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Evolving Graph Construction for Successive
Recommendation in Event-based Socia: Networks

Shenghao Liu, Bang Wang, Minghua Xu and Laurence T. ".ang

Abstract—Personalized recommendation can help individual
users to quickly reserve their interested events, which makes it
indispensable in event-based social networks (EBSNs). However,
as each EBSN is often with large amount of entities and each
upcoming event is normally with non-repetitive uniqueness, how
to deal with such challenges is crucial to the success of event
recommendation. In this paper, we propose an evolving graph-
based successive recommendation (EGSR) algorithm to address
such challenges: The basic idea is to exploit the random walk
with restart (RWR) on a recommendation graph for ranking the
upcoming events. In EGSR, we employ a sliding window mecha-
nism to construct evolving graphs for successively recommending
new events for each user. We propose a graph entropy-based
contribution measure for adjusting the window length and for
weighting the history information. In EGSR, we also apply a topic
analysis technique for analyzing event text description. We then
propose to establish each user an interest model and to compute
the similarities in between event content and user interest as
edges’ weights for each recommendation graph. In successive
recommendation, the number of upcoming events may experien. -
great variations in different times. For a fair comparison, we
also propose a set of cumulative evaluation metrics based ~ “he
traditional recommendation performance metrics. Experim. “ts
have been conducted based on the crawled one year data from a
real EBSN for two cities. Results have validated the s eviority
of the proposed EGSR algorithm over the peer ones in ter.. s of
better recommendation performance and reduced ~omputa on
complexity.

Index Terms—Evolving graph construction, acce sive recom-
mendation, random walk with restart, graph en. ~v , eve .t-based
social networks

1. INTRODUCTI® ™"

With the fast development of Inte et ¢ Things (I0T), recent
years have witnessed the emerrence ~f a new computing
paradigm, called Cybermatics, * hicl have been continuously
integrating diverse Cyber, Phy. '~a’ anc Social Systems and
promoting numerous new ar~licat. °< everyday [1]-[4]. For
example, given the wide ar option f smartphones, people can
arrange their daily life n »re con enient and expand their
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social circles [S5]-[7, W'.ule with the population of event-
based social netwovks (. SNs), people can easily reserve
their interested  vents (“rough their smartphones [8]-[10].
However, due tc the pro feration of online events, how to
accurately recermme. ' © _dividual users their mostly interested
ones becomr :s a . lenging task. Although some EBSNs,
such as Me~*.p ar: Douban Event !, provide a search
function tu. nsere . find their preferred events with key words,
how to accura. ly match user preferences with appropriate
events .. still v ry difficult, especially for most users being
unabic ‘o cicarly express their interests. In response to the
pressine a. mands, a good event recommendation system is
mu. " required for EBSNs.

Even. -ecommendation in EBSNs often faces the cold start
910! o, [11], [12]. Compared with the general item recom-
n. adation, like recommending books and movies, events are
nsucily with the property of non-repetitive uniqueness [13].
Fuithermore, an upcoming event generally cannot be actually

consumed’ and evaluated, though it may be reserved by some
users, before its commencement. To deal with such challenges,
we can exploit the history events that a user had once attended
to establish an interest model for him. Among many event
properties, like the launching time and place, we believe
that the event text description could provide more intrinsical
information for reflecting users’ interests. So it is necessary to
analyze event text description, which can be done by enjoying
some recently developed topical analysis techniques [14], [15].

Furthermore, a typical EBSN normally includes diverse en-
tities, like events, users, groups, subjects, tags and etc., and nu-
merous relations in between entities. Traditional recommenda-
tion algorithms, like the CB (content-based recommendation)
and CF (collaborative filtering) algorithm, only pay attention
to a few part of these relations, which may ignore some
useful information and lead to unsatisfactory recommendation
performance [16]-[20]. Recently, graph-based algorithms have
been proposed to address such issues, which first construct a
recommendation graph to represent all available entities and
their relations [21]. After graph construction, a random walk
with restart (RWR) algorithm can be employed to rank the
nodes, whose basic idea is to transform the recommendation
task into a node convergency probability computation prob-
lem [22], [23]. However, including all history entities and
their relations for the graph construction incurs the problem of
increased computation complexity and storage requirement. It
may also introduce unnecessary noises for the random walk,
if without discriminating different entities and relations.

IMeetup: www.meetup.com; Douban Event: www.douban.com



In this paper, we propose an Evolving Graph-based Succes-
sive Recommendation (EGSR) algorithm to enjoy the advan-
tages of graph-based algorithms and topic analysis techniques.
The basic idea of EGSR is to construct evolving graphs each
with topical similarity weighted edges based on the most
recently available system information. In particular, we first
divide the timeline into consecutive slots each with equal
length. We then employ a sliding window which moves
forward one slot per step and use only the system information
in the sliding window for graph construction. Instead of using
a fixed window length, we propose a graph entropy-based slot
contribution measurement to adjust the window length and to
weight the history slots per moving step. We apply a topic
analysis tool to obtain the content feature for each event from
its text description. An interest model is then established for
each user as the weighted event feature based on his attended
events in the sliding window. We compute the similarities in
between event features and user interests as edges’ weights
for each recommendation graph. Furthermore, we propose a
sequential version of the stochastic gradient descent algorith-
m [24] to train the transition parameters for each recommenda-
tion graph. Note that although only one recommendation graph
is constructed per sliding window, event recommendation can
be made for each individual user on his access to the system by
setting this user as the query node when executing the RWR
on the graph. In practical EBSNs, the number of upcoming
events may experience great variations in different slots. W
then propose a set of new cumulative evaluation metrics for
fair comparison of successive recommendation by din “em
algorithms. Finally, we compare our EGSR algorithm witi..
other peer algorithms by experimenting two real Adatasets
crawled from Douban Event for two typical ci’ es: Be.'ing
and Shanghai. Experiment results show that u. propc .ed
EGSR scheme can achieve better recommend- Jon res. ™ ..

The rest of the paper is structured as fc ows Section Il
briefly reviews the related work. The proprseu ™ (GSP scheme
is presented in Section III and experim ated in >.ction IV.
The paper is concluded in Section V w th s. me discussions.

II. RELATED v OR?

In this section, we mainly re.iew the most related work
on the graph-based recommen’ atio’ algrrithms, text content
analysis for recommendation anu _rapb entropy studies.

