
Accepted Manuscript

Evolving graph construction for successive recommendation in
event-based social networks

Shenghao Liu, Bang Wang, Minghua Xu, Laurence T. Yang

PII: S0167-739X(18)32332-X
DOI: https://doi.org/10.1016/j.future.2019.02.036
Reference: FUTURE 4789

To appear in: Future Generation Computer Systems

Received date : 30 September 2018
Revised date : 16 January 2019
Accepted date : 19 February 2019

Please cite this article as: S. Liu, B. Wang, M. Xu et al., Evolving graph construction for successive
recommendation in event-based social networks, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.02.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.02.036

1

Evolving Graph Construction for Successive
Recommendation in Event-based Social Networks

Shenghao Liu, Bang Wang, Minghua Xu and Laurence T. Yang

Abstract—Personalized recommendation can help individual
users to quickly reserve their interested events, which makes it
indispensable in event-based social networks (EBSNs). However,
as each EBSN is often with large amount of entities and each
upcoming event is normally with non-repetitive uniqueness, how
to deal with such challenges is crucial to the success of event
recommendation. In this paper, we propose an evolving graph-
based successive recommendation (EGSR) algorithm to address
such challenges: The basic idea is to exploit the random walk
with restart (RWR) on a recommendation graph for ranking the
upcoming events. In EGSR, we employ a sliding window mecha-
nism to construct evolving graphs for successively recommending
new events for each user. We propose a graph entropy-based
contribution measure for adjusting the window length and for
weighting the history information. In EGSR, we also apply a topic
analysis technique for analyzing event text description. We then
propose to establish each user an interest model and to compute
the similarities in between event content and user interest as
edges’ weights for each recommendation graph. In successive
recommendation, the number of upcoming events may experience
great variations in different times. For a fair comparison, we
also propose a set of cumulative evaluation metrics based on the
traditional recommendation performance metrics. Experiments
have been conducted based on the crawled one year data from a
real EBSN for two cities. Results have validated the superiority
of the proposed EGSR algorithm over the peer ones in terms of
better recommendation performance and reduced computation
complexity.

Index Terms—Evolving graph construction, successive recom-
mendation, random walk with restart, graph entropy, event-based
social networks

I. INTRODUCTION

With the fast development of Internet of Things (IoT), recent
years have witnessed the emergence of a new computing
paradigm, called Cybermatics, which have been continuously
integrating diverse Cyber, Physical, and Social Systems and
promoting numerous new applications everyday [1]–[4]. For
example, given the wide adoption of smartphones, people can
arrange their daily life more convenient and expand their

Shenghao Liu and Bang Wang are with the School of Electronic Informa-
tion and Communications, Huazhong University of Science and Technology
(HUST), Wuhan, China. Email: {shenghao liu, wangbang}@hust.edu.cn.

Minghua Xu is with the School of Journalism and Information Commu-
nication, Huazhong University of Science and Technology (HUST), Wuhan,
China. Email: xuminghua@hust.edu.cn.

Laurence T. yang is with the Department of Computer Science, St.Francis
Xavier University, Antigonish, Canada. Email: ltyang@gmail.com.

This work is supported in part by National Natural Science Foundation
of China (Grant No: 61771209) and National Social Science Foundation of
China (Grant No: 14CXW018). The correspondent author is Minghua Xu.

social circles [5]–[7]; While with the population of event-
based social networks (EBSNs), people can easily reserve
their interested events through their smartphones [8]–[10].
However, due to the proliferation of online events, how to
accurately recommend individual users their mostly interested
ones becomes a challenging task. Although some EBSNs,
such as Meetup and Douban Event 1, provide a search
function for users to find their preferred events with key words,
how to accurately match user preferences with appropriate
events is still very difficult, especially for most users being
unable to clearly express their interests. In response to the
pressing demands, a good event recommendation system is
much required for EBSNs.

Event recommendation in EBSNs often faces the cold start
problem [11], [12]. Compared with the general item recom-
mendation, like recommending books and movies, events are
usually with the property of non-repetitive uniqueness [13].
Furthermore, an upcoming event generally cannot be actually
’consumed’ and evaluated, though it may be reserved by some
users, before its commencement. To deal with such challenges,
we can exploit the history events that a user had once attended
to establish an interest model for him. Among many event
properties, like the launching time and place, we believe
that the event text description could provide more intrinsical
information for reflecting users’ interests. So it is necessary to
analyze event text description, which can be done by enjoying
some recently developed topical analysis techniques [14], [15].

Furthermore, a typical EBSN normally includes diverse en-
tities, like events, users, groups, subjects, tags and etc., and nu-
merous relations in between entities. Traditional recommenda-
tion algorithms, like the CB (content-based recommendation)
and CF (collaborative filtering) algorithm, only pay attention
to a few part of these relations, which may ignore some
useful information and lead to unsatisfactory recommendation
performance [16]–[20]. Recently, graph-based algorithms have
been proposed to address such issues, which first construct a
recommendation graph to represent all available entities and
their relations [21]. After graph construction, a random walk
with restart (RWR) algorithm can be employed to rank the
nodes, whose basic idea is to transform the recommendation
task into a node convergency probability computation prob-
lem [22], [23]. However, including all history entities and
their relations for the graph construction incurs the problem of
increased computation complexity and storage requirement. It
may also introduce unnecessary noises for the random walk,
if without discriminating different entities and relations.

1Meetup: www.meetup.com; Douban Event: www.douban.com

In this paper, we propose an Evolving Graph-based Succes-
sive Recommendation (EGSR) algorithm to enjoy the advan-
tages of graph-based algorithms and topic analysis techniques.
The basic idea of EGSR is to construct evolving graphs each
with topical similarity weighted edges based on the most
recently available system information. In particular, we first
divide the timeline into consecutive slots each with equal
length. We then employ a sliding window which moves
forward one slot per step and use only the system information
in the sliding window for graph construction. Instead of using
a fixed window length, we propose a graph entropy-based slot
contribution measurement to adjust the window length and to
weight the history slots per moving step. We apply a topic
analysis tool to obtain the content feature for each event from
its text description. An interest model is then established for
each user as the weighted event feature based on his attended
events in the sliding window. We compute the similarities in
between event features and user interests as edges’ weights
for each recommendation graph. Furthermore, we propose a
sequential version of the stochastic gradient descent algorith-
m [24] to train the transition parameters for each recommenda-
tion graph. Note that although only one recommendation graph
is constructed per sliding window, event recommendation can
be made for each individual user on his access to the system by
setting this user as the query node when executing the RWR
on the graph. In practical EBSNs, the number of upcoming
events may experience great variations in different slots. We
then propose a set of new cumulative evaluation metrics for
fair comparison of successive recommendation by different
algorithms. Finally, we compare our EGSR algorithm with
other peer algorithms by experimenting two real datasets
crawled from Douban Event for two typical cities: Beijing
and Shanghai. Experiment results show that the proposed
EGSR scheme can achieve better recommendation results.

The rest of the paper is structured as follows: Section II
briefly reviews the related work. The proposed EGSR scheme
is presented in Section III and experimented in Section IV.
The paper is concluded in Section V with some discussions.

II. RELATED WORK

In this section, we mainly review the most related work
on the graph-based recommendation algorithms, text content
analysis for recommendation and graph entropy studies.

Graph-based recommendation algorithms have been pro-
posed to model different kinds of entities and their rich
relations by constructing a heterogenous graph, where nodes
stand for entities and edges stand for their relations [25]–[39].
Among these graph-based algorithms, the RWR technique has
been widely employed to obtain the convergency probabilities
for ranking nodes [28]–[39]. For example, Pham et al. [28]
construct a recommendation graph containing different types
of all available entities and their relations, which can be used
not only for group recommendation but also for other entities
recommendation in EBSNs. Mo et al. [30] also construct
a heterogeneous graph yet with a new reverse RWR for
event recommendation to solve the dangling nodes problem.
Bagci et al. [33] propose to extract a subgraph centered at

each user with only his neighboring nodes and edges in the
recommendation graph and apply the RWR on the subgraph
for his recommendation. Liu et al. [38] present two types
of recommendation graphs: one containing all the entities
and their relations, yet the other containing only users and
upcoming events. The RWR is performed on both graphs,
yet the final ranking is based on the weighted convergency
probabilities of the two graphs. However, in all these schemes
the graph construction has not considered the impacts that
different entities and their relations may evolve with time. Also
they has not related the edges’ weights with content analysis
that might be more accurately reflect users’ interests.

