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Modeling Public Mood and Emotion: Blog and News Sentiment and 

Socio-Economic Phenomena 

 
Abstract 

 

The development of online virtual communities has raised the importance in 

analyzing massive volume of text from websites and social networks. This research 

analyzed financial blogs and online news articles to develop a public mood dynamic 

prediction model for stock markets, referencing the perspectives of behavioral finance 

and the characteristics of online financial communities. This research applies big data 

and opinion mining approaches to the investors’ sentiment analysis in Taiwan. The 

proposed model was verified using experimental datasets from ChinaTimes.com, 

cnYES.com, Yahoo stock market news, and Google stock market news over an 18 

month period. Empirical results indicate the big data analysis techniques to assess 

emotional content of commentary on current stock or financial issues can effectively 

forecast stock price movement. 

Keywords: Sentiment mining analysis, text mining, opinion mining, stock price, 

public mood and emotion 

 

1. Introduction 

The rapid development of online communities and the mobile Internet have 

driven a rapid expansion in online news forums and discussions which potentially 

include data useful for investment decision making. Various approaches have been 

developed for analyzing “Big Data”, referred to as text, web and sentiment mining. 

Sentiment Mining is often referred to as opinion mining, sentiment analysis or 

subjectivity analysis. It is a form of textual analysis which automatically extracts 

words and sentences which appear with higher frequency and are potentially 
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meaningful. “Sentiment” refers to contextualized attitudes, comments, and feelings, 

thus sentiment mining is designed to detect, extract, and analyze hidden sentiment or 

semantic orientation. 

Sentiment mining has been mostly applied to textual analysis social network 

content. In 2015, eMarketer found that 89% of US companies use social media as a 

marketing tool [1]. In 2013, RBC Capital found that the return on investment for 

advertising on Facebook is only slightly lower than that for top-ranked Google, and is 

ahead of Twitter, LinkedIn, Yahoo, AOL and other platforms [2], reflecting the 

significant marketing impact of social media. In addition, after U.S. Securities and 

Exchange Commission (SEC) officially allowed listed companies to disclose their 

earnings on social networks in 2013, the world’s leading data providers including 

Townsend Reuters and Bloomberg Data began to provide data analysis services for 

social network services. In 2014, the worlds’ largest social data provider GNIP noted 

that sentiment analysis social networks first began in 2010 [3]. The initial purpose of 

such activities was to allow companies to assess customer reaction to and satisfaction 

with their products and services. However, sentiment analysis of social networks has 

significant potential in other domains, such as the prediction of stock price 

movements. 

Bollen et al. (2011) analyzed a massive volume of Twitter content to determine 

the use of mass emotion in predicting future stock market trends [4]. Applying the 

OpinionFinder and Google-Profile of Mood States API tools, they scraped nearly ten 

million tweets, and subjected the results to Granger causality analysis and 

Self-Organizing Fuzzy Neural Network (SOFNN) to assess correlations between 

Twitter-based financially related emotional content and the Dow Jones Industrial 

Average Index (DJIA). Result showed that a change in “calm,” as determined by 

Google-Profile of Mood States (GPOMS), can predict the movement of the DJIA over 
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the following 3 to 4 days with an accurate rate as high as 86.7%. In 2012, Datasift 

used 95,019 Tweets from 58,665 Twitter users to assess the emotional moment for 

correspondence to the stock price on the day of THE Facebook IPO. Findings showed 

that sentimental tendencies can be used as an effective predictor of stock price 

movements [5]. Moreover, in May 2012 Derwent Capital Markets launched the 

world’s first hedge fund based on Twitter public sentiment, promising annual rates of 

return between 15 and 20% [6]. 