Graph-based recommenc .uun algo.ithms have been pro-
posed to model different kinds «© entities and their rich
relations by constructing a . ~teroc :nous graph, where nodes
stand for entities and ¢ .ges stand for their relations [25]-[39].
Among these graph-b sed algc ithms, the RWR technique has
been widely employed ~ obt- a the convergency probabilities
for ranking node ["°'-39]. For example, Pham et al. [28]
construct a recomn >n‘ ation graph containing different types
of all available entitic. and their relations, which can be used
not only for group recommendation but also for other entities
recommendation in EBSNs. Mo et al. [30] also construct
a heterogeneous graph yet with a new reverse RWR for
event recommendation to solve the dangling nodes problem.
Bagci et al. [33] propose to extract a subgraph centered at

each user with only his neighboring nodes and edges in the
recommendation graph and apply the RWR on the subgraph
for his recommendation. Liu et .. [38] present two types
of recommendation graphs: on . ~taining all the entities
and their relations, yet the other conta...ing only users and
upcoming events. The RWP is erformed on both graphs,
yet the final ranking is bas. 1 ¢ . the weighted convergency
probabilities of the two gr. ~hs. 1. vever, in all these schemes
the graph construction has n. considered the impacts that
different entities and tk _ir rc 1~*ions may evolve with time. Also
they has not related . = e .ges’ weights with content analysis
that might be more accui.. ~ly reflect users’ interests.

The Latent D richlet Allocation (LDA) technique which
analyzes the later. topic di tribution for text has been exploited
by some CB ~~d T - _ommendation algorithms [40]-[45].
For exampl', M~ _'» et al. [41] apply the LDA technique
to extract th. “upic ' ectors of events for calculating content
similarity . “*wec. users and upcoming events. Wu et al. [42]
introduce a m. 'ti-level LDA model into the collaborative
filtering, V) al’ orithm for user recommendation in social
netwo. <. Zuav et al. [45] propose a Hashtag-LDA model to
assist the « 'laborate filtering for hashtag recommendation in
mie blogs. However, to the best of our knowledge, content
analysis> as not been exploited for the graph-based recom-
mer aawon algorithms.

sraph entropy has been used for social networks to identify
*he _nost interesting and important nodes in a network [46]-
[4>]. A general framework for defining the node entropy
-ad the entropy of a graph has been introduced based on
the topological structure of graph in [49]. Shetty et al. [47]
adopt the graph entropy to determine the most prominent yet
interesting person in an email dataset as the node that has the
highest entropy in such an email network. Eagle et al. [48]
develop new metrics based on the graph entropy to observe the
correspondence between the communication network diversity
and economic development. As the graph entropy has been
proven an efficient tool in the field of social network analysis,
it might also be useful for event recommendation in EBSNS.

III. EVOLVING GRAPH CONSTRUCTION FOR EVENT
RECOMMENDATION

A. Overview

In this paper, we adopt the random walk on graph for event
recommendation, which consists of the following modules:
graph entropy-based history information inclusion and influ-
ence weighting, content topic-based preference calculation and
similarity weighting, parameter training and random walk-
based event recommendation.

Although a graph can detail the complex relations in be-
tween diverse entities, its construction may become a bur-
densome task for an ever-increasing EBSN. Furthermore, per-
forming random walk on a very large graph with all available
history information may also become time-consuming and
even impractical. Instead of using all the history information
for a panoramic graph construction, we propose to construct
evolving graphs by using a sliding window with adjustable
length to include the most recent information.



|
k Sliding Windo |
: History Slof -Decision Slol-v:
I |
P —
Ei” E2 E3 |E4 E5 E6 E7 E8 E9 El0 Ell EI12|EI3 El4 EIS
Ul Ul U2|U2 U3 U2| U3 U4 US|U4 US U4 | U2 U2 U3
U3 U2 U3 U4 | U4 U3 | US U6 U6 | U3 U4 U6
Us U4 U4 Us U7
--ae> ——
Slots
To T ) T3 T4 T5 76
[] stot User ----> Move/Stay ——» StepForward | | Window | | Next Window
Fig. 1. Illustration of the sliding window model. The x-axis represents the

timeline which is divided into several equal length slots. In this figure, we use
blue boxes to denote slots and use green box to represent the current sliding
window; While we let the dotted blue box be the sliding window in the next
recommendation slot. In each slot, there are several events to be attended by
potential users, as illustrated by the yellow dots. Furthermore, in the sliding
window, slots are divided into two parts: one or more history slots and one
decision slot. As time goes by, the head of sliding window will extend itself
by one new slot, and the tail could keep unchanged or extend one or more
slots based on our proposed moving strategy.

Fig. 1 illustrates the emulated procedure for event rec-
ommendation in a practical EBSN, where the timeline is
divided into consecutive slots each with equal length. The
recommendation decision is made at the beginning of each
slot, yet event announcements and user reservations could
asynchronously reach the EBSN at any time [38]. To captr ~
useful history information, we use a sliding window wit..
length of T' + 1 slots for graph construction, which cen<ists
of one decision slot and T history slots serving as a trau.. e
set. After having made a decision, the sliding window extends
itself to cover the next slot, yet its length is subjer. .. ~djust
according to our proposed influence weighting ba 2d on gr ph
entropy strategy, which also computes the weig.. of rach
history slot in the sliding window for construct’.ag a new g.aph.
Table I summarizes the used symbols and aeir aota’ ons in
this paper .

B. Window moving and slot weighting strategy

The objective is to first decide ae | ngth 7"+ 1 of the
sliding window for including histor, ‘» ormation and then to
compute the influence weight v, of the “th history slot for
the current decision slot. For e' :nt r .comnendation, the most
important history information n.. 'de ae events and users,
which are also the most _yuamic c.tities. Although other
entities, like groups, tags and etc exist in an EBSN, our
experiment results suggest ‘hat ir -luding all entities of an
EBSN for graph cons .uction degrades the recommendation
performance. So we n ainly foc 's on the event and user entities
in this paper.

We use the e' . - ~ommencement time to distribute one
event into its corres, or ding slot. Let E; and U, denote the set
of events and that of u. ~rs in the decision slot, respectively. We
construct a bipartite graph G; = (Eq|J Uy, Lq), where L is
the set of edges. Note that an edge in L, only connects a user
u and an event e, if the user v has reserved the event e. Let B
denote the adjacency matrix of G4. Due to its uniqueness, an
event can belong to only one slot, and hence the event sets in

TABLE I
DEFINITION AND NOTATIONS IN EGSR

Symbol Definition

Arpg, Aur The adjacency ~ .. “x of the constructed graph

B, b;. The adjacency matrix o, ~4 and its row vector

C(T) The entror con ‘ibution of history information
to decis.. ~ s] ¢ with a window length 7"+ 1

e, u The eve. * feature -ctor and user interest model

EP EN The of pos. “e and negative events of user u

F(a), a T e trai .ang ‘jective function and its parameter

Ga, G The  oartite graph of decision slot and the
reccmmendation graph

H, h The nc les’ entropy and a node entropy

J(T) T~ ojective function

Ly “he list of events user u has registered

Prr, P, - gy he transition matrix of recommendation graph

qu The user query vector

Tij The transition probability of node v; to node v;
T The number of history slots in a sliding window
uF, ek The user and the event probability vector

o rew potd The set of new and old users in decision slot

Wi, We;,, The weight of tth slot, the weight of event e;,

W oie; Wi e, The weight of an edge in recommendation graph
The time of each slot

(), o(+) The unit step function and the sigmoid function

different slots are mutually disjoint. For those history slots, we
include those users who have reserved at least one event in the
sliding window. Contrary to an event, a user can participate
different events, so a user can belong to multiple slots. Yet the
user sets in different slots could be much different.