The Latent Dirichlet Allocation (LDA) technique which
analyzes the latent topic distribution for text has been exploited
by some CB and CF recommendation algorithms [40]–[45].
For example, Macedo et al. [41] apply the LDA technique
to extract the topic vectors of events for calculating content
similarity between users and upcoming events. Wu et al. [42]
introduce a multi-level LDA model into the collaborative
filtering(CF) algorithm for user recommendation in social
networks. Zhao et al. [45] propose a Hashtag-LDA model to
assist the collaborate filtering for hashtag recommendation in
microblogs. However, to the best of our knowledge, content
analysis has not been exploited for the graph-based recom-
mendation algorithms.

Graph entropy has been used for social networks to identify
the most interesting and important nodes in a network [46]–
[48]. A general framework for defining the node entropy
and the entropy of a graph has been introduced based on
the topological structure of graph in [49]. Shetty et al. [47]
adopt the graph entropy to determine the most prominent yet
interesting person in an email dataset as the node that has the
highest entropy in such an email network. Eagle et al. [48]
develop new metrics based on the graph entropy to observe the
correspondence between the communication network diversity
and economic development. As the graph entropy has been
proven an efficient tool in the field of social network analysis,
it might also be useful for event recommendation in EBSNs.

III. EVOLVING GRAPH CONSTRUCTION FOR EVENT
RECOMMENDATION

A. Overview

In this paper, we adopt the random walk on graph for event
recommendation, which consists of the following modules:
graph entropy-based history information inclusion and influ-
ence weighting, content topic-based preference calculation and
similarity weighting, parameter training and random walk-
based event recommendation.

Although a graph can detail the complex relations in be-
tween diverse entities, its construction may become a bur-
densome task for an ever-increasing EBSN. Furthermore, per-
forming random walk on a very large graph with all available
history information may also become time-consuming and
even impractical. Instead of using all the history information
for a panoramic graph construction, we propose to construct
evolving graphs by using a sliding window with adjustable
length to include the most recent information.

Fig. 1. Illustration of the sliding window model. The x-axis represents the
timeline which is divided into several equal length slots. In this figure, we use
blue boxes to denote slots and use green box to represent the current sliding
window; While we let the dotted blue box be the sliding window in the next
recommendation slot. In each slot, there are several events to be attended by
potential users, as illustrated by the yellow dots. Furthermore, in the sliding
window, slots are divided into two parts: one or more history slots and one
decision slot. As time goes by, the head of sliding window will extend itself
by one new slot, and the tail could keep unchanged or extend one or more
slots based on our proposed moving strategy.

Fig. 1 illustrates the emulated procedure for event rec-
ommendation in a practical EBSN, where the timeline is
divided into consecutive slots each with equal length. The
recommendation decision is made at the beginning of each
slot, yet event announcements and user reservations could
asynchronously reach the EBSN at any time [38]. To capture
useful history information, we use a sliding window with
length of T + 1 slots for graph construction, which consists
of one decision slot and T history slots serving as a training
set. After having made a decision, the sliding window extends
itself to cover the next slot, yet its length is subject to adjust
according to our proposed influence weighting based on graph
entropy strategy, which also computes the weight of each
history slot in the sliding window for constructing a new graph.
Table I summarizes the used symbols and their notations in
this paper .

B. Window moving and slot weighting strategy

The objective is to first decide the length T + 1 of the
sliding window for including history information and then to
compute the influence weight wt of the tth history slot for
the current decision slot. For event recommendation, the most
important history information include the events and users,
which are also the most dynamic entities. Although other
entities, like groups, tags and etc., exist in an EBSN, our
experiment results suggest that including all entities of an
EBSN for graph construction degrades the recommendation
performance. So we mainly focus on the event and user entities
in this paper.

We use the event commencement time to distribute one
event into its corresponding slot. Let Ed and Ud denote the set
of events and that of users in the decision slot, respectively. We
construct a bipartite graph Gd = (Ed

⋃
Ud, Ld), where Ld is

the set of edges. Note that an edge in Ld only connects a user
u and an event e, if the user u has reserved the event e. Let B
denote the adjacency matrix of Gd. Due to its uniqueness, an
event can belong to only one slot, and hence the event sets in

TABLE I
DEFINITION AND NOTATIONS IN EGSR

Symbol Definition

AEE , AUE The adjacency matrix of the constructed graph

B, bi· The adjacency matrix of Gd and its row vector

C(T) The entropy contribution of history information

to decision slot with a window length T + 1

~e, ~u The event feature vector and user interest model

EPu , ENu The set of positive and negative events of user u

F (α), α The training objective function and its parameter

Gd, G The bipartite graph of decision slot and the

recommendation graph

H , h The nodes’ entropy and a node entropy

J(T) The objective function

Lu The list of events user u has registered

PEE , PUE , PEU The transition matrix of recommendation graph

qu The user query vector

rij The transition probability of node vi to node vj

T The number of history slots in a sliding window

uk , ek The user and the event probability vector

Unewd , Uoldd The set of new and old users in decision slot

wt, weim The weight of tth slot, the weight of event eim

Wei,ej ,Wui,ej The weight of an edge in recommendation graph

τi The time of each slot

Ψ(·), σ(·) The unit step function and the sigmoid function

different slots are mutually disjoint. For those history slots, we
include those users who have reserved at least one event in the
sliding window. Contrary to an event, a user can participate
different events, so a user can belong to multiple slots. Yet the
user sets in different slots could be much different.

In each decision slot, some new users may be the first time
accessing the EBSN without attending any event in the T
history slots; While some old users may have already attended
one or more events in the T history slots. So we can divide
users in Ud into two parts: Unewd and Uoldd . That is, Ud =
Unewd

⋃
Uoldd and Unewd

⋂
Uoldd = ∅. For each old user, we try

to also exploit his previous event attendances to establish his
collaborative relations in between old events in the T history
slots and new events in the decision slot. For the decision slot,
we expect to include as more as possible old users to exploit
their history information. For including more old users, we
need to extend the length of sliding window to cover longer
history slots. On the other hand, increasing the window length
would also increase the computation complexity, yet some too
old history information may also be outdated for the current
decision slot. So we need to choose an appropriate length for
the sliding window.

In this paper, we determine the sliding window length T+1
and compute slot weight wt based on the graph entropy, which
has been widely used to capture the structural information
quantity of a graph [48]. We apply the graph entropy to
compute the old users’ contribution to the decision slot. For
each node in a graph, the node entropy is computed from its

Fig. 2. Illustration of the computation of the sliding window length. On the left of the figure, the green box represents the sliding window and Gd denotes
the bipartite graph of the decision slot, where blue squares are events and yellow dots are users. In Gd, those users who had attended previous events in the
history slots are called old users, where the old users who belong to different history slots are shown as dots with different colors. With the different choices
of sliding window length T + 1, the number of old users |Uoldd | could be different in the graph Gd, which could result in different entropy contributions
C(T). On the right of the figure, we plot C(T) as a function of sliding window length. It can be seen that C(T) is an increasing function of the window
length. Furthermore, according to the threshold Cth, we can find the suitable length of sliding window for the current decision slot.

topological diversity information [48]:

h(vi) = −
∑|B|

j=1
rij log(rij), (1)

where rij is the transition probability of node vi to node vj
in the graph. For the bipartite graph Gd, we compute rij from
the adjacency matrix B by:

rij = 1/|bi·|, (2)

where bi· is the ith row vector of B. The graph entropy of
Gd is computed as the summation of all nodes’ entropy:

H(Gd) =

|B|∑

i=1

h(vi). (3)

Furthermore, we compute the old user entropy H(Uoldd) by

H(Uoldd) =

|Uoldd |∑

i=1

h(ui), ui ∈ Uoldd . (4)

The set of old users Uoldd is dependent on the choice of
sliding window length T + 1. In general, the larger T , the
larger Uoldd . For a given window length T+1, we define C(T)
as the entropy contribution of old users to Gd by

C(T) =
H(Uoldd)

H(Gd)
. (5)

Lemma 1: C(T) is a non-decreasing function of T .
Proof: See the Appendix .

For a non-decreasing C(T), let Cmin denote its minimum val-
ue when T = 1, and Cmax the maximum value for the largest
allowable Tmax. Furthermore, we define Cth as a threshold
to indicate the desired portion of entropy contribution by old
users:

Cth = 0.9(Cmax − Cmin) + Cmin. (6)

Recall that Gd is different in each decision slot . So our
objective for choosing a suitable window length is to let the old
users’ entropy contribution C(T) as close as possible to the
threshold Cth. Specifically, we find the most suitable sliding
window length for each decision slot by:

arg min
T

J(T) ≡ |C(T)− Cth|. (7)

Lemma 2: Eq. (7) exists a unique solution.
Proof: See the Appendix.