Vindhini et al. (2012) pointed out that sentiment mining is primarily a natural 

language processing technique used to analyze emotions and opinions in text [7]. It 

thus covers a broad range of research fields and application domains, such as article 

collection in social network, computational linguistics to analyze the grammatical 

structure of articles, and determination of whether the emotional polarity of 

vocabulary is positive or negative. In addition, analysis based on statistical techniques 

and artificial intelligence have been increasingly integrated into sentiment mining to 

improve outcomes. However, sentiment mining applications are still immature and are 

subject to certain challenges including: (1) Inconsistent article structures and lengths 

[8]. (2) Data processing and transmission bottlenecks for real-time online analysis, 

though the increasing popularity of cloud computing potentially provides a solution [9, 

10]. (3) Lack of a consistent and universal development framework reduces the 

efficiency of software development and analysis, resulting in poor flexibility in 

algorithm development and maintenance difficulty [11]. This research proposes and a 

sentiment mining approach designed to address massive quantities of short text 

articles based on the Academia Sinica Bilingual Ontological Wordnet 

(BOW-WordNet) [12], the National Taiwan University Sentiment Dictionary 

(NTUSD) [13], and Python-Jieba to detect abbreviations and slang, delete stop words, 

and detect positive and negative connotations in words. A sentiment mining 
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framework is then developed for use in subsequent research. 

This research uses content from finance-related blogs and related news articles to 

integrate features from behavioral finance and social networks for sentiment mining, 

seeking to empirically determine whether public sentiment in online Taiwanese 

communities can be used to predict future stock market trends in Taiwan. The 

remainder of this paper is organized as follows. Section 2 surveys the literature related 

to sentiment mining, sentiment classification, feature selection, and feature weighting 

methods. Section 3 describes the research methodology. Section 4 discusses the 

experimental design, dataset collection, experimental results, and model performance. 

Finally, the research contribution and future works are presented in Section 5. 

 

2. Literature Review 

2.1. Sentiment Mining Analysis 

The Internet has emerged as a global medium of communication, particularly 

through social network applications. Social networks offer private individuals an easy 

and convenient way to widely disseminate their opinions, and an array of techniques 

for social behavior analysis and prediction have been developed and applied to 

analyze such content, which are important sources for sentiment mining analysis. 

Current technologies allow for the effective filtering and analysis of massive amounts 

of text. Sentiment analysis includes the identification of opinion holders, feature 

words, and opinion words. These three main methods are introduced below. 

Kim et al. (2004) used the BNN2 named entity tagger-IdentiFinder to identify 

potential opinion holders [14], but was restricted to individual people and institutions. 

When more than one holder occurs in a sentence, the one with the closest to the 

targeted opinion is selected. Ku et al. (2007) noted that a proper noun or a synonym 

appearing in front of the verb which expresses an opinion usually identifies the 
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opinion holder [15]. 

In terms of feature word identification, Hu et al. (2004) proposed an Association 

Rule mining method to identify the most common nouns or noun phrases in given 

sentences [16]. They found that customer comments typically include considerable 

description which is not directly related to the product itself. However, 

product-related comments tend to use the same vocabulary, thus nouns or noun 

phrases which appear with higher frequency in the comments are thus more likely to 

be related to the product. Su et al. (2008) proposed a method using the association 

approach to effectively identify implicit product features [17]. Clustering is conducted 

based on the intrarelationship of feature vocabulary and opinion words. A sentiment 

association set is then established to describe the association between the feature and 

opinion sets. Using the previously established association set, feature vocabularies not 

explicitly appearing in the comments can be identified to provide more accurate view 

of comments. 

In terms of opinion word identification, Ku et al. (2007) proposed using the 

frequency of a Chinese character appearing in a dictionary to determine whether it is 

an opinion word or not [15]. The meaning of a Chinese opinion word can be seen as a 

function of character combinations because, when encountering an unknown character, 

readers will attempt to interpret it according to its ideographic content. They then 

calculate the probability of each character in a certain word appearing in a dictionary 

file. Finally, whether or not the sum of the scores for the word exceeds the threshold 

value is used to determine if the word is an opinion. Hu et al. (2004) proposed a 

simple yet effective way of using synonym and antonym sets of adjectives in 

WordNet to predict the semantic direction of adjectives [16]. Su et al. (2008) 

proposed an opinion mining approach to evaluate the consumers’ comments of buying 

the new car [17]. In general, adjectives and their synonyms have similar meanings 



 7

while antonyms have the opposite meaning. Hence, when the synonyms or antonyms 

of an adjective is known, we can use above concept to predict the meaning of said 

adjective. Qiu et al. (2009) proposed to use double propagation to expand domain 

sentiment lexicon in certain field [18]. The main concept is that opinion words in a 

comment are almost always accompanied by feature vocabulary. Thus we can use 

known opinion words to identify feature vocabulary items. New opinion words and 

feature vocabulary items can then again be used to identify new feature vocabulary 

items and opinion words [19]. Such double propagation of words is repeated until no 

new opinion words or feature vocabulary items are identified. 

