implementation  

(Liang Lin, et al., 2015; D. 

Ravi, C. Wong, B. Lo, & G.-

Z. Yang, 2016) 

CNN, Conven-

tional  feature 

Combine deep feature learned 

with CNN and statistical fea-

ture for real-time mobile based 

implementation of activity 

recognition. Also, the fusion 

provides effective means of 

decomposing complex activity 

into sub activities by modelling 

temporal variation and extract 

transition invariant features.  

Enable real-time on-board 

implementation with 

reduced feature vectors. 

The method can handle 

optimal decomposition of 

complex activity details and 

enhance generalisation 

ability deep learning algo-

rithms for human activity 

recognition.  

(Alzantot, et al., 2017) LSTM, Mixture 

Density Network 

Deep stacked long short term 

memory for generation and 

discriminating artificial senso-

ry data in human activity 

recognition 

Distinguish between real 

and synthetic data set to 

improve privacy in data 

collection 

 

5. Classification Algorithms and Performance Evaluation of Human Activities 
Classification is a vital part of human activity recognition processes. Classification involves training, test-

ing and use of evaluation metrics to measure the performance of the proposed algorithms. Over the years, different 

classifiers have been implemented in human activity recognition to categorise activity details during training and 

testing. The commonly used classifiers are the Support Vector Machine (SVM), Hidden Markov Model (HMM), K-
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Nearest Neighbour (KNN), and Decision Tress, Neural Network (NN). In deep learning based human activity 

recognition, most studies favour multinomial logistic regression (SoftMax) (Ordóñez & Roggen, 2016; D. Ravi, et 

al., 2016; Song, et al., 2016) or Hidden Markov Model (Alsheikh, et al., 2015) trained with the deep neural network 

for activity recognition. The training process extracts the feature vectors that are fed to the classifiers through fully 

connected layers to yield probability distribution classes for every single time step of the sensor data (D. Ravi, et al., 

2016). The performance of the extracted feature vectors is evaluated with pre-set evaluation metrics and access the 

recognition accuracy and computational complexity. Performance metrics such as accuracy, precision, recall and F-

measure provide essential information to access recognition ability of the features vectors. In this section, training, 

classifiers and performance evaluation metrics of human activity recognition system with deep learning methods are 

explained. We begin by presenting the training of both deep learning methods and classification inference algorithm 

and then the performance evaluation metrics for human activity recognition. 

5.1 Training 

Early works using deep neural networks were trained with gradient descent optimisation where the weights and 

biases are adjusted to obtain low-cost function. However, training neural network with such strategies will cause its 

output to get stuck in local minima due to the high number of parameters involve. To solve the problem, Geoffrey E 

Hinton, et al. (2006) introduced the greedy layer-wise unsupervised pre-training techniques in which the neural net-

work algorithm is trained one layer at a time then the deep architecture is fine-tuned in a supervised way with gradi-

ent optimisation. In his work,  G. Hinton (2010) showed how to train deep learning algorithm and set the different 

hyperparameter settings. Deep learning researchers adopt these strategies when validating their methods. 

 In training deep learning algorithms, the main aim is to find network parameters that minimise reconstruction 

errors between inputs and outputs (Erfani, et al., 2016). Using the pre-training and fine-tuning, the networks will 

learn to extract salient features from sensor data which is then passed to multi-linear logistic regression (SoftMax 

Regression) or any other classifiers to discriminate the activity details. Therefore, numerous regularisation methods 

have been proposed to modify the learning algorithm to reduce generalisation errors by applying hyper-parameter 

settings to control the network behaviour. According to G. Hinton (2010), these hyper-parameters include the values 

of learning rate, momentum, weight decay, initial values of the weight and weight update mechanism. Others are 

pre-training and fine-tuning parameter values, optimisation procedures, activation functions, sizes of mini-batch, 
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training epochs, network depth and pooling procedure to use when training convolutional neural networks. In deep 

learning based human activity recognition, different studies specify varying values of these hyper-parameters relying 

on the network and size of the training sensor data. Different hyper-parameter settings that were recently imple-

mented for mobile and wearable sensor based human activity recognition is shown in Table 6. Here we present brief 

explanations of these hyper-parameters with examples of value settings in recent works. 

Learning rate provides the value that shows how much the network has learned during neural network training 

iterations. The learning rates need to be initialised in such a way that it is not too large or small. A large value will 

cause the network weight to explode; a value between 0.0001 multiplied by the weight is recommended. Past studies 

in human activity recognition using mobile and wearable sensor implement varying values that range from 0.0001 

(Castro, et al., 2015), 0.001 (Alsheikh, et al., 2015; Kautz, et al., 2017), 0.01 (Eskofier, et al., 2016; C. A. Ronao & 

S.-B. Cho, 2016), 0.0 5 (Jing, et al., 2017) to as high as 0.1 (S. Ma, et al., 2016). 

Momentum (Qian, 1999) increases the velocity of learning and the rate of convergence of deep neural networks. 

Previous studies in deep learning based human activity recognition adopted the recommended values between 0.5 to 

0.99 (Kautz, et al., 2017; C. A. Ronao & S.-B. Cho, 2016). The size of mini-batch is another important parameter 

used to avoid overfitting. The mini-batch size divides the training data into small size of 10 to 100 training set, and 

then total gradients are computed using these sizes. When the network is trained with stochastic gradient descent, 

there is need to maintain relative sizes to reduce sampling bias. In activity recognition, too large mini-batches will 

be the equivalent of using large window size, and therefore may increase computation time and miss important ac-

tivity details. Therefore, factors such as the size of data and implementation platform play vital roles in choosing the 

size of mini-batch (C. A. Ronao & S.-B. Cho, 2016). 

