
Computers and Operations Research 104 (2019) 159–173

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Exact methods for order acceptance and scheduling on unrelated

parallel machines

Shijin Wang

∗, Benyan Ye

School of Economics and Management, Tongji University, Shanghai 20 0 092, China

a r t i c l e i n f o

Article history:

Received 7 July 2018

Revised 29 November 2018

Accepted 18 December 2018

Available online 21 December 2018

Keywords:

Order acceptance and scheduling

Unrelated parallel machines

Mixed-integer programming

Branch-and-bound

a b s t r a c t

This paper studies an order acceptance and scheduling (OAS) problem on unrelated parallel machines to

maximize the total net revenue of accepted orders, which is the difference between sum of revenues and

total weighted tardiness. Two mixed-integer programming (MIP) models are formulated, which are fur-

ther improved with various enhancement techniques. A formulation-based branch-and-bound algorithm

is developed in an attempt to handle complicated instances following the principle of “divide and con-

quer”. Extensive computational experiments on various instances are conducted, and the results demon-

strate the efficiency of the enhancement techniques for the formulations, as well as the effectiveness and

efficiency of the formulation-based branch-and-bound algorithm. The proposed branch-and-bound algo-

rithm can optimally solve instances with up to 50 jobs and different number of machines within the time

limit of half an hour.

© 2018 Elsevier Ltd. All rights reserved.

1

n

t

(

t

a

i

o

t

e

m

c

o

i

m

d

i

m

d

r

e

w

c

t

m

(

a

t

l

t

w

l

t

e

(

P

(

i

d

h

d

j

l

h

0

. Introduction

To maintain operational agility and flexibility, many compa-

ies from different industries, such as engineering tooling, indus-

rial boilers, construction and contracting, adopt the make-to-order

MTO) operational philosophy, thereby laying more focus on cus-

omer satisfaction (Mestry et al., 2011). Additionally, there exists

n increase in popularity of the MTO philosophy in the service

ndustry, particularly with regard to E-commerce and O2O take-

ut & catering services offered within restaurants. For example,

he ele.me online platform for O2O takeout & catering service cov-

red more than 200 cities in China and had served more than 260

illion customers by June 2017 (source from www.ele.me). In this

ontext, how to coordinate operations and sales for effective use

f available resource (or limited capacity) is a big challenge for

mproving customer satisfaction meanwhile obtaining high profit

argins.

The order acceptance and scheduling (OAS) problem arises in

ifferent MTO production and/or service systems, wherein lim-

ted production and/or service capacity and order-delivery require-

ents necessitate the use of selective order acceptance to satisfy

istinct requirements of customers whilst also maximizing total

evenue (profit) (Cesaret et al., 2012; Rom and Slotnick, 2009; Silva

t al., 2018; Slotnick and Morton, 2007; Wang et al., 2015).
∗ Corresponding author.

E-mail address: shijinwang@tongji.edu.cn (S. Wang).

s

(

ttps://doi.org/10.1016/j.cor.2018.12.016

305-0548/© 2018 Elsevier Ltd. All rights reserved.
The OAS problem requires one to simultaneously determine

hich orders should be accepted for processing as well as their

orresponding schedule. The complexity of the problem due to

heir combinatorial nature and intertwined decisions makes opti-

ization extremely difficult, as the problem typically is NP-hard

 Ghosh, 1997). Such problems, however, invariably capture the rich

nd realistic classes of MTO processing, thereby making them easy

o explain and tempting to be attempted and solved optimally.

In this paper, a deterministic OAS problem on unrelated paral-

el machines is addressed, since the prevalence of actual manufac-

uring environments and service industries are typically equipped

ith unrelated parallel machines. Typical applications of unre-

ated parallel machine scheduling include—but are not limited

o—semiconductor manufacturing (̧S en and Bülbül, 2015; Deti-

nne et al., 2011; Shim and Kim, 2007), multiprocessor computer

 Fanjul-Peyro and Ruiz, 2010), operating rooms in hospitals (Fanjul-

eyro and Ruiz, 2012), and car factories and food processing plant

 Fanjul-Peyro et al., 2017). For the problem under study, there ex-

sts a pool of potential orders (jobs) with known processing times,

ue dates, revenues, and penalty tardiness weights. The objective

ere is to maximize the total net revenue, which refers to the

ifference between the sum of revenues obtained from accepted

obs and total weighted tardiness. This paper investigates the prob-

em from an exact solution viewpoint. The contributions of this re-

earch are as follows:

1) Two MIP formulations are proposed: one is with a dummy job

and another is based on linear ordering variables. Formulation

https://doi.org/10.1016/j.cor.2018.12.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.12.016&domain=pdf
mailto:shijinwang@tongji.edu.cn
https://doi.org/10.1016/j.cor.2018.12.016

160 S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173

(

(

2

u

t

p

t

i

v

m

t

t

l

t

a

p

a

g

p

t

t

h

n

b

r

t

e

v

d

w

d

w

s

n

t

r

a

b

E

c

s

p

h

j

X

L

r

G

f

t

r

2

O

t

l

t

e

s

t
tightening and valid inequalities are proposed to improve the

efficiency of the two MIP formulations.

2) A formulation-based branch-and-bound algorithm is developed

based on the idea of “divide and conquer”, in which the branch

is to determine how many jobs should be accepted, followed by

the subproblem of unrelated parallel machine scheduling.

3) The computational results on various instances show the effi-

ciency of the formulations with enhancement techniques, and

demonstrate the efficacy of the proposed branch-and-bound al-

gorithm.

The rest of this paper is organized as follows. Section 2 presents

literature review relevant to the problem. In Section 3 , two

MIP models are formulated. In Section 4 , some enhancement

techniques for the MIP models are presented. The proposed

formulation-based branch-and-bound algorithm is described in

Section 5 . In Section 6 , extensive computational experiments are

conducted to evaluate the performance of the developed models

and the branch-and-bound algorithm. Lastly, Section 7 concludes

the paper and suggests some future research directions.

2. Literature review

2.1. Research streamlines of OAS problems

The OAS problem and its variants have been extensively investi-

gated for more than two decades (Esmaeilbeigi et al., 2016). Inter-

ested readers can refer to the survey by Slotnick (2011) and ref-

erences herein for further details. The scheduling problem with

rejection costs is an equivalent version of the OAS problem. The

reader is referred to the survey by Shabtay et al. (2013) for

more details. Equivalently, the prize-collecting scheduling problem,

wherein job acceptance is not mandatory, but their acceptance is

awarded a prize in objective value, is also highly related to the OAS

problem (Cordone et al., 2018; Wang and Tang, 2010).

The OAS problems have been studied with various objective

functions, including (1) maximization of the total net revenue as

the difference between the sum of revenues and total weighted

tardiness (Cesaret et al., 2012; Chaurasia and Singh, 2017; Emami

et al., 2017; 2016; Esmaeilbeigi et al., 2016; Geramipour et al.,

2017; Lei and Guo, 2015; Lin and Ying, 2013; Nobibon and Leus,

2011; O ̌guz et al., 2010; Silva et al., 2018; Slotnick and Morton,

2007; Wang et al., 2015; 2013; 2013b; Wu et al., 2018; Xiao et al.,

2015), (2) maximization of the total net revenue as the differ-

ence between sum of revenues and total weighted lateness (Ghosh,

1997; Lewis and Slotnick, 2002; Slotnick and Morton, 1996), (3)

minimization of the makespan of the accepted jobs plus the to-

tal penalties of all rejected jobs (Bartal et al., 20 0 0; Ou and Zhong,

2017; Ou et al., 2016; 2015; Zhong and Ou, 2017), (4) maximiza-

tion of the total net profit as the difference between the sum of

revenues and costs of using resources (Mestry et al., 2011), (5)

minimization of the weighted sum of the maximum lead time of

accepted orders and total cost of rejecting and delivering orders

(Jiang et al., 2017), and (6) minimization of the makespan (Fanjul-

Peyro and Ruiz, 2012; Rahman et al., 2015).

The current researches on OAS problems focus more on two

streamlines with objective functions (1) and (3) mentioned above.

For OAS problems with objective function (1), various formula-

tions, exact methods, and heuristic and meta-heuristic methods

have been developed, as shown in the following Section 2.2 . For

objective function (3), the existing researches emphasize more on

the development of polynomial-time approximation methods with

the proof of the worst-case bound.
.2. Related works on OAS problems with total revenue and tardiness

As previously stated, this paper focuses on the OAS problem on

nrelated parallel machines with the objective of maximizing the

otal net revenue with tardiness related penalties, since tardiness

enalties cause loss of revenue. Extant researches with this objec-

ive have been performed under different machine environments,

ncluding single machine, flow shop and parallel machine.

In the single-machine context, Slotnick and Morton (2007) de-

eloped a branch-and-bound (B&B) algorithm with linear program-

ing (LP)-relaxation-based bounds, based on which several heuris-

ic methods were developed. Nobibon and Leus (2011) proved that

here is no constant-factor approximation algorithm for the prob-

em. Two LP formulations and two B&B algorithms were proposed

o obtain exact solutions. Silva et al. (2018) developed three ex-

ct approaches and an iterative local search based heuristic for the

roblem with sequence-dependent setup times (SDST). Three ex-

ct approaches are arc-time-indexed formulation, a B&B with La-

rangian relaxation and a branch and price (B&P). For the same

roblem, Nguyen (2016) proposed a learning and optimizing sys-

em. Geramipour et al. (2017) developed a heuristic method and

wo B&B procedures. There also exist other heuristic and meta-

euristic methods, including genetic algorithms (Rom and Slot-

ick, 2009), tabu search method (Cesaret et al., 2012), artificial

ee colony (Lin and Ying, 2013) and hybrid evolutionary algo-

ithms (Chaurasia and Singh, 2017). For problems with the addi-

ional consideration of a deadline, (O ̌guz et al., 2010) proposed sev-

ral problem-feature-based heuristic methods.

Compared to abundant researches in the single machine en-

ironments, the OAS problems on multiple machine are still un-

er exploration. The inherent complexity of multiple machines

ith the consideration of order acceptance further complicates the

etermination of optimum or near-optimum solutions, which is

orth for more exploration. In the following, we mainly review the

tudies about the OAS problems on multiple machines with tardi-

ess related penalties.

For two machine flow shops, (Wang et al., 2013) proposed

wo MIP models and B&B algorithms. The proposed B&B algo-

ithms can solve instances with up to 20 jobs to optimality within

 time limit of 1 h. Later, they developed a modified artificial

ee colony algorithm for the same problem (Wang et al., 2013b).

smaeilbeigi et al. (2016) presented two new MIP formulations and

ompared them against models in Wang et al. (2013) in terms of

ize complexity and number of disjunctive constraints. The com-

utational results show the efficiency of their models and the en-

ancements, which can solve optimally instances with up to 100

obs within a limit of half an hour.

For OAS problems in permutation flow shops,

iao et al. (2012) developed a simulated annealing algorithm.

ater, Xiao et al. (2015) proposed a two-phase genetic algo-

ithm for the problem in non-permutation flow shops. Lei and

uo (2015) developed a parallel neighborhood search method

or solving a bi-objective OAS problem in flow shops to simul-

aneously minimize the makespan and maximize the total net

evenue.

.2.1. Related works on OAS problems on parallel machines

There are relatively few papers in the literature that study the

AS problem on parallel machines with the objective of maximiza-

ion of total net revenue with tardiness related penalties.