After deciding the sliding window size T +1 for a decision
slot, we then compute the weights of its previous slots, which
will be used to discount how the old event attendances would
impact on the choice of new event participation. As different
users may have attended different history events, we compute
the slot weight as a collective measure for all old users and
history events based on the increment contribution of graph
entropies. For t = 1, ..., T history slots, we compute the weight
wt for the tth slot by

wt = C(t)− C(t− 1), t = 1, 2, ..., T, (8)

where we set C(0) = 0.
Fig. 2 illustrates how to find an appropriate sliding window

length based on old users’ entropy contribution to the current
decision slot, where the function C(T) is computed based on
the user-event information on the left figure. It can be seen that
C(T) is an increasing function of window length and in the
given example, the sliding window length is chosen as three
history slots plus one decision slot.

C. Graph Construction

For each decision slot, we construct a recommendation
graph G on which the random walk will be performed. Let

Fig. 3. Illustration of the graph model for random walk. On the left of figure, the original relations of different entities are introduced, which contains users,
events and text descriptions of events. The latent topic model is applied to obtain the event feature vector ~ej by analyzing the text description of each event.
Furthermore, each user makes use of the feature vectors of those events that he had attended to compute his interest model ~ui. Based on these feature vectors,
the content similarity between entities could be computed. Finally, a new graph is constructed on the right of figure, which contains new event-event edges
constructed by the content similarity in between events, as illustrated by the green dotted edges. Furthermore, the weights of edges in between connected
users and events are also computed based on the similarity between user interest model and event content feature.

U and E, respectively, denote the set of available users and
events in the sliding window. The graph G includes only the
user nodes U and event nodes E. Besides users and events,
we also take event text description into consideration. We note
that for almost all EBSNs like Douban Event, an event is
often announced together with some text description about the
event categories, selling points and other characteristics. Text
description has not been well explored for graph-based event
recommendation algorithms.

In this paper, we exploit text descriptions to compute user
interest model and graph edge weights. We apply the widely
used LDA model [14] to analyze each event text description.
After having trained a LDA model, we can input an event text
description to the LDA model, and obtain an output of a K-
dimensional vector as the event feature, denoted by ~e. Each
element in ~e is the probability of belonging to a latent topic.

For two events, ei, ej ∈ E, we compute the cosine similarity
of their event features as their edge weight:

Wei,ej = cos(~ei, ~ej). (9)

We construct a weighted adjacency matrix AEE with each
element AEE(i, j) = Wei,ej for describing the relations in
between all events in E. Note that AEE is a full matrix, which
means each event node connecting with all the other event
nodes.

For a user ui ∈ U , let Lui = {(ei1, wei1),, (eiM , weiM)}
denote the list of events that the user ui has attended or
reserved, where weim is the weight of the event eim. For
an event eim in the tth slot of the sliding window, we set
weim = wt according to Eq. (8). From Lui , we compute an
interest model for the user ui as the weighted summation of
event features:

~ui =
∑

eim∈Lui

weim~eim, (10)

where ~eim is event feature of eim.

We next construct a weighted adjacency matrix AUE as
follows. If a user ui has not attended and has not reserved an
event ej , then no edge exists in between the user node ui and
event node ej and AUE(i, j) = 0. If the user ui has attended
or reserved the event ei, then an edge exists in between ui and
ej , and the edge weight is computed as the cosine similarity
between the user interest model and the event feature:

Wui,ej = cos(~ui, ~ej). (11)

Therefore, if an edge exists in between ui and ej , we set
AUE(i, j) = Wui,ej . Note that the graph G is an undirected
graph with edges fully specified by the two adjacency matrices
AEE and AUE .

Fig. 3 illustrates the construction of the recommendation
graph for random walk. Notice that this recommendation graph
contains two types of entities, namely, users and events, and
two types of weighted edges, namely, an edge in between a
user and an event and an edge in between two events. Random
walk will be carried out in such a graph for each query user
to obtain his recommendation list.

D. Random Walk with Restart on Graph

We apply the random walk with restart on the graph G to
compute an event recommendation list for a user, which is
implemented by using a multivariate Markov chain to obtain
the node convergency probabilities. To this end, we first obtain
the event-event transition matrix PEE by row-normalizing the
weighted adjacency matrix AEE . Similarly, we obtain the
user-event transition matrix PUE from AUE ; While we obtain
the event-user transition matrix PEU by column-normalizing
AUE .

To obtain the convergency probabilities, the random walk
with restart (RWR) algorithm is to iteratively compute the

following equations:

u(k+1) = αEUe
(k)PEU + (1− αEU)qu (12)

e(k+1) = αUEu
(k)PUE + (1− αUE)e(k)PEE (13)

In the above equations, qu is the user query vector. If we want
to obtain the convergency probabilities for the user ui, we set
qu(i) = 1, and qu(j) = 0 for i 6= j. uk and ek are the user
and event probability vector, respectively, in the kth iteration.
The probability vectors u(0) and e(0) are randomly initialized.
The parameters αUE and αEU control the transition weight
from one type node to another type node. For example, in
Eq. (13) event nodes get αUE probability from user nodes,
(1− αUE) probability from other event nodes.

The iteration terminates until the pairwise difference in
between two iteration probability vectors is smaller than a
predefined threshold. It has been proven in [28] that if the
constructed graph is a connected one, then the iterations can
converge. We note that the constructed graph G is a connected
one. After the iteration termination, each user u obtains a
vector of event convergency probabilities for N upcoming
events in the decision slot, denoted by

pu = (pu(e1), ..., pu(eN)). (14)

Each element pu(ej) can be considered as the similarity score
between u and ej ∈ Ed. We then sort the pu according to the
decreasing value of pu(ej) to obtain the recommendation list
Lu for each user.

E. Parameter training

In Eqs. (12) and (13), the parameters αUE and αEU
control the transition weights from one type node to another
type node. As the user-event pairs could be much different
in different slots, we propose to sequentially train the two
parameters one slot by one slot in a single sliding window.
In particular, for each history slot tk, k = 1, .., T in a sliding
window, we use the newly added user-event pairs from tk−1
to tk to train new parameters αtkUE and αtkEU based on the
previous slot parameters αtk−1

UE and α
tk−1

EU , respectively. We
set αt1UE = αt1EU = 0.5 for t1. Note that with this sequentially
training, when the sliding window extends to the next decision
slot, we only need to update the two parameters based on the
current decision slot that has newly become a history slot.

Take one slot parameter training for example. Let U and E
denote the user set and event set in this slot, respectively. For
a user u ∈ U , let EPu ⊆ E denote the set of positive events
that the user u has actually attended; and let ENu ⊆ E denote
the negative events that the user u has not attended. Note that
EPu

⋃
ENu = E and EPu

⋂
ENu = ∅. The objective is to train

parameters such that for each user u ∈ U , the probabilities
of events in EPu are higher than those in ENu . This can be
regarded as a typical classification problem. So we adopt the
AUC (Area Under the ROC Curve) as the training objective:

arg max
α

F (α) =
∑

u∈U

∑
ei∈EPu

∑
ej∈ENu

Ψ(pu(ei)− pu(ej))

|EPu ||ENu |
,

(15)

where pu(ei) denotes the convergency probability of event
ei in pu. Ψ(·) is a unit step function: It equals to 1, if
pu(ei) − pu(ej) > 0; Otherwise, it equals to 0. Due to the
discontinuities of the unit step function, a sigmoid function
is often used instead in the training, σ(x) = 1

1+e−x . So the
objective function becomes:

arg max
α

F (α) =
∑

u∈U

∑
ei∈EPu

∑
ej∈ENu

σ(pu(ei)− pu(ej))

|EPu ||ENu |
,

(16)
We apply the stochastic gradient descent (SGD) algorithm

to find appropriate parameters. As an incremental gradient
descent algorithm, the SGD is more efficient to deal with
incremental training data, which can learn the parameters
from the newly added training data instead of retraining all
the available training data. For each parameter training user
u, the derivative of objective function is calculated and the
parameters α are updated as follows:

α← α+ η
∂Fu(α)

∂α
, (17)

where Fu(α) is the objective function for parameter training
for user u and η is learning rate, which is set as 0.01. Then
we calculate the partial derivatives of Fu(·) w.r.t. α as:

∂Fu(α)

∂α
=

∑
ei∈EPu

∑
ej∈ENu

∂σ(µij)
∂µij

(∂pu(ei)∂α − ∂pu(ej)
∂α)

|EPu ||ENu |
, (18)

where µij = pu(ei)−pu(ej). For each derivative ∂pu(ei)/∂α,
it is calculated by Eqs. (12) and (13). The derivatives w.r.t.
parameters αUE and αEU , respectively, are as follows:

∂pu
∂αUE

= ucPUE − ecPEE (19)

∂pu
∂αEU

= αUE(ecPEU − qu)PUE (20)

where uc and ec denote the user and event convergency
probability vectors after the RWR terminates for the query
user u, respectively. Note that since the two parameters αUE
and αEU are independent, so we can train them separately.
The training process finishes after all users in U have been
used for the parameter training.

