Computers and Operations Research 104 (2019) 159-173

journal homepage: www.elsevier.com/locate/cor

Contents lists available at ScienceDirect

Computers and Operations Research

Computers &
jons Research

Exact methods for order acceptance and scheduling on unrelated)

parallel machines

Shijin Wang*, Benyan Ye

School of Economics and Management, Tongji University, Shanghai 200092, China

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 7 July 2018

Revised 29 November 2018
Accepted 18 December 2018
Available online 21 December 2018

Keywords:

Order acceptance and scheduling
Unrelated parallel machines
Mixed-integer programming

Branch-and-bound limit of half an hour.

This paper studies an order acceptance and scheduling (OAS) problem on unrelated parallel machines to
maximize the total net revenue of accepted orders, which is the difference between sum of revenues and
total weighted tardiness. Two mixed-integer programming (MIP) models are formulated, which are fur-
ther improved with various enhancement techniques. A formulation-based branch-and-bound algorithm
is developed in an attempt to handle complicated instances following the principle of “divide and con-
quer”. Extensive computational experiments on various instances are conducted, and the results demon-
strate the efficiency of the enhancement techniques for the formulations, as well as the effectiveness and
efficiency of the formulation-based branch-and-bound algorithm. The proposed branch-and-bound algo-
rithm can optimally solve instances with up to 50 jobs and different number of machines within the time

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

To maintain operational agility and flexibility, many compa-
nies from different industries, such as engineering tooling, indus-
trial boilers, construction and contracting, adopt the make-to-order
(MTO) operational philosophy, thereby laying more focus on cus-
tomer satisfaction (Mestry et al., 2011). Additionally, there exists
an increase in popularity of the MTO philosophy in the service
industry, particularly with regard to E-commerce and 020 take-
out & catering services offered within restaurants. For example,
the ele.me online platform for 020 takeout & catering service cov-
ered more than 200 cities in China and had served more than 260
million customers by June 2017 (source from www.ele.me). In this
context, how to coordinate operations and sales for effective use
of available resource (or limited capacity) is a big challenge for
improving customer satisfaction meanwhile obtaining high profit
margins.

The order acceptance and scheduling (OAS) problem arises in
different MTO production and/or service systems, wherein lim-
ited production and/or service capacity and order-delivery require-
ments necessitate the use of selective order acceptance to satisfy
distinct requirements of customers whilst also maximizing total
revenue (profit) (Cesaret et al., 2012; Rom and Slotnick, 2009; Silva
et al., 2018; Slotnick and Morton, 2007; Wang et al., 2015).

* Corresponding author.
E-mail address: shijinwang@tongji.edu.cn (S. Wang).

https://doi.org/10.1016/j.cor.2018.12.016
0305-0548/© 2018 Elsevier Ltd. All rights reserved.

The OAS problem requires one to simultaneously determine
which orders should be accepted for processing as well as their
corresponding schedule. The complexity of the problem due to
their combinatorial nature and intertwined decisions makes opti-
mization extremely difficult, as the problem typically is NP-hard
(Ghosh, 1997). Such problems, however, invariably capture the rich
and realistic classes of MTO processing, thereby making them easy
to explain and tempting to be attempted and solved optimally.

In this paper, a deterministic OAS problem on unrelated paral-
lel machines is addressed, since the prevalence of actual manufac-
turing environments and service industries are typically equipped
with unrelated parallel machines. Typical applications of unre-
lated parallel machine scheduling include—but are not limited
to—semiconductor manufacturing (Sen and Biilbiil, 2015; Deti-
enne et al, 2011; Shim and Kim, 2007), multiprocessor computer
(Fanjul-Peyro and Ruiz, 2010), operating rooms in hospitals (Fanjul-
Peyro and Ruiz, 2012), and car factories and food processing plant
(Fanjul-Peyro et al., 2017). For the problem under study, there ex-
ists a pool of potential orders (jobs) with known processing times,
due dates, revenues, and penalty tardiness weights. The objective
here is to maximize the total net revenue, which refers to the
difference between the sum of revenues obtained from accepted
jobs and total weighted tardiness. This paper investigates the prob-
lem from an exact solution viewpoint. The contributions of this re-
search are as follows:

(1) Two MIP formulations are proposed: one is with a dummy job
and another is based on linear ordering variables. Formulation

https://doi.org/10.1016/j.cor.2018.12.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.12.016&domain=pdf
mailto:shijinwang@tongji.edu.cn
https://doi.org/10.1016/j.cor.2018.12.016

160 S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

tightening and valid inequalities are proposed to improve the
efficiency of the two MIP formulations.

(2) A formulation-based branch-and-bound algorithm is developed
based on the idea of “divide and conquer”, in which the branch
is to determine how many jobs should be accepted, followed by
the subproblem of unrelated parallel machine scheduling.

(3) The computational results on various instances show the effi-
ciency of the formulations with enhancement techniques, and
demonstrate the efficacy of the proposed branch-and-bound al-
gorithm.

The rest of this paper is organized as follows. Section 2 presents
literature review relevant to the problem. In Section 3, two
MIP models are formulated. In Section 4, some enhancement
techniques for the MIP models are presented. The proposed
formulation-based branch-and-bound algorithm is described in
Section 5. In Section 6, extensive computational experiments are
conducted to evaluate the performance of the developed models
and the branch-and-bound algorithm. Lastly, Section 7 concludes
the paper and suggests some future research directions.

2. Literature review
2.1. Research streamlines of OAS problems

The OAS problem and its variants have been extensively investi-
gated for more than two decades (Esmaeilbeigi et al., 2016). Inter-
ested readers can refer to the survey by Slotnick (2011) and ref-
erences herein for further details. The scheduling problem with
rejection costs is an equivalent version of the OAS problem. The
reader is referred to the survey by Shabtay et al. (2013) for
more details. Equivalently, the prize-collecting scheduling problem,
wherein job acceptance is not mandatory, but their acceptance is
awarded a prize in objective value, is also highly related to the OAS
problem (Cordone et al.,, 2018; Wang and Tang, 2010).

The OAS problems have been studied with various objective
functions, including (1) maximization of the total net revenue as
the difference between the sum of revenues and total weighted
tardiness (Cesaret et al., 2012; Chaurasia and Singh, 2017; Emami
et al, 2017; 2016; Esmaeilbeigi et al., 2016; Geramipour et al.,
2017; Lei and Guo, 2015; Lin and Ying, 2013; Nobibon and Leus,
2011; Oguz et al,, 2010; Silva et al., 2018; Slotnick and Morton,
2007; Wang et al., 2015; 2013; 2013b; Wu et al., 2018; Xiao et al.,
2015), (2) maximization of the total net revenue as the differ-
ence between sum of revenues and total weighted lateness (Ghosh,
1997; Lewis and Slotnick, 2002; Slotnick and Morton, 1996), (3)
minimization of the makespan of the accepted jobs plus the to-
tal penalties of all rejected jobs (Bartal et al., 2000; Ou and Zhong,
2017; Ou et al,, 2016; 2015; Zhong and Ou, 2017), (4) maximiza-
tion of the total net profit as the difference between the sum of
revenues and costs of using resources (Mestry et al., 2011), (5)
minimization of the weighted sum of the maximum lead time of
accepted orders and total cost of rejecting and delivering orders
(Jiang et al., 2017), and (6) minimization of the makespan (Fanjul-
Peyro and Ruiz, 2012; Rahman et al., 2015).

The current researches on OAS problems focus more on two
streamlines with objective functions (1) and (3) mentioned above.
For OAS problems with objective function (1), various formula-
tions, exact methods, and heuristic and meta-heuristic methods
have been developed, as shown in the following Section 2.2. For
objective function (3), the existing researches emphasize more on
the development of polynomial-time approximation methods with
the proof of the worst-case bound.

2.2. Related works on OAS problems with total revenue and tardiness

As previously stated, this paper focuses on the OAS problem on
unrelated parallel machines with the objective of maximizing the
total net revenue with tardiness related penalties, since tardiness
penalties cause loss of revenue. Extant researches with this objec-
tive have been performed under different machine environments,
including single machine, flow shop and parallel machine.

In the single-machine context, Slotnick and Morton (2007) de-
veloped a branch-and-bound (B&B) algorithm with linear program-
ming (LP)-relaxation-based bounds, based on which several heuris-
tic methods were developed. Nobibon and Leus (2011) proved that
there is no constant-factor approximation algorithm for the prob-
lem. Two LP formulations and two B&B algorithms were proposed
to obtain exact solutions. Silva et al. (2018) developed three ex-
act approaches and an iterative local search based heuristic for the
problem with sequence-dependent setup times (SDST). Three ex-
act approaches are arc-time-indexed formulation, a B&B with La-
grangian relaxation and a branch and price (B&P). For the same
problem, Nguyen (2016) proposed a learning and optimizing sys-
tem. Geramipour et al. (2017) developed a heuristic method and
two B&B procedures. There also exist other heuristic and meta-
heuristic methods, including genetic algorithms (Rom and Slot-
nick, 2009), tabu search method (Cesaret et al., 2012), artificial
bee colony (Lin and Ying, 2013) and hybrid evolutionary algo-
rithms (Chaurasia and Singh, 2017). For problems with the addi-
tional consideration of a deadline, (Oguz et al., 2010) proposed sev-
eral problem-feature-based heuristic methods.

Compared to abundant researches in the single machine en-
vironments, the OAS problems on multiple machine are still un-
der exploration. The inherent complexity of multiple machines
with the consideration of order acceptance further complicates the
determination of optimum or near-optimum solutions, which is
worth for more exploration. In the following, we mainly review the
studies about the OAS problems on multiple machines with tardi-
ness related penalties.

For two machine flow shops, (Wang et al.,, 2013) proposed
two MIP models and B&B algorithms. The proposed B&B algo-
rithms can solve instances with up to 20 jobs to optimality within
a time limit of 1 h. Later, they developed a modified artificial
bee colony algorithm for the same problem (Wang et al., 2013b).
Esmaeilbeigi et al. (2016) presented two new MIP formulations and
compared them against models in Wang et al. (2013) in terms of
size complexity and number of disjunctive constraints. The com-
putational results show the efficiency of their models and the en-
hancements, which can solve optimally instances with up to 100
jobs within a limit of half an hour.

For OAS problems in permutation flow shops,
Xiao et al. (2012) developed a simulated annealing algorithm.
Later, Xiao et al. (2015) proposed a two-phase genetic algo-
rithm for the problem in non-permutation flow shops. Lei and
Guo (2015) developed a parallel neighborhood search method
for solving a bi-objective OAS problem in flow shops to simul-
taneously minimize the makespan and maximize the total net
revenue.