Another key insight for improving deep learning model is the use of weight regularisation. Regularising large 

weight in deep learning to avoid overfitting is imperative during training due to large parameter updates. Overfitting 

is monitored by measuring the free energy of training data (G. Hinton, 2010). Previous studies have proposed vari-

ous regularisation techniques for training deep neural networks. For instance,  Dropout (Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014) randomly deletes half of the feature values to prevent complex co-

adaptation and increase generalisation ability of the model. Dropout regularisation technique  were recently  im-

proved by (Wan, Zeiler, Zhang, Cun, & Fergus, 2013) into DropConnect by randomly dropping weight vectors in-
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stead of the activation function. However, Dropout is still the most popular and is utilised by the majority of the 

studies reviewed (Alsheikh, et al., 2015; Jing, et al., 2017; Ordóñez & Roggen, 2016) with a probability of dropout 

ranging from 0.5 to 0.8. 

In addition to dropout, weight decay techniques such as L1/L2 regularisations prevent overfitting by introducing 

penalty term for large weights and this help to improve generalisation and shrink useless weights. Studies apply 

different weight decaying terms with varying values. Also, optimisation techniques such as batch normalisation that 

compute gradients on whole datasets, stochastic gradient descent (SGD) using each training examples or mini-batch 

gradient descent that compute update on every mini-batch  will further help to reduce invariance of the parameter 

update (Ruder, 2016). However, batch normalisation is slow and does not allow online weight update. Stochastic 

gradient provides faster convergence and helps to choose proper learning rate. It is widely applied in deep learning 

based human activity recognition (Ravì, Wong, Lo, et al., 2017; Vepakomma, et al., 2015; Lukun Wang, 2016). 

Other optimisation algorithms have also been implemented for deep learning training. For instance,  Adagrad 

(Duchi, Hazan, & Singer, 2011) apply adaptive learning rate to the network parameter to improve robustness to 

Stochastic gradient descent, while (Zeiler, 2012) proposed ADADelta that applied adaptive methods to decrease the 

learning rate. Furthermore, to solve the problem of diminishing weights, algorithms such as RMSProp (Tieleman & 

Hinton, 2012) and Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2014) were proposed. RMSProp adopts 

adaptive learning rate to solve the diminishing weights issues by adapting different step size for each neural network 

weights. ADAM applies an exponentially decaying average of past square gradient with default values ranging from 

0.9 to 0.999 and momentum of 8E-10. Adaptive optimisation is important and widely used because of its ability to 

adapt to learning rate and momentum without manual intervention. Furthermore,  Q. Song, et al. (2017) proposed an 

evolutionary based optimisation algorithm called Ecogeography Based Optimisation (EBO) that adaptively optimis-

es the autoencoder algorithm layer by layer to achieve optimal performance. Another important optimisation tech-

nique is the use of early stopping criteria that monitor errors on each validation set and stop when the validation 

error stops increasing. Table 6 shows some of the training techniques in some of reviewed studies with their value 

settings. 
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Table 6: Sample hyper-Parameter Setting and Optimisation for Deep Learning Training for human activity recognition 

 

 

 

 

5. 2 Classification 

Deep learning algorithms are applied on sensor data to extract discriminative and salient features and then 

flattened and pass to an inference engine to recognise activities classes. The outputs of the deep neural network 

model feature at the fully connected layer of the model are connected with classifiers. The most commonly used 

classifiers are Multinomial Regression (SoftMax) (Alvear-Sandoval & Figueiras-Vidal, 2018; Alzantot, et al., 2017; 

Guan & Ploetz, 2017; Ordóñez & Roggen, 2016; C. A. Ronao & S.-B. Cho, 2016), Support Vector Machine (Erfani, 

et al., 2016) or Hidden Markov Model(Alsheikh, et al., 2015) and provide probability distribution classes over activ-

ity details. Most of the studies reviewed use SoftMax to model the probability of the activity classes. 

Settings (Ordóñez & 

Roggen, 

2016) 

(C. A. Ronao 

& S.-B. Cho, 

2016) 

(Castro, et 

al., 2015) 

(Jing, et 

al., 

2017) 

(Eskofier, et 

al., 2016) 

(Kautz, et 

al., 2017) 

(S. Ma, 

et al., 

2016) 

Learning Rate 0.001 0.01 0.0001 0.05 0.01 0.01 0.1 

Momentum 0.9 0.5-0.99 0.9 0.5 0.9-0.999 0.9-0.999 0.9 

Size of Mini-

batch 

100 128 100 20 500 200 100 

Dropout              

Activation 

Function 

ReLU, Tanh ReLU ReLU ReLU ReLU ReLU Tanh 

Decay Rate 0.9 0.00005 0.0005 0.04 1E-8 1E-8 0.05 

Optimisation RMSProp SGD SGD SGD ADAM SGD  

Training 

Epoch 

 5000 100000 200   30 

Method CNN-LSTM CNN CNN CNN CNN CNN LSTM 
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 SoftMax is a variant of logistic regression that model Multiclass classification(J. Gao, et al., 2016; 

O’Donoghue & Roantree, 2015) using cost minimization approach. Therefore, given training sets 

               mmiiii yxyxyx ,...............,,,,  with corresponding m label examples, where 

   ky i ......,3,2,1  and x is the input feature space. The SoftMax parameters are trained by minimising the cost 

function and then fine-tuned to minimise the likelihood function and improve adaptability. The cost function with 

the decay terms is as stated below.  