IV. EXPERIMENT RESULTS

A. Experiment Datasets

We have crawled datasets from Douban Event for two
main cities, Beijing and Shanghai, in China. For Beijing, we
obtained 15225 events and 68926 users from May 1st, 2016
to May 1st, 2017, among which in total 208976 user-event
pairs are used to compose the Beijing dataset. For Shanghai,
we obtained 14194 events and 94103 users from May 1st,
2016 to May 1st, 2017, among which in total 196837 user-
event pairs are used to compose the Shanghai dataset. Table. II
summarizes the statistics of the two datasets.

Due to the privacy policy, we are not able to obtain the
details about the users’ accesses to Douban Event, such as the

TABLE II
STATISTICS OF DATASET

Beijing

User Event UE-Pair

68926 15225 208976

Avg.Utestmonth max.Utestmonth min.Utestmonth

503 1044 189

Avg.Utestweek max.Utestweek min.Utestweek

126 261 47

Shanghai

User Event UE-Pair

94103 14194 196837

Avg.Utestmonth max.Utestmonth min.Utestmonth

384 626 143

Avg.Utestweek max.Utestweek min.Utestweek

96 156 35

time of each access and the corresponding action. So we have
to suppose that users confirm their reservations just before the
event commencement time. The dataset of each city is divided
according to consecutive slots with equal length. For a decision
slot τ with its sliding window length of T + 1, a user that has
actually attended at least four events is selected to compose
the test user set U testτ . Accordingly, the recommendation list is
set to four for all test users, that is, |Lu| = 4 for all u ∈ U testτ .
All the events that any user u ∈ U testτ has attended are used to
compose the test event set Etestτ . Notice that generally |Etest|
is much larger than |U test|.

In this paper, we set the slot length as one month so as
to ensure that the test users are not too few in each slot. In
Table. II, we present some statistics of test users in one month
and in one week. In the table, U testmonth and U testweek denote
the test user of one month and the test user of one week,
respectively. In the Beijing dataset, there are in average 503
test user per month and in average 126 test user per week.
Yet the minimum number of test users is 189 in one month
and 47 in one week. In the Shanghai dataset, the average
number of test users per month and per week is 384 and 96,
respectively. Yet the minimum number of test users is 143 in
one month and 35 in one week. Obviously, if we choose the
slot length as one week, the small number of test users could
not enough justify the recommendation results. So we choose
the slot length as one month for graph construction, parameter
training and performance comparison. Yet we note that for an
individual user, recommendation can be made at his access to
the EBSN by simply setting this user as the query user and
executing the RWR algorithm on the recommendation graph.
Finally, we set September 2016 as the first decision slot and we
have in total nine decision slots for performance evaluation.

B. Comparison Schemes

We compare the proposed scheme, called EGSR (evolving
graph based successive recommendation) with some represen-
tative peer schemes, including the content-based filtering and
graph-based random walk. In our proposed EGSR scheme, we
have used the LDA tool for analyzing event text description
and establishing user interest model. Yet our interest model for

one user is based on the weighted sum of the event features
from the events that the user had attended in the history slots;
While the weights are obtained from our algorithm for sliding
window length determination. For a given training dataset with
Et as its event set, we can also establish an interest model for
each user. For a user ui, let Lui(Et) = {ei1, ..., eiM} denote
the list of events in Et that the user ui has actually attended.
We compute the user interest model by

~ui(Et) =
∑

eim∈Lui (Et)
~eim, (21)

where ~eim is the LDA feature of event eim.
We compare the proposed scheme with the following state-

of-the-art schemes:
• CB: This is the classic content-based recommenda-

tion [50]. We compute each user interest model by
Eq. (21) with the training dataset covering all available
history slots. In each decision slot, we compute the
cosine similarity between the user interest model and the
topic feature of each upcoming event and generate the
recommendation list according to the decreasing value of
the similarities.

• HG: It applies the random walk on a heterogeneous graph
for event recommendation. The heterogeneous graph con-
tains not only user nodes and event nodes, but also online
group nodes and subject nodes [36]. The subject nodes
are generated by clustering property tags of events and
groups. For each decision slot, the training dataset covers
all of its available history slots.

• BG: It applies the random walk on a bipartite graph
for event recommendation [51]. For each decision slot,
the bipartite graph contains only user nodes and event
nodes from its previous four history slots. An edge only
connects one user node and one event node, if the user has
reserved the event. Furthermore, in the graph adjacency
matrix, all edges are with the same weight.

• wBG: It applies the random walk on a weighted bipartite
graph, which shares the same graph structure as that in
the BG scheme, yet with different edge weights. For each
decision slot, we compute each user interest model by
Eq. (21) with the training dataset covering the previous
four history slots. The weight of an edge is compute
as the cosine similarity of user interest model and the
corresponding event feature.

• wBGa: It adopts the same procedure as that of the wBG
scheme, yet with the only difference of using all of its
available history slots as the training dataset for each
decision slot. Note that the graph structure in wBGa is
generally much complex than that in wBG, as with the
time elapse, more old users and events would be included
in the wBGa graph.

In the above schemes, the BG and wBG use a fixed window
length with four training months; While the CB, HG and
wBGa schemes use all the previous months for the training
set. Our EGSR scheme adaptively adjusts the sliding window
length, So the length of sliding window differs across different
decision slots. Note that at the first decision slot τ1, we use

TABLE III
COMPARISON OF SLIDING WINDOW LENGTH AND USER-EVENT PAIRS IN DIFFERENT DECISION SLOTS.

(Window Length; UE-Pairs) τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

Beijing

Adaptive months (5; 98843) (4; 82514) (4; 78471) (4; 72668) (5; 81805) (5; 66242) (5; 68957) (5; 71668) (5; 61977)

Fixed months (5; 98843) (5; 97730) (5; 98375) (5; 95731) (5; 81805) (5; 66242) (5; 68957) (5; 71668) (5; 61977)

All months (5; 98843) (6; 113855) (7; 129716) (8; 146976) (9; 156113) (10; 165085) (11; 182812) (12; 201384) (13; 208953)

Shanghai

Adaptive months (5; 87479) (4; 80845) (4; 80098) (4; 77099) (4; 65790) (5; 72905) (5; 65295) (6; 78560) (6; 70333)

Fixed months (5; 87479) (5; 97862) (5; 99913) (5; 97472) (5; 86490) (5; 72905) (5; 65295) (5; 59492) (5; 52959)

All months (5; 87479) (6; 107436) (7; 126504) (8; 143878) (9; 153269) (10; 160384) (11; 172731) (12; 185996) (13; 196837)

all the history slots to confirm that every slot would be used
in the experiments. Table III compares the statistics of using
different numbers of training months. It can be seen that the
EGSR involves fewer user-event pairs for graph construction
in most cases.

C. Experiment results

In this paper, we firstly adopt four traditional evaluation
metrics for recommendation: P@n (Precision at position n),
MAP (Mean Average Precision), Recall and F1. For a user ui
(i = 1, ...,M) in the test set, let Li denote his recommendation
list and N be the list length. Let Hi denote the set of events
that the user ui has actually attended, which are called his
positive events.

Both P@n and MAP are used to measure the hit rate with
taking top n position of positive events into consideration.
P@n is defined as follows:

P@n =

∑M
i=1

∑n
j=1 I(L

(j)
i ∈ Hi)

M × n , (22)

where I(·) is an indicator function and L
(j)
i the jth event in

the user ui’s recommendation list.
MAP is the mean of the average precision (AP) scores over

all test users, where AP is calculated by:

APi =

∑N
n=1 P@n · I(L(n)

i ∈ Hi)
|Hi|

, (23)

where L(n)
i denotes the nth recommended event in the list Li.

|Hi| represents the number of events that had been actually
attended by the ui in the test set. Thus, MAP is defined by

MAP =

∑
ui∈Utestτ

APi

|U testτ | , (24)

Recall reflects the proportion of events that users have
actually attended in the top-n place. Take user ui for example,
his recall Ri(L) is defined by

Ri(L) =
di(L)

|Hi|
(25)

where di(L) indicates the number of ui’s attended events in the
top-n places of the recommendation list Li, and |Hi| the total
number of ui’s attended events. The mean recall is obtained
by averaging the individual recall over all users with at least
one relevant event.