For the first time, Wang et al. (2015) studied the OAS prob-

em on two identical parallel machines and developed two heuris-

ic methods and one exact algorithm based on problem prop-

rties and the Lagrangian relaxation. The experimental results

how that the exact algorithm can solve the problems with up

o 15 jobs within a limit of an hour. This study differs from

S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173 161

t

t

i

W

e

b

t

t

c

l

a

s

E

S

f

i

p

o

O

t

m

v

h

l

t

l

t

s

i

m

a

a

2

p

a

i

j

e

m

r

F

P

a

V

u

C

a

s

t

m

w

p

(

v

t

S

i

s

v

d

a

a

P

n

e

r

m

j

e

G

F

n

d

p

r

e

s

o

b

3

t

r

w

p

t

o

j

e

a

d

t

t

b

f

b

b

t

e

fi

R

s

i

i

p

e

t

k

m

i

f

3

R

l

hat of Wang et al. (2015) on two fronts. First, in this study,

he OAS problem on general multiple unrelated parallel machines

s considered, as opposed to two identical parallel machines in

ang et al. (2015) . Secondly, our solution procedures are consid-

rably different, since we focus more on the formulation-based

ranch-and-bound method.

Emami et al. (2016) laid more focus on robust scheduling with

he assumption of uncertain revenue and job-processing times in

he problem with SDST. A Lagrangian relaxation algorithm with a

utting plane method was proposed, and it was used to solve prob-

ems with up to 40 orders and 6 machines. In Emami et al. (2017) ,

 Benders decomposition method was developed to handle the

ame problem. Our work differs from Emami et al. (2016) and

mami et al. (2017) in two ways. First, our model is deterministic.

econdly, solution approaches developed in this study are different

rom theirs.

Wu et al. (2018) developed a water-flow-like algorithm for solv-

ng the OAS problem on identical parallel machines with SDST. The

roposed algorithm was further improved by using a combination

f particle swarm optimization and variable neighborhood search.

ur work mainly differs from Wu et al. (2018) in two aspects in

hat it considers unrelated parallel machines and focuses on exact

ethods.

As has been demonstrated by previous works, OAS problems in

arious machine settings have been treated with both exact and

euristic approaches. To the best of the authors’ knowledge, the

argest OAS problem on unrelated parallel machines reported in

he literature contained 40 orders and 6 machines with the time

imit of an hour in the robust setting (Emami et al., 2016). Al-

hough robust versions of the problem are usually more difficult to

olve than their deterministic counterparts, there is no report yet

n literature on deterministic OAS problems on unrelated parallel

achines. In this paper, we develop a formulation-based branch-

nd-bound algorithm which can solve instances with up to 50 jobs

nd 10 machines to optimality with the time limit of half an hour.

.3. Related works on unrelated parallel machine scheduling

roblems

The OAS problems on unrelated machines could be reduced to

 special case of the classical unrelated parallel machine schedul-

ng problem by introducing a dummy machine to which all re-

ected jobs could be assigned with zero processing time, zero rev-

nue and zero penalty. In the following, we mainly summarize the

ost important relevant works. The reader is referred to excellent

esearches by Chen and Powell (1999) ; Fanjul-Peyro et al. (2017) ;

anjul-Peyro and Ruiz (2010, 2011) ; Pinedo (2008) , and Fanjul-

eyro et al. (2019) for recent trends on deterministic unrelated par-

llel machine scheduling problems.

For unrelated parallel machine scheduling problem,

an De Vel (1993) developed an effective exact method by

sing of surrogate relaxation and duality to minimize makespan.

hen and Powell (1999) developed a column generation based ex-

ct method for identical, uniform, and unrelated parallel machine

cheduling problems to minimize the total weighted completion

ime and weighted number of tardy jobs, separately. The proposed

ethod can solve problems with up to 100 jobs to optimality

ithin reasonable computation time. Unlu and Mason (2010) com-

ared four different MIP formulations: time-indexed variables

 M 1), network variables (M 2), assignment- and positional-date

ariables (M 3) and linear-ordering variables (M 4). They showed

hat M 4 provides relatively shorter computation times.

For the unrelated parallel machine scheduling problems with

DST, Avalos-Rosales et al. (2015) reported optimal solutions for

nstances with up to 60 jobs and 5 machines. Based on a model

imilar to that in Avalos-Rosales et al. (2015) ; Tran et al. (2016) de-
eloped two exact decomposition-based methods, logic-based Ben-

ers decomposition and branch-and-check algorithm. The branch-

nd-check algorithm can solve problems with up to 60 jobs

nd 5 machines to optimality in less than 30 min. Fanjul-

eyro et al. (2019) reformulated the problem into a heteroge-

eous multiple traveling salesmen problem and developed sev-

ral valid inequalities. A mathematical-programming-based algo-

ithm was developed, which can obtain solutions close to opti-

ality (deviation less than 1%) for instances with up to 10 0 0

obs and 8 machines within 3 h. In addition, nine MIP mod-

ls were tested by using two commercial IP solvers, CPLEX and

urobi. For problems with additional consideration of resources,

anjul-Peyro et al. (2017) presented a novel reformulation tech-

ique based on the strip-packing model, and its superiority was

emonstrated.

The above literature review demonstrates that for unrelated

arallel machines, researchers have laid more focus on (i) novel

eformulations or extensions of basic formulations with valid in-

qualities; and (ii) decomposition-based exact methods. In this

tudy, extensions to two MIP formulations for the OAS problem

n unrelated parallel machines are developed, and a formulation-

ased branch-and-bound algorithm is proposed.

. Mathematical description of OAS problem

In this section, after the problem description, two MIP formula-

ions are presented.

There is a set of jobs denoted by N = { 1 , 2 , . . . , n } , which are all

eady at time zero. There is a set of machines M = { 1 , 2 , . . . , m } ,
hich are all available from time zero. Each job is processed non-

reemptively on exactly one of the machines and the processing

imes of jobs on machines are p i j ∈ Z

+ (where Z denotes the set

f positive integers), corresponding to the time required to process

ob j (j ∈ N) on machine i (i ∈ M) . If a job j is accepted, its rev-

nue is u j ∈ Z

+ . Then, it will be decided which machine should be

ssigned to process the job. Each job has a due date, denoted by

 j ∈ Z

+ . Let C j denote the completion time of job j . We assume

hat there is a delay penalty, w j ∈ Z

+ , for each unit of the comple-

ion time that exceeds d j . The total penalty cost for job j is denoted

y w j T j , where T j = max { 0 , C j − d j } . There is no penalty or reward

or early delivery. The net revenue for each job j ∈ N is defined

y π j = u j − w j T j . The schedule is to decide which orders should

e accepted and if accepted, which machines should be assigned

o process those accepted jobs, as well as the sequence of jobs on

ach machine. The objective is to maximize the total net revenue.

Two MIP formulations are considered in this study. The

rst one is with a dummy job (as described in Avalos-

osales et al. (2015) and Tran et al. (2016)), since this may repre-

ent the most efficient MIP for unrelated parallel machine schedul-

ng problems with SDST (Fanjul-Peyro et al., 2019). The second one

s based on linear ordering variables, since in accordance with ex-

erimental evaluations reported in Unlu and Mason (2010) , mod-

ls with linear ordering variables yield much shorter computation

ime compared to other formulations. To the best of the authors’

nowledge, there is no work that compares these two MIP for-

ulations on OAS problems. Hence, we attempted to gain some

nsight by performing computational experiments with these two

ormulations.

.1. The MIP with a dummy job

The model is based on the concept of a dummy job in Avalos-

osales et al. (2015) and Tran et al. (2016) . To formulate the prob-

em, let

162 S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173

C

C

C

3

(

a

v

[

s

z

z

C

C

C

T

x

C

a

t

a

a

c

C

(

4

s

p

t

F

h

M

c

e

• N 0 : a set of jobs to be scheduled, including a dummy job (de-

noted by 0), with processing time of the dummy job on each

machine being 0, i.e., p i 0 = 0 .
• L : a large enough integer.

Additionally, we define three binary decision variables and two

continuous ones in the following.

• x j : 1 if job j is accepted, 0 otherwise.
• y ij : 1 if job j is assigned on machine i , 0 otherwise.
• z ijk : 1 if job k is processed immediately after job j on machine

i , 0 otherwise.
• C j : completion time of job j .
• T j : tardiness of job j .

The resultant MIP model is as follows.

[MIP1] max Z =

∑

j∈N
(u j x j − w j T j) (1a)

s.t.
∑

i ∈M

y i j = x j , ∀ j ∈ N ; (1b)

y i j =

∑

j ∈N 0 , j � = k
z i jk , ∀ k ∈ N 0 , i ∈ M; (1c)

y i j =

∑

k ∈N 0 , j � = k
z i jk , ∀ j ∈ N 0 , i ∈ M; (1d)

y i 0 = 1 , ∀ i ∈ M; (1e)

 k + L (1 − z i jk) ≥ C j + p ik , ∀ j ∈ N 0 , k ∈ N , j � = k, i ∈ M; (1f)

 0 = 0 ; (1g)

T j ≥ C j − d j , ∀ j ∈ N ; (1h)

 j , T j ≥ 0 , ∀ j ∈ N ; (1i)

x j , y i j ∈ { 0 , 1 } , ∀ j ∈ N , i ∈ M; (1j)

z i jk ∈ { 0 , 1 } , ∀ j, k ∈ N 0 , j � = k, i ∈ M; (1k)

The objective function (1a) maximizes the total net revenue,

and can be expressed as
∑

j∈N
x j (u j − w j T j) . However, since T j = 0

if job j is rejected, (1a) is equivalent (Emami et al., 2017; 2016; Es-

maeilbeigi et al., 2016; Wang et al., 2013). Constraints (1b) ensure

that only a job is accepted can the job be assigned on a machine.

Constraints (1c) and (1d) enforce that if job j is assigned on ma-

chine i , there must exactly be one job that precedes and succeeds

the processing of job j on machine i . Constraints (1e) assign the

dummy job on each machine. The dummy job is used to repre-

sent the start and end of a sequence of jobs on a machine. Con-

straints (1f) compute the completion time of a job by considering

the job sequence. Constraint (1g) places the dummy job at time 0.

Constraints (1h) capture the tardiness of each job. If a given job is

not accepted, the tardiness of that job equals zero in accordance

with the objective function. Constraints (1i) - (1k) give the region of

decision variables.
.2. The linear-ordering-based MIP model

The second model is based on the linear ordering variables

 Unlu and Mason, 2010). Here, decision variables x j , y ij , C j , and T j
re defined as same as those in Section 3.1 . Two other decision

ariables are defined as,

• z ijk : 1 if job k is processed after job j on machine i (not neces-

sary immediately), 0 otherwise.
• p j : actual processing time of job j .

The formulation is as follows.

 MIP2] max Z =

∑

j∈N
(u j x j − w j T j) (2a)

.t.
∑

i ∈M

y i j = x j , ∀ j ∈ N ; (2b)

 i jk + z ik j ≥
(y i j + y ik)

2

− 0 . 5 , ∀ j, k ∈ N , j � = k, i ∈ M; (2c)

 i jk + z ik j ≤
(y i j + y ik)

2

, ∀ j, k ∈ N , j � = k, i ∈ M; (2d)

∑

i ∈M

p i j y i j = p j , ∀ j ∈ N ; (2e)

 k + L (1 − z i jk) ≥ C j + p k , ∀ j, k ∈ N , j � = k, i ∈ M; (2f)

 j + Lz i jk + L (2 − y i j − y ik) ≥ C k + p j , ∀ j, k ∈ N , j � = k, i ∈ M;
(2g)

 j ≥ p j , ∀ j ∈ N ; (2h)

 j ≥ C j − d j , ∀ j ∈ N ; (2i)

p j , C j , T j ≥ 0 , ∀ j ∈ N ; (2j)

 j , y i j , z i jk ∈ { 0 , 1 } , ∀ j, k ∈ N , j � = k, i ∈ M; (2k)

The objective function (2a) maximizes the total net revenue.

onstraints (2b) ensure that only a job is accepted can the job be

ssigned on a machine. Constraints (2c) and (2d) enforce that only

wo jobs j and k are assigned to the same machine i can jobs j

nd k have a sequence on machine i . Constraints (2e) calculate the

ctual processing time of job j . Constraints (2f) –(2h) compute the

ompletion time of each job by considering the sequence of jobs.

onstraints (2i) capture the tardiness of each job. Constraints (2j) –

2k) give the region of decision variables.

