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Abstract: Large-scale display system with immersive human computer interaction 
(HCI) is an important solution for virtual reality (VR) systems. In contrast to the 
traditional human-computer interactive VR system that requires the user to wear 
heavy VR headsets for visualization and data gloves for HCI, the proposing method 
utilizes a large-scale display screen (with or without 3D glasses) to visualize the 
virtual environment and a bare-handed gesture recognition solution to receive user 
instructions. The entire framwork is named as an immersive HCI system. Through a 
virtual 3D interactive rectangular parallelepipe, we establish the correspondence 
between the virtual scene and the control information. A bare-handed gesture 
recognition method is presented based on extended genetic algorithm. An arm motion 
estimation method is designed based on the fuzzy predictive control theory. 
Experimental results showed that the proposed method has lower error rates than most 
existing solutions with acceptable recognition frequency rates. 
Keywords: Human computer interaction; Virtual reality; Gesture recognition; Motion 
estimation 
 

1. Introduction 

The technology of large-scale display system using multi-projector system 
presents an important solution for human computer interaction (HCI) [1, 2]. In 
addition, remote controls using bare hand gestures, body poses and limbs motions are 
more preferable for virtual reality (VR) experience, compared with wearing heavy VR 
devices, such as VR headsets and data gloves [3]. In this study, users will experience 
the virtual environment by roaming in front of a large-scale screen with 
multi-projector system. Instructions and orders can be received by bare-handed 
gesture recognition solutions [4]. 

The experimental setup of this study is illustrated in Fig. 1, which consists of a 
large-scale display, fifteen projectors, fifteen client PCs, two cameras, and one server. 
The user’s hand gesture and arm motion are captured by the two cameras. The hand 
gestures are translated to operating commands as grabbing, releasing, rotating etc. 
And the arm motions create navigate commands, such as move left, move right, move 
forward etc. By combining the operating commands and the navigation commands, 
we enable the users to experience the immersive HCI in the virtual environment. 



 
Fig.1: A large screen presenting the virtual environment which is produced by a 

multi-projector system. 
Gesture recognition from a video camera is a challenging problem. First, the 

tightly coupled rotation, inclination and motion produce a large number of variables 
for computation. Second, hand region segmentation is difficult without professional 
devices, such as data gloves, long-sleeves shirt [5] and hand-held LED light pen [6]. 
Third, it remains difficult to track the head, body or limbs and combine the tracking 
information with bare-handed commands recognition techniques [3, 7]. In addition, 
integrating arm motion estimation into gesture recognition is one way to stabilize the 
motion tracking done by the cameras, resulting in a more robust HCI system. 

In this study, we propose an immersive HCI VR framework based on computer 
vision techniques where the users are not required to wear extra sensors, clothing or 
equipment (only markers are available). The users can perform editing or roaming in a 
virtual 3D environment built by a multi-projector system. Comparing with the 
existing related works in the literature, we summarize the main contributions of this 
study as follows:  

1) A novel simplified skeletal hand model. A simplified skeletal model is 
introduced, which uses an ellipsoid palm with strip fingers to approximate the hand. 
Compared with the existing hand models, the skeletal model reduces the recognition 
errors caused by hand rotation and occlusion.  

2) A novel hand gesture recognition algorithm. A bare-handed gesture 
recognition algorithm is designed using extended genetic algorithm (GA). The 
extended GA naturally avoids local extremes, which increases the robustness of the 
gesture recognition algorithm. Results show that our method produces higher correct 
recognition rate comparing with existing methods. 



3) An novel arm motion estimation method. An arm motion estimation method 
based on a rectangular parallelepiped for virtual interaction (RPVI) and fuzzy 
predictive control (FPC) is proposed. Compared to the existing motion estimation 
methods, our method achieves more accurate arm motion recognition results. 

4) An immersive HCI VR framework. Combining all the techniques that we have 
used, the proposed HCI VR framework successfully accomplishes scene editing and 
walkthrough using bare-handed interactive commands . 