2.2.1. Related works on OAS problems on parallel machines

There are relatively few papers in the literature that study the
OAS problem on parallel machines with the objective of maximiza-
tion of total net revenue with tardiness related penalties.

For the first time, Wang et al. (2015) studied the OAS prob-
lem on two identical parallel machines and developed two heuris-
tic methods and one exact algorithm based on problem prop-
erties and the Lagrangian relaxation. The experimental results
show that the exact algorithm can solve the problems with up
to 15 jobs within a limit of an hour. This study differs from

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173 161

that of Wang et al. (2015) on two fronts. First, in this study,
the OAS problem on general multiple unrelated parallel machines
is considered, as opposed to two identical parallel machines in
Wang et al. (2015). Secondly, our solution procedures are consid-
erably different, since we focus more on the formulation-based
branch-and-bound method.

Emami et al. (2016) laid more focus on robust scheduling with
the assumption of uncertain revenue and job-processing times in
the problem with SDST. A Lagrangian relaxation algorithm with a
cutting plane method was proposed, and it was used to solve prob-
lems with up to 40 orders and 6 machines. In Emami et al. (2017),
a Benders decomposition method was developed to handle the
same problem. Our work differs from Emami et al. (2016) and
Emami et al. (2017) in two ways. First, our model is deterministic.
Secondly, solution approaches developed in this study are different
from theirs.

Wau et al. (2018) developed a water-flow-like algorithm for solv-
ing the OAS problem on identical parallel machines with SDST. The
proposed algorithm was further improved by using a combination
of particle swarm optimization and variable neighborhood search.
Our work mainly differs from Wu et al. (2018) in two aspects in
that it considers unrelated parallel machines and focuses on exact
methods.

As has been demonstrated by previous works, OAS problems in
various machine settings have been treated with both exact and
heuristic approaches. To the best of the authors’ knowledge, the
largest OAS problem on unrelated parallel machines reported in
the literature contained 40 orders and 6 machines with the time
limit of an hour in the robust setting (Emami et al., 2016). Al-
though robust versions of the problem are usually more difficult to
solve than their deterministic counterparts, there is no report yet
in literature on deterministic OAS problems on unrelated parallel
machines. In this paper, we develop a formulation-based branch-
and-bound algorithm which can solve instances with up to 50 jobs
and 10 machines to optimality with the time limit of half an hour.

2.3. Related works on unrelated parallel machine scheduling
problems

The OAS problems on unrelated machines could be reduced to
a special case of the classical unrelated parallel machine schedul-
ing problem by introducing a dummy machine to which all re-
jected jobs could be assigned with zero processing time, zero rev-
enue and zero penalty. In the following, we mainly summarize the
most important relevant works. The reader is referred to excellent
researches by Chen and Powell (1999); Fanjul-Peyro et al. (2017);
Fanjul-Peyro and Ruiz (2010, 2011); Pinedo (2008), and Fanjul-
Peyro et al. (2019) for recent trends on deterministic unrelated par-
allel machine scheduling problems.

For unrelated parallel machine scheduling problem,
Van De Vel (1993) developed an effective exact method by
using of surrogate relaxation and duality to minimize makespan.
Chen and Powell (1999) developed a column generation based ex-
act method for identical, uniform, and unrelated parallel machine
scheduling problems to minimize the total weighted completion
time and weighted number of tardy jobs, separately. The proposed
method can solve problems with up to 100 jobs to optimality
within reasonable computation time. Unlu and Mason (2010) com-
pared four different MIP formulations: time-indexed variables
(M1), network variables (M2), assignment- and positional-date
variables (M3) and linear-ordering variables (M4). They showed
that M4 provides relatively shorter computation times.

For the unrelated parallel machine scheduling problems with
SDST, Avalos-Rosales et al. (2015) reported optimal solutions for
instances with up to 60 jobs and 5 machines. Based on a model
similar to that in Avalos-Rosales et al. (2015); Tran et al. (2016) de-

veloped two exact decomposition-based methods, logic-based Ben-
ders decomposition and branch-and-check algorithm. The branch-
and-check algorithm can solve problems with up to 60 jobs
and 5 machines to optimality in less than 30 min. Fanjul-
Peyro et al. (2019) reformulated the problem into a heteroge-
neous multiple traveling salesmen problem and developed sev-
eral valid inequalities. A mathematical-programming-based algo-
rithm was developed, which can obtain solutions close to opti-
mality (deviation less than 1%) for instances with up to 1000
jobs and 8 machines within 3 h. In addition, nine MIP mod-
els were tested by using two commercial IP solvers, CPLEX and
Gurobi. For problems with additional consideration of resources,
Fanjul-Peyro et al. (2017) presented a novel reformulation tech-
nique based on the strip-packing model, and its superiority was
demonstrated.

The above literature review demonstrates that for unrelated
parallel machines, researchers have laid more focus on (i) novel
reformulations or extensions of basic formulations with valid in-
equalities; and (ii) decomposition-based exact methods. In this
study, extensions to two MIP formulations for the OAS problem
on unrelated parallel machines are developed, and a formulation-
based branch-and-bound algorithm is proposed.

3. Mathematical description of OAS problem

In this section, after the problem description, two MIP formula-
tions are presented.

There is a set of jobs denoted by ' = {1, 2, ..., n}, which are all
ready at time zero. There is a set of machines M ={1,2,...,m},
which are all available from time zero. Each job is processed non-
preemptively on exactly one of the machines and the processing
times of jobs on machines are p;; € Z* (where Z denotes the set
of positive integers), corresponding to the time required to process
job j (j € N) on machine i (i e M). If a job j is accepted, its rev-
enue is u; € Z*. Then, it will be decided which machine should be
assigned to process the job. Each job has a due date, denoted by
d;j e Z*. Let (; denote the completion time of job j. We assume
that there is a delay penalty, w; € Z*, for each unit of the comple-
tion time that exceeds d;. The total penalty cost for job j is denoted
by w;T;, where T; = max{0, C; — d;}. There is no penalty or reward
for early delivery. The net revenue for each job j e N is defined
by 7j = uj —w;T;. The schedule is to decide which orders should
be accepted and if accepted, which machines should be assigned
to process those accepted jobs, as well as the sequence of jobs on
each machine. The objective is to maximize the total net revenue.

Two MIP formulations are considered in this study. The
first one is with a dummy job (as described in Avalos-
Rosales et al. (2015) and Tran et al. (2016)), since this may repre-
sent the most efficient MIP for unrelated parallel machine schedul-
ing problems with SDST (Fanjul-Peyro et al., 2019). The second one
is based on linear ordering variables, since in accordance with ex-
perimental evaluations reported in Unlu and Mason (2010), mod-
els with linear ordering variables yield much shorter computation
time compared to other formulations. To the best of the authors’
knowledge, there is no work that compares these two MIP for-
mulations on OAS problems. Hence, we attempted to gain some
insight by performing computational experiments with these two
formulations.

3.1. The MIP with a dummy job
The model is based on the concept of a dummy job in Avalos-

Rosales et al. (2015) and Tran et al. (2016). To formulate the prob-
lem, let

162 S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

e Np: a set of jobs to be scheduled, including a dummy job (de-
noted by 0), with processing time of the dummy job on each
machine being 0, i.e., pjg = 0.

o L: a large enough integer.

Additionally, we define three binary decision variables and two
continuous ones in the following.

o x;: 1if job j is accepted, 0 otherwise.

e y;: 1if job j is assigned on machine i, 0 otherwise.

* Zjj: 1if job k is processed immediately after job j on machine
i, 0 otherwise.

¢ C;: completion time of job j.

o T;: tardiness of job j.

The resultant MIP model is as follows.

[MIP1] max Z= (ujx; —w;T;) (1a)
jeN

s.t. Zyijzxj, VjEN; (]b)
ieM

vi= Yz Vk e No.ie M; (10)
JeNo.j#k

Yij = Z Zijk VjeNo,iGM; (ld)
keNo, j#k

Yio=1, Vie M; (1e)

Ge+L(1=z3) > Ci+py. VieNokeN,j#kieM; (If)

Co=0; (1g)
T; > C;—d;, VjeN; (1h)
G, T; >0, VjieN; (1i)
x;,yij € {0, 1}, VjieN,ieM; (1j)
zij € {0, 1}, Vi keNo,j#kieM; (1k)

The objective function (1a) maximizes the total net revenue,

and can be expressed as Y x;(uj —w;T;). However, since T; =0
JjeN

if job j is rejected, (1a) is equivalent (Emami et al., 2017; 2016; Es-
maeilbeigi et al., 2016; Wang et al., 2013). Constraints (1b) ensure
that only a job is accepted can the job be assigned on a machine.
Constraints (1c) and (1d) enforce that if job j is assigned on ma-
chine i, there must exactly be one job that precedes and succeeds
the processing of job j on machine i. Constraints (1e) assign the
dummy job on each machine. The dummy job is used to repre-
sent the start and end of a sequence of jobs on a machine. Con-
straints (1f) compute the completion time of a job by considering
the job sequence. Constraint (1g) places the dummy job at time O.
Constraints (1h) capture the tardiness of each job. If a given job is
not accepted, the tardiness of that job equals zero in accordance
with the objective function. Constraints (1i)-(1k) give the region of
decision variables.

3.2. The linear-ordering-based MIP model

The second model is based on the linear ordering variables
(Unlu and Mason, 2010). Here, decision variables x;, y;, C;, and T;
are defined as same as those in Section 3.1. Two other decision
variables are defined as,

* zj: 1if job k is processed after job j on machine i (not neces-
sary immediately), O otherwise.
* pj: actual processing time of job j.

The formulation is as follows.

[MIP2] max Z= (ujx;—w;T)) (2a)
JjeN
s.t. Zyl] =Xj, V] [S N; (Zb)
ieM
Zijk + Zigj > Wi Vi) ;yik) -05, VikeN,j#kieM; (2c)
Zijk + Zikj < Oy +¥u) ;yik), VikeN.j#kieM:; (2d)

> piyij = pj. VjieN; (2e)

ieM

Ck+L(1 _Zijk) 2Cj+pk’ V], I(GN,j;ﬁk,iEM; (Zf)

Ci+Llzij+L(2~yij—yu) =2C+pj, VikeN,j#kieM;

(28)
C > p;. VjeN; (2h)
T, > G —d;, VjeN; (21)
p;.Ci.T; = 0, VjeN; (2))
Xj, Vij» Zijk € {0, 1, VikeN.j#kieM; (2k)

The objective function (2a) maximizes the total net revenue.
Constraints (2b) ensure that only a job is accepted can the job be
assigned on a machine. Constraints (2c) and (2d) enforce that only
two jobs j and k are assigned to the same machine i can jobs j
and k have a sequence on machine i. Constraints (2e) calculate the
actual processing time of job j. Constraints (2f)-(2h) compute the
completion time of each job by considering the sequence of jobs.
Constraints (2i) capture the tardiness of each job. Constraints (2j)-
(2k) give the region of decision variables.