In each decision slot, some new users may be the first time
accessing the EBSN without attending any event in the 7'
history slots; While some old users may have already attended
one or more events in the 7" history slots. So we can divide
users in Uy into two parts: U7¢? and US'. That is, Uy =
Upew (JUS and UFew M US' = (). For each old user, we try
to also exploit his previous event attendances to establish his
collaborative relations in between old events in the 7" history
slots and new events in the decision slot. For the decision slot,
we expect to include as more as possible old users to exploit
their history information. For including more old users, we
need to extend the length of sliding window to cover longer
history slots. On the other hand, increasing the window length
would also increase the computation complexity, yet some too
old history information may also be outdated for the current
decision slot. So we need to choose an appropriate length for
the sliding window.

In this paper, we determine the sliding window length 7+ 1
and compute slot weight w; based on the graph entropy, which
has been widely used to capture the structural information
quantity of a graph [48]. We apply the graph entropy to
compute the old users’ contribution to the decision slot. For
each node in a graph, the node entropy is computed from its
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Fig. 2. Tllustration of the computation of the sliding window length. On the left of the figure, “= green box represents the sliding window and G, denotes

the bipartite graph of the decision slot, where blue squares are events and yellow dots are users. In 7, those users who had attended previous events in the
history slots are called old users, where the old users who belong to different history slo.. ~re shows as dots with different colors. With the different choices
of sliding window length T" + 1, the number of old users \Ugld| could be different "~ the o "~* 4, which could result in different entropy contributions
C(T). On the right of the figure, we plot C(T') as a function of sliding window length. ~ can be seen that C'(T") is an increasing function of the window

length. Furthermore, according to the threshold Cy, we can find the suitable length of clidin.

topological diversity information [48]:
B

h(Uz) = —Zj:1 rij log(rij), [

where r;; is the transition probability of node v; to nce v,
in the graph. For the bipartite graph G4, we compute 7;; 1, ™
the adjacency matrix B by:

where b;. is the ith row vector of B. The graph . ~trop" of

Gq is computed as the summation of all node ,” ertropy.
|B|
H(Gq) = Z h(v;). (3)
i=1
Furthermore, we compute the old user ~utropy J(U(‘l’ld) by
[Ugh|
HU) = > hlw), « € U )
i=1

The set of old users Ug'® 1. s pend .nt on the choice of
sliding window length 7"+ * In .- _.ral, the larger 7, the
larger US'. For a given wi «dow le. 7th T+ 1, we define C(T')
as the entropy contribution f old 1 sers to G4 by
_ 1)

AT) = HG) 5

Lemma 1: C(7", '~ »~ non-decreasing function of 7.
Proof: See the Ar pendix . [ ]
For a non-decreasing « (7T'), let Cy,;,, denote its minimum val-
ue when 7' = 1, and C,,,4, the maximum value for the largest
allowable T,,,.. Furthermore, we define C;; as a threshold
to indicate the desired portion of entropy contribution by old
users:

Cth - Og(cmaac - szn) + szn (6)

vindow for the current decision slot.

Kee .. ‘hat Gy is different in each decision slot . So our

¢ ective for choosing a suitable window length is to let the old

use. *” entropy contribution C(T") as close as possible to the

thucshold CYyy,. Specifically, we find the most suitable sliding
‘indow length for each decision slot by:

arngin J(T) =|C(T) — Cul. (7

Lemma 2: Eq. (7) exists a unique solution.
Proof: See the Appendix. ]
After deciding the sliding window size T+ 1 for a decision
slot, we then compute the weights of its previous slots, which
will be used to discount how the old event attendances would
impact on the choice of new event participation. As different
users may have attended different history events, we compute
the slot weight as a collective measure for all old users and
history events based on the increment contribution of graph
entropies. For t = 1, ..., T history slots, we compute the weight
wy for the tth slot by

w=Ct)—C(t—1), t=1,2,..,T, (8)

where we set C'(0) = 0.

Fig. 2 illustrates how to find an appropriate sliding window
length based on old users’ entropy contribution to the current
decision slot, where the function C(7") is computed based on
the user-event information on the left figure. It can be seen that
C(T) is an increasing function of window length and in the
given example, the sliding window length is chosen as three
history slots plus one decision slot.

C. Graph Construction

For each decision slot, we construct a recommendation
graph G on which the random walk will be performed. Let
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« difi rent entities are introduced, which contains users,

events and text descriptions of events. The latent topic model is applied to obtain the event featw.. vector “; by analyzing the text description of each event.
Furthermore, each user makes use of the feature vectors of those events that he had attended i« ~mpu.. .us interest model u;. Based on these feature vectors,
the content similarity between entities could be computed. Finally, a new graph is constructed on “e right of figure, which contains new event-event edges
constructed by the content similarity in between events, as illustrated by the green do’ ~1 edges. F rthermore, the weights of edges in between connected
users and events are also computed based on the similarity between user interest mod=l an. “ent - ontent feature.

U and FE, respectively, denote the set of available users and
events in the sliding window. The graph G includes only the
user nodes U and event nodes E. Besides users and events,
we also take event text description into consideration. We nc*e
that for almost all EBSNs like Douban Event, an event .
often announced together with some text description abont the
event categories, selling points and other characteristics. ™=xt
description has not been well explored for graph-based evem
recommendation algorithms.

In this paper, we exploit text descriptions to ¢ .mpute ser
interest model and graph edge weights. We apply “he wir 2ly
used LDA model [14] to analyze each event ‘' xt desc.._ don.
After having trained a LDA model, we can i" put - a ev’ nt text
description to the LDA model, and obtain an « *out of a K-
dimensional vector as the event feature. lenoted vy €. Each
element in € is the probability of belor zing . a latent topic.

For two events, ¢;,¢; € I, we comr '~ the cosine similarity
of their event features as their edge weig it:

Weiwej = Co~ /é;v €, )

We construct a weighted adje enc’ ma’ ix Agp with each
element Agg(i,j) = We, ., for ‘esc.bing the relations in
between all events in /. Nc ¢ that A g is a full matrix, which
means each event node c nnecting with all the other event
nodes.