 

2. Related Works 

The proposed framework mainly contains two important techniques, namely, the 
hand gesture recognition and the arm motion estimation. In the section, we review the 
related works of the two techniques respectively. 
2.1 Hand Gesture Recognition Methods 

Hand gesture recognition methods received tremendous attention during the past 
decade for its naturalness and flexibleness in the field of HCI. Binh and Ejima [5] 
presented a real-time hand gesture recognition system that utilized the pseudo 2D 
hidden Markov models. It was limited to 2D hand tracking by a single camera. Wu et 
al. [8] proposed an interactive hand gesture model based on information processing 
model of human attention, and solved the Midas Touch Problem. Using their method, 
static and operator-dependent gestures could be recognized efficiently, but defects 
appeared on operator-independent gestures. Roomi et al. [9] proposed an improved 
method for gesture recognition, which employed Gaussian Mixture Model to extract 
foreground from the input hand images, and used star skeletonization to calculate 
edge information from the segmented hand region. Wan et al. [6] proposed a hand 
gesture interaction scheme with one LED light pen, which improved the robustness of 
existing hand tracking and segmentation techniques. Annamária and Balázs [10] 
proposed a hand gesture modeling and recognition system that converted the received 
hand information into a fuzzy hand-posture feature model using fuzzy neural 
networks, and recognized the gestures by fuzzy inference. However, in [10], the 
gesture recognition process did not take the position of the hand into consideration; 
only the hand shape was considered. Dardas and Georganas [11] presented a real-time 
HCI system, which detected and tracked hands in cluttered background by skin 
detection and hand posture contour comparison. The method was efficient and 
practical, but it was susceptible to quality of the cameras. Lee et al. [12] presented a 
method that distinguishes the starting and ending point of a gesture from a series of 
continuous actions. Xie and Cao [13] presented an accelerometer-based sensing 
device and a related gesture recognition algorithm. The method in [13] improved both 
user-dependent and user-independent recognition accuracy rates, but still required 
special assistances from the hardware aspect. In [14], a dynamic gesture recognition 
system with the depth information was proposed. The static gestures are classified 
using support vector machine (SVM). Pu et al. [15] proposed a gesture recognition 
method based on wireless signals, which offered a whole-home gesture recognition 
system without any extra instrumentations, such as cameras. Krishnan and Sarkar [16] 
introduced a gesture matching algorithm based on a level building approach. They 



modeled each gesture sequence as a curve; and each curve is a data point in a 
high-dimensional space formed by gesture classes. The method could deal with both 
isolated and continuous gestures, but the complexity of the algorithm is high. In [17], 
a high-level hand feature extraction method for real-time gesture recognition was 
presented. The method extracted both extensional fingers and flexional fingers with 
high accuracy. However, if the salient hand edge is not well detected, false detection 
of flexional fingers could occur. Hohn et al. [18] proposed a vision-based hand 
gesture recognition system for intelligent vehicles, which increased the drivers' 
comfort without affecting their safety. 

 
2.2 Arm Motion Estimation Methods and Related Works 

There are also related works about tracking arm motion and the rest parts of the 
body. Sileye and Odobez [19] proposed a novel geometric model to recognize head 
poses without training data. Cheng and Trivedi [20] proposed a real-time vision-based 
user determination system that tracked the hand movements to improve the safety of 
vehicles. The system proposed in [20] alleviated driver distraction and maximized the 
passenger infotainment experience. However, it might fail to identify the active user 
when both the passenger’s and driver’s hands were in the region of interest. Reale et 
al. [7] presented a vision-based HCI system that integrated multiple modalities, 
including eye gaze, head pose, hand pointing, and mouth motions. The system could 
only recognize the pointing gesture. Sanchez and Puig [21] proposed a method solve 
the body gesture recognition problem in the field of HCI. Asque et al. [22] presented 
two haptic-assistive techniques to help motion-impaired computer users. Suau et al. 
[23] proposed a real-time algorithm for both head and hand tracking. The ambiguities 
and overlaps are resolved by using a range camera. In their solution, the hand tracking 
algorithm was fully dependent on the head position estimation. Therefore, a tiny error 
in head position estimation might result in great deviation in hand tracking. Masters et 
al. [24] combined accelerometer and gyroscope measurements to track limbs. A 
sensor fusion algorithm was implemented using commercial inertial measurement 
units (IMU). Tran and Trivedi [25] proposed a novel posture and gesture recognition 
algorithm with multiple cameras. The experimental results showed good classification 
rates, but the system did not handle the gesture spotting issue. In [26], a temporal 
tracking technique, which is used to detect and track the arm of a pointing agent, was 
proposed. A probabilistic method was used to weight different features for estimating 
the target objects. 