4. Enhancement of proposed MIP formulations

The OAS problem on unrelated parallel machines is NP-hard,
since it can be reduced to a classical unrelated parallel machine
problem with a dummy machine (see Appendix), which is known
to be NP-hard in the strong sense (Fanjul-Peyro and Ruiz, 2012;
Fleszar and Hindi, 2018). It is, therefore, necessary to develop en-
hancement techniques to improve the performance of proposed
MIP models.

It is easy to know that there is no idle time between any two
consecutive accepted jobs on a machine. In addition, the MIP mod-
els mentioned above can be enhanced by using some techniques.

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173 163

4.1. Moderating big-M coefficients

In the MIP models, there is a big-M coefficient L within
constraints (1f) and constraints (2f)-(2g), which can be safely
set as Lmax =) jey MaxXjen pjj- In addition, smaller values of
L could be calculated in accordance with the proposition in
Esmaeilbeigi et al. (2016), which states that in an optimum sched-
ule, C;J = VL",—J] +d; is an upper bound for the completion time of

an accepted job j e . Let L, = LC]UJ + Djk, Wherein j, ke N, j#k,
and i € M, and replace L in constraints (1f) and obtain new con-
straints (3) to replace constraints (1f).

Ck+Lijk(]—Zijk)ZCj+pik VieNo,keN,j#k ieM (3)

It can easily be observed that Ly is a suitable value for L because
if zi = 0, the inequality G + |C} | + pi = Cj + py holds. Note that
the reason for using LC}’J instead of C;J is that all parameters are
positive integers.

Similarly, let Ly = I_Csfj + MaXic y Pig: Ly = LGV | + maxicpq pij»
so as to obtain the following two constraints by replacing L within
constraints (2f) and (2g) in the MIP2 formulation.

G+Lp(1—zp) >Ci+p. VikeN, j£kieM (4)

Ci+ Lyjzijk + L2 = yij —yi) =G+ pj. VikeN,j#k iel®)

4.2. Valid inequalities

In this section, some valid inequalities are developed, which can
be appended to the MIP models or can be substituted in certain
constraints in the MIP models.

The following valid bounding inequalities for the completion

Let Aj(denote a set of jobs that dominates each job k on
machine i, i.e.,HA}'(= lpij = Pik- Wj = W, dj = di, U = Uy). The fol-
lowing proposition is proposed.

Proposition 2. Consider a job k with a dominating subset A;{. Ad-

ditionally, consider any job j e A;{u{k} assigned on machine i. If
X Din > C;’ is satisfied for any job j A;{ U {k}, then job

heAlu{k): CUgcy

k cannot be processed on machine i.

Proof. If the above inequalities are satisfied, not all jobs assigned
on machine i can be included in an optimum solution. Since j € A}‘c
dominates k, job k can be moved to another machine or be rejected
to ensure the optimum schedule on machine i. O

Based on Proposition 2, for j e A;'{ U {k}, the following valid in-
equalities can be inserted into the MIP models.

Yo Py =G+ (A =yipdlna, Vie M keN, je AUk}

heAjuik}: ¢ <cV
9)

Proposition 3. There exists an optimum solution, wherein job k can
be assigned on machine i, for jobs j assigned on the same machine
with C]L" not exceeding CU, the total processing time for jobs j (includ-

ing job k) must not exceed C,l{],

Proof. Proof can be realized via contradiction. Assume that there
exists an optimum solution, wherein job k can be assigned on ma-
chine i, for jobs j assigned to the same machine i with Cﬁ.] no ex-
ceeding C,&’, the total processing time for jobs j (including job k)
exceeds C,ﬁ’ . There are two possible cases concerning job k in this
optimum solution.

time and tardiness of each job j e A can be directly added inse (1): Job k is scheduled after all jobs j. In this case, the completion

MIP models Esmaeilbeigi et al. (2016).
T; < LC]L-]_]_dj, VieN (6)

time of job k must exceed Ck’ , which contradicts the optimality
condition in terms of the upper bound of the completion time
for an accepted job.

Case (2): Job k is not scheduled after all jobs j, and that its completion

G=ICV]. VienN (7)
Proposition 1. For two jobs j and k € N, if p;; <py for all machines
ie M, wj<w, dj>dy, uj>u, and if at least one of the inequalities
is strict, then job j dominates job k.

Proof. This is inspired from the dominance rule in
Cordone et al. (2018). Assuming an optimum schedule S con-
tains job k but does not contain job j. Consider the schedule S’
obtained by replacing job k by job j on the same machine, with
job j starting in S’ at the same time as job k starts in schedule
S whilst leaving starting times of all other jobs unchanged. It is
easy to realize that schedule S’ is feasible, since w;<w, d;>dj,
ui>uy (e, Cj/ > (), and p; <pj. The completion time of job j
within schedule S’ does not exceed that of job k within schedule
S, and all other jobs remain unaffected. Since d;>d; and w; <wy,
the total weighted tardiness of schedule S’ does not exceed that of
schedule S. In addition, since u; > uy, the total revenue of schedule
S’ is not smaller compared to that of schedule S. Therefore, S is
also an optimum schedule. O

Proposition 1allows us to define a set of jobs that dominate job
k, and such a set can be denoted by A,. This implies that if job k
is accepted for processing, then any job within the set A, should
also be accepted. Consequently, the following valid inequalities can
be added into the MIP models.

X <Xxj, VijikeN,j#k jeA; (8)

time does not exceed Cl‘(’. In this case, the completion time of at
least one job must exceed the upper bound of the completion
time, since the total processing time of jobs j, whose Cy does

not exceed C,l(’ , exceeds C,E’. This also contradicts the optimal-
ity condition of the upper bound of the completion time for an

accepted job.
This completes the proof. O

Based on this proposition, the following inequalities can be
added into the MIP models.

Z pijyij = CIL<] + (1 = Yit)Limax,
JeN: C;’sC,‘{’

VkeN, ie M (10)

Proposition 4. If there exist two accepted jobs j and k assigned on
machine i with d; <py, pj <Py, and w;>wy, then there is an opti-
mum sequence wherein job k cannot be the first job on machine i.

Proof. This is based on the corollary reported by
Rinnooy Kan (1976), which states that “For single machine
with the objective of total weighted tardiness minimization, if
there are two jobs j and k with d; <Cy, pj<py, and w;>wy, then
there is an optimal sequence in which job j appears before job k”.
If jobs j and k satisfying all these three conditions are accepted
and assigned on machine i, job j appears before job k, thereby
implying that job k cannot be the first job to be processed on
the assigned machine. If job k is the first job on machine i, its
completion time C, = p;,, and the proposition follows. O

164 S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

A set of jobs that dominates job k on each machine can be de-
fined, and such a set can be denoted by W;. The following valid
inequalities can be added into the MIP1 model.

Ziok <1—Yij, VkeN, jeWy, ieM (11)

Proposition 5. (Azizoglu and Kirca, 1999; Liaw et al, 2003) There
exists an optimum schedule, wherein the sum of processing times of
jobs processed on machine i does not exceed

i 1
P = m{Zl}gg}pw 2

jeN
jen hemihai '€

maxphj}, VieM
Based on this proposition, the following inequalities can be
added into the proposed MIP models,

Yjen Piyij <P Yie M (12)

Ci— (1 =Yij)lmax <P™, YV jeN, ieM (13)

Moreover, if C]U > Pim for all i e M, job j can directly be re-
jected.

Additionally, the first Emmons’ rule says: for 1||Zw;T;, there ex-
ists an optimum sequence, wherein job j is processed before job
k if p;<pr, wj=wy, d; < max{dy, ZheBk Pn + Pk} (Emmons, 1969;
Rinnooy Kan, 1976), where B, denotes the set of jobs that must be
processed before job k. If only the simplified version with d; <dy
is considered, the following constraints are proposed and can be
added into the MIP2 model.

Zijk = Zikj»
(14)

With these enhancements, the following two MIP models can
be obtained.

[MIPIV] max Z = (ujx; — w;Tj) (15a)
jen

s.t. constraints (1b) — (1e), (1g) — (1k), (15b)

(3). (6) — (13), (15¢)

[MIP2V] max Z =) (ux;—w;T)) (16a)
jen

s.t. constraints (2b) — (2e), (2h) — (2k), (16b)

(4) - (10), (12) — (14), (16¢)

Based on the computational results provided in Section 6, the
MIP2V model can be observed to be relatively more efficient com-
pared to MIP1V. Consequently, in the formulation-based branch-
and-bound algorithm proposed in the next section, the MIP2V
model is employed for each node.

5. A formulation-based branch-and-bound algorithm

For the exact optimization, a formulation-based branch-and-
bound (B&B) algorithm is designed based on the idea of “divide
and conquer”. The proposed algorithm branches on the number of
accepted jobs n4, which may assume values between 1 and n. Once
the number of accepted jobs, n4, is determined, the problem is re-
duced to an unrelated parallel machine scheduling problem with
the objective of minimizing the total weighted tardiness, which can

ifdjﬁdk, pijgpik andeZWk,ViGM,j,k€N7j7ék

be explored by the formulations mentioned above. A lower and an
upper bound on its best solution are computed. Subsequently, the
MIP2V model with additional cuts related to the lower and upper
bounds is employed to solve the problem at each node. The key
elements of the proposed algorithm are explained as follows.

5.1. Upper bounding

Since the objective function comprises two parts (total revenue
and total weighted tardiness), the problem can naturally be sepa-
rated into two subproblems. The first deals with maximization of
the total revenue while the second minimizes the total weighted
tardiness. The difference between the two corresponding optimum
values is an upper bound.

For a node with n? <n accepted jobs, the upper bound on the
total revenue can be achieved by selecting the maximum revenue
subset of jobs with respect to u; with the constraint of CE.J. This
upper-bound scheme is inspired from the maximum prize reported
in Cordone et al. (2018). It corresponds to solving the following IP
problem.

[IP1] max Z; :Zujxj (17a)
JjeN
S.L. Z Dij¥ij = Ck] + (l _yik)Lmaxs Vke N, ie M;
JeN: C}’SC}(’

(17b)
Z%‘j:xjv VjieN; (17¢)
ieM
2_xi=n (17d)
JjeN
xj. yij €{0.1}, VieN,ieM; (17e)

Constraints (17b) require that for each machine, the total pro-
cessing time of all accepted jobs, for which Cﬁ.’ precedes CU, does

not exceed C}(’. Constraints (17c) ensure that only an accepted job
can be assigned on a machine. Constraint (17d) ensures that there
are n? accepted jobs.