. Enhancement of proposed MIP formulations

The OAS problem on unrelated parallel machines is NP-hard,

ince it can be reduced to a classical unrelated parallel machine

roblem with a dummy machine (see Appendix), which is known

o be NP-hard in the strong sense (Fanjul-Peyro and Ruiz, 2012;

leszar and Hindi, 2018). It is, therefore, necessary to develop en-

ancement techniques to improve the performance of proposed

IP models.

It is easy to know that there is no idle time between any two

onsecutive accepted jobs on a machine. In addition, the MIP mod-

ls mentioned above can be enhanced by using some techniques.

S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173 163

4

c

s

L

E

u

a

a

s

C

I

i

t

p

s

c

)

4

b

c

t

M

P

i

i

P

C

t

o

j

S

e

u

w

S

t

s

S

a

k

i

a

b

x

m

l

P

d

h

k

P

o

d

t

e

h

∪ { k }

P

b

w

i

P

e

c

c

e

o

se (1

se (2

a

P

m

m

P

R

w

t

t

I

a

i

t

c k ik
.1. Moderating big-M coefficients

In the MIP models, there is a big-M coefficient L within

onstraints (1f) and constraints (2f) –(2g) , which can be safely

et as L max =

∑

j∈N max i ∈M

p i j . In addition, smaller values of

 could be calculated in accordance with the proposition in

smaeilbeigi et al. (2016) , which states that in an optimum sched-

le, C U
j

=

u j
w j

+ d j is an upper bound for the completion time of

n accepted job j ∈ N . Let L i jk = � C U
j
	 + p ik , wherein j, k ∈ N , j � = k ,

nd i ∈ M , and replace L in constraints (1f) and obtain new con-

traints (3) to replace constraints (1f) .

 k + L i jk (1 − z i jk) ≥ C j + p ik ∀ j ∈ N 0 , k ∈ N , j � = k, i ∈ M (3)

t can easily be observed that L ijk is a suitable value for L because

f z i jk = 0 , the inequality C k + � C U
j
	 + p ik ≥ C j + p ik holds. Note that

he reason for using � C U
j
	 instead of C U

j
is that all parameters are

ositive integers.

Similarly, let L jk = � C U
j
	 + max i ∈M

p ik , L k j = � C U
k
	 + max i ∈M

p i j ,

o as to obtain the following two constraints by replacing L within

onstraints (2f) and (2g) in the MIP2 formulation.

C k + L jk (1 − z i jk) ≥ C j + p k , ∀ j, k ∈ N , j � = k, i ∈ M (4)

C j + L k j z i jk + L k j (2 − y i j − y ik) ≥ C k + p j , ∀ j, k ∈ N , j � = k, i ∈ M(5

.2. Valid inequalities

In this section, some valid inequalities are developed, which can

e appended to the MIP models or can be substituted in certain

onstraints in the MIP models.

The following valid bounding inequalities for the completion

ime and tardiness of each job j ∈ N can be directly added into

IP models Esmaeilbeigi et al. (2016) .

T j ≤ � C U
j
	 − d j , ∀ j ∈ N (6)

C j ≤ � C U
j
	 , ∀ j ∈ N (7)

roposition 1. For two jobs j and k ∈ N , if p ij ≤ p ik for all machines

 ∈ M , w j ≤ w k , d j ≥ d k , u j ≥ u k , and if at least one of the inequalities

s strict, then job j dominates job k.

roof. This is inspired from the dominance rule in

ordone et al. (2018) . Assuming an optimum schedule S con-

ains job k but does not contain job j . Consider the schedule S ′
btained by replacing job k by job j on the same machine, with

ob j starting in S ′ at the same time as job k starts in schedule

 whilst leaving starting times of all other jobs unchanged. It is

asy to realize that schedule S ′ is feasible, since w j ≤ w k , d j ≥ d k ,

 j ≥ u k (i.e., C U
j

≥ C U
k

), and p ij ≤ p ik . The completion time of job j

ithin schedule S ′ does not exceed that of job k within schedule

 , and all other jobs remain unaffected. Since d j ≥ d k and w j ≤ w k ,

he total weighted tardiness of schedule S ′ does not exceed that of

chedule S . In addition, since u j ≥ u k , the total revenue of schedule

′ is not smaller compared to that of schedule S . Therefore, S ′ is

lso an optimum schedule. �

Proposition 1 allows us to define a set of jobs that dominate job

 , and such a set can be denoted by �k . This implies that if job k

s accepted for processing, then any job within the set �k should

lso be accepted. Consequently, the following valid inequalities can

e added into the MIP models.

 k ≤ x j , ∀ j, k ∈ N , j � = k, j ∈ �k (8)

Ca

Ca
Let �i
k

denote a set of jobs that dominates each job k on

achine i , i.e., �i
k

= { j| p i j ≤ p ik , w j ≤ w k , d j ≥ d k , u j ≥ u k } . The fol-

owing proposition is proposed.

roposition 2. Consider a job k with a dominating subset �i
k
. Ad-

itionally, consider any job j ∈ �i
k

∪ { k } assigned on machine i. If∑

 ∈ �i
k
∪{ k } : C U

h
≤C U

j

p ih > C U
j

is satisfied for any job j ∈ �i
k

∪ { k } , then job

 cannot be processed on machine i.

roof. If the above inequalities are satisfied, not all jobs assigned

n machine i can be included in an optimum solution. Since j ∈ �i
k

ominates k , job k can be moved to another machine or be rejected

o ensure the optimum schedule on machine i . �

Based on Proposition 2 , for j ∈ �i
k

∪ { k } , the following valid in-

qualities can be inserted into the MIP models. ∑

 ∈ �i
k
∪{ k } : C U

h
≤C U

j

p ih y ih ≤ C U j + (1 − y i j) L max , ∀ i ∈ M , k ∈ N , j ∈ �i
k

(9)

roposition 3. There exists an optimum solution, wherein job k can

e assigned on machine i, for jobs j assigned on the same machine

ith C U
j

not exceeding C U
k

, the total processing time for jobs j (includ-

ng job k) must not exceed C U
k

.

roof. Proof can be realized via contradiction. Assume that there

xists an optimum solution, wherein job k can be assigned on ma-

hine i , for jobs j assigned to the same machine i with C U
j

no ex-

eeding C U
k

, the total processing time for jobs j (including job k)

xceeds C U
k

. There are two possible cases concerning job k in this

ptimum solution.

): Job k is scheduled after all jobs j . In this case, the completion

time of job k must exceed C U
k

, which contradicts the optimality

condition in terms of the upper bound of the completion time

for an accepted job.

): Job k is not scheduled after all jobs j , and that its completion

time does not exceed C U
k

. In this case, the completion time of at

least one job must exceed the upper bound of the completion

time, since the total processing time of jobs j , whose C U
j

does

not exceed C U
k

, exceeds C U
k

. This also contradicts the optimal-

ity condition of the upper bound of the completion time for an

accepted job.

This completes the proof. �

Based on this proposition, the following inequalities can be

dded into the MIP models. ∑

j∈N : C U
j
≤C U

k

p i j y i j ≤ C U k + (1 − y ik) L max , ∀ k ∈ N , i ∈ M (10)

roposition 4. If there exist two accepted jobs j and k assigned on

achine i with d j ≤ p ik , p ij ≤ p ik , and w j ≥ w k , then there is an opti-

um sequence wherein job k cannot be the first job on machine i.

roof. This is based on the corollary reported by

innooy Kan (1976) , which states that “For single machine

ith the objective of total weighted tardiness minimization, if

here are two jobs j and k with d j ≤ C k , p j ≤ p k , and w j ≥ w k , then

here is an optimal sequence in which job j appears before job k ”.

f jobs j and k satisfying all these three conditions are accepted

nd assigned on machine i , job j appears before job k , thereby

mplying that job k cannot be the first job to be processed on

he assigned machine. If job k is the first job on machine i , its

ompletion time C = p , and the proposition follows. �

164 S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173

� = k

b

u

M

b

e

5

a

r

t

t

v

t

s

u

i

p

[

s

x

c

n

c

a

t

m

A

i

t

C

o

t

t

[

s

β
A set of jobs that dominates job k on each machine can be de-

fined, and such a set can be denoted by � ik . The following valid

inequalities can be added into the MIP1 model.

z i 0 k ≤ 1 − y i j , ∀ k ∈ N , j ∈ �ik , i ∈ M (11)

Proposition 5. (Azizoglu and Kirca, 1999 ; Liaw et al., 2003) There

exists an optimum schedule, wherein the sum of processing times of

jobs processed on machine i does not exceed

P lim

i =

1

m

{ ∑

j∈N
max
i ∈M

p i j +

∑

h ∈M ,h � = i
max

j∈N
p h j

}

, ∀ i ∈ M

Based on this proposition, the following inequalities can be

added into the proposed MIP models, ∑

j∈N p i j y i j ≤ P lim

i
, ∀ i ∈ M (12)

C j − (1 − y i j) L max ≤ P lim

i
, ∀ j ∈ N , i ∈ M (13)

Moreover, if C U
j

> P lim

i
for all i ∈ M , job j can directly be re-

jected.

Additionally, the first Emmons’ rule says: for 1|| �w j T j , there ex-

ists an optimum sequence, wherein job j is processed before job

k if p j ≤ p k , w j ≥ w k , d j ≤ max { d k , ∑

h ∈ B k p h + p k } (Emmons, 1969;

Rinnooy Kan, 1976), where B k denotes the set of jobs that must be

processed before job k . If only the simplified version with d j ≤ d k
is considered, the following constraints are proposed and can be

added into the MIP2 model.

z i jk ≥ z ik j , if d j ≤ d k , p i j ≤ p ik and w j ≥ w k , ∀ i ∈ M , j, k ∈ N , j

(14)

With these enhancements, the following two MIP models can

be obtained.

[MIP1V] max Z =

∑

j∈N
(u j x j − w j T j) (15a)

s.t. constraints (1 b) − (1 e) , (1 g) − (1 k) , (15b)

(3) , (6) − (13) , (15c)

[MIP2V] max Z =

∑

j∈N
(u j x j − w j T j) (16a)

s.t. constraints (2 b) − (2 e) , (2 h) − (2 k) , (16b)

(4) − (10) , (12) − (14) , (16c)

Based on the computational results provided in Section 6 , the

MIP2V model can be observed to be relatively more efficient com-

pared to MIP1V. Consequently, in the formulation-based branch-

and-bound algorithm proposed in the next section, the MIP2V

model is employed for each node.

5. A formulation-based branch-and-bound algorithm

For the exact optimization, a formulation-based branch-and-

bound (B&B) algorithm is designed based on the idea of “divide

and conquer”. The proposed algorithm branches on the number of

accepted jobs n A , which may assume values between 1 and n . Once

the number of accepted jobs, n A , is determined, the problem is re-

duced to an unrelated parallel machine scheduling problem with

the objective of minimizing the total weighted tardiness, which can
e explored by the formulations mentioned above. A lower and an

pper bound on its best solution are computed. Subsequently, the

IP2V model with additional cuts related to the lower and upper

ounds is employed to solve the problem at each node. The key

lements of the proposed algorithm are explained as follows.