 

3. A Novel Immersive Human-computer Interactive VR System using 

Large-scale Screen 
Aiming at developing a next-generation HCI VR system, a large screen with 

multi-projector system is employed to increase the immersive user experience. The 
practical virtual environment setup is shown in Fig. 2. Two synchronized cameras are 
used to capture the user movements in front of the large screen displaying virtual 
scenes. Five markers are purposely placed for camera calibration, where four marks 



are placed on the four corners of the floor rectangle and one point is placed on the top 
plane of the rectangular parallelepiped for virtual interaction (RPVI). A pin-hole 
camera model is used to recover the extrinsic and intrinsic parameters of two 
synchronized cameras for output images. 

 

Fig.2: System framework of the immersive HCI system. Red circles represent 
markers. 

 
The flowchart of the proposed immersive HCI framework is depicted in Fig. 3. 

The inputs are video images containing hand, arm and two marks. There are two large 
blocks in the flowchart, marked using dash lines, which indicate the two main topics 
of this study, namely, the hand gesture recognition and the arm motion estimation. 
The hand gesture recognition requires a GHSML and a finite state machine as inputs 
to build the command system; and the arm motion estimation incoportrates the camera 
and RPVI parameters to generate the navigation commands. In the desired immersive 
HCI virtual environment, users are allowed to perform instructions, such as grabbing, 
releasing and rotation, with arm motions moving left, right, etc. The focuses of this 
study are marked in green color, which are the GA-based static hand gesture 
recognition and FPC based arm motion estimation. 



 
Fig.3: Main steps of the proposed immersive HCI framework. 

 

3.1 Hand Gesture Recognition 

 Hand gesture recognition refers to the procedure mapping the input hand image 
segment with the hand model in library/database. In this subsection, first, we describe 
the procedures of building the hand model libraries using a simplified skeletal hand 
model. Second, a static hand gesture recognition algorithm is introduced integrating 
an extended genetic algorithm (GA). Last, we explain the dynamic hand gesture 
recognition that is used to generate the high-level interaction commands. A finite state 
machine is introduced to formalize the transit rules between different interactive 
commands. 
 
3.1.1 Hand Gesture Feature Extraction 
 Hand gesture features include the number of fingers, the length and width of each 
finger, the angle between wrist and each finger and the skin color. A simplified 
skeletal hand model is designed to build the general hand shape model library 
(GHSML) consisting of six basic hand shapes. The GHSML is trained using the 
actual hand images of the user to obtain the special hand shape model library 
(SHSML) for the current user. The hand features are extracted from the practical 
interaction images to match the gestures in SHSML. Based on the matching results, a 
finite state machine is designed utilizing interactive semantics, such as “selection”, 
“translation”, and “rotation”.  



 

(1) g0F 
 

(2) g1F 

 

(3) g2F 

 

(4) g3F 

 

(5) g4F 

 

(6) g5F 

 

Fig.4: Six basic hand shapes in the GHSML. 
A general hand shape model library with a simplified skeletal hand model is 

depicted in Fig.4, and can be expressed as: 

1 2 1 1 1
( , , , , , , , , )

n n n
y f r r n L L W W R G B     ,                (1) 

 satisfying: 

1 2

1 1

1

1.5

[0,5]

1.2 0.3 , 1

3.0 , 1

[0,90], 1

[0, 255], [0, 255], [0, 255]

i

i

i

r r

n

r L r i n

r W i n

i n

R G B




 
   
  
  


  





, (2) 

where 
1
r  and 

2
r  are the radii of palm and wrist respectively; n represents the number 

of fingers; 
1 n

L L are the length of fingers; 
1 n

W W are the width of fingers; 

1 n
  are the angles between the wrist and fingers ( [0,90)

i
  , 1i n  ); 

, ,R G B are the three channels of skin color.  

The simplified skeletal hand model has three advantages: 
(1) The simple ellipsoid palm model can speed up the matching process for hand 

shapes; and the symmetry of the ellipsoid shape can reduce the false matching rates 
caused by rotation. 

(2) The simple strip models for fingers simplify the matching calculation for 
figures. The false matching of fingers due to occlusions can be reduced by counting 
the total number of fingers from different images. 