Forauser u; € U, .t Ly, = {(€i1,We;, ), -oves (€iM, We,ns ) }
denote the list of e\ =nts tha the user u; has attended or
reserved, where w,, ~ the weight of the event e;y,,. For
an event e;,, in .. “* <lot of the sliding window, we set
We,,, = w; accordr. ¢ .0 Eq. (8). From L,,,, we compute an
interest model for the ser u; as the weighted summation of

event features:
U; = § We,,, €im»

€imELy,

(10)

where €;,,, is event feature of e;,,.

v.> next construct a weighted adjacency matrix Ayg as
fallows. f a user u; has not attended and has not reserved an
2ve . ¢;, then no edge exists in between the user node u; and
e\ -t node e; and Ay (i, j) = 0. If the user u; has attended
~r reserved the event e;, then an edge exists in between w; and
e;j, and the edge weight is computed as the cosine similarity
.etween the user interest model and the event feature:

Wi e; = cos(iy, €;). (11
Therefore, if an edge exists in between u; and e;, we set
Ayg(i,j) = Wy, ., Note that the graph G is an undirected
graph with edges fully specified by the two adjacency matrices
A EE and AU E-

Fig. 3 illustrates the construction of the recommendation
graph for random walk. Notice that this recommendation graph
contains two types of entities, namely, users and events, and
two types of weighted edges, namely, an edge in between a
user and an event and an edge in between two events. Random
walk will be carried out in such a graph for each query user
to obtain his recommendation list.

D. Random Walk with Restart on Graph

We apply the random walk with restart on the graph G to
compute an event recommendation list for a user, which is
implemented by using a multivariate Markov chain to obtain
the node convergency probabilities. To this end, we first obtain
the event-event transition matrix P pr by row-normalizing the
weighted adjacency matrix App. Similarly, we obtain the
user-event transition matrix Py g from Ay g; While we obtain
the event-user transition matrix P gy by column-normalizing
Avk.

To obtain the convergency probabilities, the random walk
with restart (RWR) algorithm is to iteratively compute the



following equations:

(12)
(13)

u* Y = aprePry + (1 — apy)q.

e* ) — oy puPPyg 4+ (1 — app)ePPyg

In the above equations, q,, is the user query vector. If we want
to obtain the convergency probabilities for the user u;, we set
qu(i) =1, and q,(j) = 0 for i # j. u* and e* are the user
and event probability vector, respectively, in the kth iteration.
The probability vectors u(®) and e(®) are randomly initialized.
The parameters ayg and agy control the transition weight
from one type node to another type node. For example, in
Eq. (13) event nodes get oy probability from user nodes,
(1 — ay ) probability from other event nodes.

The iteration terminates until the pairwise difference in
between two iteration probability vectors is smaller than a
predefined threshold. It has been proven in [28] that if the
constructed graph is a connected one, then the iterations can
converge. We note that the constructed graph G is a connected
one. After the iteration termination, each user u obtains a
vector of event convergency probabilities for N upcoming
events in the decision slot, denoted by

Pu = (pu(el)7~~7pu(eN))- (14)

Each element p,,(e;) can be considered as the similarity score
between u and e; € I/;. We then sort the p,, according to the
decreasing value of p,(e;) to obtain the recommendation L
L,, for each user.

E. Parameter training

In Egs. (12) and (13), the parameters ayp aus Yy
control the transition weights from one type nor ¢ to ano. er
type node. As the user-event pairs could be muci. Jiffr ent
in different slots, we propose to sequential’, trz'n the two
parameters one slot by one slot in a singlc <lic.ng v mdow.
In particular, for each history slot ¢,k = {,..,. ‘n a sliding
window, we use the newly added user-¢ .. ~t pairs from t;_;
to 1x to train new parameters af}"E aud o', hased on the
previous slot parameters ai}“él and wp "', respectively. We
set aptp = all, = 0.5 for 1. Note hat /ith this sequentially
training, when the sliding window exte.. ‘< to the next decision
slot, we only need to update th two parameters based on the
current decision slot that has i.. “vI' bec’ me a history slot.

Take one slot parameter tr~»ing . ~ -xample. Let U and E
denote the user set and eve at set i, this slot, respectively. For
auser u € U, let Ef C .’ denote the set of positive events
that the user u has actu~"'y aw. _od; and let EfLV C FE denote
the negative events th t the us v u has not attended. Note that
EPUEYN = F and .+ PN E} = (). The objective is to train
parameters such that for ._..n user u € U, the probabilities
of events in EL .ve 1 ... - than those in E[Y. This can be
regarded as a typica. .lassification problem. So we adopt the
AUC (Area Under the .>OC Curve) as the training objective:

> > V(pule) = puley))

e, €EP e;eEYN
[ELIEY ’
(15)

arg max F(a) = E
“ uelU

where p,(e;) denotes the convergency probability of event
e; in py. ¥(-) is a unit step function: It equals to 1, if
pul(es) — pu(e;) > 0; Otherwise. it equals to 0. Due to the
discontinuities of the unit step aun.“on, a sigmoid function

is often used instead in the training, o\. ) = =t=. So the
objective function becomes:
> 2 o(pulei) = puley))
Fla)=y “ o
argmax Fl(a) = »
o [T EY ’

ue J

(16)
We apply the stochu. 7. gradient descent (SGD) algorithm
to find appropriat . parame..rs. As an incremental gradient
descent algorithi 1, the S 3D is more efficient to deal with
incremental train, ‘e dat-, which can learn the parameters
from the nev .y addea training data instead of retraining all
the availabl tre".ang data. For each parameter training user
u, the devivauve of objective function is calculated and the
parameters «. “re updated as follows:
OF,(a)
oo’
, is the objective function for parameter training
for . ~er w and 7 is learning rate, which is set as 0.01. Then
we calcu.ate the partial derivatives of F,(-) w.r.t. « as:

\ SN T (O - o)
OFu(a) | eebreemy M )
do |ESEY ] ’
where f1;; = py(e;) —puy(e;). For each derivative Op,,(e;) /0,
it is calculated by Eqgs. (12) and (13). The derivatives w.r.t.

parameters a7 g and agy, respectively, are as follows:

a—a+n a7

whara L7 ¢

P
p = ucPUE — ecPEE (19)
Jayg
Opu .
Pu _ ayp(ePoy — qu)Pus (20)

8aEU

where u® and e denote the user and event convergency
probability vectors after the RWR terminates for the query
user u, respectively. Note that since the two parameters oy g
and apy are independent, so we can train them separately.
The training process finishes after all users in U have been
used for the parameter training.