The F1 metric is used to evaluate the joint effectiveness of
the Recall and Precision:

F1 =
2PR

P +R
, (26)

where P and R are the Precision and Recall metric, respec-
tively.

Tables IV and V compare the experiment results of Beijing
and Shanghai, respectively, for the nine successive decision
slots. From both tables, we first observe that the CB scheme
performs the worst in terms of all performance metrics and
in almost all recommendations. This is not unexpected as
it only exploits the users’ history participation information
for recommending new events, without considering potential
relations like the topical similarity in between events and
the common interests in between users. The HG scheme, on
the other hand, includes all the available entities for graph
construction, trying to establish all potential relations among
different entities. However, its performance is also not good
enough, and in most cases, it plays the second worst or
even the worst among the six schemes. This could be due
to its indiscrimination about the different importance of these
entities and their relations. For example, the entities of online
groups and event subjects might not be able to precisely
reflect a user real interest, as the online groups may not be
directly translated into offline event attendances; While event
subjects only provide rough event categorizations, which may
not be able to capture the main characteristics for each single
event, like that done by the latent topic distribution analysis.
Compared with the HG scheme, the BG scheme only includes
the user and event entities for graph construction, however,
its performance is better than that of the HG scheme. This
collaborates our conjecture that using the most related entities
for graph construction could be better than using all available
entities.

From Tables IV and V, we can observe that the proposed
scheme EGSR can outperform the other peer schemes in
almost all the decision slots. For example, it achieves the
best P@1 results among all the schemes in the Beijing
dataset. We also note that in some decision slots, the wBG
or wBGa scheme performs the best for some performance
metrics. Nonetheless, the best results are achieved only by
the EGSR, wBG and wBGa schemes: See the bolded results
appearing only in the last three columns for each performance
metric. Recall that the three schemes only establish relations
in between users and events. Furthermore, they all apply the
LDA tool for event content analysis to extract latent topic

feature and construct weighted edges based on the topic-
related similarities. Such results collaborate our conjectures
that using the most important entities and using topic-related
edge weights for graph construction can lead to better rec-
ommendation results. On the other hand, although the EGSR
performs the best in almost all cases, it is sometimes not better
than the wBG or wBGa in some slots. This could be attributed
to that the numbers of test users and events are much different
in different decision slots.

We next propose a set of new performance metrics to enable
fair performance comparison for successive recommendations,
which takes into considerations of test dataset size. We first
define a slot coefficient based on the hit rate of random
recommendation, which randomly selects K events from all
available Nτ events in the τ th decision slot. The average hit
rate (AHR) γτ,u of such a random recommendation for the
user u in the τ th slot thus can be computed by

γτ,u =
K∑

k=1

k

K
×

(
NPτ,u
k

)(
Nτ−NPτ,u
K−k

)

(
Nτ
K

) . (27)

where NP
τ,u is the number of positive events that the user u

has actually attended in the τ th slot, and K is the length of
recommendation list, which is set to 4 in our experiments. For
each random selection of K events, if there are k positive
events, then the hit rate is k

K . So γτ,u computes the AHR of
the random recommendation for the user u. The mean AHR
over all test users can be computed by:

γτ =

∑
u∈Utestτ

γτ,u

|U testτ | (28)

where U testτ represents the set of test user in τ th slot.
As NP

τ,u differs across different test users, the computation
of γτ,u becomes user-dependent. On the other hand, as we
select the test users as those who have attended at least K
events, so we replace NP

τ,u by the length of recommendation
list to reduce the computation complexity. That is, we set
NP
τ,u = K for all users to compute the worst case of hit

rate for all test users. Based on Eqs. (27) and (28), we then
compute the slot coefficient γ̄τ as the worst case of mean AHR
over all test users:

γ̄τ =
K∑

k=1

k

K
×

(
K
k

)(
Nτ−K
K−k

)

(
Nτ
K

) . (29)

For the relation between γ̄τ and Nτ , we have the following
lemma:

Lemma 3: γ̄τ is a decreasing function of Nτ .
Proof: See the appendix.

Lemma 3 states that for the random selection the larger the
number of test events, the smaller the average hit rate. In other
words, even for this random recommendation, it is likely that
its average hit rate could be very high due to a small number of
test events. Therefore, to reduce the impact of event number
variations in different slots, we propose a slot performance
weight as a decreasing function of γ̄τ :

f(γ̄τ) = − log2 γ̄τ . (30)

For successive recommendation, besides the variations of
test dataset, the training dataset can also be much different
in different decision slots. For different recommendation al-
gorithms, as they enable different choices of history slots for
composing a training dataset, it is also necessary to compare
their cumulative performance till the current decision slot. To
do so, we propose a new cumulative metric cXτ based on the
weighted average of the traditional performance metric Xτ :

cXτ =

∑τ
j=1 f(γ̄j)×Xj∑τ

j=1 f(γ̄j)
. (31)

For example, cP@n is the cumulative version of P@n; While
cMAP is the cumulative version of MAP.

TABLE VI
RANDOM SELECTION: THE NUMBER OF TEST EVENTS Nτ , THE MEAN

AHR γ̄τ AND THE SLOT PERFORMANCE WEIGHT f(γ̄τ).

Beijing Shanghai

Slot Nτ γ̄τ f(γ̄τ) Nτ γ̄τ f(γ̄τ)

τ1 1400 0.00286 8.451 1222 0.00327 8.255

τ2 1014 0.00394 7.986 1130 0.00354 8.142

τ3 1083 0.00369 8.081 1088 0.00368 8.087

τ4 1203 0.00333 8.232 1149 0.00348 8.166

τ5 850 0.00471 7.731 706 0.00567 7.464

τ6 897 0.00446 7.809 785 0.00510 7.617

τ7 1248 0.00321 8.285 1152 0.00347 8.170

τ8 1224 0.00327 8.257 1089 0.00367 8.089

τ9 620 0.00645 7.276 1017 0.00393 7.990

Table VI provides the number of test events Nτ , the
mean AHR γ̄τ and the slot performance weight f(γ̄τ) in
each decision slot of our experiments. The slot weights are
used to compute the cumulative performance metrics. Figs. 4
and 5 compare the cumulative performance results of the six
algorithms for Beijing and Shanghai, respectively. At first, we
can observe that the cumulative performance results become
less variable for different decision slots, as they have applied
the weighted average to remove user-event variations. For the
new cumulative metrics, we can observe that both the CB and
HG schemes perform much worse than the other four schemes
in the two datasets. This again validates the advantages of
applying random walk on a graph constructed by using two
core entities of an EBSN. On the other hand, we observe that
the proposed EGSR scheme performs the best in terms of all
cumulative metrics in the Beijing dataset. For the Shanghai
dataset, the EGSR is only slightly worse in the first decision
slot, which is not much unexpected as the user interest model
in the first decision slot may not be accurate enough in the first
place. As time goes by, the proposed EGSR can have used
more history information to obtain a more accurate interest
model for more users, so it can outperform the other schemes
in all the subsequent decision slots in the Shanghai dataset.

As a short summary of our experiments, the performance of
the proposed EGSR scheme outperforms the state-of-the-art
schemes in terms of all metrics and in most cases for the two
datasets. This first suggests that when constructing a graph

TABLE IV
RECOMMENDATION PREDICTION PERFORMANCE COMPARISON BY SIX TRADITIONAL EVALUATION METRICS OF BEIJING

P@1 P@3 P@4

CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR

τ1 0.0929 0.1446 0.2433 0.2519 0.2519 0.2615 0.0811 0.1338 0.2018 0.2133 0.2133 0.2174 0.0807 0.1312 0.194 0.2071 0.2071 0.2114

τ2 0.1642 0.1642 0.2253 0.2358 0.2400 0.2653 0.1277 0.1439 0.2218 0.2295 0.2316 0.2407 0.1247 0.1421 0.2095 0.2163 0.2168 0.2263

τ3 0.1305 0.0905 0.2358 0.2632 0.2568 0.2695 0.1151 0.0961 0.2098 0.2196 0.2140 0.2463 0.1111 0.0905 0.1916 0.2005 0.2053 0.2205

τ4 0.1202 0.2340 0.2788 0.2804 0.2821 0.2981 0.1074 0.1512 0.2009 0.2286 0.2302 0.2228 0.0990 0.1366 0.1931 0.2023 0.2023 0.2071