(3) Different gestures can be distinguished using the relative size of the palm 



model and finger models. The relative size checking reduces the number of false 
gesture matching instances caused by the scaling. 

The SHSML is built based on the GHSML with the current user. The hand 
region segmentation can be done by integrating the coherence of the hand movement, 
the color of the skin and the basic shape of the hand model (Fig. 5). Utilizing the 
coherence of the hand movement, a hand image segment can be found in the initial 
search window (Fig. 5a). The skin color and the basic shape of the hand model help 
refine the extracted hand image (Figs. 5b and 5c). The contour lines of the hand image 
segment is extracted using the canny operator, which can be further refined using 
morphological operations (Figs. 5d and 5e).  

  
a. Initial window b. Refined result 

according to skin color 
c. Refined result according 

to hand model 

  
d. Result after edge detecting e. Result after filtering and 

connecting 

Fig.5: Segmenting the hand region by coarse-to-fine method. 
 

3.1.2 Static hand gesture recognition using extended genetic algorithm 
In this subsection, we employ an extended genetic algorithm (GA) to find the 

optimal gesture in the SHSML. The genetic algorithm (GA) is a heuristic searching 
algorithm that mimics the natural process of selection and fittest survival to find the 
optimal solution. 

The gesture recognition process can be viewed as a fitness optimization problem, 
and formulated as minimizing: 
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where the variables with are initial values of the parameters; and F is the fitness 
function. 



Denoting 1r , 2r  as the radii of the palm and the wrist respectively, and iL  as the 

length of the ith finger, the fitness function for the thi  individual in SHSML can be 

defined as: 
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where n  is the number of fingers.  

After defining the fitness functions, the static hand gesture recognition algorithm 
based on extended GA can be described as in Algorithm 1; and the flowchart of the 
algorithm is depicted in Fig. 6. 

 

 
Fig.6: Steps of the static hand gesture recognition algorithm based on extended 

GA. 
 

Algorithm 1 The static hand gesture recognition algorithm based on extended GA  

Input: The extracted hand features and the fitness function. 
Output: The selected optimized individual from library. 
Step 1: Encode the hand features using binary coding. 
Step 2: Construct the initial population containing M individuals. The initial 
population is created with several pre-defined gestures from the SHSML randomly. 
Step 3: Compute fitness values. Both the fitness value of each chromosome and the 
total fitness value of the population are calculated.                              
Step 4: Selection. The fittest individual is selected and passed to the next generation 

directly. The rest individuals are selected based on the scale priority probability SP . 

The selection probability of the thi individual can be expressed as 
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where n  is the overall population size, ( )F i is the fitness value of the i individual. 

Step 5: Crossover. A new chromosome can be created based on general crossover 
rules using two old chromosomes [27]. The individuals with large differences in 
coding are given the priority for the crossover operation to avoid local extreme cases. 
Step 6: Mutation. After the crossover, the mutation operation is performed on the 

newly derived child individual according to the mutation probability MP  which is 



defined as: 
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where n  is the population size. To speed up the convergence rate of the matching 

algorithm, we construct the select mutation probability based on the fitness deviation, 
to assure that the best capabilities are inherited. If the number of newly derived 
individuals reaches M, a new population is formed; and the algorithm will go to Step 
3. Otherwise, the algorithm goes to Step 4 and continues the genetic iteration, until 
that the pre-defined maximum iteration number is reached. 

Since the selection probability is determined by the fitness value, the fitness 
probability is proportional to the selection probability. The crossover enables the 
chromosome to exchange information and assure that the useful information is 
preserved. The mutation is a bit-changing operation in the gene code level, which 
produces new individuals. The extended genetic algorithm is a oriented stochastic 
algorithm, which makes the proposed algorithm naturally avoid the local extremes, 
and potentially increases the robustness of the overall HCI framework. 

 
3.1.3 A dynamic hand gesture interaction model 

A finite state machine is used to create high-level interaction commands (HLIC) 
for a dynamic hand gesture interaction model. The HLIC set includes 15 interaction 
commands, which are listed in Table 1. The six gestures from g0F to g5F refer to the 
six basic gestures shown in Fig. 4. 