IV. EXPERIMENT RESULTS
A. Experiment Datasets

We have crawled datasets from Douban Event for two
main cities, Beijing and Shanghai, in China. For Beijing, we
obtained 15225 events and 68926 users from May 1st, 2016
to May Ist, 2017, among which in total 208976 user-event
pairs are used to compose the Beijing dataset. For Shanghai,
we obtained 14194 events and 94103 users from May Ist,
2016 to May 1st, 2017, among which in total 196837 user-
event pairs are used to compose the Shanghai dataset. Table. 11
summarizes the statistics of the two datasets.

Due to the privacy policy, we are not able to obtain the
details about the users’ accesses to Douban Event, such as the



TABLE II
STATISTICS OF DATASET

User Event UE-Pair
68926 15225 208976
Beljlng AVg'Ufrf:;t’Lth max'U’frfgflth min'U’rtrfsflth
503 1044 189
AveUL, | maULst, | minU
126 261 47
User Event UE-Pair
94103 14194 196837
Shanghai Avg'Urtr(li(f:lth maX'U’frfgflth min'U:‘:g’thh
384 626 143
AveULt | macUlst, | minUl,
96 156 35

time of each access and the corresponding action. So we have
to suppose that users confirm their reservations just before the
event commencement time. The dataset of each city is divided
according to consecutive slots with equal length. For a decision
slot 7 with its sliding window length of 7"+ 1, a user that has
actually attended at least four events is selected to compose
the test user set U5, Accordingly, the recommendation list is
set to four for all test users, that is, |L,,| = 4 for all u € U!**t.
All the events that any user u € U*** has attended are used
compose the test event set F¢5t. Notice that generally | E?¢*"
is much larger than |U'5|.

In this paper, we set the slot length as one month so <
to ensure that the test users are not too few in each slot. In
Table. II, we present some statistics of test users i suc . *onth
and in one week. In the table, U/t and U &5 de1 te
the test user of one month and the test user of ¢ = w.ek,
respectively. In the Beijing dataset, there are 1n 2 "erage 503
test user per month and in average 126 te. " us r pe week.
Yet the minimum number of test users ic 189 .. o e month
and 47 in one week. In the Shanghai < *aset, the average
number of test users per month and per week -~ 384 and 96,
respectively. Yet the minimum numb . <" test users is 143 in
one month and 35 in one week. O’ viov 1y, if we choose the
slot length as one week, the smal' nun. =t of test users could
not enough justify the recomme .dati .n results. So we choose
the slot length as one month fc. ~te sh ce sstruction, parameter
training and performance cornaris.. et we note that for an
individual user, recommen’ ation c. 1 be made at his access to
the EBSN by simply setti. ¢ this v er as the query user and
executing the RWR alg~-ithn, e recommendation graph.
Finally, we set Septerr ser 201 ~ as the first decision slot and we
have in total nine dec :ion slo ; for performance evaluation.

B. Comparison Sc. em s

We compare the pr nosed scheme, called EGSR (evolving
graph based successive recommendation) with some represen-
tative peer schemes, including the content-based filtering and
graph-based random walk. In our proposed EGSR scheme, we
have used the LDA tool for analyzing event text description
and establishing user interest model. Yet our interest model for

one user is based on the weighted sum of the event features
from the events that the user had attended in the history slots;
While the weights are obtained frc .n our algorithm for sliding
window length determination. Fc a . ‘ven training dataset with
FE; as its event set, we can also establish . n interest model for
each user. For a user w;, let _,,( %) = {€;1, ..., e, } denote
the list of events in F; that “e v ser u; has actually attended.
We compute the user inte. ~<t m¢ ‘1 by

u;(E ) = (21
eim€Lay, (Et)

where €, is the ¥ _A feat..2 of event e;,,.
We compare tl e propo: *d scheme with the following state-
of-the-art scheme.

e CB: Tus is *he classic content-based recommenda-
tion [£Y1 wWe ompute each user interest model by
Eq. \1) with e training dataset covering all available
history ». *s. In each decision slot, we compute the
cu “ne simi arity between the user interest model and the
.nic . “ure of each upcoming event and generate the
reco.. mendation list according to the decreasing value of
tne similarities.

o k. It applies the random walk on a heterogeneous graph
" - event recommendation. The heterogeneous graph con-
tains not only user nodes and event nodes, but also online
group nodes and subject nodes [36]. The subject nodes
are generated by clustering property tags of events and
groups. For each decision slot, the training dataset covers
all of its available history slots.

o BG: It applies the random walk on a bipartite graph
for event recommendation [51]. For each decision slot,
the bipartite graph contains only user nodes and event
nodes from its previous four history slots. An edge only
connects one user node and one event node, if the user has
reserved the event. Furthermore, in the graph adjacency
matrix, all edges are with the same weight.

o WBG: It applies the random walk on a weighted bipartite
graph, which shares the same graph structure as that in
the BG scheme, yet with different edge weights. For each
decision slot, we compute each user interest model by
Eq. (21) with the training dataset covering the previous
four history slots. The weight of an edge is compute
as the cosine similarity of user interest model and the
corresponding event feature.

o WBGa: It adopts the same procedure as that of the wBG
scheme, yet with the only difference of using all of its
available history slots as the training dataset for each
decision slot. Note that the graph structure in wBGa is
generally much complex than that in WBG, as with the
time elapse, more old users and events would be included
in the wBGa graph.

In the above schemes, the BG and wBG use a fixed window
length with four training months; While the CB, HG and
wBGa schemes use all the previous months for the training
set. Our EGSR scheme adaptively adjusts the sliding window
length, So the length of sliding window differs across different
decision slots. Note that at the first decision slot 71, we use



TABLE III
COMPARISON OF SLIDING WINDOW LENGTH AND USER-EVENT PAIRS IN DIFFERENT DECISION SLOTS.

(Window Length; UE-Pairs) T1 T2 T3 T4 5 T6 T7 T8 T9
Adaptive months | (5; 98843) (4; 82514) (4; 78471) (4; 72668) (5; 81805) (5; 66242) (5; 651, (55 71668) (5; 61977)
Beijing Fixed months (5; 98843) (55 97730) (5; 98375) (5; 95731) (5; 81805) (5; 66242) (5; 68957) w5 71668) (5; 61977)
All months (5; 98843) | (6; 113855) | (7; 129716) | (8; 146976) | (9; 156113) | (10; 165085) | (' ;182 12) | (12;201384) | (13; 208953)
Adaptive months | (5; 87479) (4; 80845) (4; 80098) (4; 77099) (4; 65790) (55 72905) ?,95) (6; 78560) (6; 70333)
Shanghai Fixed months (5; 87479) (5: 97862) (5: 99913) (5; 97472) (5; 86490) (55 72905) (5; 65 %) (55 59492) (5; 52959)
All months (5; 87479) | (6; 107436) | (7; 126504) | (8; 143878) | (9; 153269) | (10; 160384> { (11, 7731) | (12; 185996) | (13; 196837)

all the history slots to confirm that every slot would be used
in the experiments. Table III compares the statistics of using
different numbers of training months. It can be seen that the
EGSR involves fewer user-event pairs for graph construction
in most cases.