    
 

 0
2

log1
1

1 0

2

1
1

1

)(















 




 








 k

i

n

j

jk

k

j
k

i

x

xm

i

iT
i

iT
j

jyy
m

J



 

                                                         

(1) 

The fine-tuned algorithm through backpropagation to improve performance is given as:     
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The above equation provides the probability of the activity classes with possible values of labels (Yan, et al., 2015). 

Also, (C. A. Ronao & S.-B. Cho, 2016) noted that the last layer of the convolutional neural network that infers activ-

ity classes is given as: 
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                                            (3) 

Where c is the activity class, L is the last layer index of the convolutional neural network (CNN), and NC is the 

total number of activity classes. 

5.3 Evaluation Metrics 

The performance of features representation for human activity recognition using mobile and wearable sen-

sors is evaluated with pre-set evaluation techniques. Criteria such as accuracy, computation time and complexity, 

robustness, diversity, data size, scalability, types of sensor, users and storage requirements are used to evaluate how 

the features extracted, and classifiers perform in relation to other studies. Alternatively, deep learning methods can 

also be evaluated on how varying the hyper-parameters affect their performances during training, filter size, pre-
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training and fine-tuning, pooling layers and number of temporal sequences (Alsheikh, et al., 2015; Ordóñez & 

Roggen, 2016; C. A. Ronao & S.-B. Cho, 2016). These parameters evaluation is still an open research challenge to 

establish their effects on deep learning network performance (Erfani, et al., 2016; Munoz-Organero & Ruiz-

Blazquez, 2017). 

Like the handcrafted features based human activity recognition methods, deep learning features are 

evaluated with different performance metrics. Hold-out cross-validation techniques are utilised to test the perfor-

mance of features representation on different datasets. Hold-out cross-validation techniques include leave-one-out, 

leave one person out when testing the performance of single-user, 10-fold cross validation, or leave one day out 

when using data collected for a specific number of days for activity details (Nils Yannick Hammerla, et al., 2015). 

These different hold-outs cross-validation techniques allow the deep learning training to be repeated a number of 

times to ensure generalisation across datasets. Different performance evaluation metrics used in the studies review is 

presented in Table 7 below. 

The most common performance metrics are accuracy, precision, recall, confusion matrices and Receiver 

Operating Characteristics (ROC) curve. Therefore, the activity can be classified as True Positive (TP), True Nega-

tive (TN) when correctly recognised or False Positive (FP) or False Negative (FN) when incorrectly classified. Other 

performance metrics are derived with True positive or True Negative. These metrics are discussed below: 

Accuracy provides the overall correctly classified instances. It is the sum of correct classification divide by the total 

number of classification.   

FNTNFPTP

TNTP




 

                                                                                    (4) 

Precision (Specificity) measures the accuracy and provides the value based on the fraction of the negative instance 

that are classified as negative.    

FPTP

TP


 

                                                                                   (5) 

Recall measures the performance of correctly predicted instances as positive instances.      
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                                                                                   (6) 

F-Measure (Score), F-Measure is mainly applied in unbalanced datasets and provides a geometric mean of sensitivi-

ty and specificity. F-measure      

callecision

callecison

RePr

Re.Pr
.2


 

                                                                                (7)                                                                                         

Confusion Matrices: Confusion matrices are important performance measure, and the matrix provide the overall 

misclassifications rate in human activity recognition (Nils Yannick Hammerla, 2015). The known classes are 

represented with rows while the columns correspond to the predicted classes made by the classifiers. The use of 

confusion matrices allows the analysis of Null class which is common in Human Activity Recognition and further 

enables visualisation of the recognition performance of the system. 

Receiver Operating Characteristics (ROC) Curve: The ROC curve is also known as precision-recall rate and pro-

vides mechanism to analyse the true positive rate against the true negative rate give as (FPR). However, the ROC 

curve is only suitable for detection model as it depends on the number of True Negative classes and may not be used 

in imbalance dataset which is common in deep learning based human activity recognition. Metrics such as Equal 

Error Rate that show the values at which precision is equal to recall, average precision and Area Under the Curve 

(AUC) the show the overall performance of classifiers and probability that chosen positive instances will be ranked 

higher than negative instances (Bulling, et al., 2014b; Nils Yannick Hammerla, 2015). 

Accuracy, precision and recall are suitable for two classes and balance datasets. For imbalance data, aver-

age accuracy, precision and recall are computed for the overall activities. These values are averages of the summa-

tion of their individual values. 

