
41IEEE Signal Processing Magazine | January 2019 |1053-5888/19©2019IEEE

MUSIC SIGNAL PROCESSING

Juhan Nam, Keunwoo Choi, Jongpil Lee,
Szu-Yu Chou, and Yi-Hsuan Yang

Over the last decade, music-streaming services have grown
dramatically. Pandora, one company in the field, has pio-
neered and popularized streaming music by successfully

deploying the Music Genome Project [1] (https://www.pandora
.com/about/mgp) based on human-annotated content analysis.
Another company, Spotify, has a catalog of over 40 million
songs and over 180 million users as of mid-2018 (https://press
.spotify.com/us/about/), making it a leading music service pro-
vider worldwide. Giant technology companies such as Apple,
Google, and Amazon have also been strengthening their music
service platforms. Furthermore, artificial intelligence speakers,
such as Amazon Echo, are gaining popularity, providing listen-
ers with a new and easily accessible way to listen to music.

While music-streaming services have made a huge vol-
ume of music accessible to users, the enormous size of the
service catalogs has created the challenge of finding among
so many choices the songs that fit users’ tastes. A general
approach to this issue has been collaborative filtering, which
predicts songs of potential interest based on previous usage
data, such as play history and song rating. Although collab-
orative filtering effectively retrieves songs and accommodates
personalized recommendations, its performance is hampered
by such issues as popularity bias and the cold-start problem,
the challenge of recommending new music to users [2]. The
content-based approach is often regarded as a supplementary
solution to those problems. Pandora radio is a representative
example as it retrieves songs by exploiting the similarities of
song descriptors, such as genre, mood, instruments, and vocal
quality. However, high-quality manual annotation is costly and
not scalable, suggesting a need for better ways to automate
classification of music content. As a result, much attention in
the field of music information retrieval (MIR) over the last few
years has centered on finding ways to automate the process of
classifying music genre and mood and tagging music. Hereaf-
ter, this article will use the term music classification and tag-
ging as a general expression for tasks that involve taking music
audio data as input and automatically annotating them with a
certain form of semantic label.

Digital Object Identifier 10.1109/MSP.2018.2874383
Date of publication: 24 December 2018

Deep Learning for Audio-Based Music
Classification and Tagging

Teaching computers to distinguish rock from Bach

©istockphoto.com/traffic_analyzer

42 IEEE Signal Processing Magazine | January 2019 |

The focus of a survey paper on music classification and
tagging in 2011 [3] revealed the previous trends in the field.
Most of the 149 papers surveyed therein were based on the
“conventional” machine-learning framework, which involves
a pipeline of feature extraction and classifier learning. The
features were mostly manually designed to succinctly repre-
sent acoustic or musical characteristics given the task. How-
ever, recent breakthroughs using deep neural networks have
shifted the paradigm to learning representations in an end-to-
end manner, which has opened the era of deep learning [4],
[5]. This method has been applied to various tasks in MIR as
well [6]. For several reasons, researchers have been especially
active in exploring the problems of music classification and
tagging. First, music classification and tagging tasks annotate
audio clips at a track level (i.e., segments
lasting several seconds or longer), and the
audio clips are typically represented as two-
dimensional (2-D) image-like data, such as
mel-spectrograms. This is similar to the
way images are classified, which means the
technique may be borrowed and applied in
the field of music classification. Second,
an essential ingredient of deep learning is
the availability of large data sets. One is
the Million Song Data Set (MSD), which was introduced in
2011 [7]. MSD has facilitated large-scale training of deep neu-
ral networks for music classification and tagging tasks. Last,
successful efforts to automate music classification have drawn
interest from the music-streaming service industry, leading to
investment in research resources to develop advanced content-
based approaches [1], [8].

While the latest developments in other domains have
inspired parallel developments in music, it is still necessary to
take into consideration the specific properties of music signals

when developing deep-learning methods for music classifica-
tion and tagging. This article, an up-to-date tutorial-like sur-
vey, reviews the representative deep-network designs tailored
for music classification and tagging, the best practices found
thus far, the applications to music services and other MIR
tasks, and, finally, the limitations and open issues that still
need to be addressed.

From feature engineering to end-to-end learning
Humans classify or annotate music based on diverse character-
istics extracted from the audio signals. For example, a heavily
distorted electric guitar sound with growling vocals is a good
indication of metal music. Swing rhythms, syncopation, and
chromatic comping by polyphonic instruments (e.g., piano or

guitars) are obvious cues that the music is
jazz. Translating these acoustic and musical
features into numerical representations that
computers can interpret is the essence of
music classification and tagging. This usu-
ally involves a series of computation steps
that convert audio content into a time–fre-
quency representation, extract discrimina-
tive features, summarize them over time,
and repeat the feature extraction and sum-

marization until the proper category for the music can be de-
termined. The way of improving each feature extraction step
to achieve the best performance has evolved with advances
in learning algorithms from hand engineering based on do-
main knowledge to end-to-end learning. Humphrey et al. [9]
explained the transition in a unified deep architecture model
where multiple blocks of affine transformation, nonlinear func-
tion, and optional pooling operation are pipelined. Figure 1
illustrates four different feature representation approaches in
their framework. In reviewing the evolution of such approaches,

Spectrogram
Mel

Filter Bank
Log

Compression
Discrete

Cosine Transform
Mean and
Variance

Classifier

Spectrogram
Mel

Filter Bank
Log

Compression
Nonlinearity

Affine
Transform

Pooling Classifier. . .

Spectrogram
Mel

Filter Bank
Log

Compression
Nonlinearity

Affine
Transform

Pooling Classifier. . .

(d)

Raw
Waveform

Affine
Transform

Nonlinearity
Affine

Transform
Pooling PoolingNonlinearity Classifier. . .

(c)

(b)

(a)

FIGURE 1. The transition of feature representation for music classification: (a) feature engineering [mel-frequency cepstral coefficients (MFCCs)], (b)
low-level feature learning, (c) convolutional neural networks, and (d) end-to-end learning. The blocks inside the black lines indicate that they are learned
by the algorithms.

It is still necessary to
take into consideration
the specific properties
of music signals when
developing deep-learning
methods for music
classification and tagging.

43IEEE Signal Processing Magazine | January 2019 |

we first separate them into two classes: feature engineering
and feature learning.