For a node with n? accepted jobs, the lower bound of the
total weighted tardiness can be achieved by solving an assign-
ment problem. This lower-bound scheme is based on the idea in
Azizoglu and Kirca (1999) and Liaw et al. (2003).

Let 51% =1, if job j is scheduled in the tth position on machine

i, 0 otherwise. Let Tls = max(ffj —d;,0) denote an estimate of the
Eardiness of job j scheduled in the tth position on machine i. If
Cl.fj < Cl.fj for all t, i and j (where C,?j is the actual completion time
of job j in the tth position on machine i), the objective value of
the following IP2 model is the lower bound of the total weighted

tardiness for a node with n# accepted jobs.

(IP2] min Z, = > w;TiB} (18a)
jeNieMteN
st Y >y ph=n, (18b)
ieM jeN teN
> o Bi<1, VteN,ie M; (18¢)
jeN
i e{0,1}, VieN,teN,ieM; (18d)

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173 165

Constraint (18b) enforces that there are n* accepted jobs. Con-
straints (18c) guarantee the assignment of at most one job at each
position on each machine. The following definition of ij satisfies

the requirement of C,Fj < Cl.fj foranyte N, ie M and jeN.

ifS,-j <t

t
2P
=1

t
D pi+py ifS;>t

I=1

where pj; denotes the processing time of the Ith job when all n
jobs are processed on machine i in the shortest processing time
(SPT) order, and S;; denotes the position of job j in this ordering.

For each node n#, an upper bound can be obtained by sepa-
rately solving the IP1 and IP2 models for Z; and Z,, respectively.
The upper bound can be expressed as UB,x = Z; — Z,.

For the root node (for which n? is not fixed), the IP1 model
can be solved without constraint (17d) to obtain Z; while the IP2
model can be solved by changing constraint (18d)-(19). The upper
bound, thus obtained, can be expressed as UBA = Z; — Z,.

WL (19

ieM jeN teN

5.2. Lower bounding

5.2.1. A lower bound based on a heuristic method

A constructive heuristic method can be designed for each
node of nA within the branch-and-bound tree, as described in
Algorithm 1. The basic idea of the method is to sort jobs according

Algorithm 1 The Constructive Heuristic Method.
1: Compute C;’ of each job j, j e N. Let iter = 0 and Am; = 0 for
allie M.
2: Sort C;’ in a non-decreasing order. Let C[Uj] denote C}J of jth job
in the order, and let p;;) denote the processing time of jth job
assigned on machine i.
3. while iter < n do
4: Set j=iter and compute p;; +Am; and i € M, and get ma-
chine i with the argmin{pj; +Am;}. Let temp = py(;; +
Am,-/.
if temp > LC[UﬂJ then
Job [j] is not accepted.

else
Job [j] is assigned on machine i’.
Amy is updated as py(j) +Amy.

10: The net revenue of job [j], 7rj; = uf;; — wy;y max{0, Am; —

dijj} is computed.

11: end if

12: iter =iter + 1.

13: end while

14: Obtain the total net revenue)", 77j; and output the objective
value, which is denoted by F,.

15: Sort jobs by the weighted shortest processing time (WSPT) first
order on each machine, and compute and output the objective
value, which is denoted by F.

16: Obtain the lower bound LBy = max{F,E}.

© % N v

to a non-decreasing order of C%’ (line 2) and subsequently assign
each job to the first available machine (line 4). If the completion
time exceeds its LC]‘.’J, the job gets rejected (lines 5 and 6); other-
wise, the job is scheduled (lines 7-11).

In line 2 of Algorithm 1, if we change the non-decreasing order

by V;l—fd instead of C}J , another lower bound LB, can be obtained.
J7I

Let LB = max{LB;, LB,}.

5.2.2. A formulation-based lower bound

The decision variables z;;, in the MIP2V model can be relaxed to
any real-valued number between 0 and 1, i.e,, 0<z <1, thereby
resulting in the relaxed version of the MIP2V model, which is de-
noted by MIP2"R. Once the relaxed MIP2"R model is solved, the
corresponding values of £; and y;; can be simultaneously obtained.
Subsequently, using known values of X; and y;; and turning z
back into a binary variable, the MIP2V model can be solved to ob-
tain a lower bound, which is denoted by LBR.

5.3. The complete procedure of branch-and-bound algorithm

The complete procedure of the proposed branch-and-bound al-
gorithm is shown in Algorithm 2.

Algorithm 2 The formulation-based branch-and-bound (B&B) al-
gorithm.

1: Obtain the lower bound at the root node. Let LB* denote
the best incumbent lower bound. It can be initialized with
the constructive heuristic method (described in Section 5.2.1)
and the formulation relaxation (in Section 5.2.2) and LB* =
max{LBH, LBR}.

2: Obtain the upper bound at the root node. Let UB* denote the
best upper bound. It can be obtained by using methods de-
scribed in Section 5.1. Let UB* = UBA.

3: if LB* = UB* then

4; Terminate and return LB*.
5
6

. else

Branching. Each subproblem concerning the branch-and-

bound tree can be indicated by setting the variable n =

{1,2,---,n}. For each node of the branch-and-bound tree, it

is processed as follows.

7. o Obtain the upper bound at a node. For each node n4,
its upper bound can be obtained by using the method de-
scribed in Section 5.1 and denoted by UB 4. If UB, s < LB,
the node is pruned by optimality; else, UB, s is updated as
min{UB, 4, UB*} for this node.

e Obtain the lower bound at a node. The lower
bound for each node n? can be obtained with meth-
ods described in Sections 5.2.1 and 5.2.2, and LB4 =
max{LBﬁA,LB;’A}. If LB4 > LB*, update the lower bound

LB, as max{LB*, LB} for node n.

 Directly solve a node. If LB 4 = UB,4 for node n#, LB* =
max{LB,, LB*}, and the problem related to the node need
not be explored further.

e Solve the subproblem at a node. If node n? is not
pruned, solve the MIP2V model with two additional con-
straints: (1) Z>LBx + 1 and (2) Z < UB4 — 1. If feasible,
the obtained solution is denoted by LBy, and the best in-
cumbent lower bound is updated as LB* = max{LBy, LB*}.
If not, the node n# is pruned by bound.

8: end if
9: Terminate and return LB*.

We provide an example to illustrate the computation process
involved in the proposed algorithm.

Example 5.1. There are n = 10 jobs and m = 2 machines. All job-
related information, including py, u;, w;, d;, and LC]L.’J is presented
in Table 1.

166 S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

Table 1
The job-related information for the example
problem.
No. py py w w d (V]
1 3 5 4 9 5 5
2 3 5 9 4 14 16
3 1 1 3 3 12 13
4 4 3 10 1 7 17
5 4 5 10 8 5 6
6 4 5 9 7 10 1
7 3 2 3 8 5 5
8 4 5 10 10 6 7
9 3 3 4 7 10 10
10 1 4 2 5 12 12

Using the heuristic method described in Section 5.2.1, one
can obtain LB" =43, and using the MIP2YR formulation in
Section 5.2.2, one can obtain LBR = 41. Thus, LB* = max{43, 41} =
43,

Using the upper bounding method described in Section 5.1, one
can obtain UB* = UBA = 61.

e For nA={1,---,10}, the corresponding value of UBa =
{10, 20, 30, 39, 48, 52, 56, 59, 61, —}; since UB, < LB* for nt =
1,2, 3,4, these nodes are pruned by optimality. For the node
with n4 = 10, the IP1 model with bounds LB* = 43 and UB* =
61 is not feasible (UBjy is denoted by “-"); therefore, node
n# =10 is pruned by bound.

« Subsequently, nodes n* = 5,6, 7,8,9 are explored.

(1) For the node n4 = 5, LB5 = 43 and UBs5 = 48. Based on these,
LBy = 47 is obtained by solving the MIP2V model with LBs
and UBs. Correspondingly, the best incumbent lower bound
is updated as LB* = max{47,43} = 47.

(2) For the node n* = 6, LBg = 48, UBg = 52 and LBy = 50, then,
LB* is updated as LB* = 50.

(3) For the node n® = 7, LB; = 50, UB; = 56 and LBy = 52, then,
LB* is updated as LB* = 52.

(4) For the node n* = 8, LBg = 52, UBg = 59 and LBy = 53, then,
LB* is updated as LB* = 53.

(5) For the node n® = 9, LBy = 53 and UBg = 61. However, with
these additional constraints: (1) > x;=9; (2) Z> LBy +1;

JjeN
and (3) Z <UBg — 1, the MIP2V model is infeasible; conse-
quently, the node is pruned by bound.

o The optimum objective value is obtained, LB* = 53.

Alternatively, if the branching on n# is not increased by
unity at each step, a parameter b can be introduced to conduct
branching using A < n? < min{A+b—1,n}, where A =1,1+b,1+
2b, .- ,min{1 + kb,n} with k= [n/b]. In this case, constraints
(17d) and (18b) should be correspondingly revised.

For better illustration, consider Example 1 with b= 3. Nodes
can be defined as 1<n<3, 4<nf<6, 7<n?<9, and n? = 10. It
is not clear how exactly does the value of b affect the efficiency of
solving the MIP2V model in CPLEX. Thus, different b values could
be tested to facilitate performance comparison. As described in
Section 6, b =1 performs best compared to b=5 and b = 10.

6. Computational experiments

To evaluate the performance of the MIP models, the enhance-
ment techniques, and the formulation-based branch-and-bound al-
gorithm, an extensive computational analysis is conducted. Seven
methods, i.e., the MIP1 method described in Section 3.1, the MIP2
in Section 3.2, the MIP1V and MIP2V in Section 4 solved with the
IP solver CPLEX, the B&B algorithm with b= 1,5, 10 (denoted as
“BB1”, “BB5”, and “BB10”, respectively), are used to test problem

instances to compare the performance of the models with CPLEX
as well as that of enhancement techniques and the proposed B&B
algorithm. In the MIP1 and MIP2 models, Lmax is used instead of
any large integer L. A time limit of 1800 CPU seconds is used for
each instance.

The MIP models and the B&B algorithm are coded in the C++
programming language in Xcode 8.3.3, and run on MacOS ma-
chine with a 3.2GHz processor and 8GB memory. CPLEX 12.6
is used as the IP solver with its configuration being set to de-
fault. The results are available online at https://pan.baidu.com/s/
1N_vWO3iM1gccmW9ayyuQOg#list/path=%2F.