.1. Upper bounding

Since the objective function comprises two parts (total revenue

nd total weighted tardiness), the problem can naturally be sepa-

ated into two subproblems. The first deals with maximization of

he total revenue while the second minimizes the total weighted

ardiness. The difference between the two corresponding optimum

alues is an upper bound.

For a node with n A ≤ n accepted jobs, the upper bound on the

otal revenue can be achieved by selecting the maximum revenue

ubset of jobs with respect to u j with the constraint of C U
j

. This

pper-bound scheme is inspired from the maximum prize reported

n Cordone et al. (2018) . It corresponds to solving the following IP

roblem.

 IP1] max Z 1 =

∑

j∈N
u j x j (17a)

.t.
∑

j∈N : C U
j
≤C U

k

p i j y i j ≤ C U k + (1 − y ik) L max , ∀ k ∈ N , i ∈ M;

(17b)

∑

i ∈M

y i j = x j , ∀ j ∈ N ; (17c)

∑

j∈N
x j = n

A , (17d)

 j , y i j ∈ { 0 , 1 } , ∀ j ∈ N , i ∈ M; (17e)

Constraints (17b) require that for each machine, the total pro-

essing time of all accepted jobs, for which C U
j

precedes C U
k

, does

ot exceed C U
k

. Constraints (17c) ensure that only an accepted job

an be assigned on a machine. Constraint (17d) ensures that there

re n A accepted jobs.

For a node with n A accepted jobs, the lower bound of the

otal weighted tardiness can be achieved by solving an assign-

ent problem. This lower-bound scheme is based on the idea in

zizoglu and Kirca (1999) and Liaw et al. (2003) .

Let βt
i j

= 1 , if job j is scheduled in the t th position on machine

 , 0 otherwise. Let ˆ T t
i j

= max (̂ C t
i j

− d j , 0) denote an estimate of the

ardiness of job j scheduled in the t th position on machine i . If
ˆ

t
i j

≤ C t
i j

for all t, i and j (where C t
i j

is the actual completion time

f job j in the t th position on machine i), the objective value of

he following IP2 model is the lower bound of the total weighted

ardiness for a node with n A accepted jobs.

 IP2] min Z 2 =

∑

j∈N

∑

i ∈M

∑

t∈N
w j ̂

 T t i j β
t
i j (18a)

.t.
∑

i ∈M

∑

j∈N

∑

t∈N
βt

i j = n

A , (18b)

∑

j∈N
βt

i j ≤ 1 , ∀ t ∈ N , i ∈ M; (18c)

t
i j ∈ { 0 , 1 } , ∀ j ∈ N , t ∈ N , i ∈ M; (18d)

S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173 165

s

p

t

C

w

j

(

r

T

c

m

b

i

5

5

n

A

A

t

e

t

w

b

L

5

a

r

n

c

S

b

t

5

g

A

g

i

E

r

i

Constraint (18b) enforces that there are n A accepted jobs. Con-

traints (18c) guarantee the assignment of at most one job at each

osition on each machine. The following definition of ˆ C t
i j

satisfies

he requirement of ˆ C t
i j

≤ C t
i j

for any t ∈ N , i ∈ M and j ∈ N .

ˆ

t
i j =

⎧ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎩

t ∑

l=1

p i [l] if S i j ≤ t

t ∑

l=1

p i [l] + p i j if S i j > t

here p i [l] denotes the processing time of the l th job when all n

obs are processed on machine i in the shortest processing time

SPT) order, and S ij denotes the position of job j in this ordering.

For each node n A , an upper bound can be obtained by sepa-

ately solving the IP1 and IP2 models for Z 1 and Z 2 , respectively.

he upper bound can be expressed as UB n A = Z 1 − Z 2 .

For the root node (for which n A is not fixed), the IP1 model

an be solved without constraint (17d) to obtain Z 1 while the IP2

odel can be solved by changing constraint (18d) –(19) . The upper

ound, thus obtained, can be expressed as UB A = Z 1 − Z 2 . ∑

 ∈M

∑

j∈N

∑

t∈N
βt

i j ≤ n (19)

.2. Lower bounding

.2.1. A lower bound based on a heuristic method

A constructive heuristic method can be designed for each

ode of n A within the branch-and-bound tree, as described in

lgorithm 1 . The basic idea of the method is to sort jobs according

lgorithm 1 The Constructive Heuristic Method.

1: Compute C U
j

of each job j, j ∈ N . Let iter = 0 and Am i = 0 for

all i ∈ M .

2: Sort C U
j

in a non-decreasing order. Let C U
[j]

denote C U
j

of jth job

in the order, and let p i [j] denote the processing time of jth job

assigned on machine i .

3: while iter < n do

4: Set j = iter and compute p i [j] + Am i and i ∈ M , and get ma-

chine i ′ with the argmin i ∈M

{ p i [j] + Am i } . Let temp = p i ′ [j] +
Am i ′ .

5: if t emp > � C U
[j]

	 then

6: Job [j] is not accepted.

7: else

8: Job [j] is assigned on machine i ′ .
9: Am i ′ is updated as p i ′ [j] + Am i ′ .

10: The net revenue of job [j] , π[j] = u [j] − w [j] max { 0 , Am i ′ −
d [j] } is computed.

11: end if

12: it er = it er + 1 .

13: end while

14: Obtain the total net revenue
∑

j∈N π[j] and output the objective

value, which is denoted by F 1 .

15: Sort jobs by the weighted shortest processing time (WSPT) first

order on each machine, and compute and output the objective

value, which is denoted by F 2 .

16: Obtain the lower bound LB 1 = max { F 1 , F 2 } .

o a non-decreasing order of C U
j

(line 2) and subsequently assign

ach job to the first available machine (line 4). If the completion

ime exceeds its � C U
j
	 , the job gets rejected (lines 5 and 6); other-

ise, the job is scheduled (lines 7–11).
In line 2 of Algorithm 1 , if we change the non-decreasing order

y
u j

w j d j
instead of C U

j
, another lower bound LB 2 can be obtained.

et LB H = max { LB 1 , LB 2 } .

.2.2. A formulation-based lower bound

The decision variables z ijk in the MIP2V model can be relaxed to

ny real-valued number between 0 and 1, i.e., 0 ≤ z ijk ≤ 1, thereby

esulting in the relaxed version of the MIP2V model, which is de-

oted by MIP2 VR . Once the relaxed MIP2 VR model is solved, the

orresponding values of ˆ x j and ˆ y i j can be simultaneously obtained.

ubsequently, using known values of ˆ x j and ˆ y i j and turning z ijk
ack into a binary variable, the MIP2V model can be solved to ob-

ain a lower bound, which is denoted by LB R .

.3. The complete procedure of branch-and-bound algorithm

The complete procedure of the proposed branch-and-bound al-

orithm is shown in Algorithm 2 .

lgorithm 2 The formulation-based branch-and-bound (B&B) al-

orithm.

1: Obtain the lower bound at the root node . Let LB ∗ denote

the best incumbent lower bound. It can be initialized with

the constructive heuristic method (described in Section 5.2.1)

and the formulation relaxation (in Section 5.2.2) and LB ∗ =
max { LB H , LB R } .

2: Obtain the upper bound at the root node . Let UB ∗ denote the

best upper bound. It can be obtained by using methods de-

scribed in Section 5.1. Let U B ∗ = U B A .

3: if LB ∗ = UB ∗ then

4: Terminate and return LB ∗.

5: else

6: Branching . Each subproblem concerning the branch-and-

bound tree can be indicated by setting the variable n A =
{ 1 , 2 , · · · , n } . For each node of the branch-and-bound tree, it

is processed as follows.

7: • Obtain the upper bound at a node . For each node n A ,

its upper bound can be obtained by using the method de-

scribed in Section 5.1 and denoted by UB n A . If UB n A < LB ∗,

the node is pruned by optimality; else, UB n A is updated as

min { U B n A , U B ∗} for this node.
• Obtain the lower bound at a node . The lower

bound for each node n A can be obtained with meth-

ods described in Sections 5.2.1 and 5.2.2, and LB n A =
max { LB R

n A
, LB H

n A
} . If LB n A > LB ∗, update the lower bound

LB n A as max { LB ∗, LB n A } for node n A .
• Directly solve a node . If LB n A = UB n A for node n A , LB ∗ =

max { LB n A , LB ∗} , and the problem related to the node need

not be explored further.
• Solve the subproblem at a node . If node n A is not

pruned, solve the MIP2V model with two additional con-

straints: (1) Z ≥ LB n A + 1 and (2) Z ≤ UB n A − 1 . If feasible,

the obtained solution is denoted by LB V , and the best in-

cumbent lower bound is updated as LB ∗ = max { LB V , LB ∗} .
If not, the node n A is pruned by bound.

8: end if

9: Terminate and return LB ∗.

We provide an example to illustrate the computation process

nvolved in the proposed algorithm.

xample 5.1. There are n = 10 jobs and m = 2 machines. All job-

elated information, including p ij , u j , w j , d j , and � C U
j
	 is presented

n Table 1 .

166 S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173

Table 1

The job-related information for the example

problem.

No. p 1 j p 2 j u j w j d j � C U
j
	

1 3 5 4 9 5 5

2 3 5 9 4 14 16

3 1 1 3 3 12 13

4 4 3 10 1 7 17

5 4 5 10 8 5 6

6 4 5 9 7 10 11

7 3 2 3 8 5 5

8 4 5 10 10 6 7

9 3 3 4 7 10 10

10 1 4 2 5 12 12

i

a

a

a

e

p

c

i

f

1

6

a

s

s

s

P

t

N

d

w

u

T

a

r

m

t

f

e

l

i

r

t

6

i

fi

a

u

c

B

p

t

s

c

i

c

a

o

A

r

b

s

(

n

a

f

t
Using the heuristic method described in Section 5.2.1 , one

can obtain LB H = 43 , and using the MIP2 VR formulation in

Section 5.2.2 , one can obtain LB R = 41 . Thus, LB ∗ = max { 43 , 41 } =
43 .

Using the upper bounding method described in Section 5.1 , one

can obtain U B ∗ = U B A = 61 .

• For n A = { 1 , · · · , 10 } , the corresponding value of UB n A ={ 10 , 20 , 30 , 39 , 48 , 52 , 56 , 59 , 61 , −} ; since UB n A < LB ∗ for n A =
1 , 2 , 3 , 4 , these nodes are pruned by optimality. For the node

with n A = 10 , the IP1 model with bounds LB ∗ = 43 and UB ∗ =
61 is not feasible (UB 10 is denoted by “-”); therefore, node

n A = 10 is pruned by bound.
• Subsequently, nodes n A = 5 , 6 , 7 , 8 , 9 are explored.

(1) For the node n A = 5 , LB 5 = 43 and UB 5 = 48 . Based on these,

LB V = 47 is obtained by solving the MIP2V model with LB 5
and UB 5 . Correspondingly, the best incumbent lower bound

is updated as LB ∗ = max { 47 , 43 } = 47 .

(2) For the node n A = 6 , LB 6 = 48 , UB 6 = 52 and LB V = 50 , then,

LB ∗ is updated as LB ∗ = 50 .

(3) For the node n A = 7 , LB 7 = 50 , UB 7 = 56 and LB V = 52 , then,

LB ∗ is updated as LB ∗ = 52 .

(4) For the node n A = 8 , LB 8 = 52 , UB 8 = 59 and LB V = 53 , then,

LB ∗ is updated as LB ∗ = 53 .

(5) For the node n A = 9 , LB 9 = 53 and UB 9 = 61 . However, with

these additional constraints: (1)
∑

j∈N
x j = 9 ; (2) Z ≥ LB 9 + 1 ;

and (3) Z ≤ UB 9 − 1 , the MIP2V model is infeasible; conse-

quently, the node is pruned by bound.
• The optimum objective value is obtained, LB ∗ = 53 .

