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Over the last decade, music-streaming services have grown 
dramatically. Pandora, one company in the field, has pio-
neered and popularized streaming music by successfully 

deploying the Music Genome Project [1] (https://www.pandora 
.com/about/mgp) based on human-annotated content analysis. 
Another company, Spotify, has a catalog of over 40 million 
songs and over 180 million users as of mid-2018 (https://press 
.spotify.com/us/about/), making it a leading music service pro-
vider worldwide. Giant technology companies such as Apple, 
Google, and Amazon have also been strengthening their music 
service platforms. Furthermore, artificial intelligence speakers, 
such as Amazon Echo, are gaining popularity, providing listen-
ers with a new and easily accessible way to listen to music.

While music-streaming services have made a huge vol-
ume of music accessible to users, the enormous size of the 
service catalogs has created the challenge of finding among 
so many choices the songs that fit users’ tastes. A general 
approach to this issue has been collaborative filtering, which 
predicts songs of potential interest based on previous usage 
data, such as play history and song rating. Although collab-
orative filtering effectively retrieves songs and accommodates 
personalized recommendations, its performance is hampered 
by such issues as popularity bias and the cold-start problem, 
the challenge of recommending new music to users [2]. The 
content-based approach is often regarded as a supplementary 
solution to those problems. Pandora radio is a representative 
example as it retrieves songs by exploiting the similarities of 
song descriptors, such as genre, mood, instruments, and vocal 
quality. However, high-quality manual annotation is costly and 
not scalable, suggesting a need for better ways to automate 
classification of music content. As a result, much attention in 
the field of music information retrieval (MIR) over the last few 
years has centered on finding ways to automate the process of 
classifying music genre and mood and tagging music. Hereaf-
ter, this article will use the term music classification and tag-
ging as a general expression for tasks that involve taking music 
audio data as input and automatically annotating them with a 
certain form of semantic label.
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The focus of a survey paper on music classification and 
tagging in 2011 [3] revealed the previous trends in the field. 
Most of the 149 papers surveyed therein were based on the 
“conventional” machine-learning framework, which involves 
a pipeline of feature extraction and classifier learning. The 
features were mostly manually designed to succinctly repre-
sent acoustic or musical characteristics given the task. How-
ever, recent breakthroughs using deep neural networks have 
shifted the paradigm to learning representations in an end-to-
end manner, which has opened the era of deep learning [4], 
[5]. This method has been applied to various tasks in MIR as 
well [6]. For several reasons, researchers have been especially 
active in exploring the problems of music classification and 
tagging. First, music classification and tagging tasks annotate 
audio clips at a track level (i.e., segments 
lasting several seconds or longer), and the 
audio clips are typically represented as two-
dimensional (2-D) image-like data, such as 
mel-spectrograms. This is similar to the 
way images are classified, which means the 
technique may be borrowed and applied in 
the field of music classification. Second, 
an essential ingredient of deep learning is 
the availability of large data sets. One is 
the Million Song Data Set (MSD), which was introduced in 
2011 [7]. MSD has facilitated large-scale training of deep neu-
ral networks for music classification and tagging tasks. Last, 
successful efforts to automate music classification have drawn 
interest from the music-streaming service industry, leading to 
investment in research resources to develop advanced content-
based approaches [1], [8].

While the latest developments in other domains have 
inspired parallel developments in music, it is still necessary to 
take into consideration the specific properties of music signals 

when developing deep-learning methods for music classifica-
tion and tagging. This article, an up-to-date tutorial-like sur-
vey, reviews the representative deep-network designs tailored 
for music classification and tagging, the best practices found 
thus far, the applications to music services and other MIR 
tasks, and, finally, the limitations and open issues that still 
need to be addressed.

From feature engineering to end-to-end learning
Humans classify or annotate music based on diverse character-
istics extracted from the audio signals. For example, a heavily 
distorted electric guitar sound with growling vocals is a good 
indication of metal music. Swing rhythms, syncopation, and 
chromatic comping by polyphonic instruments (e.g., piano or 

guitars) are obvious cues that the music is 
jazz. Translating these acoustic and musical 
features into numerical representations that 
computers can interpret is the essence of 
music classification and tagging. This usu-
ally involves a series of computation steps 
that convert audio content into a time–fre-
quency representation, extract discrimina-
tive features, summarize them over time, 
and repeat the feature extraction and sum-

marization until the proper category for the music can be de-
termined. The way of improving each feature extraction step 
to achieve the best performance has evolved with advances 
in learning algorithms from hand engineering based on do-
main knowledge to end-to-end learning. Humphrey et al. [9] 
explained the transition in a unified deep architecture model 
where multiple blocks of affine transformation, nonlinear func-
tion, and optional pooling operation are pipelined. Figure  1 
illustrates four different feature representation approaches in 
their framework. In reviewing the evolution of such approaches, 
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FIGURE 1. The transition of feature representation for music classification: (a) feature engineering [mel-frequency cepstral coefficients (MFCCs)], (b) 
low-level feature learning, (c) convolutional neural networks, and (d) end-to-end learning. The blocks inside the black lines indicate that they are learned 
by the algorithms.
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we first separate them into two classes: feature engineering 
and feature learning.