Average accuracy = 
 

 

N

i i
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                                                                                    (8) 
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                                                                                    (9) 
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                                                                                  (10) 

where N is the number of classes, TI, the total number of inferred label and TT is the ground truth label. However, it 

has become an issue of contention in deep learning as most of the data are unlabelled data and ground truth labels 

are missing in most cases. The use of average precision and recall require manual annotation of data which is tedi-

ous and laborious especially for mobile based and real time human activity recognition (D. Ravi, et al., 2016; Ravì, 

Wong, Lo, et al., 2017). Studies adopting deep learning methods test for precision and recall instead. 
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Table 7: Evaluation Metrics of Deep Learning Methods for Human Activity Recognition 

References Accuracy Precision Recall Confusion 

Matrix 

F1-

Score 

ROC/AUC 

(Plötz, et al., 2011)   - - - - - 

(Sourav Bhattacharya, et al., 2014)  - - -     - 

(Al Rahhal, et al., 2016)       - - - 

(Jokanovic, et al., 2016)  - - -   - - 

(Munoz-Organero & Ruiz-Blazquez, 

2017) 

 -     -   - 

(Jing, et al., 2017)   - - - - - 

(Alsheikh, et al., 2015)   - - - - - 

(Erfani, et al., 2016)  - - - - -   

(D. Ravi, et al., 2016)   - - - - - 

(L. Zhang, et al., 2015a)       - - - 

(Ravì, Wong, Lo, et al., 2017)       - - - 

(Q. Song, et al., 2017)    -  - - - - 

(Lukun Wang, 2016)  -  -  -   - - 

(Kautz, et al., 2017)         - - 

(Guan & Ploetz, 2017)  -  -  - -    

(C. A. Ronao & S.-B. Cho, 2016)    -  - -  - - 

(Sathyanarayana, Joty, Fernandez-Luque, 

Ofli, Srivastava, Elmagarmid, Taheri, et 

al., 2016) 

       -     

(X. Li, et al., 2017)      - -   - 

(Ordóñez & Roggen, 2016)  -  -  -     - 

(Song, et al., 2016)    -  -    - - 

(Yang, et al., 2015)    -  -     - 

 

6. Common Datasets for Deep Learning Based Human Activity Recognition 

Benchmark datasets are important for human activity recognition with deep learning methods. With benchmark 

datasets, researchers can test the performance of their proposed methods and how the results compare with previous 

studies. Some studies used datasets collected purposely for their research while others rely on public datasets to 
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evaluate and validate their methods which are the most popular procedure among researchers in human activity 

recognition. 

The main advantages of benchmark dataset are the ability to provide varieties of activity details both ambulato-

ry, ambient living, daily, gesture and skill assessment activities (Nils Yannick Hammerla, et al., 2015). The most 

widely used benchmark datasets and the number of sensors, activities and subjects are shown in Table 8. 

OPPORTUNITY Dataset (Roggen, et al., 2010) is a set of complex, hierarchical and interleaved dataset for activity 

of daily living (ADL) collected with multiple sensors of different modalities in naturalistic environments. During the 

data collection, the sensors were integrated into objects, environments and on-body that ensure multimodal data 

fusion and activity modelling. The OPPORTUNITY dataset is composed of sessions, daily living activities and 

drills. In the daily living activity section, the subjects were asked to perform different kitchen-related activities such 

as preparing and drinking coffee, eating sandwich, cleaning up, etc. while in the drill session, the subjects were 

asked to perform 20 set of repeated activities like “Opening and close the fridge”, “Open and close the dishwasher”, 

“Open and close the door”, “Clean the table” etc. for a period of 6 hours. All the datasets were gathered with Inertia 

Measurement Unit (IMU) sensors with different modalities inform of accelerometers, gyroscope and magnetometer. 

In a total of seventeen (17) activities were performed with twelve (12) subjects. 

The Skoda Mini Checkpoint Dataset (Zappi, et al., 2008) was collected to check quality assurance checkpoint among 

assembly lines workers in car production environment. In the study, one subject wore twenty (20) 3D sensors on 

both arms and performed different manipulative gestures recorded for 3hours for seventy (70) repetitions in each 

gesture. The activities considered are “Write on notepad”, “Open hood”, “Close hood”, Check steering wheel” etc. 

using on-body sensors placed on the right and left arms. 

Daily and Sports Activity (Barshan & Yüksek, 2014) was collected at Bilkent University in Turkey for human activi-

ty classification using on-body sensors placed on different parts of the body. The dataset involved five inertial 

measurement unit sensors by eight (8) subjects and performed nineteen (19) different ambulatory activities. The 

IMU collected multimodal data: accelerometers, gyroscope and magnetometer for activities involving walking, 

climbing stairs, standing, walking on the treadmill etc. It was made public after their research with intra-subject 

variability. It is a challenging dataset for human activity recognition. 
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WISDM dataset (Kwapisz, et al., 2011) by Wireless Sensor Data Mining Lab Fordham University describes a da-

taset collected for human activity recognition using Android based mobile phone accelerometer sensors. The data 

was collected from twenty-nine (29) users with single mobile phones doing simple ambulatory activities such as 

working, jogging, sitting, standing, etc. 