τ5 0.1799 0.2222 0.2698 0.3122 0.3069 0.3122 0.1517 0.1799 0.2187 0.2434 0.2363 0.2593 0.1495 0.1667 0.1944 0.2103 0.2116 0.2540

τ6 0.1351 0.1757 0.2117 0.2342 0.2252 0.2387 0.1396 0.1381 0.1757 0.1802 0.1757 0.2027 0.1273 0.1295 0.1633 0.1678 0.1644 0.1881

τ7 0.1324 0.1180 0.2647 0.2878 0.2777 0.2950 0.1084 0.1429 0.2163 0.2350 0.2336 0.2355 0.1061 0.1385 0.2068 0.2241 0.2219 0.2212

τ8 0.1109 0.2137 0.2382 0.2431 0.2398 0.2512 0.0914 0.1457 0.2007 0.2153 0.2197 0.2034 0.0844 0.1277 0.1921 0.1998 0.2023 0.1925

τ9 0.1937 0.2042 0.3089 0.3403 0.3560 0.3770 0.2059 0.1710 0.2862 0.3229 0.3159 0.3403 0.2029 0.1505 0.2775 0.2971 0.2945 0.3102

Recall MAP F1

CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR

τ1 0.0470 0.0923 0.1354 0.1435 0.1435 0.1463 0.1268 0.2269 0.3273 0.3345 0.3345 0.3428 0.0594 0.1084 0.1595 0.1695 0.1695 0.1729

τ2 0.0858 0.1120 0.1628 0.1660 0.1659 0.1698 0.1957 0.2501 0.3340 0.3432 0.3393 0.3637 0.1017 0.1252 0.1832 0.1879 0.1880 0.1941

τ3 0.0765 0.0674 0.1397 0.1469 0.1492 0.1617 0.1827 0.1643 0.3116 0.3299 0.3329 0.3626 0.0906 0.0773 0.1616 0.1696 0.1728 0.1866

τ4 0.0659 0.1053 0.1469 0.1536 0.1548 0.1526 0.1749 0.3029 0.3556 0.3677 0.3722 0.3774 0.0791 0.1190 0.1669 0.1747 0.1754 0.1757

τ5 0.1017 0.1367 0.1526 0.1667 0.1652 0.1904 0.2409 0.3178 0.3582 0.3861 0.3835 0.4103 0.1210 0.1502 0.1710 0.1860 0.1856 0.2177

τ6 0.0858 0.1037 0.1250 0.1297 0.1275 0.1402 0.1852 0.2601 0.2920 0.2988 0.2965 0.3247 0.1025 0.1152 0.1416 0.1463 0.1436 0.1606

τ7 0.0648 0.1013 0.1460 0.1573 0.1566 0.1502 0.1696 0.2295 0.3472 0.3626 0.3544 0.3602 0.0804 0.1170 0.1712 0.1849 0.1836 0.1789

τ8 0.0513 0.0986 0.1400 0.1433 0.1466 0.1362 0.1414 0.2769 0.3484 0.3580 0.3593 0.3520 0.0638 0.1113 0.1619 0.1669 0.1700 0.1595

τ9 0.1531 0.1180 0.2157 0.2298 0.2292 0.2379 0.2880 0.2760 0.4223 0.4519 0.4516 0.4857 0.1745 0.1323 0.2427 0.2591 0.2578 0.2693

TABLE V
RECOMMENDATION PREDICTION PERFORMANCE COMPARISON BY SIX TRADITIONAL EVALUATION METRICS OF SHANGHAI

P@1 P@3 P@4

CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR

τ1 0.0942 0.1022 0.1901 0.1869 0.1869 0.1933 0.0895 0.0985 0.1667 0.1704 0.1704 0.1651 0.0843 0.0970 0.1518 0.1593 0.1593 0.1550

τ2 0.1261 0.1243 0.2541 0.2450 0.2450 0.2775 0.1237 0.1123 0.1934 0.1952 0.1952 0.2168 0.1234 0.1068 0.1725 0.1865 0.1842 0.1982

τ3 0.1095 0.1652 0.2513 0.2693 0.2765 0.2765 0.0946 0.1245 0.1861 0.2017 0.2059 0.2101 0.0965 0.1068 0.1732 0.1858 0.1827 0.1881

τ4 0.1466 0.0957 0.2098 0.2057 0.2057 0.2159 0.1181 0.1018 0.1663 0.1724 0.1752 0.1874 0.1090 0.1008 0.1609 0.1650 0.1645 0.1787

τ5 0.1975 0.1173 0.2778 0.2840 0.2901 0.2593 0.1584 0.1173 0.2572 0.2675 0.2654 0.2572 0.1451 0.1265 0.2454 0.2500 0.2392 0.2392

τ6 0.1818 0.1818 0.2098 0.2168 0.2168 0.1888 0.1445 0.1515 0.1795 0.1841 0.1841 0.1958 0.1416 0.1399 0.1661 0.1713 0.1643 0.1783

τ7 0.1552 0.1372 0.2058 0.2094 0.2238 0.2274 0.1288 0.1035 0.1685 0.1709 0.2010 0.1949 0.1218 0.1011 0.1543 0.1570 0.1742 0.1805

τ8 0.1399 0.1119 0.2273 0.2448 0.2552 0.2622 0.1329 0.1026 0.1795 0.1911 0.1911 0.2133 0.1224 0.0953 0.1748 0.1836 0.1757 0.2002

τ9 0.1159 0.1232 0.2101 0.2174 0.2174 0.2826 0.1039 0.1002 0.1703 0.1679 0.1824 0.2041 0.1024 0.1014 0.1540 0.1685 0.1703 0.1875

Recall MAP F1

CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR CB HG BG wBG wBGa EGSR

τ1 0.0559 0.0714 0.1063 0.1105 0.1105 0.1061 0.1378 0.1781 0.2601 0.2662 0.2662 0.2660 0.0672 0.0823 0.1250 0.1305 0.1305 0.1260

τ2 0.0886 0.0859 0.1347 0.1435 0.1419 0.1476 0.1730 0.1914 0.3180 0.3252 0.3219 0.3372 0.1032 0.0952 0.1513 0.1622 0.1603 0.1692

τ3 0.0690 0.0828 0.1304 0.1399 0.1368 0.1419 0.1505 0.2178 0.3159 0.3304 0.3327 0.3363 0.0804 0.0933 0.1488 0.1597 0.1564 0.1618

τ4 0.0802 0.0831 0.1246 0.1285 0.1274 0.1356 0.1839 0.1593 0.2630 0.2653 0.2683 0.2798 0.0924 0.0911 0.1404 0.1445 0.1436 0.1542

τ5 0.1004 0.1000 0.1845 0.1905 0.1863 0.1820 0.2318 0.2003 0.3639 0.3716 0.3747 0.3525 0.1186 0.1117 0.2106 0.2162 0.2095 0.2067

τ6 0.0966 0.1108 0.1295 0.1288 0.1226 0.1291 0.2119 0.2667 0.2741 0.2766 0.2733 0.2723 0.1149 0.1236 0.1455 0.1470 0.1404 0.1498

τ7 0.0832 0.0749 0.1115 0.1118 0.1248 0.1264 0.1984 0.1779 0.2532 0.2554 0.2875 0.2865 0.0989 0.0860 0.1295 0.1306 0.1454 0.1487

τ8 0.0898 0.0757 0.1352 0.1414 0.1357 0.1518 0.1852 0.1793 0.2999 0.3124 0.3137 0.3365 0.1036 0.0844 0.1525 0.1597 0.1531 0.1727

τ9 0.0788 0.0797 0.1206 0.1311 0.1316 0.1447 0.1531 0.1932 0.2916 0.3001 0.3082 0.3621 0.0890 0.0893 0.1353 0.1475 0.1485 0.1634

(a) cP@1 of Beijing (b) cP@3 of Beijing (c) cP@4 of Beijing

(d) cRecall of Beijing (e) cMAP of Beijing (f) cF1 of Beijing

Fig. 4. Beijing: Experiment results of cP@n, cP@3, cP@4, cRecall, cMAP, cF1 in different recommendation slots.

for RWR-based recommendation, it might be better to use
the most related entities and the most recent information for
graph construction, rather than using all available entities and
all history information. In addition, experiment results also
suggest that using weighted edge by applying the latent topic
model is effective for achieving better recommendation results.

V. CONCLUSION

In this paper, we have proposed the EGSR scheme which
applies the RWR on a graph for successive event recom-
mendation in EBSNs. For its practical implementation in
large ENSBs, the EGSR scheme exploits a sliding window to
include only the most recent information and the core entities
for composing a recommendation graph. Furthermore, based
on the topic analysis for event text description, it assigns
edges’ weights based on the similarity computation in between
event features and user interests. Experiments from a real
EBSN, Douban Event, have validated its superiority over the
peer schemes in terms of better recommendation results.