 

2.2. Sentiment Classification 

Sentiment classification focuses on four aspects: subjectivity classification, word 

sentiment classification, document sentiment classification, and opinion extraction 

[20]. This paper mainly focuses on the sentiment classification of document content to 

identify positive or negative opinions. 

In recent years, many studies have adopted feature selection and machine 

learning methods for sentiment classification (see Tables 1 and 2). For example: Pang 

et al. applied simple document frequency (DF) as the threshold of filtering features to 

movie reviews to assess the effectiveness of machine learning methods such as SVM, 

Naïve Bayes (NB) and Maximum entropy in processing sentiment classification [21]. 

They found that SVM has the best classification performance. Na et al. (2005) 

introduced negation phrases into feature selection to further improve the effectiveness 

of sentiment classification [22]. Abbasi (2007) combined Entropy and Genetic 

Algorithm (GA) to propose the EWGA (Entropy weighted genetic algorithm) feature 

selection method for sentiment classification of articles on internet forums and movie 

reviews [23]. Wang et al. (2011) proposed the FLDA (Fisher linear discriminant 
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analysis) method based on DF to combine with SVM classifier for sentiment 

classification of online product reviews [24]. Fersini et al. (2014) proposed a novel 

ensemble learning methodology to effectively solve the polarity classification issue 

[32]. Abdel Fattah (2015) [33] and Wu et al. (2016) [34] also proposed novel 

approaches to handle and classify complex sentiment knowledge from unstructured 

internet review comments or microblog articles. Recently, Gui et al. (2017) built a 

heterogeneous network and polarity lexicon to connect users, products, words in 

related product reviews from IMDB and Yelp, thus significantly improving 

classification performance [35].  

 

Table 1. Sentiment Classification Research 

Type of Research Methodology comparison  R1 

 New method R2 

Machining Learning Method Support vector machine (SVM) ML1

 

Naive Bayes (NB) ML2

Others (N-gram, neural network, deep 

learning) 

ML3

Feature Selection Method Document Frequency (DF) FS1 

 

Information gain FS2 

POS-Labeling algorithm FS3 

Others (CHI, CPD…etc) FS4 

Feature Weighting Method TF FW1

 
TF-IDF  FW2

TP FW3

Experimental Dataset 
Internet reviews (product, movie, 

lodging…etc) 

D1 

 Internet forums or blogs D2 

Other (news, open database…etc) D3 
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Table 2. Literatures Review for Sentiment Classification 

Scholars 

Research 

Type 

Machining 

Learning 
Feature Selection 

Feature 

Weighting 

Experiment 

Dataset 

R1 R2 ML1 ML2 ML3 FS1 FS2 FS3 FS4 FW1 FW2 FW3 D1 D2 D3 

Pang et al. 

(2002) [21] 
ˇ  ˇ ˇ ˇ ˇ  ˇ  ˇ  ˇ ˇ   

Na et al. 

(2005) [22] 
 ˇ ˇ   ˇ  ˇ  ˇ ˇ ˇ ˇ   

Whitelaw et 

al. (2005) 

[25] 

 ˇ ˇ     ˇ  ˇ   ˇ   

Abbasi et al. 

(2007) [23] 
 ˇ ˇ    ˇ     ˇ ˇ ˇ  

Li et al. 

(2007) [26] 
 ˇ ˇ   ˇ  ˇ    ˇ ˇ   

Tan and 

Zhang 

(2008) [27] 

ˇ  ˇ ˇ ˇ ˇ ˇ  ˇ  ˇ  ˇ   

Zhang et al. 