Feature engineering
A single line of melody can be arranged and performed in any 
of a variety of genres or moods of music, depending on the 
choice of instruments, chord progressions, rhythms, dynamics, 
and other musical elements. Considering the generative process 
in creating music, an intuitive approach to music classification 
and tagging would require features on each axis of the musical 
elements to be distilled and their distributions to be modeled. 
The traditional approach attempted to craft a variety of audio 
features under this principle. A representative example is the 
seminal work by Tzanetakis and Cook [10]. They tackled the 
automatic music genre classification problem by using three 
groups of audio features: timbre, pitch, and rhythm. The timbre 
feature was formed by summarizing the zero-crossing rate, low-
level spectral features, low-energy feature, and MFCCs within a 
texture window. The pitch feature was extracted by encapsulat-
ing the pitch content from a multipitch estimator into two types 
of histograms, one that contains harmony information and one 
that contains pitch-range information. The rhythmic feature 
was represented by a beat histogram that explains temporal 
regularity by counting intervals of periodic energy fluctuation 
via a subband analysis. Finally, they combined all features and 
applied them to classifiers, such as the k-nearest neighbors and 
Gaussian mixture models. Since this study laid a foundation 
for music classification and tagging, numerous research stud-
ies have developed new or better-tuned audio features and have 
followed the two-stage framework, where the hand-engineered 
features are used as input of a standard classifier.

This feature-engineering approach designs each computa-
tion step manually based on the domain knowledge. For exam-
ple, Figure 1(a) shows the computation pipeline of MFCCs. 
The mel filter bank and discrete cosine transform are tailored 
based on psychoacoustics and signal processing knowledge, 
respectively. These hand-engineered features have advantages 
in that they are interpretable and usually expressed in a com-
pact form. However, most hand-engineered audio features are 
based on short-time analysis and may not capture high-level 
information in music. In addition, the engineering process is 
separated from the data-driven optimization in the classifier. 
Currently, this two-stage approach seems to lead to an imper-
fect solution.

Feature learning
The gist of deep learning is that the feature representations of 
input data can be learned by the algorithm via the deep neu-
ral networks. That is, learning is achieved layer by layer, with 
higher-level features learned in the deeper layers. This con-
trasts with the feature-engineering approach in that the domain 
knowledge is much less involved in finding the features and the 
input data are processed at a minimum level before they are fed 
into the algorithm. In the tide of deep learning, various feature-
learning algorithms have been introduced and applied to music 
classification and tagging. We categorize them into the follow-

ing three classes: low-level feature learning, convolutional neu-
ral networks (CNNs), and end-to-end learning models.

Low-level feature learning
Early studies focused on learning low-level audio features to 
replace the handcrafted features in the two-stage framework, 
as illustrated in Figure 1(b). One kind of research focused on 
learning a meaningful dictionary of spectrograms using unsu-
pervised learning algorithms, such as the restricted Boltzmann 
machine, K-means, and sparse coding (e.g., [11]). These shallow 
feature-learning algorithms are usually trained to encode mul-
tiple frames of spectrograms into a high-dimensional sparse 
feature vector. They capture a variety of musically interpretable 
time–frequency patterns. The other kind of research focused on 
supervised feature learning that maps a short-term spectrum to 
genre or mood labels with a pretrained multilayer perceptron 
or deep belief networks (e.g., [12]). The hidden layer activations 
are used as learned features. While both groups deliver better 
performance than that using hand-engineered features in many 
music classification and tagging tasks, they are still limited to 
low-level feature learning, and the adopted framework still has 
two stages.

CNNs
Lately, CNNs have been the most widely used learning model 
in music classification and tagging tasks [13], [14]. Based on 
several seconds of audio as an input, CNNs can be improved 
in an end-to-end fashion to learn hierarchical features. How-
ever, as shown in Figure 1(c), most successful CNN models 
used the spectrogram (particularly, mel-spectrogram) as the 
input representation, indicating that domain knowledge is still 
helpful. Under different assumptions of locality and translation 
invariance on the time–frequency representation, several con-
figurations of CNN models have been suggested [13], [14]. We 
describe more details about such models in the next section.

End-to-end learning models
More recently, a few attempts have been made to directly use 
raw waveforms as the input of CNNs [8], [13], [15]. As illus-
trated in Figure 1(d), no single step requires a hand-designed 
representation, thus realizing a complete end-to-end feature 
learning. Lee et al. proposed a successful model in music clas-
sification and tagging [15], [16]. They found that the model 
performs better when the bottom convolutional layer takes a 
small grain of samples (e.g., two or three samples) rather than 
a typical window size (e.g., 256 or 512 samples). However, as 
the filter size in the convolutional layer is smaller, the model 
becomes progressively deeper, and, as a result, it takes longer 
to train. More details about this type of model are described in 
the next section.