Feature engineering
A single line of melody can be arranged and performed in any
of a variety of genres or moods of music, depending on the
choice of instruments, chord progressions, rhythms, dynamics,
and other musical elements. Considering the generative process
in creating music, an intuitive approach to music classification
and tagging would require features on each axis of the musical
elements to be distilled and their distributions to be modeled.
The traditional approach attempted to craft a variety of audio
features under this principle. A representative example is the
seminal work by Tzanetakis and Cook [10]. They tackled the
automatic music genre classification problem by using three
groups of audio features: timbre, pitch, and rhythm. The timbre
feature was formed by summarizing the zero-crossing rate, low-
level spectral features, low-energy feature, and MFCCs within a
texture window. The pitch feature was extracted by encapsulat-
ing the pitch content from a multipitch estimator into two types
of histograms, one that contains harmony information and one
that contains pitch-range information. The rhythmic feature
was represented by a beat histogram that explains temporal
regularity by counting intervals of periodic energy fluctuation
via a subband analysis. Finally, they combined all features and
applied them to classifiers, such as the k-nearest neighbors and
Gaussian mixture models. Since this study laid a foundation
for music classification and tagging, numerous research stud-
ies have developed new or better-tuned audio features and have
followed the two-stage framework, where the hand-engineered
features are used as input of a standard classifier.

This feature-engineering approach designs each computa-
tion step manually based on the domain knowledge. For exam-
ple, Figure 1(a) shows the computation pipeline of MFCCs.
The mel filter bank and discrete cosine transform are tailored
based on psychoacoustics and signal processing knowledge,
respectively. These hand-engineered features have advantages
in that they are interpretable and usually expressed in a com-
pact form. However, most hand-engineered audio features are
based on short-time analysis and may not capture high-level
information in music. In addition, the engineering process is
separated from the data-driven optimization in the classifier.
Currently, this two-stage approach seems to lead to an imper-
fect solution.

Feature learning
The gist of deep learning is that the feature representations of
input data can be learned by the algorithm via the deep neu-
ral networks. That is, learning is achieved layer by layer, with
higher-level features learned in the deeper layers. This con-
trasts with the feature-engineering approach in that the domain
knowledge is much less involved in finding the features and the
input data are processed at a minimum level before they are fed
into the algorithm. In the tide of deep learning, various feature-
learning algorithms have been introduced and applied to music
classification and tagging. We categorize them into the follow-

ing three classes: low-level feature learning, convolutional neu-
ral networks (CNNs), and end-to-end learning models.

Low-level feature learning
Early studies focused on learning low-level audio features to
replace the handcrafted features in the two-stage framework,
as illustrated in Figure 1(b). One kind of research focused on
learning a meaningful dictionary of spectrograms using unsu-
pervised learning algorithms, such as the restricted Boltzmann
machine, K-means, and sparse coding (e.g., [11]). These shallow
feature-learning algorithms are usually trained to encode mul-
tiple frames of spectrograms into a high-dimensional sparse
feature vector. They capture a variety of musically interpretable
time–frequency patterns. The other kind of research focused on
supervised feature learning that maps a short-term spectrum to
genre or mood labels with a pretrained multilayer perceptron
or deep belief networks (e.g., [12]). The hidden layer activations
are used as learned features. While both groups deliver better
performance than that using hand-engineered features in many
music classification and tagging tasks, they are still limited to
low-level feature learning, and the adopted framework still has
two stages.

CNNs
Lately, CNNs have been the most widely used learning model
in music classification and tagging tasks [13], [14]. Based on
several seconds of audio as an input, CNNs can be improved
in an end-to-end fashion to learn hierarchical features. How-
ever, as shown in Figure 1(c), most successful CNN models
used the spectrogram (particularly, mel-spectrogram) as the
input representation, indicating that domain knowledge is still
helpful. Under different assumptions of locality and translation
invariance on the time–frequency representation, several con-
figurations of CNN models have been suggested [13], [14]. We
describe more details about such models in the next section.

End-to-end learning models
More recently, a few attempts have been made to directly use
raw waveforms as the input of CNNs [8], [13], [15]. As illus-
trated in Figure 1(d), no single step requires a hand-designed
representation, thus realizing a complete end-to-end feature
learning. Lee et al. proposed a successful model in music clas-
sification and tagging [15], [16]. They found that the model
performs better when the bottom convolutional layer takes a
small grain of samples (e.g., two or three samples) rather than
a typical window size (e.g., 256 or 512 samples). However, as
the filter size in the convolutional layer is smaller, the model
becomes progressively deeper, and, as a result, it takes longer
to train. More details about this type of model are described in
the next section.

Deep-learning models
In this section, we review three representative CNN models for
music classification. The first two models are one-dimensional
(1-D) [13] and 2-D CNNs [14], each of which has been applied
in efforts to make networks more flexible. This trend toward

44 IEEE Signal Processing Magazine | January 2019 |

greater flexibility continues with the most recent and most suc-
cessful approach, the sample-level CNN [15], where a time-
series audio signal is used as input. Additionally, we will intro-
duce a few advanced methods that can improve performance.
While there are many other kinds of architectures, we focus on
CNN-based ones in this article, as they are more widely used.

For the sake of clarity, in this section we specify layers
using Keras-style grammar (https://keras.io). A 2-D kernel is
specified by its lengths in the frequency ()f and time ()t axes,
e.g.,(,) .f t A convolutional layer with 2-D kernels measuring
(,),f t N channels, (,)s s1 2 strides, and “valid” (or “same”) pad-
ding is denoted as Conv2D[filters = ,N kernel_size = (,),f t

(,),s sstrides 1 2= padding = “valid”] with some of the param-
eters omitted if they follow the aforementioned default values.
In addition, the parameter names can be omitted while keeping
their order (i.e., like Python syntax). Conv1D is defined similar-
ly, but the kernel size and stride are 1-D. Max-pooling layers are
defined as MP1D(pool_size) and MP2D(pool_size). Finally,
we specify the size of a feature map with , ,F T N^ h for lengths
of F in the frequency axis, T in the time axis, and N channels.

1-D CNNs
Dieleman et al. [13] initiated some of the earliest advancements
in the area of deep learning in music classification and tag-
ging. Dieleman also made a significant early contribution with
his blog post about his internship with Spotify (http://benanne
.github.io/2014/08/05/spotify-cnns.html). The network struc-
ture is illustrated in Figure 2(a), and we call it 1-D CNN in this
article. Here, “1-D” refers to the dimensionality of the first lay-
er’s convolution operation and should not be confused with that
of the kernel.