6.1. Data generation

Sixteen instance classes are generated with different values of n
and m. n takes from the set {20, 30, 40, 50} and m takes from the
set {2, 3, 5, 10}. Each class with fixed values of n and m contains 9
subclasses, and each subclass has 5 randomly generated instances.

For each subclass, random instances are generated as follows
such that instances with different characteristics can be studied.
Processing times are randomly chosen from a discrete uniform dis-
tribution inside the interval [1, 100], i.e., p; ~U[1, 100], ie M, j e
N. The due dates of jobs d; are generated with a discrete uniform
distribution inside the interval [P(1 — TF —R/2),P(1 — TF +R/2)],
where P = [iem Xjen p,-j/mzj, and parameters TF and R take val-
ues inside the set {0.2, 0.6, 1.0}, thereby yielding 9 subclasses.
The parameter TF represents the tardiness factor, which controls
average due-date values and parameter R controls the relative
range of due dates. Since it is possible that P(1 — TF —R/2) < 0,
max{0, P(1 — TF — R/2)} is considered as the lower limit of the in-
terval when generating instances randomly. Generating due dates
from such kind of interval follows the methods described in Liaw
et al. (2013), Esmaeilbeigi et al. (2016)as well as those in the OR
library (Cordone et al., 2018). For each fixed value of TF and R, 5
instances are randomly generated. Both the delay penalty w; and
revenue u; of jobs are generated with a discrete uniform distribu-
tion inside the interval [1, 10].

6.2. Computational results

Table 2 summarizes results of the above seven methods for the
instances tested with a combination of TF = 0.2 and R = 0.2. The
first two columns of the table represent the number of machines m
and jobs n, respectively. The next seven columns give average val-
ues of the objective values for five instances (denoted by “Avg. Z")
corresponding to each of the methods MIP1, MIP2, MIP1V, MIP2V,
BB1, BB5, and BB10, respectively. The table also indicates within
parentheses the number of instances that cannot be solved to op-
timality within the time limit of 1800 CPU seconds. If certain in-
stances could not be solved to optimality within the time limit, the
current best objective value is chosen as the result, thereby lead-
ing to smaller average objective values for some methods, as in the
case of “Avg. Z” values of MIP1 and MIP2 for the case with n =50
and m = 2 in Table 2.

Tables 3-10 list average computation times for the seven meth-
ods for instances with other different combinations of TF and R.
Average objective values are not listed in these tables, and the
reader is referred to the above link for these values. In these ta-
bles, the first two columns list values of m and n while the next
seven columns list average computation times of the five instances
(denoted by “Avg. Time (s)”) for each method. If an instance could
not be solved to optimality within the specified time limit, 1800 s
are considered as the computation time for that instance. Bold-
faced characters have been used to highlight the best method in
terms of the average computation time. Fig. 1 depicts a compari-

https://pan.baidu.com/s/1N_vWO3iM1gccmW9ayyuQOg#list/path=%2F

Table 2

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

Summary of results for computation time and objective value with TF = 0.2 and R =0.2.

m n Avg. Z Avg. Time (s)
MIP1 MIP2 MIP1V ~ MIP2V BB1 BB5 BB10 MIP1 MIP2 MIP1V ~ MIP2V BB1 BB5 BB10
2 20 106.0 106.0 106.0 106.0 106.0 106.0 106.0 69.4 2.5 0.5 0.5 0.7 0.8 0.9
30 1670 167.0 167.0 167.0 167.0 167.0 167.0 539.1 320.6 2.7 3.8 14 1.6 1.7
40 2238 2239 224.0 224.0 2240 2240 224.0 1017.8 1813 3.9 321 4.9 5.2 5.3
50 226.1(4*) 226(4*) 227.7 227.7 2277 2277 227.7 1763.3 1269.7 337 274.7 72 77 8.0
Average 8474 4435 10.2 77.8 3.6 3.8 4.0
3 20 1104 110.4 110.4 110.4 110.4 110.4 110.4 8.9 2.2 0.5 0.7 0.6 0.7 0.8
30 1628 162.8 162.8 162.8 162.8 162.8 162.8 175.4 77 2.0 3.1 11 1.2 13
40 2249 2249 2249 224.9 2249 2249 2249 736.7 871 7.5 251 3.6 4.0 43
50 267.8(1*) 267.4(2*) 268.0 268.0 268.0 268.0 268.0 12829 961.6 8.6 308.5 4.5 5.0 5.3
Average 551.0 264.6 4.6 843 25 2.7 29
5 20 1139 113.9 113.9 1139 113.9 113.9 113.9 5.8 23 0.6 0.8 0.6 0.7 0.8
30 1709 170.9 170.9 170.9 1709 1709 170.9 57.8 171 22 2.6 1.6 1.8 2.0
40 2206 220.6 220.6 220.6 2206 2206 220.6 197.1 58.2 9.9 20.2 2.6 31 34
50 283.0 283.0 283.0 283.0 283.0 283.0 283.0 664.4 386.5 30.5 78.1 5.1 5.8 6.3
Average 2313 116.0 10.8 254 2.5 2.8 31
10 20 1105 110.5 110.5 110.5 110.5 110.5 110.5 11 0.7 0.4 0.7 0.9 11 12
30 1683 168.3 168.3 168.3 168.3 168.3 168.3 42.6 4.7 23 41 26 3.0 34
40 2182 218.2 218.2 218.2 2182 2182 218.2 165.7 19.9 85 174 6.0 71 7.8
50 276.0 276.0 276.0 276.0 276.0 276.0 276.0 8315 168.2 55.3 53.5 126 149 163
Average 260.2 48.4 16.6 18.9 5.5 6.5 71
Overall Average 4725 2181 10.6 51.6 35 4.0 43
*Number of Instances that cannot be solved to optimality within the time limit of 1800 CPU seconds.
Table 3
Summary of results for computation time with TF = 0.2, R = 0.6.
m n Avg. Time (s)
MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10
2 20 339 0.8 1.2 0.4 0.5 0.6 0.6
30 264.5 121 8.1 23 11 13 14
40 689.1 355 207.6 18.7 3.2 34 3.5
50 11849 3851 6638 521 9.1 9.6 10.0
Average 543.1 1084 2202 18.4 35 3.7 39
3 20 11.7 1.2 0.6 0.5 0.4 0.4 0.5
30 70.4 5.9 6.0 35 1.0 11 12
40 3273 614 494 31.2 2.8 3.1 34
50 920.9 319.8 188.7 107.4 4.0 44 4.7
Average 3326 97.1 61.2 35.7 21 2.3 25
5 20 5.7 1.8 0.7 0.8 0.7 0.9 0.9
30 61.9 114 46 3.5 19 23 2.5
40 4114 438 36.3 20.5 34 4.0 4.5
50 4270 1725 823 83.1 6.2 7.3 8.0
Average 226.5 574 31.0 27.0 31 3.6 4.0
10 20 14 1.0 0.5 0.8 11 14 1.6
30 26.7 4.6 2.9 4.5 31 3.7 4.2
40 145.3 18.8 432 18.9 6.6 7.8 8.7
50 719.4 1585 2117 65.3 170 196 213
Average 2232 45.7 64.6 224 7.0 8.1 9.0
Overall Average 3313 771 94.2 25.8 39 44 4.8
1,400
o)
@ 1,080
@
£ B MIP1
;‘_: H MIP2
=] L MIP1V
£ 700 B MiP2v
: e
8 B BBi10
g
§ 350
I
0
0202 0206 0210 0602 0606 0610 1002 1006 1010

Combination of TF-R

Fig. 1. Comparison between average computation times of methods for combinations of TF — R.

167

168 S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

Table 4
Summary of results for computation time with TF =0.2 and R=1.0.
m n Avg. Time (s)
MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10

2 20 17.8 0.7 13 0.3 0.4 0.4 0.5
30 421.0 14.1 75.9 17 11 12 13
40 10483 202 675.2 221 2.7 3.0 3.1
50 1251.5 5400 12262 516 72 75 77
Average 684.7 1438 4947 18.9 29 3.0 32

3 20 44 11 0.8 0.4 0.4 0.5 0.5
30 2208 5.5 16.9 29 1.0 11 1.2
40 926.3 50.9 386.2 35.0 21 2.4 2.5
50 12756 166.6 442.0 163.6 5.0 5.7 6.1
Average 606.8 56.0 2115 50.5 21 24 2.6

5 20 2.5 13 0.5 0.7 0.5 0.6 0.7
30 51.2 79 10.9 2.0 14 1.6 1.7
40 2218 36.0 56.7 16.8 2.8 3.2 3.5
50 789.1 1939 263.0 82.5 4.8 5.5 6.0
Average 266.2 59.8 82.8 25.5 2.4 2.7 3.0

10 20 13 0.7 0.3 0.7 0.8 1.0 11
30 18.0 42 21 29 2.3 2.7 3.0
40 126.1 275 322 10.0 4.7 5.5 6.1
50 627.9 101.6 175.6 30.1 164 187 204
Average 1933 335 52.6 10.9 6.1 7.0 7.7

Overall Average 4377 733 2104 26.5 34 3.8 41

Table 5
Summary of results for computation time with TF =0.6 and R=0.2 .
m n Avg. Time (s)
MIP1 MIP2 MIP1V ~ MIP2V BBl BB5 BB10

2 20 1800.1 464.7 143.9 1.6 3.2 3.6 3.8
30 1800.0 1801.0 62.5 22.6 12.5 13.6 15.0
40 1800.0 1800.0 1800.0 1134.1 37.8 38.9 40.1
50 1800.0 1800.0 1095.8 1084.7 160.9 165.2 168.8
Average 18000 14664 775.6 560.8 53.6 55.3 56.9

3 20 16246 125 5.8 2.4 7.8 8.9 9.8
30 1800.1 1800.0 661.8 602.0 420.6 427.8 437.7
40 1800.0 1800.0 1151.0 1502.2 881.9 896.4 903.3
50 1800.0 1800.0 1800.0 1800.0 1355.0 13594 1365.7
Average 1756.2 1353.1 904.7 976.7 666.3 673.1 679.1

5 20 470.9 2.7 1.9 0.8 3.1 3.5 3.7
30 12251 451 29.5 275 276 281 284
40 17793 2315 107.5 504.5 43.8 44.5 45.0
50 1800.1 1606.7 348.1 14408 353.0 355.2 356.0
Average 13189 4715 121.8 4934 106.9 107.8 108.3

10 20 2.4 0.7 0.2 0.2 0.9 11 13
30 13.5 53 1.6 14 2.7 33 3.8
40 159.3 83.7 224 7.7 7.6 9.0 10.0
50 1390.8 562.2 202.2 73.8 252 289 313
Average 3915 163.0 56.6 20.8 9.1 10.6 11.6

Overall Average 1316.6 863.5 464.6 512.9 209.0 211.7 214.0

son between the average computation times of the seven methods
for problem instances with different combinations of TF and R.