Deep-learning models
In this section, we review three representative CNN models for 
music classification. The first two models are one-dimensional 
(1-D) [13] and 2-D CNNs [14], each of which has been applied 
in efforts to make networks more flexible. This trend toward 
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greater flexibility continues with the most recent and most suc-
cessful approach, the sample-level CNN [15], where a time-
series audio signal is used as input. Additionally, we will intro-
duce a few advanced methods that can improve performance. 
While there are many other kinds of architectures, we focus on 
CNN-based ones in this article, as they are more widely used.

For the sake of clarity, in this section we specify layers 
using Keras-style grammar (https://keras.io). A 2-D kernel is 
specified by its lengths in the frequency ( )f  and time ( )t  axes, 
e.g.,( , ) .f t  A convolutional layer with 2-D kernels measuring 
( , ),f t  N  channels, ( , )s s1 2  strides, and “valid” (or “same”) pad-
ding is denoted as Conv2D[filters = ,N  kernel_size = ( , ),f t  

( , ),s sstrides 1 2=  padding = “valid”] with some of the param-
eters omitted if they follow the aforementioned default values. 
In addition, the parameter names can be omitted while keeping 
their order (i.e., like Python syntax). Conv1D is defined similar-
ly, but the kernel size and stride are 1-D. Max-pooling layers are 
defined as MP1D(pool_size) and MP2D(pool_size). Finally, 
we specify the size of a feature map with , ,F T N^ h for lengths 
of F in the frequency axis, T  in the time axis, and N  channels.

1-D CNNs
Dieleman et al. [13] initiated some of the earliest advancements 
in the area of deep learning in music classification and tag-
ging. Dieleman also made a significant early contribution with 
his blog post about his internship with Spotify (http://benanne 
.github.io/2014/08/05/spotify-cnns.html). The network struc-
ture is illustrated in Figure 2(a), and we call it 1-D CNN in this 
article. Here, “1-D” refers to the dimensionality of the first lay-
er’s convolution operation and should not be confused with that 
of the kernel.

The assumed behavior of 1-D CNNs with respect to music 
signal input is straightforward. As mentioned previously, 1-D 
CNNs take a time–frequency representation, such as mel-
spectrogram, as input. With the kernel height of ,F  the first 
convolutional layer “sees” the entire frequency range at once. 
That is to say, during training, the network finds some patterns 
that cover the entire frequency range. For example, the size of 
the first convolutional layer’s kernel in [13] is (128, 4) with the 
number of output channels as 256, i.e., Conv2D[256, (128, 4), 
“valid”], resulting in (1, 599, 256)-sized feature maps. More 
convolutional layers and densely connected layers are shown 

as in Figure 2(a). This structure is musically plausible in some 
sense, as it puts a strong prior to the network design at the same 
time. To elaborate, we know that in images an object can appear 
in any location, making 2-D CNNs a popular design choice, as 
2-D CNNs can deal with such spatial variants. However, this 
may not be the case for musical audio. In a time–frequency 
representation, a musical object or pattern can appear anytime, 
but not in any frequency band. This is because different musi-
cal components can exist in different frequency ranges with a 
minor shift. In other words, the invariance property we want 
to have may be mostly along the time axis. This characteristic 
enables us to see and interpret what is learned at the first con-
volutional layer. Because the learned kernels operate directly 
on the spectrogram input, we can visualize the kernels using 
the learned weights and see which genres of songs maximally 
activate them. For example, in Figure 3, we show the top four 
relevant tags for a few selected kernels. The tags are sorted (in 
descending order from top to bottom) based on the tag activa-
tion score of each kernel. We can see that the corresponding 
tags somehow explain each of the learned kernels.

One-dimensional CNNs are computationally efficient. 
Its first convolutional layer takes the entire frequency range, 
makes the feature maps of the subsequent layers much smaller 
(the length of the frequency axis becomes 1), and, accordingly, 
drastically reduces the total number of network parameters. 
However, this is actually a double-edged aspect of 1-D CNNs. 
A small number of parameters means it is easier to train the net-
work with relatively small data sets. At the same time, it means 
that 1-D CNNs will not fully benefit from the development of 
hardware resources and large-scale data sets due to their lim-
ited representation power.

The aforementioned assumption, or the strong prior, of 1-D 
CNNs introduces a clear limitation: a complete lack of fre-
quency-axis shift-invariance. In the first layer, the 128-dimen-
sional frequency components are assumed to have their own 
meaning; therefore, a slight change along the frequency axis 
(i.e., pitch transposition) results in a significantly different acti-
vation. Using a slightly smaller kernel [e.g., (126, 4)] has been 
proposed as an alternative (while making it technically 2-D 
convolution), but it only provides a “global” shift-invariance. 
In other words, assuming a max-pooling of ( , )x3  follows, this 
alternative approach is invariant to a global transposition by two 
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semitones. However, it is not invariant to local changes, e.g., a 
combination of an 1e  frequency shift in the bass guitar com-
ponent, an 2e  shift in the vocal component, and an 3e  shift in 
the piano component, where se  are different (unlike in the case 
of 2-D CNNs). As a result, the representations that 1-D CNNs 
learn in the first layer are limited to some common patterns of 
the entire frequency ranges.