The assumed behavior of 1-D CNNs with respect to music
signal input is straightforward. As mentioned previously, 1-D
CNNs take a time–frequency representation, such as mel-
spectrogram, as input. With the kernel height of ,F the first
convolutional layer “sees” the entire frequency range at once.
That is to say, during training, the network finds some patterns
that cover the entire frequency range. For example, the size of
the first convolutional layer’s kernel in [13] is (128, 4) with the
number of output channels as 256, i.e., Conv2D[256, (128, 4),
“valid”], resulting in (1, 599, 256)-sized feature maps. More
convolutional layers and densely connected layers are shown

as in Figure 2(a). This structure is musically plausible in some
sense, as it puts a strong prior to the network design at the same
time. To elaborate, we know that in images an object can appear
in any location, making 2-D CNNs a popular design choice, as
2-D CNNs can deal with such spatial variants. However, this
may not be the case for musical audio. In a time–frequency
representation, a musical object or pattern can appear anytime,
but not in any frequency band. This is because different musi-
cal components can exist in different frequency ranges with a
minor shift. In other words, the invariance property we want
to have may be mostly along the time axis. This characteristic
enables us to see and interpret what is learned at the first con-
volutional layer. Because the learned kernels operate directly
on the spectrogram input, we can visualize the kernels using
the learned weights and see which genres of songs maximally
activate them. For example, in Figure 3, we show the top four
relevant tags for a few selected kernels. The tags are sorted (in
descending order from top to bottom) based on the tag activa-
tion score of each kernel. We can see that the corresponding
tags somehow explain each of the learned kernels.

One-dimensional CNNs are computationally efficient.
Its first convolutional layer takes the entire frequency range,
makes the feature maps of the subsequent layers much smaller
(the length of the frequency axis becomes 1), and, accordingly,
drastically reduces the total number of network parameters.
However, this is actually a double-edged aspect of 1-D CNNs.
A small number of parameters means it is easier to train the net-
work with relatively small data sets. At the same time, it means
that 1-D CNNs will not fully benefit from the development of
hardware resources and large-scale data sets due to their lim-
ited representation power.

The aforementioned assumption, or the strong prior, of 1-D
CNNs introduces a clear limitation: a complete lack of fre-
quency-axis shift-invariance. In the first layer, the 128-dimen-
sional frequency components are assumed to have their own
meaning; therefore, a slight change along the frequency axis
(i.e., pitch transposition) results in a significantly different acti-
vation. Using a slightly smaller kernel [e.g., (126, 4)] has been
proposed as an alternative (while making it technically 2-D
convolution), but it only provides a “global” shift-invariance.
In other words, assuming a max-pooling of (,)x3 follows, this
alternative approach is invariant to a global transposition by two

OutputF
re

qu
en

cy

Tim
e

... ...

...

Channel ...

Output

Ti
m

e

F
re

qu
en

cy

Channel

Output

...

T
im

e

(a) (b) (c)

Channel

FIGURE 2. Block diagrams of (a) 1-D, (b) 2-D, and (c) sample-level CNNs. (a) and (b) are based on 2-D time–frequency representation inputs (e.g., mel-
spectrograms or short-time Fourier transforms), and (c) is based on a time-series input.

45IEEE Signal Processing Magazine | January 2019 |

semitones. However, it is not invariant to local changes, e.g., a
combination of an 1e frequency shift in the bass guitar com-
ponent, an 2e shift in the vocal component, and an 3e shift in
the piano component, where se are different (unlike in the case
of 2-D CNNs). As a result, the representations that 1-D CNNs
learn in the first layer are limited to some common patterns of
the entire frequency ranges.

2-D CNNs
With larger data sets and better hardware resources becoming
available, a natural step is to increase network flexibility to im-
prove representation learning, as in [14]. The network structure
is illustrated in Figure 2(b). We call it 2-D CNNs in contrast to
1-D CNNs, as they focus on the contiguous 2-D convolutional
layers including the first one. The five-layer structure in [14],
for example, gradually combines smaller time–frequency pat-
terns to create larger ones with 2-D convolutional layers, e.g.,
Conv2D[32, (3, 3)], which allow for small shifts by the follow-
ing max-pooling layers, e.g., MP2D[(2, 2)]. Since the kernel
sizes are small, the padding strategy (“valid” or “same”) is not
of very much interest.

Two-dimensional CNNs assume that more flexibility will
be helpful in finding the time–frequency patterns. The flexibil-
ity can have several aspects: the shift (or location) invariance
along both axes, the size of the patterns, and small distortions
within the patterns. They are realized by 2-D convolutional
layers with small kernels (typically three-by-three) and 2-D
max-pooling layers. Although this may contradict the different
meanings of time and frequency axes mentioned in the previ-
ous section, 2-D CNNs have, in fact, performed better than
1-D CNNs. Thanks to their simple structure and good perfor-
mance, 2-D CNNs may now be the most popular approach for
music audio classification.

Two-dimensional CNNs usually demand better hard-
ware than 1-D CNNs for two reasons. First, the param-
eters easily outnumber those of 1-D CNNs due to the use of

contiguous 2-D kernels, which then require more memory.
Second, the training and use of 2-D CNNs add a significant
computation burden due to the large size of the feature maps,
along which the kernel should be convolved. For example,
with a 1-D CNN, all of the feature maps are of size , , .x N1^ h
The frequency axis is always of length 1, which makes the
feature maps 1-D with channels. In contrast, with a 2-D
CNN, the feature maps would be of size , , ,x NF^ h i.e., 2-D
with channels. This significantly increases the computation
in both the forward and backward passes of the model train-
ing process.

So far, we have reviewed the advantages and disadvantages
of 2-D CNNs as compared with 1-D CNNs. In practice, 2-D
CNNs offer some practical advantages. For example, improve-
ments in hardware have enabled researchers and practitioners
to use 2-D CNNs when they have sufficient data. Once the bot-
tlenecks of the data size and hardware resource are resolved,
the flexibility of 2-D CNNs may bring about better perfor-
mance. Empirical evidence provided in [17] compares various
CNN architectures according to number of parameters, com-
putation use, and performance.

Sample-level CNNs
As explained in the previous subsection, 2-D CNNs may lead
to better results in music classification and tagging, as they
provide more flexibility. Sample-level CNNs go further in
the same direction by discarding the 2-D time–frequency in-
put preprocessing stage and learning directly from the audio
waveforms in an extremely granular way [15]. Although it was
not the first approach that directly learns representations from
the raw audio, it is the first architecture that has achieved a
state-of-the-art performance with a significantly shorter kernel
size than the regular window size in short-time analysis with
a deep network.