Alternatively, if the branching on n A is not increased by

unity at each step, a parameter b can be introduced to conduct

branching using λ ≤ n A ≤ min { λ + b − 1 , n } , where λ = 1 , 1 + b, 1 +
2 b, · · · , min { 1 + kb, n } with k = � n/b
 . In this case, constraints

(17d) and (18b) should be correspondingly revised.

For better illustration, consider Example 1 with b = 3 . Nodes

can be defined as 1 ≤ n A ≤ 3, 4 ≤ n A ≤ 6, 7 ≤ n A ≤ 9, and n A = 10 . It

is not clear how exactly does the value of b affect the efficiency of

solving the MIP2V model in CPLEX. Thus, different b values could

be tested to facilitate performance comparison. As described in

Section 6 , b = 1 performs best compared to b = 5 and b = 10 .

6. Computational experiments

To evaluate the performance of the MIP models, the enhance-

ment techniques, and the formulation-based branch-and-bound al-

gorithm, an extensive computational analysis is conducted. Seven

methods, i.e., the MIP1 method described in Section 3.1 , the MIP2

in Section 3.2 , the MIP1V and MIP2V in Section 4 solved with the

IP solver CPLEX, the B&B algorithm with b = 1 , 5 , 10 (denoted as

“BB1”, “BB5”, and “BB10”, respectively), are used to test problem
nstances to compare the performance of the models with CPLEX

s well as that of enhancement techniques and the proposed B&B

lgorithm. In the MIP1 and MIP2 models, L max is used instead of

ny large integer L . A time limit of 1800 CPU seconds is used for

ach instance.

The MIP models and the B&B algorithm are coded in the C++

rogramming language in Xcode 8.3.3, and run on MacOS ma-

hine with a 3.2 GHz processor and 8GB memory. CPLEX 12.6

s used as the IP solver with its configuration being set to de-

ault. The results are available online at https://pan.baidu.com/s/

N _ vWO3iM1gccmW9ayyuQOg#list/path=%2F .

.1. Data generation

Sixteen instance classes are generated with different values of n

nd m. n takes from the set {20, 30, 40, 50} and m takes from the

et {2, 3, 5, 10}. Each class with fixed values of n and m contains 9

ubclasses, and each subclass has 5 randomly generated instances.

For each subclass, random instances are generated as follows

uch that instances with different characteristics can be studied.

rocessing times are randomly chosen from a discrete uniform dis-

ribution inside the interval [1, 100], i.e., p ij ∼ U [1, 100], i ∈ M , j ∈
 . The due dates of jobs d j are generated with a discrete uniform

istribution inside the interval [̄P (1 − T F − R/ 2) , P̄ (1 − T F + R/ 2)] ,

here P̄ = � ∑

i ∈M

∑

j∈N p i j /m

2 	 , and parameters TF and R take val-

es inside the set {0.2, 0.6, 1.0}, thereby yielding 9 subclasses.

he parameter TF represents the tardiness factor, which controls

verage due-date values and parameter R controls the relative

ange of due dates. Since it is possible that P̄ (1 − T F − R/ 2) < 0 ,

ax { 0 , P̄ (1 − T F − R/ 2) } is considered as the lower limit of the in-

erval when generating instances randomly. Generating due dates

rom such kind of interval follows the methods described in Liaw

t al. (2013), Esmaeilbeigi et al. (2016) as well as those in the OR

ibrary (Cordone et al., 2018). For each fixed value of TF and R , 5

nstances are randomly generated. Both the delay penalty w j and

evenue u j of jobs are generated with a discrete uniform distribu-

ion inside the interval [1, 10].

.2. Computational results

Table 2 summarizes results of the above seven methods for the

nstances tested with a combination of T F = 0 . 2 and R = 0 . 2 . The

rst two columns of the table represent the number of machines m

nd jobs n , respectively. The next seven columns give average val-

es of the objective values for five instances (denoted by “Avg. Z”)

orresponding to each of the methods MIP1, MIP2, MIP1V, MIP2V,

B1, BB5, and BB10, respectively. The table also indicates within

arentheses the number of instances that cannot be solved to op-

imality within the time limit of 1800 CPU seconds. If certain in-

tances could not be solved to optimality within the time limit, the

urrent best objective value is chosen as the result, thereby lead-

ng to smaller average objective values for some methods, as in the

ase of “Avg. Z” values of MIP1 and MIP2 for the case with n = 50

nd m = 2 in Table 2 .

Tables 3–10 list average computation times for the seven meth-

ds for instances with other different combinations of TF and R .

verage objective values are not listed in these tables, and the

eader is referred to the above link for these values. In these ta-

les, the first two columns list values of m and n while the next

even columns list average computation times of the five instances

denoted by “Avg. Time (s)”) for each method. If an instance could

ot be solved to optimality within the specified time limit, 1800 s

re considered as the computation time for that instance. Bold-

aced characters have been used to highlight the best method in

erms of the average computation time. Fig. 1 depicts a compari-

https://pan.baidu.com/s/1N_vWO3iM1gccmW9ayyuQOg#list/path=%2F

S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173 167

Table 2

Summary of results for computation time and objective value with T F = 0 . 2 and R = 0 . 2 .

m n Avg. Z Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10 MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 106.0 106.0 106.0 106.0 106.0 106.0 106.0 69.4 2.5 0.5 0.5 0.7 0.8 0.9

30 167.0 167.0 167.0 167.0 167.0 167.0 167.0 539.1 320.6 2.7 3.8 1.4 1.6 1.7

40 223.8 223.9 224.0 224.0 224.0 224.0 224.0 1017.8 181.3 3.9 32.1 4.9 5.2 5.3

50 226.1(4 ∗) 226(4 ∗) 227.7 227.7 227.7 227.7 227.7 1763.3 1269.7 33.7 274.7 7.2 7.7 8.0

Average 847.4 443.5 10.2 77.8 3.6 3.8 4.0

3 20 110.4 110.4 110.4 110.4 110.4 110.4 110.4 8.9 2.2 0.5 0.7 0.6 0.7 0.8

30 162.8 162.8 162.8 162.8 162.8 162.8 162.8 175.4 7.7 2.0 3.1 1.1 1.2 1.3

40 224.9 224.9 224.9 224.9 224.9 224.9 224.9 736.7 87.1 7.5 25.1 3.6 4.0 4.3

50 267.8(1 ∗) 267.4(2 ∗) 268.0 268.0 268.0 268.0 268.0 1282.9 961.6 8.6 308.5 4.5 5.0 5.3

Average 551.0 264.6 4.6 84.3 2.5 2.7 2.9

5 20 113.9 113.9 113.9 113.9 113.9 113.9 113.9 5.8 2.3 0.6 0.8 0.6 0.7 0.8

30 170.9 170.9 170.9 170.9 170.9 170.9 170.9 57.8 17.1 2.2 2.6 1.6 1.8 2.0

40 220.6 220.6 220.6 220.6 220.6 220.6 220.6 197.1 58.2 9.9 20.2 2.6 3.1 3.4

50 283.0 283.0 283.0 283.0 283.0 283.0 283.0 664.4 386.5 30.5 78.1 5.1 5.8 6.3

Average 231.3 116.0 10.8 25.4 2.5 2.8 3.1

10 20 110.5 110.5 110.5 110.5 110.5 110.5 110.5 1.1 0.7 0.4 0.7 0.9 1.1 1.2

30 168.3 168.3 168.3 168.3 168.3 168.3 168.3 42.6 4.7 2.3 4.1 2.6 3.0 3.4

40 218.2 218.2 218.2 218.2 218.2 218.2 218.2 165.7 19.9 8.5 17.4 6.0 7.1 7.8

50 276.0 276.0 276.0 276.0 276.0 276.0 276.0 831.5 168.2 55.3 53.5 12.6 14.9 16.3

Average 260.2 48.4 16.6 18.9 5.5 6.5 7.1

Overall Average 472.5 218.1 10.6 51.6 3.5 4.0 4.3

∗Number of Instances that cannot be solved to optimality within the time limit of 1800 CPU seconds.

Table 3

Summary of results for computation time with T F = 0 . 2 , R = 0 . 6 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 33.9 0.8 1.2 0.4 0.5 0.6 0.6

30 264.5 12.1 8.1 2.3 1.1 1.3 1.4

40 689.1 35.5 207.6 18.7 3.2 3.4 3.5

50 1184.9 385.1 663.8 52.1 9.1 9.6 10.0

Average 543.1 108.4 220.2 18.4 3.5 3.7 3.9

3 20 11.7 1.2 0.6 0.5 0.4 0.4 0.5

30 70.4 5.9 6.0 3.5 1.0 1.1 1.2

40 327.3 61.4 49.4 31.2 2.8 3.1 3.4

50 920.9 319.8 188.7 107.4 4.0 4.4 4.7

Average 332.6 97.1 61.2 35.7 2.1 2.3 2.5

5 20 5.7 1.8 0.7 0.8 0.7 0.9 0.9

30 61.9 11.4 4.6 3.5 1.9 2.3 2.5

40 411.4 43.8 36.3 20.5 3.4 4.0 4.5

50 427.0 172.5 82.3 83.1 6.2 7.3 8.0

Average 226.5 57.4 31.0 27.0 3.1 3.6 4.0

10 20 1.4 1.0 0.5 0.8 1.1 1.4 1.6

30 26.7 4.6 2.9 4.5 3.1 3.7 4.2

40 145.3 18.8 43.2 18.9 6.6 7.8 8.7

50 719.4 158.5 211.7 65.3 17.0 19.6 21.3

Average 223.2 45.7 64.6 22.4 7.0 8.1 9.0

Overall Average 331.3 77.1 94.2 25.8 3.9 4.4 4.8

Fig. 1. Comparison between average computation times of methods for combinations of T F − R .

168 S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173

Table 4

Summary of results for computation time with T F = 0 . 2 and R = 1 . 0 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 17.8 0.7 1.3 0.3 0.4 0.4 0.5

30 421.0 14.1 75.9 1.7 1.1 1.2 1.3

40 1048.3 20.2 675.2 22.1 2.7 3.0 3.1

50 1251.5 540.0 1226.2 51.6 7.2 7.5 7.7

Average 684.7 143.8 494.7 18.9 2.9 3.0 3.2

3 20 4.4 1.1 0.8 0.4 0.4 0.5 0.5

30 220.8 5.5 16.9 2.9 1.0 1.1 1.2

40 926.3 50.9 386.2 35.0 2.1 2.4 2.5

50 1275.6 166.6 442.0 163.6 5.0 5.7 6.1

Average 606.8 56.0 211.5 50.5 2.1 2.4 2.6

5 20 2.5 1.3 0.5 0.7 0.5 0.6 0.7

30 51.2 7.9 10.9 2.0 1.4 1.6 1.7

40 221.8 36.0 56.7 16.8 2.8 3.2 3.5

50 789.1 193.9 263.0 82.5 4.8 5.5 6.0

Average 266.2 59.8 82.8 25.5 2.4 2.7 3.0

10 20 1.3 0.7 0.3 0.7 0.8 1.0 1.1

30 18.0 4.2 2.1 2.9 2.3 2.7 3.0

40 126.1 27.5 32.2 10.0 4.7 5.5 6.1

50 627.9 101.6 175.6 30.1 16.4 18.7 20.4

Average 193.3 33.5 52.6 10.9 6.1 7.0 7.7

Overall Average 437.7 73.3 210.4 26.5 3.4 3.8 4.1

Table 5

Summary of results for computation time with T F = 0 . 6 and R = 0 . 2 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 1800.1 464.7 143.9 1.6 3.2 3.6 3.8

30 1800.0 1801.0 62.5 22.6 12.5 13.6 15.0

40 1800.0 1800.0 1800.0 1134.1 37.8 38.9 40.1

50 1800.0 1800.0 1095.8 1084.7 160.9 165.2 168.8

Average 1800.0 1466.4 775.6 560.8 53.6 55.3 56.9

3 20 1624.6 12.5 5.8 2.4 7.8 8.9 9.8

30 1800.1 1800.0 661.8 602.0 420.6 427.8 437.7

40 1800.0 1800.0 1151.0 1502.2 881.9 896.4 903.3

50 1800.0 1800.0 1800.0 1800.0 1355.0 1359.4 1365.7

Average 1756.2 1353.1 904.7 976.7 666.3 673.1 679.1

5 20 470.9 2.7 1.9 0.8 3.1 3.5 3.7

30 1225.1 45.1 29.5 27.5 27.6 28.1 28.4

40 1779.3 231.5 107.5 504.5 43.8 44.5 45.0

50 1800.1 1606.7 348.1 1440.8 353.0 355.2 356.0

Average 1318.9 471.5 121.8 493.4 106.9 107.8 108.3

10 20 2.4 0.7 0.2 0.2 0.9 1.1 1.3

30 13.5 5.3 1.6 1.4 2.7 3.3 3.8

40 159.3 83.7 22.4 7.7 7.6 9.0 10.0

50 1390.8 562.2 202.2 73.8 25.2 28.9 31.3

Average 391.5 163.0 56.6 20.8 9.1 10.6 11.6

Overall Average 1316.6 863.5 464.6 512.9 209.0 211.7 214.0

(

(

(

son between the average computation times of the seven methods

for problem instances with different combinations of TF and R .