2-D CNNs
With larger data sets and better hardware resources becoming 
available, a natural step is to increase network flexibility to im-
prove representation learning, as in [14]. The network structure 
is illustrated in Figure 2(b). We call it 2-D CNNs in contrast to 
1-D CNNs, as they focus on the contiguous 2-D convolutional 
layers including the first one. The five-layer structure in [14], 
for example, gradually combines smaller time–frequency pat-
terns to create larger ones with 2-D convolutional layers, e.g., 
Conv2D[32, (3, 3)], which allow for small shifts by the follow-
ing max-pooling layers, e.g., MP2D[(2, 2)]. Since the kernel 
sizes are small, the padding strategy (“valid” or “same”) is not 
of very much interest.

Two-dimensional CNNs assume that more flexibility will 
be helpful in finding the time–frequency patterns. The flexibil-
ity can have several aspects: the shift (or location) invariance 
along both axes, the size of the patterns, and small distortions 
within the patterns. They are realized by 2-D convolutional 
layers with small kernels (typically three-by-three) and 2-D 
max-pooling layers. Although this may contradict the different 
meanings of time and frequency axes mentioned in the previ-
ous section, 2-D CNNs have, in fact, performed better than 
1-D CNNs. Thanks to their simple structure and good perfor-
mance, 2-D CNNs may now be the most popular approach for 
music audio classification.

Two-dimensional CNNs usually demand better hard-
ware than 1-D CNNs for two reasons. First, the param-
eters easily outnumber those of 1-D CNNs due to the use of 

contiguous 2-D kernels, which then require more memory. 
Second, the training and use of 2-D CNNs add a significant 
computation burden due to the large size of the feature maps, 
along which the kernel should be convolved. For example, 
with a 1-D CNN, all of the feature maps are of size , , .x N1^ h  
The frequency axis is always of length 1, which makes the 
feature maps 1-D with channels. In contrast, with a 2-D 
CNN, the feature maps would be of size , , ,x NF^ h  i.e., 2-D 
with channels. This significantly increases the computation 
in both the forward and backward passes of the model train-
ing process.

So far, we have reviewed the advantages and disadvantages 
of 2-D CNNs as compared with 1-D CNNs. In practice, 2-D 
CNNs offer some practical advantages. For example, improve-
ments in hardware have enabled researchers and practitioners 
to use 2-D CNNs when they have sufficient data. Once the bot-
tlenecks of the data size and hardware resource are resolved, 
the flexibility of 2-D CNNs may bring about better perfor-
mance. Empirical evidence provided in [17] compares various 
CNN architectures according to number of parameters, com-
putation use, and performance.

Sample-level CNNs
As explained in the previous subsection, 2-D CNNs may lead 
to better results in music classification and tagging, as they 
provide more flexibility. Sample-level CNNs go further in 
the same direction by discarding the 2-D time–frequency in-
put preprocessing stage and learning directly from the audio 
waveforms in an extremely granular way [15]. Although it was 
not the first approach that directly learns representations from 
the raw audio, it is the first architecture that has achieved a 
state-of-the-art performance with a significantly shorter kernel 
size than the regular window size in short-time analysis with 
a deep network.

Among the variations in [15], we explain the details of 
the 39  model structure. As illustrated in Figure 2(c), the 
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model consists of one [Conv1D(filters = 128, kernel_size = 3, 
strides = 3)], 9 # [Conv1D(128, 3, 1) + MP1D(pool_size = 3)], 
and the output layer. The base (3) of the model name indi-
cates the kernel size and stride of the layers while the expo-
nent (9) means the number of Conv1D +  MP1D modules. 
The first layer learns 128 1-D kernels, with which the layer 
can extract certain 1-D patterns at each time step. The acti-
vation of the first convolutional layer is based on size (time 
step, channels), and we can understand it as a 2-D time–fre-
quency representation where each frequency component is 
not necessarily a pure sinusoid and the frequency axis is not 
sorted. Afterward, those basic nonsinusoid components are 
combined with convolutional layers. The effective operation 
in the subsequent convolutional layer is equivalent to that of 
1-D CNNs.

The following three properties of sample-level CNNs, 
all of which are related to the extra flexibility of the model, 
may contribute to their strong performance. First, one of the 
motivations underlying sample-level CNNs is to learn “phase-
invariant” representations. The time-domain kernels involve 
learning all the possible time shifts within the kernel window. 
Therefore, a large kernel may require even more filters to 
cover the variations. The deep stack of the short kernels and 
max-pooling layers in sample-level CNNs effectively takes 
care of the phase variation. Second, by learning kernels that 
are directly applied to the audio signal, sample-level CNNs 
improve the spectral bandwidth assigned for the input signal 
analysis. Finally, as previously mentioned, the kernels in the 
first convolutional layer of sample-level CNNs can be chosen 
to represent harmonic components rather than pure sinusoids, 
which form usual 2-D time–frequency representations, such as 
the spectrogram. This flexibility also improves the discrimina-
tive power of the learned features.