Table 1: Interaction commands in HLIC. 
Name Abbreviation Implementation 

Leisure sLeisure Continuous g5F 

Grabbing sGrabbing From g5F to g0F 

Releasing sReleasing From g0F to g5F 

Rotating along X sRotatingX From g1F to g2F 

Rotating along minus X sRotatingMX From g2F to g1F 

Rotating along Y sRotatingY From g1F to g3F 

Rotating along minus Y sRotatingMY From g2F to g3F 

Rotating along Z sRotatingZ From g1F to g4F 

Rotating along minus Z sRotatingMZ From g2F to g4F 

Zooming in along X sZoomingIX From g3F to g1F 

Zooming out along X sZoomingOX From g4F to g1F 

Zooming in along Y sZoomingIY From g3F to g2F 

Zooming out along Y sZoomingOY From g4F to g2F 

Zooming in along Z sZoomingIZ From g3F to g4F 

Zooming out along Z sZoomingOZ From g4F to g3F 

 
The commands in the HLIC set can be categorized into four types. 1) The 

sLeisure command, achieved by continuously keeping g5F gesture, is the only 
command implemented by a single gesture, which terminates all other commands. 2) 



The sGrabbing and sReleasing commands are mainly used for translation operations, 
which can be integrated with the navigation commands created by arm motions. 3) 
The sRotating and sZooming commands are composite commands, which are 
implemented by switching gestures from g1F to g2F and from g3F to g4F, 
respectively. They are dependent commands, which require at least one selected 
object in the virtual scene. The complete finite state machine of all gesture interaction 
operations is shown in Fig.7. 

 
Fig.7: The dynamic hand gesture interaction model. 

 

3.2 Arm Motion Estimation 
In this subsection, we introduce the arm motion estimation algorithm. Two 

markers are attached on the elbow and wrist of the arm. The arm motions are 
estimated by calibrating two synchronous cameras to calculate the 3D movements of 
the two markers. The navigation commands are deduced based on the arm motion 
estimation in the virtual scenes. The main difference between our method and 
traditional motion estimation methods is that our method utilizes the rectangular 
parallelepiped (RPVI) to infer selection and navigation operations. Furthermore, A 
fuzzy predictive control (FPC) algorithm is utilized to stabilize the relative 
movements between the arm and the front plane of the RPVI, which leads to the 
robustness of the proposed navigation operations.  

3.2.1 Feature points extraction 
The feature points extraction algorithm can be described by the following four 

steps: 
1) The two markers' center coordinates are calculated based on the input images 

captured by the cameras: ( 1, 1)WP x y and ( 2, 2)EP x y . 

2) With the extrinsic and intrinsic parameters of the cameras, we construct the 
projection matrix: 

i
C i i iP K R t    ,        (7) 

where K denotes the intrinsic matrix, R is the rotation matrix, t is the translation 



vector and i is 1 or 2. The 3D coordinates of the two points, ( 1, 1)WP x y and ( 2, 2)EP x y , 

are projected into the coordinates system as shown in Fig.2, to obtain the new 

coordinates ' ' ' '
1 1 1( , , )WP x y z and ' ' ' '

2 2 2( , , )EP x y z . 

3) The intersection point  ' ' ' '
3 3 3, ,XP x y z is calculated by intersecting the extended 

line of ' '
W EP P  and the front plane of the RPVI (Fig.8). The point '

XP  links to the 

virtual object on the display wall, which can be edited according to specific 
commands.  

 
Fig.8: Intersect between the fore arm and the front plane of the RPVI. 

4) The midpoint ' ' ' '
4 4 4( , , )MP x y z of the line segment ' '

W EP P  records the 

displacement information in the six directions, i.e. left, right, upward, downward, 
forward and backward. it is also the reference point navigating the walkthrough of 
moving arms, walking in the RPVI, or both. 

 

3.2.2 Arm motion estimation based on fuzzy predictive control 
An arm motion estimation algorithm based on fuzzy predictive control is 

proposed to correct the possible errors in camera calibration and feature point 
extraction. The objective of the proposed arm motion estimation algorithm is to 1) 
predict the movement tendency by pre-defined fuzzy control rules; 2) use the 
prediction to revise the position of the input intersection points and the reference 
points. 