PAMAP2 (Reiss & Stricker, 2012), Physical Activity monitoring for Aging People comprises daily activity dataset 

collected with three inertial measurement (IMU) and heart rate monitor sensors for a 10 hour period using nine (9) 

subjects. The sensors were placed at different body positions (dominant arm, ankle and chest region) and measured 

activities ranging sitting, jogging, watching TV to using the computers. 

mHealth (Oresti Banos, et al., 2014) comprises 12 daily activity dataset collected using accelerometer, gyroscope, 

magnetometer and electrocardiogram sensor for health monitoring applications. It uses diverse mobile and wearable 

biomedical devices to collect sensor data. The architecture of the mobile app includes components such as data col-

lection, storage, data processing and classification, data visualisation and service enablers that provide complete 

health monitoring systems. 
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Table 8: Benchmark Dataset for Human Activity Recognition Methods Evaluation 

Authors Dataset Sensor Modalities Number 

of Sen-

sors 

#Participant Activities  

(Roggen, 

et al., 

2010) 

OPPORTUNITY Accelerometer, 

gyroscope, magne-

tometer 

19 4 Open and close door, open and 

close fridge, open and close 

dishwasher, open and close 

drawer, clean table, drink from 

cup, Toggle switch, Groom, 

prepare coffee, Drink coffee, 

prepare Sandwich, eat sand-

wich, Clean up 

(Zappi, et 

al., 2008) 

Skoda Accelerometer, 

gyroscope, magne-

tometer 

20 1 Write on Notepad, open hood, 

close hood, check Gap door, 

open door, check steering 

wheel, open and close trunk, 

close both doors, close doors, 

check trunks 

(Barshan 

& Yüksek, 

2014) 

Daily and Sports 

Activities 

Accelerometer, 

gyroscope, magne-

tometer 

5 8  Sitting, standing, lying on 

back, lying on right side, 

ascending stair descending 

stairs, standing in an elevator 

still, moving around in an 

elevator, walking in a parking 

lot, walking on a treadmill 

with a speed of 4 km/h in flat, 

walking on a treadmill with a 

speed of 4 km/h and 15 degree 

inclined positions, running on 

a treadmill with a speed of 8 

km/h, exercising on a stepper, 

exercising on a cross trainer, 

cycling on an exercise bike in 

horizontal positions, cycling 
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7. Deep Learning Implementation Frameworks 

Deep learning has come a long way and has become an important area of research. A number of software and 

hardware implementation platforms have been developed that exploit high-performance computing platforms to 

extract discriminative features for activity recognitions and other application areas. Some of these deep learning 

frameworks are open source, and others are proprietary developed by different organisations for use in cutting-edge 

technological development. NVidia
1
 has become a driving force in the development of hardware technologies such 

as Graphical Processing Unit (GPU) and other processors that accelerate learning and improve the performance of 

deep learning methods. Recently, the organisation developed deep learning purpose-built microprocessors such as 

                                                           
1
 www.nvidia.co.uk 

on an exercise bike in vertical 

position, rowing, jumping and 

playing basketball 

(Kwapisz, 

et al., 

2011) 

WISDM v2 Accelerometer 1 29 Walking, Jogging, Upstairs, 

Downstairs, Sitting, Standing 

 PAMAP2 Accelerometer, 

gyroscope and 

magnetometer 

4 18 Lying, sitting, standing, walk-

ing, running, cycling, Nordic 

walking, Watching TV, Com-

puter work, Car driving, As-

cending stairs, Vacuum clean-

ing, descending stairs, ironing, 

folding laundry, house clean-

ing, playing soccer, rope jump-

ing 

(Oresti 

Banos, et 

al., 2014) 

mHealth Accelerometer, 

gyroscope, magne-

tometer, electrocar-

diogram 

4 10 Standing still, sitting and 

relaxing, lying down, walking, 

climbing stairs, waist bends 

forward, frontal elevation of 

arms, knees bending, cycling, 

jogging, running, jumping 

front and back 
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NVidia Tesla 40 GPU acceleration, Tesla M4 Hyperscale Accelerator and DGX-1 deep learning system (NVidia-

Corps, 2017). Other companies like Mathematica, Wolfram, Nervana Systems, IBM and Intel Curie have followed 

suit in the development of deep learning implementation hardware (Ravì, Wong, Deligianni, et al., 2017). 

One important aspect of the NVidia GPU is their support for the majority of the Machine learning and deep 

learning implementation tools and packages. Below, we discussed some of these tools and frameworks for imple-

mentation of deep learning and their various characteristics as shown in Table 9. Although the parameters used in 

the discussion were presented in (Ravì, Wong, Deligianni, et al., 2017), the frameworks were updated to reflect the 

current development in the area.  

 TensorFlow (Abadi, et al., 2016) is an open source framework developed by Google Research Team for 

Numerical computation using data flow graph. TensorFlow has the highest number of community support 

for implementation of deep learning models. TensorFlow is very popular in deep learning research due to 

its flexibility for a variety of algorithms, portability and can run inference on mobile phones devices. Fur-

thermore, it provides support for low level and high-level network training with multiple GPU, robust and 

provides consistency of parameter updates. 

 Theano (Bergstra, et al., 2010) is a Python library used to define, optimise and evaluate the mathematical 

expression for multi-dimensional array. Theano provides high network modelling capability, dynamic code 

generation and speed with multiple GPU support. However, Theano provides low-level API and involves a 

lot of complex compilations that are often slow. Meanwhile, Theano has a wide range of learning resources 

and is still used by many researchers and developers. 

 Caffe (Y. Jia, et al., 2014) is a framework for expressing algorithms in modular form. It provides C++ core 

language and binding support in Python and MATLAB. Caffe provides a complete architecture for training, 

testing and deployment of the deep learning model. Moreover, NVidia GPU provides Caffe support for ac-

celerated learning of deep learning. 