A downside of sample-level CNNs is their computation 
complexity. The authors of [15] informally reported that it took 
about three to seven times longer to train sample-level CNN 
models as compared with 1-D CNN models. A way to acceler-
ate the training is to down-sample the waveform input [16], but 
researchers need to develop more efficient models.

Advanced models
This section summarizes several advanced methods that have 
addressed various aspects of deep learning-based models. We 
note that these methods are designed to achieve different goals 
and that they are not mutually exclusive but can be combined 
in a model.

Convolutional recurrent neural networks
A convolutional recurrent neural network (CRNN) is a variant 
of the CNN structure that uses recurrent layers to replace the 
final convolutional layers [17]. The CRNN model assumes that 
the long-term patterns are better encoded with recurrent layers 
than with convolutional layers. This is probably because the 
important patterns are shorter than the input duration. There-
fore, the temporal dynamics of the patterns is a sequence of 
some short-term patterns rather than a whole, single pattern. 

The use of recurrent layers also makes the model flexible 
with respect to the input length, which can be useful for music 
classification. The network structure in [17] is based on 2-D 
CNNs, but we note that the recurrent layers can be added to 
other types of CNNs as well.

Residual networks and squeeze-and-excitation networks
These network architectures have achieved state-of-the-art 
performance on ImageNet challenges in 2015 and 2017, re-
spectively [18], [19]. Unlike the usual network structures, some 
layers in a residual network share skip connections, with which 
the layers are directly connected without any operation. Re-
searchers have enthusiastically adopted this idea because it en-
ables very deep networks (e.g., with more than 100 layers) to 
be trained. The squeeze-and-excitation network, by applying a 
trained channel-wise weighting, provides another way to en-
hance the representation of a layer. It was successfully applied 
for music autotagging in [20].

Pairwise data
Finally, a more macroscopic modification of a network can be 
done with a different supervised learning scheme. When the 
label consists of pairwise similarities or ranking, it is possible 
to achieve metric learning by using a triplet loss function. A 
network using this function takes three data samples: an an-
chor, a positive item, and a negative item. The network learns 
respective representations, or embeddings, in a way that the 
embeddings of the anchor and the positive item are close to 
each other while those of the anchor and the negative item are 
not. In MIR, music content embeddings were used to predict 
music similarity in [21].

Data sets and tasks
In this section, we describe four public data sets that have been 
widely used for music classification and tagging. One of the 
crucial elements in the success of deep learning is the avail-
ability of large-scale public data sets that are used not only for 
the training of deep-learning models but also for benchmark 
evaluation. The MIR community has organized an annual 
algorithm evaluation exchange called Music Information Re-
trieval Evaluation eXchange (MIREX) which includes several 
music classification and tagging tasks; see http://www.music-ir 
.org/mirex/wiki/MIREX_HOME for more information. 
However, the development of deep learning has not benefited 
much from this exchange chiefly because the MIREX data 
sets are not open to the public and both the training and test-
ing are conducted by the MIREX committee. Also, the vol-
umes of the hidden data sets are not sufficient to fully evaluate 
the deep models. Presumably, this may be attributed to the 
serious copyright issues related to music content because the 
commercial music is released through professional sound pro-
ducers and the license is more restricted. The four public data 
sets presented below circumvent the issue by using trimmed 
or degraded audio clips, e.g., 30 s with 16- or 22.05-kHz sam-
ple rate, or copyright-free music tracks. We note that this is 
not a comprehensive list of available data sets but a selection 
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of those that have been used mainly to evaluate deep-learning 
models (Table 1).

GTZAN
Despite its small size, GTZAN (its name derived from the 
name of George Tzanetakis, who assembled the data set) is one 
of the most widely used data sets for music genre classification 
[10]. It contains 1,000 pieces of 30-s audio clips (ten genres 
and 100 songs for each genre). The up-to-date version uses an 
artist-stratified split of 443, 197, and 290 audio clips for train-
ing, validation, and testing, respectively, with no repeated art-
ists across these sets. The artist-stratified split is unique in the 
music domain because artists are likely to have similar styles 
of music across their own songs. We note that GTZAN has also 
been used for conducting a target task with a small volume of 
data in the context of transfer learning [16], [24].

MagnaTagATune
MagnaTagATune (MTAT) is one of the most widely used bench-
mark data sets for music autotagging. It is a multilabel music 
classification task that annotates genre, mood, instruments, 
and other song descriptions heterogeneously [22]. The data 
set comes with tags and similarity annotations. The autotagging 
benchmark has been conducted using a different number of tags, 
including 188 tags (the original version), 160 tags (the MIREX 
2009 version), and the most frequently used 50 tags. The 50-tag 
version is currently the most benchmarked. From the 16 pre-
defined partitions of the data set, a common practice is to use 
the first 12 for training, the 13th for validation, and the remain-
ing three for testing. This data set contains 25,863 30-s audio 
clips. Its midsize volume is appropriate for training a deep neu-
ral network. However, the data set has drawbacks. For example, 
some clips are cut from the same song, and the music styles are 
slightly different from popular chart music, as the music tracks 
are mainly obtained from independent musicians.