Referring to the situation in Fig. 8., the three angles between ' '
W EP P  and three 

coordinate axes are denoted as  ,  and  . The ranges of all variables are defined 

as: 
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where ' ' ', , | 1, 2,3i i ix y z i  denote the coordinates of '
WP , '

EP and '
XP . The fuzzy control 

variables related to '
WP , '

EP  and  , ,   are denoted as   , , | 1, 2i i ix y z i   
and 

( , , )  
 

 respectively. The control rules are defined as 

1 1 1 1 2 3 2 2 3 4 5 6 0

1 1 1 1 2 3 2 2 3 4 5 6 0

1 1 1 1 2 3 2 2 3 4 5 6 0

1 1 1

IF ( , , ) ( , , ) ( , , ) ( , , )

IF ( , , ) ( , , ) ( , , ) ( , , )

IF ( , , ) ( , , ) ( , , ) ( , , )

IF ( , ,

x y z A A A AND x y z A A A THEN A

x y z B B B AND x y z B B B THEN B

x y z C C C AND x y z C C C THEN C

x y z
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where XP


denotes the fuzzy control variable of '
XP ; and  , , , | [1,6]i i i iA B C D i are 

the linguistic terms related to the linguistic variables of the input and output. 
The membership function of mapping the input points into the fuzzy sets is given 

by: 
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where denotes the standard deviation of the input variable x ; r is the predictive 

feedback factor according to the current output; and 0x is the initial value whose 

default value is the offset of the RPVI center in x direction.  

In addition, the Mamdani minimum operation rules and the fuzzy control rules in 
Eq. (5) are used to calculate the predictive values of the state variables for arm 
positions. After fuzzy reasoning, we employ weighted mean method to calculate the 

clarifying control variables at t time by 

  1

1

= , , ,

n

k k
t t t t k

X n

k
k

P


  











P
P



,       (11) 

where kP


denotes the fuzzy control variable , , ,t t t t
XP  

  
, and k is the weight of 

the thk control rule. The predictive feedback variable r at  1t  time is: 
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where , ,   is the historical mean value of , ,   respectively; and i ( i =1,…,n) 

denotes the weights of the corresponding historical data samples. 
 



4. Result and Comparison 

The proposed immersive HCI framework is tested using the same experimental 
setup with two typical interaction examples. The experimental setup of the two 
experiments includes: 

1. Cameras calibration: two synchronous cameras are calibrated by the pin-hole 
camera model. 

2. Display virtual scenes on the large-scale display wall: a virtual 3D city model 
is displayed using the VRML rendering engine. 

3. Motion capture: the 3D coordinates of the operator’s arms are calculated 
according to steps in subsections 3.1 and 3.2. 

4. Scene walkthrough: Move virtual scenes to create navigation effect according 
to the results of arm motion estimations. 

The first example (Experiment 1) enables the user to roam in the virtual scene 
with navigation commands created by arm motion estimation. In the second example 
(Experiment 2), the arm motion estimation is combined with the hand gesture 
recognition to generate interactive commands in front of the large scale display wall. 
Our experiments are conducted on PC equipped with a 4-core Xeon E5450 3.0GHz 
CPU and 8G DDR3 memory.  

 
4.1 Experiment 1 Results 

We compared our method with four other existing motion estimation algorithms: 
SSD (sum of squared difference) [28], KLT (Kanade-Lucas-Tomasi) [29], 
sensor-fusion based method [24], temporal arm tracking method [26]. The results of 
error rates, loss rates and average tracking speed are shown in Table 2 and Fig. 9. 

From the results, we can see that, under the same camera frame rate, our 
algorithm has lower error rates and loss rates with similar average tracking speed 
comparing with the four existing methods. The fuzzy predictive control (FPC) 
effectively increased the estimation accuracy and reduced the loss rate. 

 
Table 2: Result comparison of Experiment 1. 