Among the variations in [15], we explain the details of
the 39 model structure. As illustrated in Figure 2(c), the

Funk
Hip-Hop

RnB
Soul

Hip-Hop
House
RnB

Electro

Acoustic
Folk

Oldies
60s

Ambient
Electro

Electronic
Electronica

Heavy Metal
Metal
Punk

Hard Rock

Electro
House
Metal

Electronic

RnB
House

Hip-Hop
Funk

Oldies
Blues

Country
Folk

FIGURE 3. Visualization of the first convolution kernels in a trained 1-D CNN with relevant tags. For each kernel, an activation score for each tag is
calculated by computing the average activation of the kernel for all songs with the tag. The four tags are those with the highest activation scores for the
selected kernel. The kernels are of size 128 × 4, where 128 is the number of mel bins and 4 is the number of frames in time. The learned kernels can be
interpreted as spectrotemporal patterns associated with acoustic characteristics of music with the tags. RnB: rhythm and blues.

46 IEEE Signal Processing Magazine | January 2019 |

model consists of one [Conv1D(filters = 128, kernel_size = 3,
strides = 3)], 9 # [Conv1D(128, 3, 1) + MP1D(pool_size = 3)],
and the output layer. The base (3) of the model name indi-
cates the kernel size and stride of the layers while the expo-
nent (9) means the number of Conv1D + MP1D modules.
The first layer learns 128 1-D kernels, with which the layer
can extract certain 1-D patterns at each time step. The acti-
vation of the first convolutional layer is based on size (time
step, channels), and we can understand it as a 2-D time–fre-
quency representation where each frequency component is
not necessarily a pure sinusoid and the frequency axis is not
sorted. Afterward, those basic nonsinusoid components are
combined with convolutional layers. The effective operation
in the subsequent convolutional layer is equivalent to that of
1-D CNNs.

The following three properties of sample-level CNNs,
all of which are related to the extra flexibility of the model,
may contribute to their strong performance. First, one of the
motivations underlying sample-level CNNs is to learn “phase-
invariant” representations. The time-domain kernels involve
learning all the possible time shifts within the kernel window.
Therefore, a large kernel may require even more filters to
cover the variations. The deep stack of the short kernels and
max-pooling layers in sample-level CNNs effectively takes
care of the phase variation. Second, by learning kernels that
are directly applied to the audio signal, sample-level CNNs
improve the spectral bandwidth assigned for the input signal
analysis. Finally, as previously mentioned, the kernels in the
first convolutional layer of sample-level CNNs can be chosen
to represent harmonic components rather than pure sinusoids,
which form usual 2-D time–frequency representations, such as
the spectrogram. This flexibility also improves the discrimina-
tive power of the learned features.

A downside of sample-level CNNs is their computation
complexity. The authors of [15] informally reported that it took
about three to seven times longer to train sample-level CNN
models as compared with 1-D CNN models. A way to acceler-
ate the training is to down-sample the waveform input [16], but
researchers need to develop more efficient models.

Advanced models
This section summarizes several advanced methods that have
addressed various aspects of deep learning-based models. We
note that these methods are designed to achieve different goals
and that they are not mutually exclusive but can be combined
in a model.

Convolutional recurrent neural networks
A convolutional recurrent neural network (CRNN) is a variant
of the CNN structure that uses recurrent layers to replace the
final convolutional layers [17]. The CRNN model assumes that
the long-term patterns are better encoded with recurrent layers
than with convolutional layers. This is probably because the
important patterns are shorter than the input duration. There-
fore, the temporal dynamics of the patterns is a sequence of
some short-term patterns rather than a whole, single pattern.

The use of recurrent layers also makes the model flexible
with respect to the input length, which can be useful for music
classification. The network structure in [17] is based on 2-D
CNNs, but we note that the recurrent layers can be added to
other types of CNNs as well.

Residual networks and squeeze-and-excitation networks
These network architectures have achieved state-of-the-art
performance on ImageNet challenges in 2015 and 2017, re-
spectively [18], [19]. Unlike the usual network structures, some
layers in a residual network share skip connections, with which
the layers are directly connected without any operation. Re-
searchers have enthusiastically adopted this idea because it en-
ables very deep networks (e.g., with more than 100 layers) to
be trained. The squeeze-and-excitation network, by applying a
trained channel-wise weighting, provides another way to en-
hance the representation of a layer. It was successfully applied
for music autotagging in [20].

Pairwise data
Finally, a more macroscopic modification of a network can be
done with a different supervised learning scheme. When the
label consists of pairwise similarities or ranking, it is possible
to achieve metric learning by using a triplet loss function. A
network using this function takes three data samples: an an-
chor, a positive item, and a negative item. The network learns
respective representations, or embeddings, in a way that the
embeddings of the anchor and the positive item are close to
each other while those of the anchor and the negative item are
not. In MIR, music content embeddings were used to predict
music similarity in [21].

Data sets and tasks
In this section, we describe four public data sets that have been
widely used for music classification and tagging. One of the
crucial elements in the success of deep learning is the avail-
ability of large-scale public data sets that are used not only for
the training of deep-learning models but also for benchmark
evaluation. The MIR community has organized an annual
algorithm evaluation exchange called Music Information Re-
trieval Evaluation eXchange (MIREX) which includes several
music classification and tagging tasks; see http://www.music-ir
.org/mirex/wiki/MIREX_HOME for more information.
However, the development of deep learning has not benefited
much from this exchange chiefly because the MIREX data
sets are not open to the public and both the training and test-
ing are conducted by the MIREX committee. Also, the vol-
umes of the hidden data sets are not sufficient to fully evaluate
the deep models. Presumably, this may be attributed to the
serious copyright issues related to music content because the
commercial music is released through professional sound pro-
ducers and the license is more restricted. The four public data
sets presented below circumvent the issue by using trimmed
or degraded audio clips, e.g., 30 s with 16- or 22.05-kHz sam-
ple rate, or copyright-free music tracks. We note that this is
not a comprehensive list of available data sets but a selection

47IEEE Signal Processing Magazine | January 2019 |

of those that have been used mainly to evaluate deep-learning
models (Table 1).

GTZAN
Despite its small size, GTZAN (its name derived from the
name of George Tzanetakis, who assembled the data set) is one
of the most widely used data sets for music genre classification
[10]. It contains 1,000 pieces of 30-s audio clips (ten genres
and 100 songs for each genre). The up-to-date version uses an
artist-stratified split of 443, 197, and 290 audio clips for train-
ing, validation, and testing, respectively, with no repeated art-
ists across these sets. The artist-stratified split is unique in the
music domain because artists are likely to have similar styles
of music across their own songs. We note that GTZAN has also
been used for conducting a target task with a small volume of
data in the context of transfer learning [16], [24].