MSD 
The MSD is a cluster of complementary data sets created from 
contributions by the MIR community [7]. The original MSD 
contains artist-level metadata along with the Echo Nest (hand-
engineered) audio features without access to the original audio. 
However, the MSD has been augmented by other metadata by 
matching the identification data (IDs), including the song-level 
tags, similarity, lyrics, cover songs, user listening history, and 
genre labels. To train deep neural networks that take spectro-
grams or waveforms, researchers have used 30-s preview audio 

clips downloaded from 7digital (https://www.7digital.com/). 
Also, the Last.fm tag annotations (https://www.last.fm/) have 
been widely used in benchmarking for music autotagging.

Free Music Archive
The Free Music Archive (FMA) is the most recently published 
large-scale data set under the Creative Commons license [23] 
(http://freemusicarchive.org/). The data set provides the rich 
track-level, album-level, and artist-level metadata, including 
the genres, the number of listens, and tags. It is mainly oriented 
for genre classification, and there are four subsets for bench-
marking: small, medium, large, and full. The small and me-
dium subsets are for single-label genre classification, whereas 
the large and full subsets are for multilabel genre classification. 
Although the main task is genre classification, tag annotations 
are also included in the metadata.

Evaluation
As mentioned previously, we set up the problems as either a 
multiclass (e.g., genre or mood classification) or a multilabel 
(e.g., autotagging) task. In the multiclass task, the models are 
primarily evaluated using the accuracy score. In the multilabel 
task, the predictions are regarded as independent binary out-
puts. Each of these outputs is evaluated in both annotation and 
retrieval (or ranking) contexts. The main metrics for annotation 
are precision, recall, and F score. They are computed for each 
word label and are averaged. The metrics for retrieval include 
the area under the receiver–operator curve (AUC), the mean av-
erage precision, and the precision at (or up to) rank K (P@K). 
Among them, AUC has been primarily used to compare dif-
ferent deep-learning models. Table 2 lists the performance 
comparison reported so far, showing how the AUC obtained for 
MTAT and MSD has improved over the years due to a cumula-
tive effort from the MIR community.

We note that each of the metrics has slightly different 
characteristics. For example, the P@K metric is important 
when we develop recommendation services because users 
tend to be interested in the top K-ranked results rather than all 
of them. Therefore, depending on the target application, one 
may choose different performance metrics when evaluating 
the results.

Practical guide
This section describes several practical issues when apply-
ing a deep-learning model for music classification and tag-
ging tasks.

Table 1. Selected data sets for music classification.

Data Sets  Number of Clips Number of Artists Main Task Annotation Audio Year

GTZAN [10] 1,000 ~300 Genre classification Author’s labeling Yes 2002

MTAT [22] 25,863 230 Autotagging Crowdsourced Yes 2009

MSD [7] 1 million 44,745 Autotagging Crowdsourced No 2011

FMA [23] 106,574 16,341 Genre classification Artist’s labeling Yes 2017
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Data preprocessing
The first parameter to check is the sample rate. While 44.1 kHz 
is the standard for commercial music tracks, most data sets 
are down-sampled to 16 or 22.05 kHz. Researchers often re-
duce the sample rate even further (e.g., 8 or 12 kHz) as they 
observe that by reducing data, training is quicker without 
significantly affecting performance [14], [16]. The 1-D and 
2-D CNNs take spectrograms as audio input. In particular, 
the mel-spectrogram or other log-frequency spectrograms are 
commonly used. This requires selecting short-term analysis 
parameters (e.g., window function, hop size), a mel-band 
size, and the log compression strength. Librosa (https:// 
librosa.github.io/librosa/) is a widely used audio-process-
ing library for this purpose. In contrast, sample-level CNNs 
do not require any preprocessing other than sample-rate con-
version. The waveform input is already zero-centered, and 
the amplitude of commercial music clips is normalized well 
by postprocessing (e.g., audio mastering).

Data augmentation
Data augmentation is a technique that regularizes the model 
by increasing the volume of data. For audio signals, the digi-
tal audio effects, such as pitch-shifting or time-stretching, are 
effective means to this end. However, this should be done 

within a range where the nature of music la-
bels is not distorted. Data augmentation is not 
found in the music classification literature yet, 
but it may be useful when the data set of the tar-
get task is small. Musical Data Augmentation 
(http://muda.readthedocs.io/en/latest/) is a use-
ful audio-processing library for this purpose.