Based on observed results, the key observations could be sum-
marized as below.

(1) Instances with TF = 0.6 are relatively harder to be solved com-
pared to others irrespective of the method employed. A possible
cause of this is that if TF is small, fewer jobs (sometimes even
no job) are expected to be rejected, and the problem is then
directly reduced to the unrelated parallel machine scheduling
problem. In contrast, if TF is large, more jobs are expected to
be rejected owing to tighter due dates, thereby increasing the
ease of solution. However, there exists no clear trend in terms
of R values relating to the ease or difficulty with which a solu-
tion can be obtained.

(2)

(3)

The performance of formulations is more-or-less related to the
ratio of the number of jobs to number of machines (i.e., n/m).
In general, the number of jobs n most affects the performance
of models, and the value of TF — R affects the performance of
models more than that of the n/m ratio. With a fixed combina-
tion of n and TF — R, it can be seen that when the ratio n/m is
small (say, less than 10), the instance is relatively easier to be
solved using formulations. This coincides with observations re-
ported by Unlu and Mason (2010) and Chen and Powell (1999).
It seems that there exists a certain threshold value for this ra-
tio. However, it is hard to determine the exact value of this
threshold.

The use of enhancement techniques improves the performance
of the two MIP formulations in terms of average computa-
tion time. On average, the MIP1 model is improved by 72.6%
in efficiency through use of enhancement techniques, whereas

(5

=

)

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

169

Table 6
Summary of results for computation time with TF = 0.6 and R=0.6 .
m n Avg. Time (s)
MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10
2 20 1800.0 51 111 13 2.5 2.8 29
30 1800.0 761.7 930.8 24.0 7.6 8.1 8.5
40 1800.0 1800.3 1800.2 348.6 85.3 98.4 100.9
50 1800.0 1800.0 723.0 1089.8 565.1 565.7 566.2
Average 1800.0 1091.8 866.3 365.9 165.1 168.8 169.6
3 20 1083.3 2.7 2.6 0.8 1.8 19 21
30 1800.1 86.2 1118.1 16.1 12.8 13.2 13.5
40 1800.0 13244 1800.1 614.4 145.7 148.6 148.9
50 1800.0 1788.7 1791.6 8574 4764 4773 4779
Average 16209 800.5 11781 3722 159.2 1603 160.6
5 20 4.7 2.0 0.5 0.4 0.8 0.9 1.0
30 889.7 14.9 3725 4.4 8.7 9.4 9.8
40 1137.9 104.9 825 17.8 10.2 10.7 111
50 1800.0 514.2 12214 564.5 38.2 39.5 40.4
Average 958.1 159.0 419.2 146.8 14.5 15.1 15.6
10 20 14 0.6 0.2 0.1 1.0 12 14
30 8.0 3.6 12 11 31 35 3.8
40 74.5 143 8.1 39 4.2 51 5.6
50 721.7 256.8 127.7 19.9 8.9 10.6 11.7
Average 2014 68.8 343 6.3 43 5.1 5.6
Overall Average 11451 530.0 624.5 2228 85.8 873 87.9
Table 7
Summary of results for computation time with TF =0.6 and R=1.0.
m n Avg. Time (s)
MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10
2 20 2041 19 4.8 0.6 0.8 0.9 1.0
30 1087.9 8.1 473.6 15 13 15 1.6
40 1594.7 1125 1495.8 234 4.1 4.4 4.6
50 1800.0 559.6 1800.0 71.7 244 26.2 275
Average 1171.7 170.5 943.6 243 7.7 8.3 8.7
3 20 74.8 1.6 1.2 0.5 11 12 13
30 414.9 33 7.4 1.7 14 1.6 1.8
40 1093.6 38.9 3921 10.5 6.2 6.6 6.9
50 1800.0 876.9 989.7 94.7 7.6 9.1 9.8
Average 845.8 230.2 347.6 26.9 4.1 4.6 5.0
5 20 24 11 0.3 0.4 1.5 1.8 1.9
30 3929 6.0 33 1.6 34 3.8 41
40 923.6 47.6 405.6 6.9 9.4 11.2 11.9
50 795.2 140.3 824 18.8 11.8 12.6 13.0
Average 528.5 48.8 1229 6.9 6.5 74 7.7
10 20 3.6 0.8 0.2 0.3 0.8 1.0 12
30 9.3 2.8 0.8 11 4.8 5.7 6.3
40 16.5 9.0 3.6 51 6.2 7.0
50 406.9 38.8 311 10.0 9.3 114 12.9
Average 132.3 14.7 10.3 3.8 5.0 6.1 6.9
Overall Average 669.6 116.0 356.1 15.5 5.8 6.6 71

the MIP2 model demonstrated a 73.4% improvement in effi-
ciency, as described in Table 11. In the table, Iyyp1 (%) = (tpmip1 —
tvip1y) /tvipr x 100%, and IMIP2(%) is similarly defined.

Overall, in terms of average computation time, the MIP2 model
with CPLEX performs better compared to MIP1 with CPLEX.
Similarly, on average, MIP2V performs better compared to
MIP1V. However, for several combinations of m and n, the
MIP1V model runs faster compared to MIP2V, especially for the
instance with TF = 0.2 and R = 0.2. Such a behavior is highly
unexpected on the part of the authors, and a possible reason
for this is believed to be that MIP1V may perform better com-
pared to MIP2V with regard to solving unrelated parallel ma-
chine scheduling problems with the objective of minimizing the
total weighted tardiness, since with TF =0.2 and R=0.2, al-
most all jobs are expected to be accepted.

The proposed B&B algorithm is capable of solving all instances
to optimality within the specified time limit of 1800 CPU

(6)

seconds. Relatively, BB1 performs best in terms of the aver-
age computation time. However, with regard to formulations,
namely MIP1, MIP2, MIP1V and MIP2V, not all instances can be
solved to optimality within the same time limit, as described in
Table 12 for the summarized number of instances that cannot
be solved to optimality within the time limit.

The proposed B&B algorithm outperforms other methods for
all instances with TF =0.2 and TF = 0.6. On average, it saves
at least half the computation time compared to MIP formu-
lations in combination with enhancement techniques (for in-
stances with TF = 0.6 and R = 0.2). However, for the instances
with TF = 1.0, the MIP2V model performs better compared to
the three B&B algorithms in terms of the average computation
time. Specifically, on overall average, it takes the MIP2V around
1 CPU seconds to obtain optimum solutions for the instances
with TF = 1.0, while it takes three B&B algorithms around 10
CPU seconds.

170

Table 8

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

Summary of results for computation time with TF =1.0 and R=0.2 .

m n Avg. Time (s)
MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10
2 20 0.2 0.1 0.1 0.1 0.2 0.3 0.3
30 0.5 0.4 0.1 0.1 0.6 0.7 0.8
40 34 0.8 0.1 0.1 3.5 4.3 4.8
50 1574.4 6.6 12 0.8 9.8 114 123
Average 394.6 20 0.4 0.3 35 4.2 4.6
3 20 0.6 0.3 0.1 0.1 0.4 0.5 0.6
30 1.6 0.6 0.1 0.1 18 2.2 2.5
40 84.7 21 0.2 0.2 6.4 7.6 8.7
50 552.3 3.5 8.5 0.4 15.2 18.6 20.9
Average 159.8 1.6 22 0.2 6.0 7.2 8.2
5 20 1.8 0.5 0.1 0.1 0.3 0.4 0.5
30 35 1.0 0.1 0.1 31 3.7 4.1
40 10.6 20 0.1 0.1 6.7 8.0 8.7
50 65.5 41 0.2 0.2 231 26.8 28.2
Average 204 19 0.1 0.1 8.3 9.7 10.4
10 20 7.7 0.8 0.5 0.1 0.6 0.7 0.9
30 10.3 13 4.4 0.1 4.8 5.9 6.5
40 48.7 5.6 0.3 0.3 21.8 26.1 28.2
50 589.5 7.2 0.1 0.1 23.7 28.7 30.8
Average 164.1 3.7 1.3 0.2 12.7 154 16.6
Overall Average 184.7 2.3 1.0 0.2 7.6 9.1 9.9
Table 9
Summary of results for computation time with TF =1.0 and R=0.6 .
m n Avg. Time (s)
MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10
2 20 0.9 0.3 0.1 0.1 0.3 04 0.5
30 495.4 0.8 0.4 0.2 0.8 0.9 1.0
40 1800.0 6.0 8.3 0.7 19 22 24
50 1446.6 218.6 799.6 9.0 10.9 12.6
Average 935.7 56.4 202.1 25 35 4.0 13
3 20 0.8 0.5 0.1 0.1 0.6 0.7 0.8
30 679.1 15 0.5 04 1.6 19 21
40 872.6 32 0.7 0.6 6.9 8.2 91
50 748.9 13.2 26.9 2.8 119 14.6 16.4
Average 575.4 4.6 71 1.0 53 6.4 71
5 20 1.7 0.6 0.1 0.1 0.4 0.5 0.5
30 16.2 22 0.3 0.4 25 29 33
40 729.1 6.2 1.6 0.9 73 8.5 9.3
50 888.2 19.1 1044 2.7 65.5 729 80.0
Average 408.8 7.0 26.6 1.0 18.9 21.2 233
10 20 4.9 0.5 3.2 0.1 1.0 13 14
30 15.9 1.5 0.1 0.1 3.2 3.9 44
40 435 3.7 0.1 0.2 8.7 10.4 113
50 683.5 7.8 0.3 0.3 18.4 21.7 23.6
Average 187.0 34 0.9 0.2 7.8 93 10.2
Overall Average 526.7 17.9 59.2 1.2 8.9 10.2 111

7. Conclusions

In this paper we have studied an order acceptance and schedul-
ing problem on unrelated parallel machines, which has not yet
been thoroughly explored in available literature. Two different
formulations that can be solved with general-purpose IP solvers
have been developed. Formulation tightening and valid inequalities
have also been proposed to improve the efficiency of the formula-
tions. A formulation-based branch-and-bound algorithm has been
developed based on the idea of “divide and conquer”, wherein
the branching determines how many jobs should be accepted fol-
lowed by addressing of the unrelated parallel machine schedul-
ing subproblem with the minimization of the total weighted tar-
diness. Extensive computational experiments have been conducted
on various instances to compare the performance of developed
formulations, formulations with valid inequalities, and the pro-
posed formulation-based branch-and-bound algorithm. The results

demonstrate that the enhanced formulations perform much better
compared to basic ones in terms of the average computation time.
The proposed branch-and-bound algorithm is observed to be much
faster compared to other methods in nearly all instances, and it
could efficiently solve all problem instances with values of n and
m up to 50 and 10, respectively, to optimality in less than 1800
CPU seconds.