MagnaTagATune
MagnaTagATune (MTAT) is one of the most widely used bench-
mark data sets for music autotagging. It is a multilabel music
classification task that annotates genre, mood, instruments,
and other song descriptions heterogeneously [22]. The data
set comes with tags and similarity annotations. The autotagging
benchmark has been conducted using a different number of tags,
including 188 tags (the original version), 160 tags (the MIREX
2009 version), and the most frequently used 50 tags. The 50-tag
version is currently the most benchmarked. From the 16 pre-
defined partitions of the data set, a common practice is to use
the first 12 for training, the 13th for validation, and the remain-
ing three for testing. This data set contains 25,863 30-s audio
clips. Its midsize volume is appropriate for training a deep neu-
ral network. However, the data set has drawbacks. For example,
some clips are cut from the same song, and the music styles are
slightly different from popular chart music, as the music tracks
are mainly obtained from independent musicians.

MSD
The MSD is a cluster of complementary data sets created from
contributions by the MIR community [7]. The original MSD
contains artist-level metadata along with the Echo Nest (hand-
engineered) audio features without access to the original audio.
However, the MSD has been augmented by other metadata by
matching the identification data (IDs), including the song-level
tags, similarity, lyrics, cover songs, user listening history, and
genre labels. To train deep neural networks that take spectro-
grams or waveforms, researchers have used 30-s preview audio

clips downloaded from 7digital (https://www.7digital.com/).
Also, the Last.fm tag annotations (https://www.last.fm/) have
been widely used in benchmarking for music autotagging.

Free Music Archive
The Free Music Archive (FMA) is the most recently published
large-scale data set under the Creative Commons license [23]
(http://freemusicarchive.org/). The data set provides the rich
track-level, album-level, and artist-level metadata, including
the genres, the number of listens, and tags. It is mainly oriented
for genre classification, and there are four subsets for bench-
marking: small, medium, large, and full. The small and me-
dium subsets are for single-label genre classification, whereas
the large and full subsets are for multilabel genre classification.
Although the main task is genre classification, tag annotations
are also included in the metadata.

Evaluation
As mentioned previously, we set up the problems as either a
multiclass (e.g., genre or mood classification) or a multilabel
(e.g., autotagging) task. In the multiclass task, the models are
primarily evaluated using the accuracy score. In the multilabel
task, the predictions are regarded as independent binary out-
puts. Each of these outputs is evaluated in both annotation and
retrieval (or ranking) contexts. The main metrics for annotation
are precision, recall, and F score. They are computed for each
word label and are averaged. The metrics for retrieval include
the area under the receiver–operator curve (AUC), the mean av-
erage precision, and the precision at (or up to) rank K (P@K).
Among them, AUC has been primarily used to compare dif-
ferent deep-learning models. Table 2 lists the performance
comparison reported so far, showing how the AUC obtained for
MTAT and MSD has improved over the years due to a cumula-
tive effort from the MIR community.

We note that each of the metrics has slightly different
characteristics. For example, the P@K metric is important
when we develop recommendation services because users
tend to be interested in the top K-ranked results rather than all
of them. Therefore, depending on the target application, one
may choose different performance metrics when evaluating
the results.

Practical guide
This section describes several practical issues when apply-
ing a deep-learning model for music classification and tag-
ging tasks.

Table 1. Selected data sets for music classification.

Data Sets Number of Clips Number of Artists Main Task Annotation Audio Year

GTZAN [10] 1,000 ~300 Genre classification Author’s labeling Yes 2002

MTAT [22] 25,863 230 Autotagging Crowdsourced Yes 2009

MSD [7] 1 million 44,745 Autotagging Crowdsourced No 2011

FMA [23] 106,574 16,341 Genre classification Artist’s labeling Yes 2017

48 IEEE Signal Processing Magazine | January 2019 |

Data preprocessing
The first parameter to check is the sample rate. While 44.1 kHz
is the standard for commercial music tracks, most data sets
are down-sampled to 16 or 22.05 kHz. Researchers often re-
duce the sample rate even further (e.g., 8 or 12 kHz) as they
observe that by reducing data, training is quicker without
significantly affecting performance [14], [16]. The 1-D and
2-D CNNs take spectrograms as audio input. In particular,
the mel-spectrogram or other log-frequency spectrograms are
commonly used. This requires selecting short-term analysis
parameters (e.g., window function, hop size), a mel-band
size, and the log compression strength. Librosa (https://
librosa.github.io/librosa/) is a widely used audio-process-
ing library for this purpose. In contrast, sample-level CNNs
do not require any preprocessing other than sample-rate con-
version. The waveform input is already zero-centered, and
the amplitude of commercial music clips is normalized well
by postprocessing (e.g., audio mastering).

Data augmentation
Data augmentation is a technique that regularizes the model
by increasing the volume of data. For audio signals, the digi-
tal audio effects, such as pitch-shifting or time-stretching, are
effective means to this end. However, this should be done

within a range where the nature of music la-
bels is not distorted. Data augmentation is not
found in the music classification literature yet,
but it may be useful when the data set of the tar-
get task is small. Musical Data Augmentation
(http://muda.readthedocs.io/en/latest/) is a use-
ful audio-processing library for this purpose.

Input length
Semantic labels are usually annotated to each
song at a track level, and the audio length is
typically several minutes. Therefore, to use au-
dio tracks to train the models, they need to be
chopped into a fixed length of segments. This
causes a tradeoff between model complexity
and label noisiness. If the segment is short-

ened, a more compact model can be trained with greater in-
put data. However, the labels inherited from the track level
tend to be noisier due to the dynamic nature of music within
a track, and the compact model can miss learning high-
level musical features. On the other hand, if the segment
is lengthened, the label noisiness will be mitigated and a
more long-term structure can be learned. However, this re-
quires having more complex models along with more data.
The common practice is using segments between 3 and 6 s
as input. Some complex models take up to 30 s [14], [17].
The assumption that the segments of a track share the same
labels as the track has also been referred to as a weakly su-
pervised learning problem [25], as when the segment-level
supervision is noisy. An advanced method to deal with such
an issue might be adding the so-called attention module
to the neural network, as demonstrated by [27] for music
mood classification.