Input length
Semantic labels are usually annotated to each 
song at a track level, and the audio length is 
typically several minutes. Therefore, to use au-
dio tracks to train the models, they need to be 
chopped into a fixed length of segments. This 
causes a tradeoff between model complexity 
and label noisiness. If the segment is short-

ened, a more compact model can be trained with greater in-
put data. However, the labels inherited from the track level 
tend to be noisier due to the dynamic nature of music within 
a track, and the compact model can miss learning high-
level musical features. On the other hand, if the segment 
is lengthened, the label noisiness will be mitigated and a 
more long-term structure can be learned. However, this re-
quires having more complex models along with more data. 
The common practice is using segments between 3 and 6 s 
as input. Some complex models take up to 30 s [14], [17]. 
The assumption that the segments of a track share the same 
labels as the track has also been referred to as a weakly su-
pervised learning problem [25], as when the segment-level 
supervision is noisy. An advanced method to deal with such 
an issue might be adding the so-called attention module 
to the neural network, as demonstrated by [27] for music 
mood classification.

Applications
In this section, we explain how a neural network model pre-
trained on larger-scale labeled data for music classification and 
tagging can be applied to other tasks, such as classifying across 
data sets, making recommendations, thumbnailing music, and 
predicting hit songs, as illustrated in Figure 4.

Neural Network
Pretrained

on Large-Scale
Labeled Data

Training
Transfer Learning

Music Thumbnailing

Hit-Song Prediction

.....

Music Recommendation

Large-Scale
Labeled Data Target Data

Neural Network for
Target Task

Random Initialization
for Neural Network

FIGURE 4. Transferring the knowledge of a neural network pretrained on larger-scale labeled data to other music applications. Refer to the “Applications” 
section for details.

Table 2. A selection of results for music auto-tagging task. The AUC metric is used for 
the evaluation.

Models Published Year End to End MTAT MSD 

1-D CNN [13] 2014 
No 0.8815 —

Yes 0.8487 —

Multiscale CNN [25] 2016 No 0.8960 —

2-D CNN [14] 2016 No 0.8940 0.8510

Multi-D CNN [26] 2017 No 0.8930 —

CRNN [17] 2017 No — 0.8620

Sample-level CNN [15] 2017 Yes 0.9055 0.8812

ReSE-2-multisample CNN [20] 2018 Yes 0.9113 0.8847
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Findings show that pretrained models using large-scale 
labeled data can provide a good estimate of the similarities 
among audio content (Figure 5). Therefore, with the so-called 
transfer-learning techniques, we can build classifiers for prob-
lems with sparsely labeled data on top of such pretrained mod-
els. For example, Choi et al. [24] used approximately 250,000 
MSD preview clips to train a 2-D CNN to classify 50 music 
tags. They then showed that a concatenated feature vector using 
the activations of the feature maps of the CNN can serve as a 
nice general-purpose music representation. This is useful for a 
variety of other tasks, such as classifying ballroom dancing and 
other subgenres, predicting the emotions the music might stim-
ulate, distinguishing between vocal and nonvocal sounds, and 
sorting various sound events, such as car horns and dog barks.

Pretrained models can also contribute to addressing the 
challenge of making content-based music recommendations. 
For instance, Pandora, powered by the Music Genome Project, 
can create various personalized playlists for each of its users by 
combining traditional collaborating filtering algorithms with 
the classified attributes of music [34]. Compared to the purely 
collaborating filtering methods, adding content filtering by 
means of pretrained models for music classification and tagging 
helps ensure acoustic consistency (e.g., similarities in genre/
style, rhythmic patterns, vocal timbre, or expressed emotions) 
in the recommended list of music, which in turn improves the 
user experience. With content filtering, the (acoustic) diversity 
of the recommended music can also be controlled [2].

An interesting application of pretrained models is music 
thumbnailing, i.e., detecting the highlight of a song. Huang 
et al. [27] employed a pretrained model for music-mood clas-
sification and an attention module to learn to weigh the con-
tribution of a song’s different segments in deciding the overall 
mood of the song. Then, a moving window was used to aggre-
gate the per-segment attention scores over time to pick the 
song’s peak, assuming that the highlight is usually the most 
emotional part of a song. They achieved a promising result in 
highlight detection without using any labeled data related to 
music highlights.

Another interesting application is audio-based hit-song pre-
diction. Yu et al. [28] used a pretrained 1-D CNN model for 
music classification as part of a bigger CNN model for pre-
dicting song popularity. The experiments showed that deep 
structures are indeed more accurate than shallow structures in 
predicting song popularity and that the use of the pretrained 
music classification model further improves the accuracy by a 
large margin. We believe that similarly pretrained models can 
also be applied to other problems.

Limitations and future challenges
In this section, we discuss some major limitations of the exist-
ing methods for music classification and tagging, and we out-
line some directions for future research.

Share of audio data
The problem of copyright infringement may limit widespread 
research on music classification and tagging. People cannot 

freely distribute the audio files from the data sets. Common 
approaches for getting around this issue include sharing pre-
computed features instead of the audio files, providing a list 
of IDs with which people may find the audio previews on the 
web, or using copyright-free music. The last approach provides 
more options as people can get the audio files for the entire 
songs. However, to work with popular music that people are 
familiar with (which are usually copyright protected), some 
other solutions are still needed. A possible approach is to auto-
matically generate music that is similar to the popular music by 
using deep-generative models, such as generative adversarial 
networks [30].