Based on observed results, the key observations could be sum-

marized as below.

1) Instances with T F = 0 . 6 are relatively harder to be solved com-

pared to others irrespective of the method employed. A possible

cause of this is that if TF is small, fewer jobs (sometimes even

no job) are expected to be rejected, and the problem is then

directly reduced to the unrelated parallel machine scheduling

problem. In contrast, if TF is large, more jobs are expected to

be rejected owing to tighter due dates, thereby increasing the

ease of solution. However, there exists no clear trend in terms

of R values relating to the ease or difficulty with which a solu-

tion can be obtained.
2) The performance of formulations is more-or-less related to the

ratio of the number of jobs to number of machines (i.e., n / m).

In general, the number of jobs n most affects the performance

of models, and the value of T F − R affects the performance of

models more than that of the n / m ratio. With a fixed combina-

tion of n and T F − R, it can be seen that when the ratio n / m is

small (say, less than 10), the instance is relatively easier to be

solved using formulations. This coincides with observations re-

ported by Unlu and Mason (2010) and Chen and Powell (1999) .

It seems that there exists a certain threshold value for this ra-

tio. However, it is hard to determine the exact value of this

threshold.

3) The use of enhancement techniques improves the performance

of the two MIP formulations in terms of average computa-

tion time. On average, the MIP1 model is improved by 72.6%

in efficiency through use of enhancement techniques, whereas

S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173 169

Table 6

Summary of results for computation time with T F = 0 . 6 and R = 0 . 6 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 1800.0 5.1 11.1 1.3 2.5 2.8 2.9

30 1800.0 761.7 930.8 24.0 7.6 8.1 8.5

40 1800.0 1800.3 1800.2 348.6 85.3 98.4 100.9

50 1800.0 1800.0 723.0 1089.8 565.1 565.7 566.2

Average 1800.0 1091.8 866.3 365.9 165.1 168.8 169.6

3 20 1083.3 2.7 2.6 0.8 1.8 1.9 2.1

30 1800.1 86.2 1118.1 16.1 12.8 13.2 13.5

40 1800.0 1324.4 1800.1 614.4 145.7 148.6 148.9

50 1800.0 1788.7 1791.6 857.4 476.4 477.3 477.9

Average 1620.9 800.5 1178.1 372.2 159.2 160.3 160.6

5 20 4.7 2.0 0.5 0.4 0.8 0.9 1.0

30 889.7 14.9 372.5 4.4 8.7 9.4 9.8

40 1137.9 104.9 82.5 17.8 10.2 10.7 11.1

50 1800.0 514.2 1221.4 564.5 38.2 39.5 40.4

Average 958.1 159.0 419.2 146.8 14.5 15.1 15.6

10 20 1.4 0.6 0.2 0.1 1.0 1.2 1.4

30 8.0 3.6 1.2 1.1 3.1 3.5 3.8

40 74.5 14.3 8.1 3.9 4.2 5.1 5.6

50 721.7 256.8 127.7 19.9 8.9 10.6 11.7

Average 201.4 68.8 34.3 6.3 4.3 5.1 5.6

Overall Average 1145.1 530.0 624.5 222.8 85.8 87.3 87.9

Table 7

Summary of results for computation time with T F = 0 . 6 and R = 1 . 0 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 204.1 1.9 4.8 0.6 0.8 0.9 1.0

30 1087.9 8.1 473.6 1.5 1.3 1.5 1.6

40 1594.7 112.5 1495.8 23.4 4.1 4.4 4.6

50 1800.0 559.6 1800.0 71.7 24.4 26.2 27.5

Average 1171.7 170.5 943.6 24.3 7.7 8.3 8.7

3 20 74.8 1.6 1.2 0.5 1.1 1.2 1.3

30 414.9 3.3 7.4 1.7 1.4 1.6 1.8

40 1093.6 38.9 392.1 10.5 6.2 6.6 6.9

50 1800.0 876.9 989.7 94.7 7.6 9.1 9.8

Average 845.8 230.2 347.6 26.9 4.1 4.6 5.0

5 20 2.4 1.1 0.3 0.4 1.5 1.8 1.9

30 392.9 6.0 3.3 1.6 3.4 3.8 4.1

40 923.6 47.6 405.6 6.9 9.4 11.2 11.9

50 795.2 140.3 82.4 18.8 11.8 12.6 13.0

Average 528.5 48.8 122.9 6.9 6.5 7.4 7.7

10 20 3.6 0.8 0.2 0.3 0.8 1.0 1.2

30 9.3 2.8 0.8 1.1 4.8 5.7 6.3

40 16.5 9.0 3.6 5.1 6.2 7.0

50 406.9 38.8 31.1 10.0 9.3 11.4 12.9

Average 132.3 14.7 10.3 3.8 5.0 6.1 6.9

Overall Average 669.6 116.0 356.1 15.5 5.8 6.6 7.1

(

(

(

the MIP2 model demonstrated a 73.4% improvement in effi-

ciency, as described in Table 11 . In the table, I MIP1 (%) = (t MIP1 −
t MIP1 V) /t MIP1 × 100% , and I MIP 2 (%) is similarly defined.

4) Overall, in terms of average computation time, the MIP2 model

with CPLEX performs better compared to MIP1 with CPLEX.

Similarly, on average, MIP2V performs better compared to

MIP1V. However, for several combinations of m and n , the

MIP1V model runs faster compared to MIP2V, especially for the

instance with T F = 0 . 2 and R = 0 . 2 . Such a behavior is highly

unexpected on the part of the authors, and a possible reason

for this is believed to be that MIP1V may perform better com-

pared to MIP2V with regard to solving unrelated parallel ma-

chine scheduling problems with the objective of minimizing the

total weighted tardiness, since with T F = 0 . 2 and R = 0 . 2 , al-

most all jobs are expected to be accepted.

5) The proposed B&B algorithm is capable of solving all instances

to optimality within the specified time limit of 1800 CPU
seconds. Relatively, BB1 performs best in terms of the aver-

age computation time. However, with regard to formulations,

namely MIP1, MIP2, MIP1V and MIP2V, not all instances can be

solved to optimality within the same time limit, as described in

Table 12 for the summarized number of instances that cannot

be solved to optimality within the time limit.

6) The proposed B&B algorithm outperforms other methods for

all instances with T F = 0 . 2 and T F = 0 . 6 . On average, it saves

at least half the computation time compared to MIP formu-

lations in combination with enhancement techniques (for in-

stances with T F = 0 . 6 and R = 0 . 2). However, for the instances

with T F = 1 . 0 , the MIP2V model performs better compared to

the three B&B algorithms in terms of the average computation

time. Specifically, on overall average, it takes the MIP2V around

1 CPU seconds to obtain optimum solutions for the instances

with T F = 1 . 0 , while it takes three B&B algorithms around 10

CPU seconds.

170 S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173

Table 8

Summary of results for computation time with T F = 1 . 0 and R = 0 . 2 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 0.2 0.1 0.1 0.1 0.2 0.3 0.3

30 0.5 0.4 0.1 0.1 0.6 0.7 0.8

40 3.4 0.8 0.1 0.1 3.5 4.3 4.8

50 1574.4 6.6 1.2 0.8 9.8 11.4 12.3

Average 394.6 2.0 0.4 0.3 3.5 4.2 4.6

3 20 0.6 0.3 0.1 0.1 0.4 0.5 0.6

30 1.6 0.6 0.1 0.1 1.8 2.2 2.5

40 84.7 2.1 0.2 0.2 6.4 7.6 8.7

50 552.3 3.5 8.5 0.4 15.2 18.6 20.9

Average 159.8 1.6 2.2 0.2 6.0 7.2 8.2

5 20 1.8 0.5 0.1 0.1 0.3 0.4 0.5

30 3.5 1.0 0.1 0.1 3.1 3.7 4.1

40 10.6 2.0 0.1 0.1 6.7 8.0 8.7

50 65.5 4.1 0.2 0.2 23.1 26.8 28.2

Average 20.4 1.9 0.1 0.1 8.3 9.7 10.4

10 20 7.7 0.8 0.5 0.1 0.6 0.7 0.9

30 10.3 1.3 4.4 0.1 4.8 5.9 6.5

40 48.7 5.6 0.3 0.3 21.8 26.1 28.2

50 589.5 7.2 0.1 0.1 23.7 28.7 30.8

Average 164.1 3.7 1.3 0.2 12.7 15.4 16.6

Overall Average 184.7 2.3 1.0 0.2 7.6 9.1 9.9

Table 9

Summary of results for computation time with T F = 1 . 0 and R = 0 . 6 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 0.9 0.3 0.1 0.1 0.3 0.4 0.5

30 495.4 0.8 0.4 0.2 0.8 0.9 1.0

40 1800.0 6.0 8.3 0.7 1.9 2.2 2.4

50 1446.6 218.6 799.6 9.0 10.9 12.6

Average 935.7 56.4 202.1 2.5 3.5 4.0 1.3

3 20 0.8 0.5 0.1 0.1 0.6 0.7 0.8

30 679.1 1.5 0.5 0.4 1.6 1.9 2.1

40 872.6 3.2 0.7 0.6 6.9 8.2 9.1

50 748.9 13.2 26.9 2.8 11.9 14.6 16.4

Average 575.4 4.6 7.1 1.0 5.3 6.4 7.1

5 20 1.7 0.6 0.1 0.1 0.4 0.5 0.5

30 16.2 2.2 0.3 0.4 2.5 2.9 3.3

40 729.1 6.2 1.6 0.9 7.3 8.5 9.3

50 888.2 19.1 104.4 2.7 65.5 72.9 80.0

Average 408.8 7.0 26.6 1.0 18.9 21.2 23.3

10 20 4.9 0.5 3.2 0.1 1.0 1.3 1.4

30 15.9 1.5 0.1 0.1 3.2 3.9 4.4

40 43.5 3.7 0.1 0.2 8.7 10.4 11.3

50 683.5 7.8 0.3 0.3 18.4 21.7 23.6

Average 187.0 3.4 0.9 0.2 7.8 9.3 10.2

Overall Average 526.7 17.9 59.2 1.2 8.9 10.2 11.1

d

c

T

f

c

m

C

F

b

o

c

l

l

a

s

a
7. Conclusions

In this paper we have studied an order acceptance and schedul-

ing problem on unrelated parallel machines, which has not yet

been thoroughly explored in available literature. Two different

formulations that can be solved with general-purpose IP solvers

have been developed. Formulation tightening and valid inequalities

have also been proposed to improve the efficiency of the formula-

tions. A formulation-based branch-and-bound algorithm has been

developed based on the idea of “divide and conquer”, wherein

the branching determines how many jobs should be accepted fol-

lowed by addressing of the unrelated parallel machine schedul-

ing subproblem with the minimization of the total weighted tar-

diness. Extensive computational experiments have been conducted

on various instances to compare the performance of developed

formulations, formulations with valid inequalities, and the pro-

posed formulation-based branch-and-bound algorithm. The results
emonstrate that the enhanced formulations perform much better

ompared to basic ones in terms of the average computation time.

he proposed branch-and-bound algorithm is observed to be much

aster compared to other methods in nearly all instances, and it

ould efficiently solve all problem instances with values of n and

 up to 50 and 10, respectively, to optimality in less than 1800

PU seconds.