In our experiments, we have noticed that the constructed
graph could still be in a very large scale, even given our efforts
of applying a sliding window. Furthermore, we have also
noticed that the random walk paths for each recommendation
could be rather repetitive due to the redundant graph structure.
In our future work, we shall investigate some approaches for
graph partition and graph embedding to further improve the
efficiency and effectiveness of RWR-based recommendation.

APPENDIX

Proof: Lemma 1: We firstly rewrite Eq.(5) as follows:

C(t) =
H(Uoldtd)

H(Gd)
(32)

where Uoldtd is the set of old users when the length of window
is t. As H(Gd) is a constant, so

C(t) ∝ H(Uoldtd) =

|Uoldtd |∑

i=1

h(ui), (33)

As each user entropy h(ui) is a constant, the only variable is
the number of old users. And it is obvious that the U

oldti
d is

the subset of U
oldtj
d , if j > i, which can be proved as follows:

U
oldtj
d = Ud ∩ U tjh

= Ud ∩ U tih + Ud ∩
∑j

k=i
U tks

= U
oldti
d + Ud ∩

∑j

k=i
U tks , i < j

(34)

where U tih is the set of users in history slots from the 1th
to the tith slot and U tks denotes the set of users in the tkth
history slot. So if i < j, C(ti) < C(tj), which means C(t)
monotonically increasing with the increment of t.

Proof: Lemma 2: We rewrite the objective function Eq.(7)

(a) cP@1 of Shanghai (b) cP@3 of Shanghai (c) cP@4 of Shanghai

(d) cRecall of Shanghai (e) cMAP of Shanghai (f) cF1 of Shanghai

Fig. 5. Shanghai: Experiment results of cP@n, cP@3, cP@4, cRecall, cMAP, cF1 in different recommendation slots.

as follows:
J(T) = |C(T)− Cth|

=





C(T)− Cth, C(T) > Cth

Cth − C(T), C(T) < Cth

(35)

where Cth is a constant.
Deriving the objective function J(T) to T , the derivation is

defined as:

∂J(T)

∂T
=





∂C(T)
∂T , C(T) > Cth

−∂C(T)
∂T , C(T) < Cth

(36)

We have proved that C(T) monotonically increases with the
increment of T in Lemma.1, which results in ∂C(T)

∂T > 0.
Then we can find a number θ which lets C(θ) = Cth. So if
T < θ, J(T) decreases with the increment of T . Otherwise,
if T > θ, J(T) increases with the increment of T . And there
is an unique minimum extreme point C(θ) of C(T).

Proof: Lemma 3: we rewrite the objective function E-
q. (29) as follows:

γ̄τ =
K∑

k=1

k

K
×

(
K
k

)(
Nτ−K
K−k

)

(
Nτ
K

) , (37)

Let Nτ be the independent variable of this function. Then we
define a function D(Nτ) as

D(Nτ) =

(
K
k

)(
Nτ−K
K−k

)

(
Nτ
K

) , (38)

So the function of D(Nτ)/D(Nτ − 1) can be simplified as

D(Nτ)

D(Nτ − 1)
=

(
K
k

)(
Nτ−K
K−k

)(
Nτ−1
K

)

(
Nτ
K

)(
K
k

)(
Nτ−K−1
K−k

)

=
[(Nτ −K)!]2(Nτ − 1)!(Nτ − 2K + k − 1)!

[(Nτ −K − 1)!]2Nτ !(Nτ − 2K + k)!

=
N2
τ − 2KNτ +K2

N2
τ − 2KNτ +Nτk

,

(39)

In Eq (39), owing to Nτ � K, so 0 < D(Nτ)/D(Nτ − 1) <
1, which means that D(Nτ) increase as Nτ decrease. Then
we rewrite Eq.(37) as follows:

γ̄τ =

K∑

k=1

k

K
×D(Nτ), (40)

This function shows that γ̄τ has the same monotonicity as
D(Nτ), which means γ̄τ also monotonically decreases with
the increment of Nτ .

REFERENCES

[1] J. Zeng, L. T. Yang, and J. Ma, “A system-level modeling and design
for cyber-physical-social systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 15, no. 2, p. 35, 2016.

[2] H. Ning, H. Liu, J. Ma, L. T. Yang, and R. Huang, “Cybermatics: Cyber–
physical–social–thinking hyperspace based science and technology,”
Future generation computer systems, vol. 56, pp. 504–522, 2016.

[3] Q. Zhang, L. T. Yang, Z. Chen, P. Li, and F. Bu, “An adaptive droupout
deep computation model for industrial iot big data learning with
crowdsourcing to cloud computing,” IEEE Transactions on Industrial
Informatics, 2018.

[4] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A
double deep q-learning model for energy-efficient edge scheduling,”
IEEE Transactions on Services Computing, 2018.

[5] D. Zhang, D. Zhang, H. Xiong, L. T. Yang, and V. Gauthier, “Nextcell:
predicting location using social interplay from cell phone traces,” IEEE
Transactions on Computers, vol. 64, no. 2, pp. 452–463, 2015.

[6] J. Wu, M. Dong, K. Ota, J. Li, and Z. Guan, “Fcss: Fog computing
based content-aware filtering for security services in information centric
social networks,” IEEE Transactions on Emerging Topics in Computing,
pp. 1–1, 2018.

[7] B. Feng, Q. Fu, M. Dong, D. Guo, and Q. Li, “Multistage and elastic
spam detection in mobile social networks through deep learning,” IEEE
Network, vol. 32, no. 4, pp. 15–21, 2018.

[8] H. Peng, M. Bao, J. Li, M. Z. A. Bhuiyan, Y. Liu, Y. He, and E. Yang,
“Incremental term representation learning for social network analysis,”
Future Generation Computer Systems, vol. 86, pp. 1503–1512, 2018.

[9] W. Jiang, G. Wang, M. Z. A. Bhuiyan, and J. Wu, “Understanding
graph-based trust evaluation in online social networks: Methodologies
and challenges,” ACM Computing Surveys (CSUR), vol. 49, no. 1, pp.
10:1–10:35, 2016.

[10] M. A. Rahman, V. Mezhuyev, M. Z. A. Bhuiyan, S. N. Sadat, S. A. B.
Zakaria, and N. Refat, “Reliable decision making of accepting friend
request on online social networks,” IEEE Access, vol. 6, pp. 9484–9491,
2018.

[11] J. Bao, Y. Zheng, D. Wilkie, and M. F. Mokbel, “A survey on rec-
ommendations in location-based social networks,” ACM Transaction on
Intelligent Systems and Technology, 2013.

[12] P. Kefalas, P. Symeonidis, and Y. Manolopoulos, “A graph-based tax-
onomy of recommendation algorithms and systems in lbsns,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 3, pp.
604–622, 2016.

[13] Y. Jhamb and Y. Fang, “A dual-perspective latent factor model for
group-aware social event recommendation,” Information Processing &
Management, vol. 53, no. 3, pp. 559–576, 2017.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[15] K. Xu, Y. Cai, H. Min, X. Zheng, T. Wong et al., “Uis-lda: a user
recommendation based on social connections and interests of users
in uni-directional social networks,” in WI ’17 Proceedings of the
International Conference on Web Intelligence. ACM, 2017, pp. 260–
265.

[16] X. Liu, P. Yin, M. Z. A. Bhuiyan, and G. Wang, “The strength of dither-
ing in recommender system,” in 2017 14th International Symposium on
Pervasive Systems, Algorithms and Networks & 2017 11th International
Conference on Frontier of Computer Science and Technology & 2017
Third International Symposium of Creative Computing (ISPAN-FCST-
ISCC). IEEE, 2017, pp. 71–78.

[17] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou,
“Recommender systems,” Physics Reports, vol. 519, no. 1, pp. 1–49,
2012.

[18] F. Zhang, “A personalized time-sequence-based book recommendation
algorithm for digital libraries,” IEEE Access, vol. 4, pp. 2714–2720,
2016.

[19] F. Xia, Z. Chen, W. Wang, J. Li, and L. T. Yang, “Mvcwalker: Random
walk-based most valuable collaborators recommendation exploiting aca-
demic factors,” IEEE Transactions on Emerging Topics in Computing,
vol. 2, no. 3, pp. 364–375, 2014.

[20] L. Hu, Y. Wang, Z. Xie, and F. Wang, “Semantic preference-based
personalized recommendation on heterogeneous information network,”
IEEE Access, vol. 5, pp. 19 773–19 781, 2017.