 Pylearn2 (Goodfellow, et al., 2013) Pylearn2 was proposed in 2013 as machine learning library composed 

of several components that can be combined to form complete machine learning algorithms with deep 

learning models such as Autoencoder, Deep Belief Network, Deep Boltzmann machine implementation 
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module. It is built on top of Theano and provides CPU and GPU support for intensive machine learning 

implementation. The major drawback of Pylearn is its low-level API that requires expert knowledge to im-

plement any deep learning method. 

 Torch (Collobert, Kavukcuoglu, & Farabet, 2011), scientific computing framework that provides model for 

machine learning implementation. The framework was developed to extend Lua programming Language 

and provide the flexibility needed to design and train machine learning algorihtms. It is equipped with ten-

sor; standard MATLAB and Neural Network model functionalities that describe neural network architec-

tures. 

 Cognitive Network Toolkit (Microsoft, 2017) was developed by Microsoft Research to provide a unified 

framework for well-known deep learning algorithms. It provides multi-GPU parallelisation of learning 

techniques and implements stochastic gradient descent and automatic differentiation. The toolkit was 

released in 2015 and still has high community contribution in GitHub. 

 Lasagne (Lasagne, 2015) provides a light library for implementation of deep learning algorithms such as 

convolutional neural network and recurrent neural network in Theano. It allows multiple input architectures 

with many popular optimisation techniques such as RMSprop and ADAM. The algorithm also provides 

CPU and Multiple GPU support for the implementation of deep learning methods. 

 Keras (Chollet, 2015) was developed for deep learning implementation in Theano and TensorFlow written 

in Python programming language. It enables high-level neural network API for speedy implementation of 

deep learning algorithms. The main key point of Keras is its support for Theano and TensorFlow, popular 

deep learning implementation framework and allows modular, extensible and user platform using Python. 

 MXNet (T. Chen, et al., 2015) combines symbolic and imperative programming to enable deep neural net-

work implementation on heterogeneous devices (Mobile or GPU clusters). It automatically derives neural 

network gradients and graph optimisation layer to provide fast and memory efficient execution. 
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 Deeplearning4j (Skymind, 2017) developed by Skymind is an open source, distributed and commercial 

machine learning toolkits for deep learning implementation. The framework integrates Hadoop and Spark, 

with CPU and GPU-enabled for easy and quick prototyping of deep neural network implementation. 

 Neon (Nervana-Systems, 2017) is developed for cross-platform implementation in all hardware with sup-

port for popular deep learning methods, convolutional neural network and recurrent neural network. Once 

codes are written in Neon, it can be deployed on different hardware platforms, and it provides the best per-

formance among deep learning libraries. 

 Pytorch (Erickson, Korfiatis, Akkus, Kline, & Philbrick, 2017) was recently developed at Facebook and is 

a front-end integration of Torch for high performance deep learning development with excellent GPU sup-

port. It provides Python front-end that enables dynamic neural network construction. However, the toolkit 

was recently released and does not have a lot of community support, learning resources and evaluation for 

its performance. 

 CuDNN (Chetlur, et al., 2014) was developed as GPU-accelerated library for implementation of common 

deep learning methods. The framework with developing with the same intent as BLAS for optimised high-

performance computing, to ease development, training and implementation of deep learning such as 

convolutional layer, recurrent neural network and backpropagation techniques. CuDNN supports both GPU 

and other platforms and provides straightforward integration with other frameworks such as TensorFlow, 

Caffe, Theano and Keras. Also, the context based API of CuDNN allows for multithreading and evaluation 

of complete deep learning algorithms. 

Various other frameworks are still being developed that will simplify deep learning implementation across 

platforms and heterogeneous devices. For instance, frameworks such as DIGIT, Convnet and MATLAB based 

CNN toolbox for feature extraction, Cudanet, CUDA and C++ implementation of CNN and others are being fi-

ne-tuned to enable deep learning development. There are a number of evaluations of these frameworks that 

were reported recently (Bahrampour, Ramakrishnan, Schott, & Shah, 2015a, 2015b; Erickson, et al., 2017) us-

ing parameters such as language support, documentation, development environment, extension speed, training 

speed, GPU support, maturity level, model library, etc. From these, TensorFlow has the highest GitHub interest 
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and contribution, surpassing Caffe and CNTK. Also, some of the frameworks support GPU or have limited sup-

port in which the GPU has to be resident on the workstation (e.g., MXNet). 

With the development of deep learning based human activity recognition, these frameworks have become 

dominant choices for developers and researcher for mobile and wearable sensor based applications. With differ-

ent implementation frameworks and varying programming support, the choice of the framework depends on the 

programming and technical ability of the users. The software frameworks recently used for mobile-based hu-

man activity recognition are TensorFlow (Eskofier, et al., 2016; Kautz, et al., 2017), Theano (Ordóñez & 

Roggen, 2016; C. A. Ronao & S.-B. Cho, 2016), Caffe (Yin, et al., 2016), Keras(X. Li, et al., 2017), Torch 

(Daniele Ravi, et al., 2016) and Lasagne (Guan & Ploetz, 2017). Other studies develop the algorithm using pro-

gramming platforms such as MATLAB (S. Bhattacharya & Lane, 2016; Erfani, et al., 2016; Sheng, et al., 2016; 

Zebin, et al., 2016) and C++ (Ding, et al., 2016). 
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Table 9: Software Frameworks for Deep Learning Implementation 

Name Organisation Licence Platform Language 

Support 

OpenMP 

Support 

Support Techniques Cloud Com-

puting Sup-

port RNN CNN DBN 

Theano Universite de 

Montreal 

BSD Cross Plat-

form 

Python -       - 

TensorFlow Google Research Apache 

2.0 

Linux, OSX Python   -     - 

Caffe Berkeley Vision 

and Learning 

Centre 

FreeBSD Linux, Win, 

OSX, An-

droid,  

C++,Python, 

MATLAB 

- -   - - 

Torch Ronan Collobert 

et al. 