(2008) [28] 
 ˇ ˇ ˇ ˇ   ˇ   ˇ  ˇ   

Chen and 

Chiu (2009) 

[29] 

 ˇ   ˇ   ˇ   ˇ  ˇ   

O’keefe and 

Koprinska 

(2009) [30] 

 ˇ ˇ ˇ  ˇ   ˇ ˇ ˇ ˇ ˇ   

Bollen et al. 

(2011) [31] 
 ˇ   ˇ ˇ    ˇ ˇ ˇ  ˇ  

Fersini et al. 

(2014) [32] 
 ˇ ˇ ˇ ˇ   ˇ  ˇ ˇ ˇ ˇ   

Abdel Fattah 

(2015) [33] 
 ˇ ˇ  ˇ ˇ ˇ  ˇ ˇ ˇ ˇ ˇ   

Wu et al. 

(2016) [34] 
ˇ  ˇ ˇ ˇ ˇ    ˇ    ˇ  

Gui et al. 

(2017) [35] 
 ˇ ˇ  ˇ ˇ    ˇ   ˇ   
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2.3. Feature selection 

Feature selection selects the most important features that can present the 

meaning of the document [36], reducing the dimension of feature space, required 

computing time and costs, and noise while improving classification performance [26, 

37]. Subjective online text such discussion threads and blogs are often unstructured or 

semi-structured, and feature selection is a key issue for the classification of such data 

[24]. 

Categorical Proportional Difference (CPD) is a feature selection method 

proposed by Simeon and Hilderman (2008) and is often applied to multi-category 

document classification [38]. O'Keefe and Koprinska (2009) used this method in two 

categories of semantic classification studies [30]. This method is mainly used to 

calculate the difference between a feature’s positive and negative document frequency, 

allowing for the selection of features that can effectively distinguish between the two 

categories. The CPD method is calculated as follows: 

dP,i(i＝1, 2,…, m) and dN,j(j＝1, 2,…, n) respectively represent the i-th positive 

category document and the j-th negative category document. m and n respectively 

represent the number of positive and negative category files. t represents the number 

of terms in the document. Random variables dP,i(t) and dN,j(t) are defined as follows: 
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(3)

In Eq. 3, m1 and m2 respectively represent the positive and negative document 

frequency of a feature in all documents. CPD calculation produces a CPD value 

(importance) of a feature between 0 and 1 where a higher value indicates greater 

importance. Two types of documents can be effectively distinguished, thus a CPD 

feature value of 1 indicates that this feature only appears in a single category. 

 

2.4. Feature Weight Method 

When classifying document data, each document will be represented as a feature 

vector [28], that is, the construction of the term-document matrix (TDM). In the TDM, 

each feature vector represents the weight of a term in a document, with the last 

column indicating the category of each document. In the information retrieval field, 

feature weights are used to represent the usefulness of a feature in the retrieval 

process [39]. 

There are many ways of calculating feature weight in the document classification 

field. For example: 

 Term frequency (TF) 

TF uses the frequency with which a term appears in a document to represent 

its weight. It is primarily used to measure a term’s importance in a document, 

and can be called a "Local Term Weight" [40]. 

 Inverse document frequency (IDF) 

IDF calculates weight according to a term’s document frequency (DF). It is 

primarily used to measure a term’s importance to all documents, and can be 

called a "Global Term Weight" [40]. The IDF weight of a term t can be 
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expressed as follows: 

tm
NlogIDF   

  (4)

In Eq. 2.9, N represents the total number of all documents and mt represents the 

total number of documents containing feature t. 

 Term frequency-inverse document frequency (TF-IDF) 

TF-IDF combines TF and IDF weights, and is a popular weighting method 

in the field of information retrieval [39, 40, 41]. TF-IDF may be calculated as 

follows: 

IDFTFIDFTF    (5)

 Term presence (TP) 

Pang et al. (2002) first used TP for the semantic classification of two 

categories [21]. TP judges weight by determining whether a term appears in a 

document, where 1 represents yes, and 0 represents no. 

In studies related to semantic classification, TF weight, TP weight and TF-IDF 

weight are frequently used feature weighting methods. Studies have also confirmed 

that TP weights and TF-IDF weight generally have better classification performance, 

therefore TF-IDF weighting is used to construct term matrix in the present study. 
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affect forecast accuracy? (2) Do larger lexicons improve accuracy? (3) Does the 

training result affect forecast accuracy? 