C. Experiment results

In this paper, we firstly adopt four traditional evaluation
metrics for recommendation: P@n (Precision at position n),
MAP (Mean Average Precision), Recall and F1. For a user u;
(i =1, ..., M) in the test set, let L; denote his recommendation
list and N be the list length. Let #; denote the set of events
that the user u; has actually attended, which are called his
positive events.

Both P@n and MAP are used to measure the hit rate wiv
taking top n position of positive events into consideration.
P@n is defined as follows:

M KLY € Hy)
o Mxn ’

P@n (22)
where I(-) is an indicator function and ng ) the jtu ~ver ¢ in
the user u;’s recommendation list.

MAP is the mean of the average precision “AF ; scc es over
all test users, where AP is calculated by:

N pan-I(LY €,

>
AR = 9
|H,]

(23)

where LZ(-") denotes the nth recommen. d event in the list L;.

|#;| represents the number of venf~ that had been actually

attended by the u,; in the test . ~t. T.aus, /AP is defined by
> AP;

u; e['test

MAP = =275

; (24)

Recall reflects the - ..portiuu of events that users have
actually attended in tt > top-n | 'ace. Take user u; for example,
his recall R;(L) is de. ned by

d;(L)
[Hl

where d; (L) indicates the number of u;’s attended events in the
top-n places of the recommendation list L;, and |#;| the total
number of wu;’s attended events. The mean recall is obtained
by averaging the individual recall over all users with at least
one relevant event.

tilL) = (25)

The F1 metric is nsed .. evaluate the joint effectiveness of
the Recall and P- :cision.

2PR
==, 26
P+ R (26)
where P an.' 7 are ae Precision and Recall metric, respec-

tively.

Tables IV an.’ V compare the experiment results of Beijing
and Sn. ehai, v :spectively, for the nine successive decision
slots. 7~om vudh tables, we first observe that the CB scheme
performs 1. ~ worst in terms of all performance metrics and
in 'most all recommendations. This is not unexpected as
it only xploits the users’ history participation information
tor ¢c.mmending new events, without considering potential
1. ations like the topical similarity in between events and
the .ommon interests in between users. The HG scheme, on
the other hand, includes all the available entities for graph

onstruction, trying to establish all potential relations among
different entities. However, its performance is also not good
enough, and in most cases, it plays the second worst or
even the worst among the six schemes. This could be due
to its indiscrimination about the different importance of these
entities and their relations. For example, the entities of online
groups and event subjects might not be able to precisely
reflect a user real interest, as the online groups may not be
directly translated into offline event attendances; While event
subjects only provide rough event categorizations, which may
not be able to capture the main characteristics for each single
event, like that done by the latent topic distribution analysis.
Compared with the HG scheme, the BG scheme only includes
the user and event entities for graph construction, however,
its performance is better than that of the HG scheme. This
collaborates our conjecture that using the most related entities
for graph construction could be better than using all available
entities.

From Tables IV and V, we can observe that the proposed
scheme EGSR can outperform the other peer schemes in
almost all the decision slots. For example, it achieves the
best P@1 results among all the schemes in the Beijing
dataset. We also note that in some decision slots, the WBG
or wBGa scheme performs the best for some performance
metrics. Nonetheless, the best results are achieved only by
the EGSR, wBG and wBGa schemes: See the bolded results
appearing only in the last three columns for each performance
metric. Recall that the three schemes only establish relations
in between users and events. Furthermore, they all apply the
LDA tool for event content analysis to extract latent topic



feature and construct weighted edges based on the topic-
related similarities. Such results collaborate our conjectures
that using the most important entities and using topic-related
edge weights for graph construction can lead to better rec-
ommendation results. On the other hand, although the EGSR
performs the best in almost all cases, it is sometimes not better
than the wBG or wBGa in some slots. This could be attributed
to that the numbers of test users and events are much different
in different decision slots.

We next propose a set of new performance metrics to enable
fair performance comparison for successive recommendations,
which takes into considerations of test dataset size. We first
define a slot coefficient based on the hit rate of random
recommendation, which randomly selects K events from all
available N, events in the 7th decision slot. The average hit
rate (AHR) ., of such a random recommendation for the
user v in the 7th slot thus can be computed by

c () ()
Vrou = Z ? X ( NT) .
k=1 K
where Nf ., 1s the number of positive events that the user u
has actually attended in the 7th slot, and K is the length of
recommendation list, which is set to 4 in our experiments. For
each random selection of K events, if there are k positive
events, then the hit rate is % So 7r,. computes the AHR ¢
the random recommendation for the user u. The mean AHxn
over all test users can be computed by:

27

ZueU‘,t_est Yru

28
U] o

Vr =
where Us* represents the set of test user in 7tt slot.
As NTIT . differs across different test users, the co. “nutr .1on

of ;. becomes user-dependent. On the ott cr bond, as we
select the test users as those who have att ~de . at ' ast K

events, so we replace Nf . by the length Jf rece ~r endation
list to reduce the computation comple .’ That is, we set
Nf + = K for all users to compute che wo.*t case of hit

rate for all test users. Based on Eqs ") and (28), we then
compute the slot coefficient 7, as tb - wor .t case of mean AHR
over all test users:

(29)

For the relation between -, - and N ., we have the following

'

lemma:
Lemma 3: 7, is a .ecreasi ¢ function of N, .
Proof: See the a, nendix. |

Lemma 3 states that 1. ** _ random selection the larger the
number of test eve °ts, « - maller the average hit rate. In other
words, even for this  adom recommendation, it is likely that
its average hit rate cour.’ be very high due to a small number of
test events. Therefore, to reduce the impact of event number
variations in different slots, we propose a slot performance
weight as a decreasing function of 7;:

f('?r) = - 10g2 Yr- (30)

For successive recommendation, besides the variations of
test dataset, the training dataset can also be much different
in different decision slots. For di‘.erent recommendation al-
gorithms, as they enable differer . . ~ices of history slots for
composing a training dataset, if is also .. .cessary to compare
their cumulative performance cll e current decision slot. To
do so, we propose a new cu. la.ve metric cX, based on the
weighted average of the t. dition. ' verformance metric X :

Z;—:l J ::YJ) x X
2 j=1 / (:YJ)
For example, cP@» ‘s the —'mulative version of P@n; While

cMAP is the cur alative -ersion of MAP.