[21] B. Shams and S. Haratizadeh, “Graph-based collaborative ranking,”
Expert Systems with Applications, vol. 67, pp. 59–70, 2017.

[22] H. Cheng, P. N. Tan, J. Sticklen, and W. F. Punch, “Recommendation
via query centered random walk on k-partite graph,” in 7th IEEE
International Conference on Data Mining (ICDM 2007). IEEE, 2007,
pp. 457–462.

[23] X. Deng, G. Li, M. Dong, and K. Ota, “Finding overlapping communi-
ties based on markov chain and link clustering,” Peer-to-Peer Networking
and Applications, vol. 10, no. 2, pp. 411–420, 2017.

[24] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A tensor-train deep
computation model for industry informatics big data feature learning,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3197–
3204, 2018.

[25] Q. Yuan, G. Cong, and A. Sun, “Graph-based point-of-interest recom-
mendation with geographical and temporal influences,” in CIKM ’14
Proceedings of the 23rd ACM International Conference on Conference

on Information and Knowledge Management. ACM, 2014, pp. 659–
668.

[26] C. Shi, B. Hu, X. Zhao, and P. Yu, “Heterogeneous information network
embedding for recommendation,” IEEE Transactions on Knowledge and
Data Engineering (Early Access), 2018.

[27] C. Musto, P. Basile, P. Lops, M. de Gemmis, and G. Semeraro,
“Introducing linked open data in graph-based recommender systems,”
Information Processing and Management, vol. 53, no. 2, pp. 405–435,
2017.

[28] T.-A. N. Pham, X. Li, G. Cong, and Z. Zhang, “A general graph-based
model for recommendation in event-based social networks,” in 31st IEEE
International Conference on Data Engineering (ICDE). IEEE, 2015,
pp. 567–578.

[29] B. Li, B. Wang, Y. Mo, and L. T. Yang, “A novel random walk and
scale control method for event recommendation,” in The 13th IEEE
International Conference on Ubiquitous Intelligence and Computing
(UIC). IEEE, 2016, pp. 228–235.

[30] Y. Mo, B. Li, B. Wang, L. T. Yang, and M. Xu, “Event recommendation
in social networks based on reverse random walk and participant scale
control,” Future Generation Computer Systems, vol. 79, pp. 383–395,
2018.

[31] S. Liu, B. Wang, and M. Xu, “Event recommendation based on graph
random walking and history preference reranking,” in Proceedings
of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 2017, pp. 861–864.

[32] X. He, M. Gao, M.-Y. Kan, and D. Wang, “Birank: Towards ranking
on bipartite graphs,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 29, no. 1, pp. 57–71, 2017.

[33] H. Bagci and P. Karagoz, “Random walk based context-aware activity
recommendation for location based social networks,” in Data Science
and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International
Conference on. IEEE, 2015, pp. 1–9.

[34] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based
recommendation fusion over heterogeneous information networks,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017, pp. 635–644.

[35] T. A. Pham, X. Li, G. Cong, and Z. Zhang, “A general recommendation
model for heterogeneous networks,” IEEE Transactions on Knowledge
and Data Engineering, vol. 28, no. 12, pp. 3140–3153, 2016.

[36] C. Guo and X. Liu, “Automatic feature generation on heterogeneous
graph for music recommendation,” in The 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval.
ACM, 2015, pp. 807–810.

[37] H. Bagci and P. Karagoz, “Context-aware friend recommendation for
location based social networks using random walk,” in WWW ’16
Companion Proceedings of the 25th international conference companion
on world wide web. International World Wide Web Conferences
Steering Committee, 2016, pp. 531–536.

[38] S. Liu, B. Wang, and M. Xu, “Serge: Successive event recommendation
based on graph entropy for event-based social networks,” IEEE Access,
vol. 6, pp. 3020–3030, 2018.

[39] J. Song, X. Luo, J. Gao, C. Zhou, H. Wei, and J. X. Yu, “Uniwalk:
Unidirectional random walk based scalable simrank computation over
large graph,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 5, pp. 992–1006, 2017.

[40] J. Wang and J.-j. Huang, “Lda-rr: A recommendation method based on
ratings and reviews,” Computer Science, vol. 2, p. 045, 2017.

[41] A. Q. Macedo, L. B. Marinho, and R. L. Santos, “Context-aware
event recommendation in event-based social networks,” in RecSys ’15
Proceedings of the 9th ACM Conference on Recommender Systems.
ACM, 2015, pp. 123–130.

[42] L. Wu, D. Wang, X. Zhang, S. Liu, L. Zhang, and C. W. Chen, “Mllda:
Multi-level lda for modelling users on content curation social networks,”
Neurocomputing, vol. 236, pp. 73–81, 2017.

[43] N. Lee, E. Kim, and O. Kwon, “Combining tf-idf and lda to generate
flexible communication for recommendation services by a humanoid
robot,” Multimedia Tools and Applications, vol. 77, no. 4, pp. 5043–
5058, 2018.

[44] H. Yin, X. Zhou, B. Cui, H. Wang, K. Zheng, and Q. V. H. Nguyen,
“Adapting to user interest drift for poi recommendation,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 28, no. 10, pp. 2566–
2581, 2016.

[45] F. Zhao, Y. Zhu, H. Jin, and L. T. Yang, “A personalized hashtag
recommendation approach using lda-based topic model in microblog
environment,” Future Generation Computer Systems, vol. 65, pp. 196–
206, 2016.

[46] M. Dehmer and A. Mowshowitz, “A history of graph entropy measures,”
Information Sciences, vol. 181, no. 1, pp. 57–78, 2011.

[47] J. Shetty and J. Adibi, “Discovering important nodes through graph
entropy the case of enron email database,” in LinkKDD ’05 Proceedings
of the 3rd international workshop on Link discovery. ACM, 2005, pp.
74–81.

[48] N. Eagle, M. Macy, and R. Claxton, “Network diversity and economic
development,” Science, vol. 328, no. 5981, pp. 1029–1031, 2010.

[49] M. Dehmer, “Information processing in complex networks: Graph en-
tropy and information functionals,” Applied Mathematics and Computa-
tion, vol. 201, no. 1-2, pp. 82–94, 2008.

[50] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,”
in The adaptive web. Springer, 2007, pp. 325–341.

[51] X. Li and H. Chen, “Recommendation as link prediction in bipartite
graphs: A graph kernel-based machine learning approach,” Decision
Support Systems, vol. 54, no. 2, pp. 880–890, 2013.

Shenghao Liu obtained his B.S. from the School
of Electronic Information and Communications in
Huazhong University of Science and Technology
(HUST), Wuhan, China in 2016. He is currently
pursuing his Ph.D. degree in the same school. His
research focuses on recommendation systems and
applications.

Bang Wang obtained his B.S. and M.S. from the
Department of Electronics and Information Engi-
neering in Huazhong University of Science and
Technology (HUST) Wuhan, China in 1996 and
2000, respectively, and his PhD degree in Electrical
and Computer Engineering (ECE) Department of
National University of Singapore (NUS) in 2004.
He is now working as a professor in the School of
Electronic Information and Communications, HUST.
His research interests include indoor localization,
recommendation systems, and social computing.

Minghua Xu received the B.A. degree from the
School of Journalism and Information Communi-
cation, Huazhong University of Science and Tech-
nology (HUST), in 2002, and the M.A and Ph.D.
degrees from Social Science Department, National
University of Singapore, in 2005 and 2010, respec-
tively. She is currently an Associate Professor with
the School of Journalism and Information Com-
munication, HUST. Her research interests include
the theory and practice of information diffusion
in social networks, recommendation systems and

applications, and information communication theories.

Laurence T. Yang received his BE degree in
Computer Science and Technology from Tsinghua
University, China and his Ph.D. degree in Computer
Science from University of Victoria, Canada. He
is a professor in the School of Computer Science
and Technology in Huazhong University of Science
and Technology, China, and in the Department of
Computer Science, St. Francis Xavier University,
Canada. His research interests include parallel and
distributed computing, embedded and ubiquitous
pervasive computing, cyber-physical-social systems.

His research has been supported by the National Sciences and Engineering
Research Council, and the Canada Foundation for Innovation.

Highlights:
 Construct evolving graphs based on the mostly recent network information for successive

event recommendation
 Propose a graph entropy-based contribution measure to adjust sliding window length and to

compute weights for history information
 Propose using content analysis to establish user interest model and compute graph edges’

weights
 Conduct experiments based on real EBSN datasets to confirm the superiority of the

proposed scheme