BSD Linux, Win, 

OSX, An-

droid, iOS 

Lua, LuaJIT, C   -     - 

CNTK Microsoft MIT Linux, 

Window 

C++, Python, 

C#, Command 

Line 

      - - 

Deeplearning4jK Skymind Apache 

2.0 

Linux, Win, 

OSX, An-

droid 

Java, Scala, 

Clojure, Spark 

 

  

      - 

Keras Francois Chollet MIT 

Licence 

Linux, Win, 

OSX 

Python -       

Neon Nervana Systems Apache 

2.0 

OSX, Linux Python           

Lasagne Universite de 

Montreal 

BSD Linux, Win, 

OSX, An-

droid 

Python          

- 

MXNet Chen et al Apache 

2.0 

Linux, Win, 

Andriod 

Python, R, 

C++, Julia 

-     - - 

Pylearn  LISA Lab Uni-

versite de Mon-

treal 

BSD Cross Plat-

form 

Python         - 

PyTorch Facebook BSD Linux Python          

CuDNN NVIDIA Free 

BSD 

Linux, Win, 

Android, 

OSX 

C       -   
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8. Open Research Challenges 

In this section, we present some research challenges that require further discussion. Many open research issues 

in the area of sensor fusion, real-time and on-board implementation on mobile and wearable devices, data pre-

processing and evaluation, collection of large dataset and class imbalance problems are some of the areas that re-

quired further research. Here, we discuss these research directions in seven important themes:  

 Real-time and on-board implementation of deep learning algorithm on mobile and wearable devices: On-

board implementation of deep learning algorithms on mobile and wearable devices will help to reduce 

computation complexity on data storage and transfer. However, this technique is hampered by data acquisi-

tion and memory constrained in the current mobile and wearable devices. Furthermore, a high number of 

parameters tuning and initialisation in deep learning increases computational time and is not suitable for 

low energy mobile devices. Therefore, utilising methods such as optimal compression and use of mobile 

phone enabled GPU to minimise computation time and resources consumptions is highly needed. Other 

methods that may provide enabling techniques for real-time implementation is leveraging mobile cloud 

computing platforms for training to reduce training time and memory usage. With this type of 

implementation, the system can become self-adaptive and require minimal user inputs for a new source of 

information.   

 Comprehensive evaluation of pre-processing and hyper-parameter settings on learning algorithms: Pre-

processing and dimensionality reduction is an important aspect of the human activity recognition process. 

Dimensionality reduction provide mechanism to minimize computational complexity especially in mobile 

and wearable devices with limited computation powers and memory by projecting high dimensional sensor 

data into lower dimensional vectors. However, the method and extent of pre-processing on the performance 

of deep learning is an open research challenge. A number of pre-processing techniques such as normalisa-

tion, standardisation and different dimensionality reduction methods need to be experimented with, to know 

the effects on performances, computational time and accuracy of deep-learning methods. Issues such as 

learning rate optimisation to accelerate computation and reduce model and data size, kernel reuse, filter 

size, computation time, memory analysis and learning process still require further research as current stud-

ies depend on heuristics method to apply these hyper-parameters. Moreover, the use of grid search and evo-
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lutionary optimisation methods on mobile based deep learning methods that support lower energy con-

sumption, dynamic and adaptive applications, and new techniques that enable mobile GPUs to reduce com-

putational time are very significant research directions(Ordonez & Roggen, 2016). 

 A collection of large sensor datasets for evaluation of deep learning methods: Training and evaluation of 

deep learning techniques require large datasets that abound through different sensor based Internet of Thing 

(IoT) devices and technologies. The current review indicates that most studies on deep learning implemen-

tation of mobile and wearable based human activity recognition depend on benchmark dataset from con-

ventional machine learning algorithms such as OPPORTUNITY, Skoda and WSDM for evaluation.  Data 

collection methods through cyber-physical systems and mobile crowdsourcing to leverage data collected 

through the smart home and mobile location data for transportation mode, smart home environment for el-

derly care and monitoring, GPS data for context aware location recognition and other important applica-

tions. Therefore, collection of large dataset through the synergy of these technologies are important for per-

formance improvements.  

 Transfer learning for mobile and wearable devices implementation of deep learning algorithms: Transfer 

learning based activity recognition is a challenging task to accomplish. Transfer learning leverage experi-

ence acquired in different domains to improve the performance of new areas yet to be experienced by the 

system. The main vital reasons for application of transfer learning are to reduce training time, provide ro-

bust and versatile activity details and reuse of existing knowledge into new domains and a critical issue in 

activity recognition. Further research in area related to kernel, convolutional layer, inter-location and inter-

modalities transferability will improve implementation of deep learning based human activity 

recognition(Ordonez & Roggen, 2016). Moreover, transfer learning in mobile wearable sensor based hu-

man activity recognition will minimize source, target and environment specific applications implementa-

tion which have not received the needed attention. 