Applications
In this section, we explain how a neural network model pre-
trained on larger-scale labeled data for music classification and
tagging can be applied to other tasks, such as classifying across
data sets, making recommendations, thumbnailing music, and
predicting hit songs, as illustrated in Figure 4.

Neural Network
Pretrained

on Large-Scale
Labeled Data

Training
Transfer Learning

Music Thumbnailing

Hit-Song Prediction

.....

Music Recommendation

Large-Scale
Labeled Data Target Data

Neural Network for
Target Task

Random Initialization
for Neural Network

FIGURE 4. Transferring the knowledge of a neural network pretrained on larger-scale labeled data to other music applications. Refer to the “Applications”
section for details.

Table 2. A selection of results for music auto-tagging task. The AUC metric is used for
the evaluation.

Models Published Year End to End MTAT MSD

1-D CNN [13] 2014
No 0.8815 —

Yes 0.8487 —

Multiscale CNN [25] 2016 No 0.8960 —

2-D CNN [14] 2016 No 0.8940 0.8510

Multi-D CNN [26] 2017 No 0.8930 —

CRNN [17] 2017 No — 0.8620

Sample-level CNN [15] 2017 Yes 0.9055 0.8812

ReSE-2-multisample CNN [20] 2018 Yes 0.9113 0.8847

49IEEE Signal Processing Magazine | January 2019 |

Findings show that pretrained models using large-scale
labeled data can provide a good estimate of the similarities
among audio content (Figure 5). Therefore, with the so-called
transfer-learning techniques, we can build classifiers for prob-
lems with sparsely labeled data on top of such pretrained mod-
els. For example, Choi et al. [24] used approximately 250,000
MSD preview clips to train a 2-D CNN to classify 50 music
tags. They then showed that a concatenated feature vector using
the activations of the feature maps of the CNN can serve as a
nice general-purpose music representation. This is useful for a
variety of other tasks, such as classifying ballroom dancing and
other subgenres, predicting the emotions the music might stim-
ulate, distinguishing between vocal and nonvocal sounds, and
sorting various sound events, such as car horns and dog barks.

Pretrained models can also contribute to addressing the
challenge of making content-based music recommendations.
For instance, Pandora, powered by the Music Genome Project,
can create various personalized playlists for each of its users by
combining traditional collaborating filtering algorithms with
the classified attributes of music [34]. Compared to the purely
collaborating filtering methods, adding content filtering by
means of pretrained models for music classification and tagging
helps ensure acoustic consistency (e.g., similarities in genre/
style, rhythmic patterns, vocal timbre, or expressed emotions)
in the recommended list of music, which in turn improves the
user experience. With content filtering, the (acoustic) diversity
of the recommended music can also be controlled [2].

An interesting application of pretrained models is music
thumbnailing, i.e., detecting the highlight of a song. Huang
et al. [27] employed a pretrained model for music-mood clas-
sification and an attention module to learn to weigh the con-
tribution of a song’s different segments in deciding the overall
mood of the song. Then, a moving window was used to aggre-
gate the per-segment attention scores over time to pick the
song’s peak, assuming that the highlight is usually the most
emotional part of a song. They achieved a promising result in
highlight detection without using any labeled data related to
music highlights.

Another interesting application is audio-based hit-song pre-
diction. Yu et al. [28] used a pretrained 1-D CNN model for
music classification as part of a bigger CNN model for pre-
dicting song popularity. The experiments showed that deep
structures are indeed more accurate than shallow structures in
predicting song popularity and that the use of the pretrained
music classification model further improves the accuracy by a
large margin. We believe that similarly pretrained models can
also be applied to other problems.

Limitations and future challenges
In this section, we discuss some major limitations of the exist-
ing methods for music classification and tagging, and we out-
line some directions for future research.

Share of audio data
The problem of copyright infringement may limit widespread
research on music classification and tagging. People cannot

freely distribute the audio files from the data sets. Common
approaches for getting around this issue include sharing pre-
computed features instead of the audio files, providing a list
of IDs with which people may find the audio previews on the
web, or using copyright-free music. The last approach provides
more options as people can get the audio files for the entire
songs. However, to work with popular music that people are
familiar with (which are usually copyright protected), some
other solutions are still needed. A possible approach is to auto-
matically generate music that is similar to the popular music by
using deep-generative models, such as generative adversarial
networks [30].

Musically meaningful network design
We also expect developers to make more use of peculiar char-
acteristics of music in the design of deep neural networks. In
the past few years, deep learning-based approaches to many
MIR problems have established new state-of-the-art bench-
marks. However, to explain the network and for better per-
formance, future work is needed to bring back music-domain
knowledge to the loop of network design. For instance, instead
of expecting that the network can learn abstract representations
of music in different hierarchies from the bottom up on its own,
it might be better to inform the network (in a top-down fashion)
of the midlevel features, such as the presence of syncopation,
the extensive use of diminished chords, and the use of synthe-
sizer. Then, classifiers could be built on top of these midlevel
features. This requires a joint effort from the research commu-
nity to put together resources and labeled data to model differ-
ent layers of music knowledge and to conduct experiments to

Classical Electronic Rock
Dance Metal

FIGURE 5. We generate T-distributed stochastic neighbor embedding vi-
sualization (best viewed in color) of the distribution of song embeddings
by using a CNN model [29] trained on MTAT. The colors represent five
different tags of music (provided by MTAT). The black dots denote songs
that are not labeled by any of these tags. We see that songs with similar
genres cluster together in the learned feature space.

50 IEEE Signal Processing Magazine | January 2019 |

find out the best ways to use them in a neural network, with all
the layers possibly trained in an end-to-end fashion.

Another way to incorporate music knowledge is to use
not only the audio files but also the corresponding musical
scores, if available. Musical scores contain rich information
about the music piece, such as the melody line and the chord
sequence. Score-informed approaches have been shown to
greatly improve the performance of source separation [31]. By
aligning a score with the audio recording of its actual per-
formance, we can also extract performance-related features
(e.g., stylistic changes in velocity, note duration, and the use
of different playing techniques) that characterize how the per-
former interprets the piece of music. However, to date, little
work has been done to use the audio and musical score jointly
in a neural network. Future work can build, for example, a two-
stream network that takes as input the audio file as well as its
score or other symbolic representations.

We know that a music piece is usually composed of several
elements, such as melody, chords, percussion, and baseline,
and each of them is often played by different instruments [29].
However, most neural networks for music classification pro-
cess audio inputs as a whole without distinguishing among the
component sources of sound. While deep-learning approaches
have led to the state-of-the-art results in sound-source separa-
tion and music classification, little work has been done to joint-
ly tackle the two problems under a unified network. Requiring
the neural network to learn to separate the musical sources that
compose an audio mixture while performing feature learning
can, therefore, be an important future direction.