The work could be extended in several research directions.
First, more dominant rules, including other Emmon’s rules, could
be explored and transformed into formulation constraints. Sec-
ondly, other practical constraints, such as a renewable-resource
constraint, and some mandatorily accepted jobs due to long-term
loyal customers, could be considered, thereby making the prob-
lem to be more practice-oriented. Additionally, effective heuristic
and/or meta-heuristic methods could be developed to tackle large-
sized problems. Lastly, since the OAS problem can be reduced to
a special unrelated parallel machine scheduling problem with a

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

Table 10

171

Summary of results for computation time with TF = 1.0 and R = 1.0.

m n Avg. Time (s)
MIP1 MIP2 MIP1V MIP2V BB1 BB5 BB10
2 20 0.4 0.1 0.1 0.1 0.2 0.2 0.3
30 2.9 0.6 0.3 0.2 0.3 0.4 0.5
40 729.4 2.6 361.0 0.9 35 4.0 4.3
50 784.7 313 235 2.7 5.7 6.5 71
Average 379.4 8.7 96.2 1.0 24 2.8 31
3 20 1.5 0.5 0.1 0.1 0.4 0.6 0.7
30 114 1.0 0.5 0.4 15 1.8 2.0
40 122.7 2.0 2.7 0.6 25 2.8 31
50 405.4 5.9 24 11 5.7 6.6 7.2
Average 1353 24 14 0.6 25 3.0 33
5 20 1.5 0.7 11 0.1 0.4 0.5 0.6
30 6.5 14 0.3 0.4 32 3.8 4.1
40 63.9 4.4 23 12 8.4 10.2 111
50 458.7 6.9 2.7 1.8 121 14.2 15.3
Average 132.7 34 1.6 0.9 6.0 7.2 7.8
10 20 4.6 1.0 0.1 0.1 0.6 0.8 1.0
30 10.8 13 0.1 0.1 2.0 24 2.7
40 106.5 53 0.4 0.5 13.7 16.7 18.5
50 2477 7.0 0.8 1.0 4.2 5.5 6.4
Average 924 3.7 0.4 0.4 5.1 6.4 7.2
Overall Average 1849 4.5 249 0.7 4.0 4.8 53
Table 11 Appendix

Efficiency of enhancement techniques for MIP formulations.

Avg. Time (s) Improvement in Time

TF =R tupr tmip2 tmipty tvip2v Iapr (%) Inip2 (%)
0.2-0.2 472.5 2181 10.6 51.6 97.8 76.3
0.2-0.6 3313 771 94.2 258 71.6 66.5
0.2-1.0 437.7 73.3 2104 26.5 51.9 63.9
0.6-0.2 1316.6 863.5 464.6 512.9 64.7 40.6
0.6-0.6 1145.1 530.0 624.5 222.8 45.5 58.0
0.6-1.0 669.6 116.0 356.1 15.5 46.8 86.6
1.0-0.2 184.7 23 1.0 0.2 99.5 91.3
1.0-0.6 526.7 179 59.2 1.2 88.8 933
1.0-1.0 184.9 4.5 249 0.7 86.5 84.4

Average 72.6 73.4

Table 12

Number of instances that cannot be solved to optimality
within the specified time limit.

TF — R MIP1 MIP2 MIP1V MIP2V BB1
0.2-0.2 5 6 0 0 0
0.2-0.6 2 0 1 0 0
0.2-1.0 2 1 1 0 0
0.6-0.2 55 34 18 20 0
0.6-0.6 44 13 20 0 0
0.6-1.0 22 2 13 1 0
1.0-0.2 5 0 0 0 0
1.0-0.6 18 0 1 0 0
1.0-1.0 2 0 0 0 0
Average 17.2 6.2 6.0 23 0.0

dummy machine, future efforts could be dedicated towards ex-
ploring the use of various decomposition-based methods, including
column generation and Benders decomposition.

Acknowledgment

The authors would like to thank the anonymous referees for
their constructive comments which contributed to improve the
quality of this paper. This work was supported by the National
Science Foundation of China (NSFC) with Grant No. 71571135. The
work was also supported by the Fundamental Research Funds for
the Central Universities.

The OAS problem on unrelated parallel machines can be re-
duced to a special case of the classical unrelated parallel machine
scheduling problem by introducing a dummy machine to which
all rejected jobs can be assigned with zero processing time, zero
revenue and zero penalty. To compare the performance of formu-
lations with and without a dummy machine, the MIP1 and MIP2
models could be reformulated as follows.

Here, a dummy machine My has been introduced, and the MIP1
has been reformulated to the following MIP1-MO model. To this
end, notations additional to those defined in the original MIP1
model have been introduced below.

e My: set of machines, including the dummy machine. The
dummy machine is indexed by i = 0.

e M: set of machines without the dummy machine, i.e., M=
{1,---,m}.

* yoj = 1, if job j is assigned on the dummy machine (ie, it is
rejected), O otherwise.

[MIP1—MO] max Z=) (u; Y yij—w;T)) (20a)
JjeN ieM
s.t. Zy,-]:l, VjeN; (20b)
ieMy
Tj < (1 =Yoj)lmax VjeN; (20c)
yij€{0,1}, VjeN,ie Moy; (20d)
constraints (1c) — (1i), (1k). (20e)

The objective function can be described as ;. ,, since only
jobs assigned on M, i.e., the accepted jobs, are considered. Addi-
tionally, with T; > 0 in constraints (1i) and (20c), if yo; =1 (i.e., if a
job j has been rejected), its tardiness is forced to be 0, i.e., T; = 0.

With constraints (20b), >~ y;;=1, Yje N, any job j can either
ieMgp

https://doi.org/10.13039/501100001809

172 S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173

Table 13
Computation time of models with and without the dummy machine for
TF =R =0.2.
m n Avg. Time (s)
MIP1 MIP1-MO MIP2 MIP2-MO
2 20 14.0 13.7 3.0 2.8
30 442.4 450.9 15.3 731.7
40 746.2 1287.8 47 784.0
50 694.2 17419 3918 15247
Average 474.2 873.6 103.7 760.8
3 20 9.3 14.8 33 4.0
30 136.5 143.9 20.7 338
40 369.7 920.9 1554 116.5
50 432.8 995.3 8679 8045
Average 2371 518.7 2618 239.7
5 20 8.2 75 2.0 1.8
30 76.1 58.5 14.5 23.6
40 688.6 123.3 61.1 153.2
50 1039.6 1486.6 190.7 5545
Average 453.1 419.0 67.1 183.3
10 20 15 41 1.7 21
30 26.8 475 6.8 6.2
40 1815 256.6 15.6 283
50 548.1 733.6 105.0 166.4
Average 189.5 260.5 323 50.8
Overall Average 338.5 517.9 116.2 308.6

be rejected (i.e., yp; = 1) or accepted by assigning it to a machine
ie M.

In the MIP1-MO model, the decision variable x; in MIP1 is not
used any more. The relationship between the MIP1-MO model and
the MIP1 model can, therefore, be established using the following
constraints.

VjieN (21)

The MIP1 model explicitly considers the decision of acceptance or
rejection, whereas the MIP1-MO model implicitly considers the de-
cision of acceptance. Similarly, with the same objective function
in (20a), and constraints (20b)-(20d), (2¢)-(2j) and z; in (2k), the
MIP2 model can be reformulated into the corresponding MIP2-MO.

Xj+Yoj =1

A2. Comparisons between models with and without the dummy
machine

Table 13 summarizes average computation times in terms of
CPU seconds for the case with TF = 0.2 and R = 0.2 with a view to
compare models MIP1 and MIP2 against MIP1-MO and MIP2-MO,
respectively. Five instances are randomly generated for the combi-
nation of TF and R by following the data-generation scheme de-
scribed in Section 6.1. The average computation time of the five
instances (denoted by “Avg. Time (s)”) for each model is listed
in the table. If an instance cannot be solved to optimality within
the specified time limit, 1800 s are used for the calculation of
the average computation time. Model codes, data, and detailed re-
sults for Table 13 are available online at https://pan.baidu.com/
s/1IN_vWO3iM1gccmW9ayyuQOg#list/path=%2F for readers’ refer-
ence.

As observed, the MIP1-MO model demonstrates poorer perfor-
mance compared to MIP1 in terms of the average computation
time for almost all cases. Similarly, MIP2-MO performs worse com-
pared to MIP2 in terms of average computation time. In sum-
mary, the preliminary results of the computational experiments in
Table 13 show that MIP2 performs better compared to MIP2-MO,
MIP1 performs better compared to MIP1-MO, and MIP2-MO per-
forms better compared to MIP1-MO. Additionally, MIP2 performs
better compared to MIP1. In this study, therefore, we only employ
the enhanced MIP2 model (i.e., MIP2V) in the proposed branch-
and-bound algorithm.

References

Avalos-Rosales, O., Angel-Bello, F, Alvarez, A. 2015. Efficient metaheuristic al-
gorithm and re-formulations for the unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times. Int.]J. Adv.
Manuf.Technol. 76 (9-12), 1705-1718.

Azizoglu, M., Kirca, 0., 1999. Scheduling jobs on unrelated parallel machines to min-
imize regular total cost functions. IIE Trans. 31, 153-159.

Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L., 2000. Multi-
processor scheduling with rejection. SIAM]. Discrete Math. 13 (1), 64-78.

Cesaret, B., Oguz, C., Salman, ES., 2012. A tabu search algorithm for order acceptance
and scheduling. Comput. Oper. Res. 39, 1197-1205.

Chaurasia, S.N., Singh, A., 2017. Hybrid evolutionary approaches for the single
machine order acceptance and scheduling problem. Appl. Soft Comput. 52,
725-747.

Chen, Z.L., Powell, W.B., 1999. Solving para llel machine scheduling problems by
column generation. INFORMS J. Comput. 11 (1), 78-94.

Cordone, R., Hosteins, P, Righini, G., 2018. A branch-and-bound algorithm for the
prize-collecting single-machine scheduling problem with deadlines and total
tardiness minimization. INFORMS]. Comput. 30 (1), 168-180.

Sen, H., Biilbiil, K., 2015. A strong preemptive relaxation for weighted tardiness and
earliness/tardiness problems on unrelated parallel machines. INFORMS J. Com-
put. 27 (1), 135-150.