4.2. Single Stock Price Prediction 

To assess prediction performance, this experiment used only two keywords: 

“Hon Hai Precision Industry Company” and “Terry Gou” (Hon Hai’s board 

chairman), for comparison against Hon Hai’s stock performance over the same time 

period.  

As shown in Table 3, lexicon polarity does not cover the amount of forecasting 

data, predicting too many unknown words in the article, leading to reduce the 

precision. In addition, increased lexicon polarity does not necessarily produce better 

results: excessive duplication in the training data can result in of the wrong direction 

of the positive and negative emotion, then resulting in inconsistent predictive 

accuracy instability. 

  

Table 3. Results comparison for Single Stock Price Prediction  

Scenario Training Dataset   Training Period Testing Dataset Accuracy 

1 
2016/01/01~2016/12/31 

10 articles per day 
1 Year 

2017/01/01~2017/07/31 

10 articles per day 
59.71% 

2 
2016/01/01~2016/12/31

10 articles per day 
1 Year 

2017/01/01~2017/07/31 

50 articles per day 
52.51% 

3 
2016/01/01~2017/07/31

50 articles per day 
1.5 Year 

2017/01/01~2017/07/31 

10 articles per day 
58.27% 

4 
2016/01/01~2017/07/31

50 articles per day 
1.5 Year 

2017/01/01~2017/07/31 

50 articles per day 
53.95% 

 

To improve the accuracy rate, we then used the TF-IDF weighting method to 

investigate actual performance. We selected Scenario 1 to combine the TF-IDF 

weighting method because it has the highest accuracy results among the four 

scenarios. 
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Table 4. Results comparison with/without TF-IDF weighting method 

Scenario Training Dataset   Testing Dataset Accuracy 
Average Lexicon 

Coverage 

1 
2016/01/01~2016/12/31 

10 articles per day 

2017/01/01~2017/07/31

10 articles per day 
59.71% 43.17% 

5 
2016/01/01~2016/12/31

10 articles per day 

2017/01/01~2017/07/31

10 articles per day 
53.43% 21.89% 

 

Table 4 shows that Scenario 5 is less accurate than Scenario 1. We then 

investigated the TF-IDF weighting method effects on lexicon in the same article 

content and found that lexicon terms used in Scenario 1 are not realistic and inflate 

the importance of unimportant words. The lexicon used in Scenario 5 is closer to the 

character meaning and the words used are all important for the calculation prior to 

forecasting. 

Using the same article content, we can see the average lexicon coverage rate in 

Scenario 1 is 43.17% and thus higher than in Scenario 5. However, the lexicon used in 

Scenario 1 is not measured by the TF-IDF weighting method, and contains many 

unimportant words. In contrast, Scenario 5 has a low average lexicon coverage; 

despite the use of the TF-IDF weighting method, the accuracy is not effectively 

improved. 

 

4.3. Taiwan 50 and TAIEX Price Prediction 

As shown in Table 4, in order to improve the lexicon average coverage rate of 

less than 30%, resulting in the accuracy cannot effectively enhance the problem, we 

collected financial articles on Taiwan’s largest 50 publicly traded companies (“Taiwan 

50”) to establish lexicon training materials for enhancing lexicon coverage and 

forecasting movement of the TWSE Capitalization Weighted Stock Index (TAIEX). 

The experiment sought to determine whether forecast accuracy varied with lexicon 

and dataset size. Scenario 1 and 2 are the previous experiment in Section 4.2, to 
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predict price movements of individual stocks, whereas Scenario 3 uses TF-IDF to 

adjust the lexicon, and Scenario 4 uses the Taiwan 50 to establish the lexicon and 

forecast fluctuations in the TAIEX.  