Vocabulary and personalization
The diversity and coverage of labels considered in classification
and tagging models can also be increased. Ideally, it is better to
have a granular vocabulary as fine as that of Pandora’s Music
Genome Project [1], which claims to have around 450 musical
attributes. One possible solution is to leverage the abundant
user-provided tags from social platforms, such as last.fm, Twit-
ter, or SoundCloud. However, how to get rid of the social tags’
noises and ambiguity while learning an effective music clas-
sifier remains an open issue. In imagining extreme possibili-
ties, we foresee technologies that would enable end users to use
arbitrary natural language as input (e.g., via voice commands)
to query for music. For example, “Hey Google, I need music to
make me feel better” and “Alexa, I cannot fall asleep. Maybe
some music?” Such scenarios may be important given the ev-
er-increasing popularity of artificial intelligence speakers. To
support such retrieval applications, we need to collaborate with
researchers from the speech community to better understand
natural language. The vocabulary considered by our machines
in describing music also has to be expanded and adapted to
cope with the richness of natural language.

Moreover, the associations between music and some types
of labels such as moods (e.g., “happy,” “aggressive,” “sad,”
“relaxing”) and usages (e.g., “for exercising,” “for reading”)
are known to be subjective. Therefore, it is more difficult to
computationally model them. However, such labels are impor-

tant, for example, if we want to automatically create playlists
that fit a user’s mood or activity. We surmise that the assign-
ment of such labels has to be personalized, taking into account
the listener’s preference as well as the “personal definition” of
those labels to the listener. Although much research has been
done for music mood classification, it remains to date a chal-
lenge to effectively personalize such systems.

Cross-modality approach
We see a lot of cross-modality research in the neighboring field
of computer vision, which aims to combine the visual world
with the textual world. Notable applications include image cap-
tioning, conditional image generation from visual attributes,
and cross-modality retrieval. We expect similar attempts to
flourish in the MIR community as well, not only for classi-
fication and tagging tasks (e.g., [33]) but also for generative
tasks, such as tag-conditioned music generation, melody-con-
ditioned lyrics generation, album cover generation, and music
video generation. To facilitate research on these tasks, sharing
pretrained models or knowledge (e.g., best practices in model
training) can play an important role.

Music is important in our daily lives and there are many
ways machine learning can improve or change the way we
experience and create music. By summarizing what has been
known thus far, we hope this article can encourage follow-up
research to further enhance our modeling and understanding
of music.

Authors
Juhan Nam (juhannam@kaist.ac.kr) received his B.S. degree
in electrical engineering from Seoul National University,
South Korea, in 1998 and his Ph.D. degree in music from
Stanford University, California, in 2013 studying at the Center
for Computer Research in Music and Acoustics. He is an
assistant professor at the Graduate School of Culture
Technology at the Korea Advanced Institute of Science and
Technology (KAIST), South Korea. Before joining KAIST, he
was a staff research engineer at Qualcomm, San Diego,
California, from 2012 to 2014. He was also a software/digital
signal processing engineer at Young Chang (Kurzweil), South
Korea, from 2001 to 2006. He is interested in various topics at
the intersection of music, audio signal processing, and
machine learning. He is a Member of the IEEE.

Keunwoo Choi (keunwoo.choi@qmul.ac.uk) received his
B.S. degree in electric engineering and studied applied acous-
tics for his M.S. degree at Seoul National University, South
Korea, in 2009 and 2011, respectively. He worked as a researcher
at the Electronic and Telecommunications Research Institute,
South Korea. He received his Ph.D. degree in 2018 from the
Centre for Digital Music, School of Electronic Engineering
and Computer Science, Queen Mary University of London,
United Kingdom. In 2017, he received the Best Paper Award
at the 18th International Society of Music Information
Retrieval Conference. He is currently with Spotify Inc., New
York. His research interests include music information retriev-
al and machine learning.

51IEEE Signal Processing Magazine | January 2019 |

Jongpil Lee (richter@kaist.ac.kr) received his B.S. degree
in electrical engineering from Hanyang University, South Ko-
rea, in 2015. He received his M.S. degree in 2017 from the
Graduate School of Culture Technology at the Korea Ad-
vanced Institute of Science and Technology, South Korea, and
is currently pursuing his Ph.D. degree from the same institu-
tion. From July to September 2017, he was an intern at Naver
Clova Artificial Intelligence Research. His current research in-
terests include machine learning and signal processing applied
to audio and music applications.

Szu-Yu Chou (fearofchou@citi.sinica.edu.tw) received his
bachelor’s degree from National Formosa University, Huwei,
Taiwan, in 2010. He is currently working toward his Ph.D. de-
gree at National Taiwan University, Taipei. He is a research
assistant in the Research Center for Information Technology
Innovation at Academia Sinica. His research interests include
music recommendation and music information retrieval. In
2015, he received the Best Paper Award at the IEEE Interna-
tional Conference on Multimedia and Expo.

Yi-Hsuan Yang (yang@citi.sinica.edu.tw) received his
bachelor’s and Ph.D. degrees from National Taiwan Uni
versity, Taipei, in 2006 and 2010, respectively. He is an associ-
ate research fellow at the Research Center for Information
Technology Innovation, Academia Sinica. He is also a joint-
appointment associate professor with National Cheng Kung
University, Taiwan. His research interests include music in
formation retrieval, affective computing, multimedia, and
machine learning. He is an author of the book Music Emotion
Recognition. He has been an associate editor of IEEE
Transactions on Affective Computing and IEEE Transac
tions on Multimedia since 2016. He is a Senior Member of
the IEEE.

References
[1] M. Prockup, A. F. Ehmann, F. Gouyon, E. M. Schmidt, Ò. Celma, and Y. E.
Kim, “Modeling genre with the Music Genome Project: Comparing human-labeled
attributes and audio features,” in Proc. Int. Society for Music Information Retrieval
Conf., Málaga, Spain, 2015, pp. 31–37.

[2] S.-Y. Chou, L.-C. Yang, Y.-H. Yang, and J.-S. Jang, “Conditional preference nets
for user and item cold start problems in music recommendation,” in Proc. IEEE Int.
Conf. Multimedia and Expo, Hong Kong, 2017, pp. 1147–1152.