De Vel, V., 1993. Duality-based algorithms for scheduling unrelated parallel ma-
chines. INFORMS]. Comput. 5 (2), 192-205.

Detienne, B., Dauzére-Péres, S., Yugma, C., 2011. Scheduling jobs on parallel ma-
chines to minimize a regular step total cost function.]. Sched. 14 (6), 523-538.

Emami, S., Moslehi, G., Sabbagh, M., 2017. A benders decomposition approach for or-
der acceptance and scheduling problem: a robust optimization approach. Com-
put. Appl. Math. 36 (4), 1471-1515.

Emami, S., Sabbagh, M., Moslehi, G., 2016. A lagrangian relaxation algorithm for or-
der acceptance and scheduling problem: a globalised robust optimisation ap-
proach. Int. J. Comput. Integr. Manuf. 29 (5), 535-560.

Emmons, H., 1969. One-machine sequencing to minimize certain functions of job
tardiness. Oper. Res. 17, 701-715.

Esmaeilbeigi, R., Charkhgard, P., Charkhgard, H., 2016. Order acceptance and
scheduling problems in two-machine flow shops: new mixed integer program-
ming formulations. Eur. J. Oper. Res. 251, 419-431.

Fanjul-Peyro, L., Perea, F, Ruiz, R., 2017. Models and matheuristics for the unrelated
parallel machine scheduling problem with additional resources. Eur. J. Oper. Res.
260, 482-493.

Fanjul-Peyro, L., Ruiz, R., 2010. Iterated greedy local search methods for unrelated
parallel machine scheduling. Eur.]. Oper. Res. 207 (1), 55-69.

Fanjul-Peyro, L., Ruiz, R., 2011. Size-reduction heuristics for the unrelated parallel
machines scheduling problem. Comput. Oper. Res. 38, 301-309.

Fanjul-Peyro, L., Ruiz, R., 2012. Scheduling unrelated parallel machines with optional
machines and jobs selection. Comput. Oper. Res. 39, 1745-1753.

Fanjul-Peyro, L., Ruiz, R., Perea, F, 2019. Reformulations and an exact algorithm
for unrelated parallel machine scheduling problems with setup times. Comput.
Oper. Res. 101, 173-182.

Fleszar, K., Hindi, K.S., 2018. Algorithms for the unrelated parallel machine schedul-
ing problem with a resource constraint. Eur. J. Oper. Res. 271 (3), 839-848.
Geramipour, S., Moslehi, G., Reisi-Nafchi, M., 2017. Maximizing the profit in cus-
tomer’s order acceptance and scheduling problem with weighted tardiness

penalty. J. Oper. Res. Soc. 68 (1), 89-101.

Ghosh,].B., 1997. Job selection in a heavily loaded shop. Comput. Oper. Res. 24 (2),
141-145.

Jiang, D.K,, Tan, .Y, Li, B., 2017. Order acceptance and scheduling with batch deliv-
ery. Comput. Ind. Eng. 107, 100-104.

Lei, D.M., Guo, X.P,, 2015. A parallel neighborhood search for order acceptance and
scheduling in flow shop environment. Int. J. Prod. Econ. 165, 12-18.

Lewis, H.E, Slotnick, S.A., 2002. Multi-period job selection: planning work loads to
maximize profit. Comput. Oper. Res. 29 (8), 1081-1098.

Liaw, CF, Lin, Y.K., Cheng, C.Y., Chen, M.C., 2003. Scheduling unrelated parallel ma-
chines to minimize total weighted tardiness. Comput. Oper. Res. 30, 1777-1789.

Lin, S.W.,, Ying, K.C., 2013. Increasing the total net revenue for single machine order
acceptance and scheduling problems using an artificial bee colony algorithm. J.
Oper. Res. Soc. 64 (2), 293-311.

Mestry, S., Damodaran, P., Chen, C.S., 2011. A branch and price solution approach
for order acceptance and capacity planning in make-to-order operations. Eur. J.
Oper. Res. 211, 480-495.

Nguyen, S., 2016. A learning and optimizing system for order acceptance and
scheduling. Int. J. Adv. Manuf. Technol. 86, 2021-2036.

Nobibon, ET., Leus, R., 2011. Exact algorithm for a generalization of the order accep-
tance and scheduling problem in a single-machine environment. Comput. Oper.
Res. 38, 367-378.

Ou, J.W,, Zhong, X.L., 2017. Bicriteria order acceptance and scheduling with consid-
eration of fill rate. Eur.]. Oper. Res. 262, 904-907.

Ou, J.W., Zhong, X.L., Qi, X.T., 2016. Scheduling parallel machines with inclusive pro-
cessing set restrictions and job rejection. Nav. Res. Logist. 63, 667-681.

Ou, J.W,, Zhong, X.L, Wang, G.Q., 2015. An improved heuristic for parallel machine
scheduling with rejection. Eur.]. Oper. Res. 241, 653-661.

Oguz, C., Salman, ES., Yalgin, Z.B., 2010. Order acceptance and scheduling decisions
in make-to-order systems. Int. J. Prod. Econ. 125 (1), 200-211.

Pinedo, M.L, 2008. Scheduling: Theory, algorithms and systems, third edition
Springer Science+Business Media, LLC, New York, USA.

https://pan.baidu.com/s/1N_vWO3iM1gccmW9ayyuQOg#list/path=%2F
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0025
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0026
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0027
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0028
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0029
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0029
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0030
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0030
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0030
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0031
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0031
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0031
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0032
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0033
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0034
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0035
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0035

S. Wang and B. Ye/Computers and Operations Research 104 (2019) 159-173 173

Rahman, H.F, Sarker, R., Essam, D., 2015. A real-time order acceptance and schedul-
ing approach for permutation flow shop problems. Eur.]. Oper. Res. 247,
488-503.

Rinnooy Kan, A. H. G., 1976. Machine scheduling problems classification, complexity
and computations. Martinus Nijhoff, The Hague.

Rom, W.0., Slotnick, S.A., 2009. Order acceptance using genetic algorithms. Comput.
Oper. Res. 36 (6), 1758-1767.

Shabtay, D., Gaspar, N., Kaspi, M., 2013. A survey on offline scheduling with rejec-
tion. J. Sched. 16, 3-28.

Shim, S.0., Kim, Y.D., 2007. Minimizing total tardiness in an unrelated parallel-ma-
chine scheduling problem. J. Oper. Res. Soc. 58 (3), 346-354.

Silva, Y.L.T.V., Subramanian, A., Pessoa, A.A., 2018. Exact and heuristic algorithms for
order acceptance and scheduling with sequence-dependent setup times. Com-
put. Oper. Res. 90, 142-160.

Slotnick, S.A., 2011. Order acceptance and scheduling: a taxonomy and review. Eur.
J. Oper. Res. 212 (1), 1-11.

Slotnick, S.A., Morton, T.E., 1996. Selecting jobs for a heavily loaded shop with late-
ness penalties. Comput. Oper. Res. 23 (2), 131-140.

Slotnick, S.A., Morton, T.E., 2007. Order acceptance with weighted tardiness. Com-
put. Oper. Res. 34, 3029-3042.

Tran, T.T.,, Araujo, A., Beck, J.C., 2016. Decomposition methods for the parallel ma-
chine scheduling problem with setups. INFORMS J. Comput. 28 (1), 83-95.
Unly, Y., Mason, SJ., 2010. Evaluation of mixed integer programming formulations
for non-preemptive parallel machine scheduling problems. Comput. Ind. Eng.

58, 785-800.

Wang, X.L, Huang, G.D., Hu, X.W., Cheng, T.E., 2015. Order acceptance and schedul-
ing on two identical parallel machines.]J. Oper. Res. Soc. 66, 1755-1767.

Wang, X.L., Xie, X.Z,, Cheng, T.C.E., 2013. A modified artificial bee colony algorithm
for order acceptance in two-machine flow shops. Int. J. Prod. Econ. 141, 14-23.

Wang, XL, Xie, X.Z, Cheng, T.CE., 2013a. Order acceptance and scheduling in a
two-machine flowshop. Int. J. Prod. Econ. 141, 366-376.

Wang, X.P, Tang, LX., 2010. A hybrid metaheuristic for the prize-collecting single
machine scheduling problem with sequence-dependent setup times. Comput.
Oper. Res. 37, 1624-1640.

Wu, G.H., Cheng, C.Y., Yang, H.I, Chena, C.T., 2018. An improved water flow-like al-
gorithm for order acceptance and scheduling with identical parallel machines.
Appl. Soft Comput. 71, 1072-1084.

Xiao, Y.Y., Yuan, Y.., Zhang, R.Q., Konak, A. 2015. Non-permutation flow shop
scheduling with order acceptance and weighted tardiness. Appl. Math. Comput.
270, 312-333.

Xiao, Y.Y., Zhang, R.Q., Zhao, Q.H., Kaku, I, 2012. Permutation flow shop schedul-
ing with order acceptance and weighted tardiness. Appl. Math. Comput. 218,
7911-7926.

Zhong, X.L., Ou, J.W.,, 2017. Improved approximation algorithms for parallel ma-
chine scheduling with release dates and job rejection. 40R-A Q. J. Oper. Res.
15, 387-406.

http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0036
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0037
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0037
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0037
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0038
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0039
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0039
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0039
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0040
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0041
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0041
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0042
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0042
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0042
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0043
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0043
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0043
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0044
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0045
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0045
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0045
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0046
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0047
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0048
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0049
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0049
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0049
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0050
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0051
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0052
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0053
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0053
http://refhub.elsevier.com/S0305-0548(18)30328-9/sbref0053

	Exact methods for order acceptance and scheduling on unrelated parallel machines
	1 Introduction
	2 Literature review
	2.1 Research streamlines of OAS problems
	2.2 Related works on OAS problems with total revenue and tardiness
	2.2.1 Related works on OAS problems on parallel machines

	2.3 Related works on unrelated parallel machine scheduling problems

	3 Mathematical description of OAS problem
	3.1 The MIP with a dummy job
	3.2 The linear-ordering-based MIP model

	4 Enhancement of proposed MIP formulations
	4.1 Moderating big-M coefficients
	4.2 Valid inequalities

	5 A formulation-based branch-and-bound algorithm
	5.1 Upper bounding
	5.2 Lower bounding
	5.2.1 A lower bound based on a heuristic method
	5.2.2 A formulation-based lower bound

	5.3 The complete procedure of branch-and-bound algorithm

	6 Computational experiments
	6.1 Data generation
	6.2 Computational results

	7 Conclusions
	Acknowledgment
	Appendix
	A2. Comparisons between models with and without the dummy machine

	References