 Implementation of deep learning based decision fusion for human activity recognition in mobile and wear-

able devices: Decision fusion is an essential step to improve the performance and diversity of human activi-

ty recognition systems by combining several architectures, sensors and classifiers into a single decision. 

Typical areas that require further researches are heterogeneous sensor fusion, combining expert knowledge 
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with deep learning algorithm and combination of different unsupervised feature learning methods to im-

prove performance of activity recognition systems.   

 Solving the class imbalance problem for deep learning in mobile and wearable based human activity 

recognition: Class imbalance issues can be found in datasets for human activity recognition and detection 

of abnormal activities. Class imbalance problem is vital in healthcare monitoring especially fall detection in 

which what constitute actual fall is difficult. For mobile and wearable sensor based human activity recogni-

tion, class imbalance maybe as a result of a distortion in the dataset and sensor data calibration which re-

duce performance generalisation (Edel & Köppe, 2016). Existing studies have proposed a range of solu-

tions such as mixed kernel based weighted extreme learning machine and cost sensitive learning strategies 

(D. Wu, Wang, Chen, & Zhao, 2016). However, there are no studies on how class imbalance affect deep 

learning implementation especially for mobile wearable sensors.  Therefore, strategies to reduce class im-

balance will significantly improve human activity recognition using deep learning methods.  

 Augmentation of mobile and wearable sensor data to enhance deep learning performance: Another aspect 

of open research challenge is the use of data augmentation techniques to improve the performance of deep 

learning methods for motion sensors (accelerometer, gyroscopes, etc.) based human activity recognition 

with the convolutional neural network.  Data augmentation methods exploit limited amount of mobile and 

wearable sensor data by transforming the existing training sensor data to generate new data. These process-

es are important as it help to generate enough training data to avoid overfitting, improve translation invari-

ance to sensor orientation, distortion and changes especially in convolutional neural network (CNN) model. 

In image classification, data augmentation is a common training strategy (Y. Guo, et al., 2016). However, 

there is need to evaluate the impacts and performances of data augmentation in mobile and wearable 

sensor-based human activity recognition to generate more training examples and prevent overfitting result-

ing from small datasets. Different data augmentation approaches such as change of sensor placements, arbi-

trary rotations, permutation of locations with sensor events, time warping and scaling will provide effective 

means to enhance performance of deep learning based human activity recognition(Um, et al., 2017).  
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9. Conclusion 

Automatic feature learning in human activity recognition is increasing in momentum. This is as results of the 

steady rise in computation facilities and large datasets available through mobile and wearable sensing, Internet of 

Things (IoT) and crowd sourcing. In this paper, we reviewed various deep learning methods that enable automatic 

feature extraction in human activity recognition. Deep learning methods such as Restricted Boltzmann Machine, 

Autoencoder, and Convolutional Neural Networks and Recurrent neural network were presented and their character-

istics, advantages and drawback were equally exposed. Deep learning methods can be classified as generative, dis-

criminative and hybrid methods. We utilise the categorisations to review and outline deep learning implementation 

of human activity recognition. Those in the generative categories are the Restricted Boltzmann Machine, autoencod-

er, sparse coding and deep mixture model while the discriminative approaches include the convolutional neural 

network, recurrent neural network, deep neural model and hydrocarbon. Similarly, hybrid methods combine genera-

tive and discriminative model to enhance feature learning and such combination dominant research landscape of 

deep learning for human activity recognition lately. Hybrid methods incorporate diverse generative model such as 

autoencoder, Restricted Boltzmann Machine with the convolutional neural network or combine discriminative 

models such as convolutional neural network and long short term memory. These approaches are an important step 

to achieving automatic feature learning and enhancing performance generalisation across datasets and activities. 

On the other hand, the implementation of deep learning methods is driven by the availability of high-

performance computing GPU and software frameworks. A number of these software frameworks were recently 

released to the research community as open sources projects. These software frameworks were discussed, taking into 

cognizance their characteristics and what inform developers’ choice in using particular frameworks. Also, training, 

classification and evaluation of deep learning algorithm for human activity recognition is not always a trivial case. 

To provide the best comparison and categorisations of recent events in the research community, we reviewed the 

training and optimisation strategies adopted by different studies recently proposed for mobile and wearable based 

human activity recognition. Furthermore, classification and performance metrics with different validation techniques 

are important to ensure generalisation across datasets. These approaches are adopted to avoid overfitting the model 

on the training set. Also, we provide some of the publicly available benchmark datasets for modelling and testing 
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deep learning algorithms for human activity recognition. Some of these datasets that are widely used for evaluation 

are OPPORTUNITY, Skoda, and PAMAP2 which are also popular with classical machine learning algorithms. 

To provide further insight on the directions of the research progress, we presented the open research challenges 

that require the attention of researchers. For instance, areas such as deep learning based decision fusion, implemen-

tation of deep learning on-board mobile devices, transfer learning and class imbalance problems that enable imple-

mentation of human activity recognition for enhanced performance accuracy. With further development of high 

computational resources that increase the online and real-time deep learning implementation on mobile and weara-

ble devices, such machine learning techniques are projected to improve human activity recognition researches. 
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