Methods 
Camera frame rate 

(fps) 

Average tracking 

speed (fps) 
Error rate (%) Loss rate (%) 

our algorithm 15 13.91 2.44 1.21 

method in [24] 

method in [26] 

15 

15 

14.15 

10.77 

2.55 

4.17 

2.08 

3.11 

SSD 15 15.93 6.65 2.67 

KLT 15 14.62 3.10 3.14 

our algorithm 30 15.11 0.97 0.83 

method in [24] 

method in [26] 

30 

30 

15.32 

12.43 

1.23 

1.98 

1.07 

1.55 

SSD 30 16.57 3.88 2.15 

KLT 30 13.90 1.85 2.93 

 



 
(a) With camera frame rate 15 fps 

 
(b) With camera frame rate 30 fps 

Fig.9: Illustrations of the results obtained from Experiment 1 
 
4.2 Experiment 2 Results 

In Experiment 2, five different gesture recognition methods are compared (Table 
3 and Figure 10). Comparing with gesture recognition methods based on hardware 
sensors (such as data gloves), although the recognition speed is slower, our method 
achieves much higher recognition accuracy, especially for some small 
distinguishing-degree gestures, since the sensitivity of data glove largely depends on 
operator's hand size with intrinsic sensitivity limit.  

Compared to the classical equence similarity detection algorithm (SSDA) 
method [30], our algorithm obtains lower error rates and higher recognition speed. In 
comparison with the methods in [12] and [18], our algorithm has lower error rates and 
similar recognition speed. The lower error rates are achieved by utilizing the extended 
GA that converges to the global optimal effectively. 



Comparing with the simple selection operation, the translation operation is much 
more complex. For the translation testing case, all methods have higher error rates 
with lower recognition rates. The reason is that the translation operation is composed 
by multiple basic gestures, which involves multiple gesture recognition processes. 
The high computational load decreases the overall recognition accuracy. 

 
Table 3: Results comparison of Experiment 2. 

Methods Testing cases 
Testing 

times 

Error rate 

 (%) 

Recognition rate 

 (per second) 

our algorithm selection 1000 2.15 20.11 

data glove selection 1000 4.17 35.10 

SSDA selection 1000 8.33 11.35 

method in [12] selection 1000 3.54 18.17 

method in [18] selection 1000 4.11 21.02 

our algorithm translation 1000 3.09 17.02 

data glove translation 1000 9.50 34.21 

SSDA translation 1000 12.07 9.67 

method in [12] translation 1000 3.78 16.96 

method in [18] translation 1000 5.26 19.76 

 

 
(a) With the selection testing case 



 
(b) With the translation testing case 

Fig.10: Illustrations of the results obtained in Experiment 2 
 

5. Conclusion and Future Work 

In this study, we proposed a framework for immersive human-computer 
interactive VR system. The virtual environment was produced by a large-scale display 
system, with or without 3D effects. The user was allowed to roam in front of the large 
display wall and give commands by bare-hand gestures and arm motions. In this study, 
we focus on two main blocks of the whole framework, which are hand gesture 
recognition and arm motion estimation. 

The hand gesture recognition process consists of three major steps. First, we 
designed a simplified skeletal model for human hands. A GHSML was built using six 
basic hand gestures with general initial values; and a follow-up SHSML was built by 
combining the GHSML with the current user gesture data. Second, we extracted the 
hand features from the camera captured images, and matched them with the gesture 
features in SHSML by solving an optimization problem using an extended GA. The 
matching results were of the six basic gestures which represent the original interactive 
semantics.  

The arm motion estimation method utilized a virtual interactive rectangular 
parallelopiped in front of a large scale display wall. The 3D coordinates of the arms 
were calculated dependent on two synchronous cameras. Based on the fuzzy 
predictive control theory, a set of navigation commands were generated. A finite state 
machine was built to complete the immersive human-computer interactive VR system 
using interactive semantics, such as “selection”, “translation”, and “rotation”. 
Occlusions were handled by counting the number of fingers by calibrating multiple 
cameras. 

As a future work, we are about to extend the current work to next generation web 
applications such as online games, painting exhibitions and shopping websites. The 
six basic hand gestures are able to provide basic instructions for online games. More 
hand gesture instructions are desired for more complex online games. For the online 



painting exhibition and shopping experiences, users will experience the virtual 
environment effect, where selection, wearing, purchases and so on can be done 
virtually by bare-hand gesture instructions. 
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 This paper presents a novel approach to utilize a large-scale screen and HCI techniques for 

the users to experience the virtual reality (VR). 

 The user instructions are learned by the combination of gesture recognition techniques (based 

on extended genetic algorithm) and motion estimation techniques (using fuzzy predictive 

control). 

 A framework and flowchart is designed for the semantics of interactive HCI. 

 Compared to traditional VR headsets and data gloves approaches, the proposing method is 

more effective, robust and revolutionary. 