The work could be extended in several research directions.

irst, more dominant rules, including other Emmon’s rules, could

e explored and transformed into formulation constraints. Sec-

ndly, other practical constraints, such as a renewable-resource

onstraint, and some mandatorily accepted jobs due to long-term

oyal customers, could be considered, thereby making the prob-

em to be more practice-oriented. Additionally, effective heuristic

nd/or meta-heuristic methods could be developed to tackle large-

ized problems. Lastly, since the OAS problem can be reduced to

 special unrelated parallel machine scheduling problem with a

S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173 171

Table 10

Summary of results for computation time with T F = 1 . 0 and R = 1 . 0 .

m n Avg. Time (s)

MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 0.4 0.1 0.1 0.1 0.2 0.2 0.3

30 2.9 0.6 0.3 0.2 0.3 0.4 0.5

40 729.4 2.6 361.0 0.9 3.5 4.0 4.3

50 784.7 31.3 23.5 2.7 5.7 6.5 7.1

Average 379.4 8.7 96.2 1.0 2.4 2.8 3.1

3 20 1.5 0.5 0.1 0.1 0.4 0.6 0.7

30 11.4 1.0 0.5 0.4 1.5 1.8 2.0

40 122.7 2.0 2.7 0.6 2.5 2.8 3.1

50 405.4 5.9 2.4 1.1 5.7 6.6 7.2

Average 135.3 2.4 1.4 0.6 2.5 3.0 3.3

5 20 1.5 0.7 1.1 0.1 0.4 0.5 0.6

30 6.5 1.4 0.3 0.4 3.2 3.8 4.1

40 63.9 4.4 2.3 1.2 8.4 10.2 11.1

50 458.7 6.9 2.7 1.8 12.1 14.2 15.3

Average 132.7 3.4 1.6 0.9 6.0 7.2 7.8

10 20 4.6 1.0 0.1 0.1 0.6 0.8 1.0

30 10.8 1.3 0.1 0.1 2.0 2.4 2.7

40 106.5 5.3 0.4 0.5 13.7 16.7 18.5

50 247.7 7.0 0.8 1.0 4.2 5.5 6.4

Average 92.4 3.7 0.4 0.4 5.1 6.4 7.2

Overall Average 184.9 4.5 24.9 0.7 4.0 4.8 5.3

Table 11

Efficiency of enhancement techniques for MIP formulations.

Avg. Time (s) Improvement in Time

T F − R t MIP 1 t MIP 2 t MIP 1 V t MIP 2 V I MIP 1 (%) I MIP 2 (%)

0.2-0.2 472.5 218.1 10.6 51.6 97.8 76.3

0.2-0.6 331.3 77.1 94.2 25.8 71.6 66.5

0.2-1.0 437.7 73.3 210.4 26.5 51.9 63.9

0.6-0.2 1316.6 863.5 464.6 512.9 64.7 40.6

0.6-0.6 1145.1 530.0 624.5 222.8 45.5 58.0

0.6-1.0 669.6 116.0 356.1 15.5 46.8 86.6

1.0-0.2 184.7 2.3 1.0 0.2 99.5 91.3

1.0-0.6 526.7 17.9 59.2 1.2 88.8 93.3

1.0-1.0 184.9 4.5 24.9 0.7 86.5 84.4

Average 72.6 73.4

Table 12

Number of instances that cannot be solved to optimality

within the specified time limit.

T F − R MIP 1 MIP 2 MIP 1 V MIP 2 V BB 1

0.2-0.2 5 6 0 0 0

0.2-0.6 2 0 1 0 0

0.2-1.0 2 1 1 0 0

0.6-0.2 55 34 18 20 0

0.6-0.6 44 13 20 0 0

0.6-1.0 22 2 13 1 0

1.0-0.2 5 0 0 0 0

1.0-0.6 18 0 1 0 0

1.0-1.0 2 0 0 0 0

Average 17.2 6.2 6.0 2.3 0.0

d

p

c

A

t

q

S

w

t

A

d

s

a

r

l

m

h

e

m

[

s

T

y

c

j

t

j

W
ummy machine, future effort s could be dedicated towards ex-

loring the use of various decomposition-based methods, including

olumn generation and Benders decomposition.

cknowledgment

The authors would like to thank the anonymous referees for

heir constructive comments which contributed to improve the

uality of this paper. This work was supported by the National

cience Foundation of China (NSFC) with Grant No. 71571135 . The

ork was also supported by the Fundamental Research Funds for

he Central Universities.
ppendix

The OAS problem on unrelated parallel machines can be re-

uced to a special case of the classical unrelated parallel machine

cheduling problem by introducing a dummy machine to which

ll rejected jobs can be assigned with zero processing time, zero

evenue and zero penalty. To compare the performance of formu-

ations with and without a dummy machine, the MIP1 and MIP2

odels could be reformulated as follows.

Here, a dummy machine M 0 has been introduced, and the MIP1

as been reformulated to the following MIP1-M0 model. To this

nd, notations additional to those defined in the original MIP1

odel have been introduced below.

• M 0 : set of machines, including the dummy machine. The

dummy machine is indexed by i = 0 .
• M : set of machines without the dummy machine, i.e., M =

{ 1 , · · · , m } .
• y 0 j = 1, if job j is assigned on the dummy machine (i.e., it is

rejected), 0 otherwise.

 MIP1 − M0] max Z =

∑

j∈N
(u j

∑

i ∈M

y i j − w j T j) (20a)

.t.
∑

i ∈M 0

y i j = 1 , ∀ j ∈ N ; (20b)

 j ≤ (1 − y 0 j) L max ∀ j ∈ N ; (20c)

 i j ∈ { 0 , 1 } , ∀ j ∈ N , i ∈ M 0 ; (20d)

onstraints (1 c) − (1 i) , (1 k) . (20e)

The objective function can be described as
∑

i ∈M

, since only

obs assigned on M , i.e., the accepted jobs, are considered. Addi-

ionally, with T j ≥ 0 in constraints (1i) and (20c) , if y 0 j = 1 (i.e., if a

ob j has been rejected), its tardiness is forced to be 0, i.e., T j = 0 .

ith constraints (20b) ,
∑

i ∈M 0

y i j = 1 , ∀ j ∈ N , any job j can either

https://doi.org/10.13039/501100001809

172 S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173

Table 13

Computation time of models with and without the dummy machine for

T F = R = 0 . 2 .

m n Avg. Time (s)

MIP1 MIP1-M0 MIP2 MIP2-M0

2 20 14.0 13.7 3.0 2.8

30 442.4 450.9 15.3 731.7

40 746.2 1287.8 4.7 784.0

50 694.2 1741.9 391.8 1524.7

Average 474.2 873.6 103.7 760.8

3 20 9.3 14.8 3.3 4.0

30 136.5 143.9 20.7 33.8

40 369.7 920.9 155.4 116.5

50 432.8 995.3 867.9 804.5

Average 237.1 518.7 261.8 239.7

5 20 8.2 7.5 2.0 1.8

30 76.1 58.5 14.5 23.6

40 688.6 123.3 61.1 153.2

50 1039.6 1486.6 190.7 554.5

Average 453.1 419.0 67.1 183.3

10 20 1.5 4.1 1.7 2.1

30 26.8 47.5 6.8 6.2

40 181.5 256.6 15.6 28.3

50 548.1 733.6 105.0 166.4

Average 189.5 260.5 32.3 50.8

Overall Average 338.5 517.9 116.2 308.6

R

A

A

B

C

C

C

S

D

E

E

F

F

F

G

G

J

L

L

L

M

N

N

O

O

P
be rejected (i.e., y 0 j = 1) or accepted by assigning it to a machine

i ∈ M .

In the MIP1-M0 model, the decision variable x j in MIP1 is not

used any more. The relationship between the MIP1-M0 model and

the MIP1 model can, therefore, be established using the following

constraints.

x j + y 0 j = 1 , ∀ j ∈ N (21)

The MIP1 model explicitly considers the decision of acceptance or

rejection, whereas the MIP1-M0 model implicitly considers the de-

cision of acceptance. Similarly, with the same objective function

in (20a) , and constraints (20b) –(20d), (2c) –(2j) and z ijk in (2k) , the

MIP2 model can be reformulated into the corresponding MIP2-M0.

A2. Comparisons between models with and without the dummy

machine

Table 13 summarizes average computation times in terms of

CPU seconds for the case with T F = 0 . 2 and R = 0 . 2 with a view to

compare models MIP1 and MIP2 against MIP1-M0 and MIP2-M0,

respectively. Five instances are randomly generated for the combi-

nation of TF and R by following the data-generation scheme de-

scribed in Section 6.1 . The average computation time of the five

instances (denoted by “Avg. Time (s)”) for each model is listed

in the table. If an instance cannot be solved to optimality within

the specified time limit, 1800 s are used for the calculation of

the average computation time. Model codes, data, and detailed re-

sults for Table 13 are available online at https://pan.baidu.com/

s/1N _ vWO3iM1gccmW9ayyuQOg#list/path=%2F for readers’ refer-

ence.

As observed, the MIP1-M0 model demonstrates poorer perfor-

mance compared to MIP1 in terms of the average computation

time for almost all cases. Similarly, MIP2-M0 performs worse com-

pared to MIP2 in terms of average computation time. In sum-

mary, the preliminary results of the computational experiments in

Table 13 show that MIP2 performs better compared to MIP2-M0,

MIP1 performs better compared to MIP1-M0, and MIP2-M0 per-

forms better compared to MIP1-M0. Additionally, MIP2 performs

better compared to MIP1. In this study, therefore, we only employ

the enhanced MIP2 model (i.e., MIP2V) in the proposed branch-

and-bound algorithm.
eferences

valos-Rosales, O. , Angel-Bello, F. , Alvarez, A. , 2015. Efficient metaheuristic al-

gorithm and re-formulations for the unrelated parallel machine scheduling

problem with sequence and machine-dependent setup times. Int. J. Adv.
Manuf.Technol. 76 (9–12), 1705–1718 .

zizoglu, M. , Kirca, O. , 1999. Scheduling jobs on unrelated parallel machines to min-
imize regular total cost functions. IIE Trans. 31, 153–159 .

artal, Y. , Leonardi, S. , Marchetti-Spaccamela, A. , Sgall, J. , Stougie, L. , 20 0 0. Multi-
processor scheduling with rejection. SIAM J. Discrete Math. 13 (1), 64–78 .