Musically meaningful network design
We also expect developers to make more use of peculiar char-
acteristics of music in the design of deep neural networks. In 
the past few years, deep learning-based approaches to many 
MIR problems have established new state-of-the-art bench-
marks. However, to explain the network and for better per-
formance, future work is needed to bring back music-domain 
knowledge to the loop of network design. For instance, instead 
of expecting that the network can learn abstract representations 
of music in different hierarchies from the bottom up on its own, 
it might be better to inform the network (in a top-down fashion) 
of the midlevel features, such as the presence of syncopation, 
the extensive use of diminished chords, and the use of synthe-
sizer. Then, classifiers could be built on top of these midlevel 
features. This requires a joint effort from the research commu-
nity to put together resources and labeled data to model differ-
ent layers of music knowledge and to conduct experiments to 

Classical Electronic Rock
Dance Metal

FIGURE 5. We generate T-distributed stochastic neighbor embedding vi-
sualization (best viewed in color) of the distribution of song embeddings 
by using a CNN model [29] trained on MTAT. The colors represent five 
different tags of music (provided by MTAT). The black dots denote songs 
that are not labeled by any of these tags. We see that songs with similar 
genres cluster together in the learned feature space.
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find out the best ways to use them in a neural network, with all 
the layers possibly trained in an end-to-end fashion.

Another way to incorporate music knowledge is to use 
not only the audio files but also the corresponding musical 
scores, if available. Musical scores contain rich information 
about the music piece, such as the melody line and the chord 
sequence. Score-informed approaches have been shown to 
greatly improve the performance of source separation [31]. By 
aligning a score with the audio recording of its actual per-
formance, we can also extract performance-related features 
(e.g., stylistic changes in velocity, note duration, and the use 
of different playing techniques) that characterize how the per-
former interprets the piece of music. However, to date, little 
work has been done to use the audio and musical score jointly 
in a neural network. Future work can build, for example, a two-
stream network that takes as input the audio file as well as its 
score or other symbolic representations.

We know that a music piece is usually composed of several 
elements, such as melody, chords, percussion, and baseline, 
and each of them is often played by different instruments [29]. 
However, most neural networks for music classification pro-
cess audio inputs as a whole without distinguishing among the 
component sources of sound. While deep-learning approaches 
have led to the state-of-the-art results in sound-source separa-
tion and music classification, little work has been done to joint-
ly tackle the two problems under a unified network. Requiring 
the neural network to learn to separate the musical sources that 
compose an audio mixture while performing feature learning 
can, therefore, be an important future direction.

Vocabulary and personalization
The diversity and coverage of labels considered in classification 
and tagging models can also be increased. Ideally, it is better to 
have a granular vocabulary as fine as that of Pandora’s Music 
Genome Project [1], which claims to have around 450 musical 
attributes. One possible solution is to leverage the abundant 
user-provided tags from social platforms, such as last.fm, Twit-
ter, or SoundCloud. However, how to get rid of the social tags’ 
noises and ambiguity while learning an effective music clas-
sifier remains an open issue. In imagining extreme possibili-
ties, we foresee technologies that would enable end users to use 
arbitrary natural language as input (e.g., via voice commands) 
to query for music. For example, “Hey Google, I need music to 
make me feel better” and “Alexa, I cannot fall asleep. Maybe 
some music?” Such scenarios may be important given the ev-
er-increasing popularity of artificial intelligence speakers. To 
support such retrieval applications, we need to collaborate with 
researchers from the speech community to better understand 
natural language. The vocabulary considered by our machines 
in describing music also has to be expanded and adapted to 
cope with the richness of natural language.

Moreover, the associations between music and some types 
of labels such as moods (e.g., “happy,” “aggressive,” “sad,” 
“relaxing”) and usages (e.g., “for exercising,” “for reading”) 
are known to be subjective. Therefore, it is more difficult to 
computationally model them. However, such labels are impor-

tant, for example, if we want to automatically create playlists 
that fit a user’s mood or activity. We surmise that the assign-
ment of such labels has to be personalized, taking into account 
the listener’s preference as well as the “personal definition” of 
those labels to the listener. Although much research has been 
done for music mood classification, it remains to date a chal-
lenge to effectively personalize such systems.

Cross-modality approach
We see a lot of cross-modality research in the neighboring field 
of computer vision, which aims to combine the visual world 
with the textual world. Notable applications include image cap-
tioning, conditional image generation from visual attributes, 
and cross-modality retrieval. We expect similar attempts to 
flourish in the MIR community as well, not only for classi-
fication and tagging tasks (e.g., [33]) but also for generative 
tasks, such as tag-conditioned music generation, melody-con-
ditioned lyrics generation, album cover generation, and music 
video generation. To facilitate research on these tasks, sharing 
pretrained models or knowledge (e.g., best practices in model 
training) can play an important role.

Music is important in our daily lives and there are many 
ways machine learning can improve or change the way we 
experience and create music. By summarizing what has been 
known thus far, we hope this article can encourage follow-up 
research to further enhance our modeling and understanding 
of music.
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