X, = 31)

TABLE VI
RANDOM SET _..TON: 1 it NUMBER OF TEST EVENTS N, THE MEAN
AHR y; AM .. "E SLOT PERFORMANCE WEIGHT f(7+).

oeijing Shanghai
sot | N, v | san | N | a | s
?1 L 400 | 0.00286 | 8.451 1222 | 0.00327 | 8.255
T2 I 1014 | 0.00394 | 7.986 | 1130 | 0.00354 | 8.142
' 73 | 1083 | 0.00369 | 8.081 | 1088 | 0.00368 | 8.087
[ T4 ‘ 1203 | 0.00333 | 8.232 | 1149 | 0.00348 | 8.166
i 850 | 0.00471 | 7.731 706 | 0.00567 | 7.464
‘ T6 897 | 0.00446 | 7.809 785 | 0.00510 | 7.617
| 77 1248 | 0.00321 | 8285 | 1152 | 0.00347 | 8.170
T8 1224 | 0.00327 | 8.257 | 1089 | 0.00367 | 8.089
T9 620 | 0.00645 | 7.276 | 1017 | 0.00393 | 7.990

Table VI provides the number of test events N, the
mean AHR 7, and the slot performance weight f(%;) in
each decision slot of our experiments. The slot weights are
used to compute the cumulative performance metrics. Figs. 4
and 5 compare the cumulative performance results of the six
algorithms for Beijing and Shanghai, respectively. At first, we
can observe that the cumulative performance results become
less variable for different decision slots, as they have applied
the weighted average to remove user-event variations. For the
new cumulative metrics, we can observe that both the CB and
HG schemes perform much worse than the other four schemes
in the two datasets. This again validates the advantages of
applying random walk on a graph constructed by using two
core entities of an EBSN. On the other hand, we observe that
the proposed EGSR scheme performs the best in terms of all
cumulative metrics in the Beijing dataset. For the Shanghai
dataset, the EGSR is only slightly worse in the first decision
slot, which is not much unexpected as the user interest model
in the first decision slot may not be accurate enough in the first
place. As time goes by, the proposed EGSR can have used
more history information to obtain a more accurate interest
model for more users, so it can outperform the other schemes
in all the subsequent decision slots in the Shanghai dataset.

As a short summary of our experiments, the performance of
the proposed EGSR scheme outperforms the state-of-the-art
schemes in terms of all metrics and in most cases for the two
datasets. This first suggests that when constructing a graph



TABLE IV

RECOMMENDATION PREDICTION PERFORMANCE COMPARISON BY SIX TRADITIONAL EVALUATION METF "CS OF BEUJING

P@l P@3 P@4
CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR
1 0.0929  0.1446  0.2433  0.2519 02519  0.2615 0.0811  0.1338 02018 0.2133 02133  0.2174 0.0807 11312 0.194 02071  0.2071  0.2114
T2 0.1642  0.1642  0.2253  0.2358  0.2400  0.2653 0.1277  0.1439 02218  0.2295 0.2316  0.2407 0.1247  0.1a4- 0.2095 0.2163 0.2168  0.2263
T3 0.1305  0.0905 02358  0.2632  0.2568  0.2695 0.1151  0.0961 02098 0.2196  0.2140  0.2463 0.1111 ¢ ™5  0.1916 02005  0.2053  0.2205
T4 0.1202 02340 02788  0.2804  0.2821 0.2981 0.1074  0.1512  0.2009  0.2286  0.2302  0.2228 ¢ »90  0.1366  0.1931 0.2023 0.2023 0.2071
5 0.1799 02222 02698 0.3122  0.3069  0.3122 0.1517  0.1799 02187  0.2434  0.2363  0.2593 0.1495  0.lov.  0.1944 02103 02116  0.2540
T6 0.1351 0.1757 02117  0.2342  0.2252  0.2387 0.1396  0.1381 0.1757  0.1802  0.1757 0.2027 0.1 0.1295 0.1633 0.1678  0.1644  0.1881
7 0.1324  0.1180 02647  0.2878  0.2777  0.2950 0.1084  0.1429 02163  0.2350 0.2336  0.22 0.10A1  v.1385  0.2068  0.2241  0.2219  0.2212
T8 0.1109 02137 02382  0.2431  0.2398  0.2512 0.0914  0.1457 02007  0.2153  0.2197 0z 34 0.084-  0.1277  0.1921  0.1998  0.2023  0.1925
T9 0.1937 02042 03089  0.3403  0.3560  0.3770 0.2059  0.1710 02862 03229  0.3159  0.34u. 0.207 0.1505 02775 02971  0.2945  0.3102
Recall MAP F1
CB HG BG wBG wBGa  EGSR CB HG BG wBG vw"Ga EGSR CB HG BG wBG wBGa EGSR
1 0.0470  0.0923  0.1354  0.1435  0.1435  0.1463 0.1268 02269 03273  0.3345  0.3345 .« 428 0.0594  0.1084  0.1595 0.1695  0.1695  0.1729
T2 0.0858  0.1120  0.1628  0.1660  0.1659  0.1698 0.1957 02501 03340  0.3432  "3393 0 537 0.1017  0.1252  0.1832  0.1879  0.1880  0.1941
T3 0.0765  0.0674  0.1397  0.1469  0.1492  0.1617 0.1827  0.1643 03116  0.32y. 0332y 0.3626 0.0906  0.0773  0.1616  0.1696  0.1728  0.1866
T4 0.0659  0.1053  0.1469  0.1536  0.1548  0.1526 0.1749  0.3029 03556 03677 0.5. ° 03774 0.0791  0.1190  0.1669  0.1747  0.1754  0.1757
T5 0.1017  0.1367  0.1526  0.1667  0.1652  0.1904 0.2409 03178 03582 . 741 0.3835  0.4103 0.1210  0.1502  0.1710  0.1860  0.1856  0.2177
6 0.0858  0.1037  0.1250  0.1297  0.1275  0.1402 0.1852 02601  0.2920  0.2988  "2965  0.3247 0.1025  0.1152  0.1416  0.1463  0.1436  0.1606
7 0.0648  0.1013  0.1460  0.1573  0.1566  0.1502 0.1696  0.2295  0.34, 0.7 2 03544 0.3602 0.0804 01170  0.1712  0.1849 0.1836  0.1789
T8 0.0513  0.0986  0.1400  0.1433  0.1466  0.1362 0.1414 02769  0.3484 3580 0.3593  0.3520 0.0638  0.1113  0.1619  0.1669  0.1700  0.1595
T9 0.1531 0.1180  0.2157 0.2298  0.2292  0.2379 0.2880  0.2760 4o 0.~ 19 04516  0.4857 0.1745 0.1323 0.2427  0.2591 0.2578  0.2693
TABLE V
RECOMMENDATION PREDICTION PERFORMA?} _E COM ARISON BY SIX TRADITIONAL EVALUATION METRICS OF SHANGHAI
P@1 P@3 P@4
CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR
1 0.0942  0.1022  0.1901  0.1869  0.1869  0.1°33 895 0.0985  0.1667 0.1704  0.1704  0.1651 0.0843  0.0970  0.1518  0.1593  0.1593  0.1550
T2 0.1261 0.1243 0.2541 0.2450  0.2450 ¢ 775 0.123, 0.1123 0.1934  0.1952  0.1952  0.2168 0.1234  0.1068  0.1725 0.1865 0.1842  0.1982
T3 0.1095  0.1652 02513  0.2693  0.2765  0.276> 0.0946  0.1245  0.1861  0.2017  0.2059  0.2101 0.0965  0.1068  0.1732  0.1858  0.1827  0.1881
T4 0.1466  0.0957 0.2098  0.2057  0.2057 42159 0.1181 0.1018  0.1663 0.1724  0.1752  0.1874 0.1090  0.1008  0.1609  0.1650  0.1645 0.1787
5 0.1975  0.1173 02778 02840 0.2/ 0 593 0.1584  0.1173 02572 0.2675  0.2654  0.2572 0.1451  0.1265  0.2454  0.2500  0.2392  0.2392
6 0.1818  0.1818  0.2098  0.2168  0.2a. ).1888 0.1445  0.1515  0.1795 0.1841  0.1841  0.1958 0.1416  0.1399  0.1661  0.1713  0.1643  0.1783
7 0.1552  0.1372  0.2058  0.2094  0.2238 0. "4 0.1288  0.1035  0.1685  0.1709  0.2010  0.1949 0.1218  0.1011  0.1543  0.1570  0.1742  0.1805
T8 0.1399  0.1119 02273  0.244 02 52 07622 0.1329  0.1026  0.1795  0.1911  0.1911  0.2133 0.1224  0.0953  0.1748  0.1836  0.1757  0.2002
T9 0.1159  0.1232 02101  0.2174 "174  0.2826 0.1039  0.1002  0.1703  0.1679  0.1824  0.2041 0.1024  0.1014  0.1540  0.1685  0.1703  0.1875
Rec MAP F1
CB HG BG G w Ga  EGSR CB HG BG wBG wBGa  EGSR CB HG BG wBG wBGa  EGSR
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Fig. 4. Beijing: Experiment results of cP@n, cP@3, cP@4, cRecall, cl