 

Table 5. Results for individual stock and TAIEX price prediction  

Scenario Training Dataset   Training Period Testing Dataset Prediction TF-IDF Accuracy 

1 
2016/01/01~2016/12/31 

10 articles per day 
1 Year 

2017/01/01~2017/07/31

10 articles per day 

Single 

Stock 
No 59.71% 

2 
2016/01/01~2017/07/31

50 articles per day 
1.5 Year 

2017/01/01~2017/07/31

10 articles per day 

Single 

Stock 
No 58.27% 

3 
2016/01/01~2016/12/31

10 articles per day 
1 Year 

2017/01/01~2017/07/31

10 articles per day 

Single 

Stock 
Yes 53.43% 

4 
2016/01/01~2016/12/31

10 articles per day 
1 Year 

2017/01/01~2017/07/31

10 articles per day 
TAIEX Yes 57.62% 

 

To determine the impact of lexicon size on accuracy, we compared Scenarios 3 

and 4, with results summarized in Table 5. In the testing dataset, the results showed 

accuracy increased with training lexicon size, but the new experimental result of 

Scenario 4 is 57.62% and not higher than the previous experimental result of Scenario  

1 with 59.71% accuracy, but the meaning of the sentence is closer to the real meaning 

with higher average lexicon coverage, as shown in Table 6. 

 

Table 6. Average lexicon coverage for individual stock and TAIEX price prediction 

Scenario Training Dataset   Testing Dataset 
Average 

Forecasting 
Article Words 

Average 
Lexicon 

Coverage

3 
2016/01/01~2016/12/31

10 articles per day 

2017/01/01~2017/07/31

10 articles per day 
258,017 21.89% 

4 
2016/01/01~2016/12/31

10 articles per day 

2017/01/01~2017/07/31

10 articles per day 
258,017 59.01% 
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Using the same texts, Scenario 4 provides significantly greater lexicon coverage 

than Scenario 3. Therefore, if increasing the lexicon data can improve the low rate of 

lexicon coverage, TF-IDF can be used to boost prediction accuracy, as shown in Table 

6. 

In Table 7, the only difference between Scenario 4 and Scenario 5 is that the 

training period, but accuracy is significantly increased in Scenario 5. This is because 

the t-1 to t-5 articles are predicted at the predicted time t; when t+1 is predicted, t has 

already become part of the training lexicon, thus the t+1 accuracy will generally 

increase with coverage. The results suggest that using TF-IDF weighting to adjust the 

training lexicon can improve forecasting accuracy and higher amount of lexicon with 

TF-IDF weighting method can also achieve high accuracy. 

 

Table 7. Results comparison for different training periods  

Scenario Training Dataset   Training Period Testing Dataset Prediction TF-IDF Accuracy 

4 
2016/01/01~2016/12/31

10 articles per day 
1 Year 

2017/01/01~2017/07/31

10 articles per day 
TAIEX Yes 57.62% 

5 
2016/01/01~2017/07/31

50 articles per day 
1.5 Year 

2017/01/01~2017/07/31

10 articles per day 
TAIEX Yes 65.81% 

 

5. Conclusion 

This research integrated content from financial blogs and news articles to 

develop a public mood dynamic prediction model for stock prices, referencing 

behavioral finance and online financial community characteristics. A public mood 

time series prediction model is also presented, integrating features from social 

networks and behavioral finance, and uses big data analysis to assess emotional 

content of commentary on current stock or financial issues to forecast changes for 

Taiwan stock index. The proposed model was verified using experimental datasets 

from the ChinaTimes.com, cnYES.com, Yahoo stock market news and Google stock 
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market news from January 1, 2016 to July 31, 2017.  

This research is subject to several limitations. First, experiments were conducted 

only using stock prices from the TAIEX, and further validation could be provided by 

duplicating the experiments with other stock markets, such as the DJIA, S&P 500, or 

IBOVESPA. Second, this research discusses the financial behavior in social networks, 

and future research could adopt other popular social network platforms, such as 

Twitter, Instagram, or Snapchat. Finally, the proposed model can also consider other 

factors as input variables, including personality traits, trust, and other psychological 

indicators. 
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 It develops an opinion mining framework based on TF‐IDF in public 

blogs and news 

 It builds a public mood dynamic prediction model in Taiwan stock market 

 It uses big data technique to conduct sentiment analysis of emotions 

and reactions   

 

 

 

 

 

 

 

 