Cesaret, B. , O ̆guz, C. , Salman, F.S. , 2012. A tabu search algorithm for order acceptance

and scheduling. Comput. Oper. Res. 39, 1197–1205 .
haurasia, S.N. , Singh, A. , 2017. Hybrid evolutionary approaches for the single

machine order acceptance and scheduling problem. Appl. Soft Comput. 52,
725–747 .

hen, Z.L. , Powell, W.B. , 1999. Solving para llel machine scheduling problems by
column generation. INFORMS J. Comput. 11 (1), 78–94 .

ordone, R. , Hosteins, P. , Righini, G. , 2018. A branch-and-bound algorithm for the
prize-collecting single-machine scheduling problem with deadlines and total

tardiness minimization. INFORMS J. Comput. 30 (1), 168–180 .

¸ en, H. , Bülbül, K. , 2015. A strong preemptive relaxation for weighted tardiness and
earliness/tardiness problems on unrelated parallel machines. INFORMS J. Com-

put. 27 (1), 135–150 .
e Vel, V. , 1993. Duality-based algorithms for scheduling unrelated parallel ma-

chines. INFORMS J. Comput. 5 (2), 192–205 .
Detienne, B. , Dauzère-Pérès, S. , Yugma, C. , 2011. Scheduling jobs on parallel ma-

chines to minimize a regular step total cost function. J. Sched. 14 (6), 523–538 .

Emami, S. , Moslehi, G. , Sabbagh, M. , 2017. A benders decomposition approach for or-
der acceptance and scheduling problem: a robust optimization approach. Com-

put. Appl. Math. 36 (4), 1471–1515 .
mami, S. , Sabbagh, M. , Moslehi, G. , 2016. A lagrangian relaxation algorithm for or-

der acceptance and scheduling problem: a globalised robust optimisation ap-
proach. Int. J. Comput. Integr. Manuf. 29 (5), 535–560 .

Emmons, H. , 1969. One-machine sequencing to minimize certain functions of job

tardiness. Oper. Res. 17, 701–715 .
smaeilbeigi, R. , Charkhgard, P. , Charkhgard, H. , 2016. Order acceptance and

scheduling problems in two-machine flow shops: new mixed integer program-
ming formulations. Eur. J. Oper. Res. 251, 419–431 .

Fanjul-Peyro, L. , Perea, F. , Ruiz, R. , 2017. Models and matheuristics for the unrelated
parallel machine scheduling problem with additional resources. Eur. J. Oper. Res.

260, 4 82–4 93 .

anjul-Peyro, L. , Ruiz, R. , 2010. Iterated greedy local search methods for unrelated
parallel machine scheduling. Eur. J. Oper. Res. 207 (1), 55–69 .

anjul-Peyro, L. , Ruiz, R. , 2011. Size-reduction heuristics for the unrelated parallel
machines scheduling problem. Comput. Oper. Res. 38, 301–309 .

Fanjul-Peyro, L. , Ruiz, R. , 2012. Scheduling unrelated parallel machines with optional
machines and jobs selection. Comput. Oper. Res. 39, 1745–1753 .

Fanjul-Peyro, L. , Ruiz, R. , Perea, F. , 2019. Reformulations and an exact algorithm

for unrelated parallel machine scheduling problems with setup times. Comput.
Oper. Res. 101, 173–182 .

leszar, K. , Hindi, K.S. , 2018. Algorithms for the unrelated parallel machine schedul-
ing problem with a resource constraint. Eur. J. Oper. Res. 271 (3), 839–848 .

eramipour, S. , Moslehi, G. , Reisi-Nafchi, M. , 2017. Maximizing the profit in cus-
tomer’s order acceptance and scheduling problem with weighted tardiness

penalty. J. Oper. Res. Soc. 68 (1), 89–101 .

hosh, J.B. , 1997. Job selection in a heavily loaded shop. Comput. Oper. Res. 24 (2),
141–145 .

iang, D.K. , Tan, J.Y. , Li, B. , 2017. Order acceptance and scheduling with batch deliv-
ery. Comput. Ind. Eng. 107, 100–104 .

Lei, D.M. , Guo, X.P. , 2015. A parallel neighborhood search for order acceptance and
scheduling in flow shop environment. Int. J. Prod. Econ. 165, 12–18 .

ewis, H.F. , Slotnick, S.A. , 2002. Multi-period job selection: planning work loads to
maximize profit. Comput. Oper. Res. 29 (8), 1081–1098 .

iaw, C.F. , Lin, Y.K. , Cheng, C.Y. , Chen, M.C. , 2003. Scheduling unrelated parallel ma-

chines to minimize total weighted tardiness. Comput. Oper. Res. 30, 1777–1789 .
in, S.W. , Ying, K.C. , 2013. Increasing the total net revenue for single machine order

acceptance and scheduling problems using an artificial bee colony algorithm. J.
Oper. Res. Soc. 64 (2), 293–311 .

estry, S. , Damodaran, P. , Chen, C.S. , 2011. A branch and price solution approach
for order acceptance and capacity planning in make-to-order operations. Eur. J.

Oper. Res. 211, 4 80–4 95 .

guyen, S. , 2016. A learning and optimizing system for order acceptance and
scheduling. Int. J. Adv. Manuf. Technol. 86, 2021–2036 .

obibon, F.T. , Leus, R. , 2011. Exact algorithm for a generalization of the order accep-
tance and scheduling problem in a single-machine environment. Comput. Oper.

Res. 38, 367–378 .
Ou, J.W. , Zhong, X.L. , 2017. Bicriteria order acceptance and scheduling with consid-

eration of fill rate. Eur. J. Oper. Res. 262, 904–907 .

Ou, J.W. , Zhong, X.L. , Qi, X.T. , 2016. Scheduling parallel machines with inclusive pro-
cessing set restrictions and job rejection. Nav. Res. Logist. 63, 667–681 .

u, J.W. , Zhong, X.L. , Wang, G.Q. , 2015. An improved heuristic for parallel machine
scheduling with rejection. Eur. J. Oper. Res. 241, 653–661 .

 ̌guz, C. , Salman, F.S. , Yalçin, Z.B. , 2010. Order acceptance and scheduling decisions
in make-to-order systems. Int. J. Prod. Econ. 125 (1), 200–211 .

inedo, M.L. , 2008. Scheduling: Theory, algorithms and systems, third edition

Springer Science+Business Media, LLC, New York, USA .

https://pan.baidu.com/s/1N_vWO3iM1gccmW9ayyuQOg#list/path=%2F
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0029
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0029
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0030
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0030
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0030
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0031
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0031
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0031
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0035
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0035

S. Wang and B. Ye / Computers and Operations Research 104 (2019) 159–173 173

R

R

R

S

S

S

S

S

S

T

U

W

W

W

W

W

X

X

Z

ahman, H.F. , Sarker, R. , Essam, D. , 2015. A real-time order acceptance and schedul-
ing approach for permutation flow shop problems. Eur. J. Oper. Res. 247,

488–503 .
innooy Kan, A. H. G., 1976. Machine scheduling problems classification, complexity

and computations. Martinus Nijhoff, The Hague.
om, W.O. , Slotnick, S.A. , 2009. Order acceptance using genetic algorithms. Comput.

Oper. Res. 36 (6), 1758–1767 .
habtay, D. , Gaspar, N. , Kaspi, M. , 2013. A survey on offline scheduling with rejec-

tion. J. Sched. 16, 3–28 .

him, S.O. , Kim, Y.D. , 2007. Minimizing total tardiness in an unrelated parallel-ma-
chine scheduling problem. J. Oper. Res. Soc. 58 (3), 346–354 .

ilva, Y.L.T.V. , Subramanian, A. , Pessoa, A .A . , 2018. Exact and heuristic algorithms for
order acceptance and scheduling with sequence-dependent setup times. Com-

put. Oper. Res. 90, 142–160 .
lotnick, S.A. , 2011. Order acceptance and scheduling: a taxonomy and review. Eur.

J. Oper. Res. 212 (1), 1–11 .

lotnick, S.A. , Morton, T.E. , 1996. Selecting jobs for a heavily loaded shop with late-
ness penalties. Comput. Oper. Res. 23 (2), 131–140 .

lotnick, S.A. , Morton, T.E. , 2007. Order acceptance with weighted tardiness. Com-
put. Oper. Res. 34, 3029–3042 .

ran, T.T. , Araujo, A. , Beck, J.C. , 2016. Decomposition methods for the parallel ma-
chine scheduling problem with setups. INFORMS J. Comput. 28 (1), 83–95 .

nlu, Y. , Mason, S.J. , 2010. Evaluation of mixed integer programming formulations

for non-preemptive parallel machine scheduling problems. Comput. Ind. Eng.
58, 785–800 .
ang, X.L. , Huang, G.D. , Hu, X.W. , Cheng, T.E. , 2015. Order acceptance and schedul-
ing on two identical parallel machines. J. Oper. Res. Soc. 66, 1755–1767 .

ang, X.L. , Xie, X.Z. , Cheng, T.C.E. , 2013. A modified artificial bee colony algorithm
for order acceptance in two-machine flow shops. Int. J. Prod. Econ. 141, 14–23 .

ang, X.L. , Xie, X.Z. , Cheng, T.C.E. , 2013a. Order acceptance and scheduling in a
two-machine flowshop. Int. J. Prod. Econ. 141, 366–376 .

ang, X.P. , Tang, L.X. , 2010. A hybrid metaheuristic for the prize-collecting single
machine scheduling problem with sequence-dependent setup times. Comput.

Oper. Res. 37, 1624–1640 .

u, G.H. , Cheng, C.Y. , Yang, H.I. , Chena, C.T. , 2018. An improved water flow-like al-
gorithm for order acceptance and scheduling with identical parallel machines.

Appl. Soft Comput. 71, 1072–1084 .
iao, Y.Y. , Yuan, Y.Y. , Zhang, R.Q. , Konak, A. , 2015. Non-permutation flow shop

scheduling with order acceptance and weighted tardiness. Appl. Math. Comput.
270, 312–333 .

iao, Y.Y. , Zhang, R.Q. , Zhao, Q.H. , Kaku, I. , 2012. Permutation flow shop schedul-

ing with order acceptance and weighted tardiness. Appl. Math. Comput. 218,
7911–7926 .

hong, X.L. , Ou, J.W. , 2017. Improved approximation algorithms for parallel ma-
chine scheduling with release dates and job rejection. 4OR-A Q. J. Oper. Res.

15, 387–406 .

http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0037
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0037
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0037
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0039
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0039
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0039
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0041
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0041
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0042
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0042
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0042
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0043
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0043
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0043
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0045
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0045
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0045
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0049
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0049
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0049
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0053
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0053
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0053

	Exact methods for order acceptance and scheduling on unrelated parallel machines
	1 Introduction
	2 Literature review
	2.1 Research streamlines of OAS problems
	2.2 Related works on OAS problems with total revenue and tardiness
	2.2.1 Related works on OAS problems on parallel machines

	2.3 Related works on unrelated parallel machine scheduling problems

	3 Mathematical description of OAS problem
	3.1 The MIP with a dummy job
	3.2 The linear-ordering-based MIP model

	4 Enhancement of proposed MIP formulations
	4.1 Moderating big-M coefficients
	4.2 Valid inequalities

	5 A formulation-based branch-and-bound algorithm
	5.1 Upper bounding
	5.2 Lower bounding
	5.2.1 A lower bound based on a heuristic method
	5.2.2 A formulation-based lower bound

	5.3 The complete procedure of branch-and-bound algorithm

	6 Computational experiments
	6.1 Data generation
	6.2 Computational results

	7 Conclusions
	Acknowledgment
	Appendix
	A2. Comparisons between models with and without the dummy machine

	References