[3] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “A survey of audio-based music classi-
fication and annotation,” IEEE Trans. Multimedia, vol. 13, no. 2, pp. 303–319, Apr.
2011.

[4] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition,” IEEE Signal Processing Mag., vol. 29,
no. 6, pp. 82–97, 2012.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proc. Advances in Neural Information
Processing Systems, Lake Tahoe, NV, 2012, pp. 1097–1105.

[6] K. Choi, G. Fazekas, K. Cho, and M. Sandler. (2017). A tutorial on deep learn-
ing for music information retrieval. arXiv. [Online]. Available: https://arxiv.org/
abs/1709.04396

[7] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The Million Song
Dataset,” in Proc. Int. Society Music Information Retrieval Conf., Miami, FL,
2011, pp. 591–596.

[8] J. Pons, O. Nieto, M. Prockup, E. M. Schmidt, A. F. Ehmann, and X. Serra,
“End-to-end learning for music audio tagging at scale,” in Proc. Machine Learning
Audio Signal Processing Workshop, Advances Neural Information Processing
Systems, Tokyo, Japan, 2017.

[9] E. J. Humphrey, J. P. Bello, and Y. LeCun, “Feature learning and deep architec-
tures: New directions for music informatics,” J. Intell. Inform. Syst., vol. 41, no. 3,
pp. 461–481, 2013.

[10] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,”
IEEE Trans. Speech and Audio Processing, vol. 10, no. 5, pp. 293–302, 2002.

[11] J. Nam, J. Herrera, M. Slaney, and J. O. Smith, “Learning sparse feature repre-
sentations for music annotation and retrieval,” in Proc. Int. Society for Music
Information Retrieval Conf., Porto, Portugal, 2012, pp. 565–570.

[12] P. Hamel and D. Eck, “Learning features from music audio with deep belief
networks,” in Proc. Int. Society for Music Information Retrieval Conf., Utrecht,
The Netherlands, 2010, pp. 339–344.

[13] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Florence, Italy,
2014, pp. 6964–6968.

[14] K. Choi, G. Fazekas, and M. Sandler, “Automatic tagging using deep convolu-
tional neural networks,” in Proc. Int. Society for Music Information Retrieval
Conf., New York, NY, 2016, pp. 805–811.

[15] J. Lee, J. Park, K. L. Kim, and J. Nam, “Sample-level deep convolutional neu-
ral networks for music auto-tagging using raw waveforms,” in Proc. Sound and
Music Computing Conf., Espoo, Finland, 2017, pp. 220–226.

[16] J. Lee, J. Park, K. L. Kim, and J. Nam, “SampleCNN: End-to-end deep convo-
lutional neural networks using very small filters for music classification,” Appl. Sci.,
vol. 8, no. 1, p. 150, 2018.

[17] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recurrent neural
networks for music classification,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, New Orleans, LA, 2017, pp. 2392–2396.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu,
HI, 2016, pp. 770–778.

[19] J. Hu, L. Shen, and G. Sun. (2017) Squeeze-and-excitation networks. arXiv.
[Online]. Available: https://arxiv.org/abs/1709.01507

[20] T. Kim, J. Lee, and J. Nam, “Sample-level CNN architectures for music auto-
tagging using raw waveforms,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, Aalborg, Denmark, 2018, pp. 366–370.

[21] R. Lu, K. Wu, Z. Duan, and C. Zhang, “Deep ranking: Triplet matchnet for
music metric learning,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, New Orleans, LA, 2017, pp. 121–125.

[22] E. Law, K. West, M. I. Mandel, M. Bay, and J. S. Downie, “Evaluation of algo-
rithms using games: The case of music tagging,” in Proc. Int. Society for Music
Information Retrieval Conf., Kobe, Japan, 2009, pp. 387–392.

[23] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “FMA: A dataset
for music analysis,” in Proc. Int. Society for Music Information Retrieval Conf.,
Suzhou, China, 2017, pp. 316–323.

[24] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Transfer learning for music
classification and regression tasks,” in Proc. Int. Society for Music Information
Retrieval Conf., Suzhou, China, 2017, pp. 141–149.

[25] J.-Y. Liu and Y.-H. Yang, “Event localization in music auto-tagging,” in Proc.
ACM on Multimedia Conf., Amsterdam, The Netherlands, 2016, pp. 1048–1057.

[26] J. Pons, O. Slizovskaia, R. Gong, E. Gómez, and X. Serra, “Timbre analysis of
music audio signals with convolutional neural networks,” in Proc. European Signal
Processing Conf., Kos, Greece, 2017, pp. 2744–2748.

[27] Y.-S. Huang, S.-Y. Chou, and Y.-H. Yang, “Music thumbnailing via neural
attention modeling of music emotion,” in Proc. Asia Pacific Signal and
Information Processing Assoc. Annu. Summit and Conf., Kuala Lumpur, Malaysia,
2017, pp. 347–350.

[28] L.-C. Yu, Y.-H. Yang, Y.-N. Hung, and Y.-A. Chen. (2017) Hit song prediction
for pop music by Siamese CNN with ranking loss. arXiv. [Online]. Available:
https://arxiv.org/abs/1710.10814

[29] S.-Y. Chou, J.-S. R. Jang, and Y.-H. Yang, “Learning to recognize transient
sound events using attentional supervision,” in Proc. Int. Joint Conf. Artificial
Intelligence, Stockholm, Sweden, 2018, pp. 3336–3342.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA:
MIT Press, 2016.

[31] S. Ewert, B. Pardo, M. Mueller, and M. D. Plumbley, “Score-informed source
separation for musical audio recordings: An overview,” IEEE Signal Process. Mag.,
vol. 31, no. 3, pp. 116–124, May 2014.

[32] J. Bosch, J. Janer, F. Fuhrmann, and P. Herrera, “A comparison of sound segre-
gation techniques for predominant instrument recognition in musical audio signals,”
in Proc. Int. Society Music Information Retrieval Conf., Porto, Portugal, 2012, pp.
559–564.

[33] S. Oramas, O. Nieto, F. Barbieri, and X. Serra, “Multi-label music genre clas-
sification from audio, text and images using deep features,” in Proc. Int. Society for
Music Information Retrieval Conf., Suzhou, China, 2017, pp. 23–30.

[34] S. Perez. (2018, Mar.). Pandora takes on Spotify with dozens of personalized
playlists built using its Music Genome. TechCrunch. [Online]. Available: https://
techcrunch.com/2018/03/28/pandora-takes-on-spotify-with-dozens-of-personalized-
playlists-built-using-its-music-genome/�

�
SP