for RWR-based recommendation, it might be better to “<e
the most related entities and the most recent information for
graph construction, rather than using all available e~ .."~s and
all history information. In addition, experiment cesults . lso
suggest that using weighted edge by applying the . *ent t pic
model is effective for achieving better recomm ndation 1. ults.

V. CONCLUSION

In this paper, we have proposed . E 3SR scheme which
applies the RWR on a graph for ic essive event recom-
mendation in EBSNs. For its Jractica. implementation in
large ENSBs, the EGSR scherr . exr .oits a sliding window to
include only the most recent inic ~ .atio” and the core entities
for composing a recommer -..on gi.h. Furthermore, based
on the topic analysis for event t t description, it assigns
edges’ weights based on the ~imilar’.y computation in between
event features and us . interests. Experiments from a real
EBSN, Douban Evel t, have \ \lidated its superiority over the
peer schemes in terms ~f bett r recommendation results.

In our experir . we have noticed that the constructed
graph could still be ' - very large scale, even given our efforts
of applying a sliding window. Furthermore, we have also
noticed that the random walk paths for each recommendation
could be rather repetitive due to the redundant graph structure.
In our future work, we shall investigate some approaches for
graph partition and graph embedding to further improve the
efficiency and effectiveness of RWR-based recommendation.
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» different recommendation slots.

APPENDIX
Proof: Lemma 1: We firstly rewrite Eq.(5) as follows:

_HUF")

Ct) = THG) (32)

where Uc‘l’ldt is the set of old users when the length of window
is t. As H(Gy) is a constant, so

ld
g

O(t) o HUZ™) = > hluy),

i=1

(33)

As each user entropy h(u;) is a constant, the only variable is
.. . Idy, .
the number of old users. And it is obvious that the U; s

oldy, .. . . .
the subset of U, 7, if j > ¢, which can be proved as follows:

ldy .
U, =uynuUp

v j
=UsnNUy +UanY_, UM

+UNY U<

(34)

oldy .

i

= Y4

where U ,tL is the set of users in history slots from the 1th
to the ¢;th slot and U!* denotes the set of users in the #4th
history slot. So if ¢ < j, C(¢;) < C(t;), which means C(t)
monotonically increasing with the increment of ¢. ]
Proof: Lemma 2: We rewrite the objective function Eq.(7)
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in different recommendation slots.

>0 the function of D(N;)/D(N; — 1) can be simplified as

J(T) = |C(T) - Cth| K N, N,.—1
_ C(T) — Cu,, C(T) > Cyp, 35) D(D]\([jvi)l) = E;\l))((i) ()NT( ; 1%
Cun — C(T),C(T) < Cp AR -

where CYy, is a constant.

Deriving the objective function J(T") to T, .. deri ation is

_ vy =
[(N, — K — )]2N,\(N, — 2K + k)!
N2 —2KN, + K?

K)2(N, — DN, — 2K + k — 1)!

defined as: ~ N2_2KN, + Nk’
ou(1) 9C0) (T, > Cu, 6 (39)
oT 3C(T ((T) < Cu In Eq (39), owing to N, > K,s00 < D(N,)/D(N,—1) <

We have proved that C'(T') monrtonic. 'v increases with the

1, which means that D(N;) increase as N, decrease. Then
we rewrite Eq.(37) as follows:

increment of 7' in Lemma.l, - hict results in oC(T) > 0. X
Then we can find a number 6 “hi.h le’s C(6) = Cyy,. So if _ k

. \ : -S" L vy, 40
T < 0, J(T) decreases with *he in. = nent of T'. Otherwise, I kz_:l K" (N7) (40

if T'> 0, J(T) increases ¥ ith the crement of T. And there
is an unique minimum ext. *me poi .t C'(6) of C(T). [ |

Proof: Lemma 3: > re.._ .o the objective function E-
g. (29) as follows:

s (B)R)
L k K-k
5/7' S f X ( N, ) )
k=1 K
Let N, be the indepen. 2nt variable of this function. Then we
define a function D(N,) as

(37

(38)

This function shows that 7, has the same monotonicity as
D(N,), which means 7, also monotonically decreases with
the increment of NV,. [ |
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Highlights:

*  Construct evolving graphs based on the mostly recent network information for successive
event recommendation

. Propose a graph entropy-based contribution measure to adjust sliding window I ngth and to
compute weights for history information

. Propose using content analysis to establish user interest model and compr .. 3raph edges’
weights

. Conduct experiments based on real EBSN datasets to confirm the -upei. rity of the
proposed scheme



