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The Internet of things (IoT), which integrates a variety of 
devices into networks to provide advanced and intelligent 
services, has to protect user privacy and address attacks 

such as spoofing attacks, denial of service (DoS) attacks, jam-
ming, and eavesdropping. We investigate the attack model for 
IoT systems and review the IoT security solutions based on 
machine-learning (ML) techniques including supervised learn-
ing, unsupervised learning, and reinforcement learning (RL). 
ML-based IoT authentication, access control, secure offloading, 
and malware detection schemes to protect data privacy are the 
focus of this article. We also discuss the challenges that need to 
be addressed to implement these ML-based security schemes 
in practical IoT systems.

Introduction
The IoT facilitates integration between the physical world and 
computer communication networks, and applications (apps) 
such as infrastructure management and environmental moni-
toring make privacy and security techniques critical for future 
IoT systems [1]–[3]. Consisting of radio-frequency identifica-
tions (RFIDs), wireless sensor networks (WSNs), and cloud 
computing [4], IoT systems have to protect data privacy and 
address security issues such as spoofing attacks, intrusions, 
DoS attacks, distributed DoS (DDoS) attacks, jamming, 
eavesdropping, and malware [5], [6]. For instance, wearable 
devices that collect and send the user health data to a connect-
ed smartphone have to avoid privacy information leakage.

It’s generally prohibitive for IoT devices with restricted 
computation, memory, radio bandwidth, and battery resourc-
es to execute computational-intensive and latency-sensitive 
security tasks, especially under heavy data streams [7]. 
However, most existing security solutions generate a heavy 
computation and communication load for IoT devices, and 
outdoor IoT devices such as cheap sensors with lightweight 
security protections are usually more vulnerable to attacks 
than computer systems. As shown in Figure 1, we investigate 
IoT authentication, access control, secure offloading, and 
malware detection.
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 ■ Authentication helps IoT devices distinguish the source 
nodes and address identity-based attacks such as spoofing 
and Sybil attacks [8].

 ■ Access control prevents unauthorized users from accessing 
the IoT resources [9].

 ■ Secure offloading techniques enable IoT devices to use the 
computation and storage resources of the servers and edge 
devices for computational-intensive and latency-sensitive 
tasks [10].

 ■ Malware detection protects IoT devices from privacy leak-
age, power depletion, and network performance degradation 
against malware such as viruses, worms, and Trojans [11].
With the development of ML and smart attacks, IoT devic-

es have to choose a defensive policy and determine the key 
parameters in the security protocols for the tradeoff in the het-
erogenous and dynamic networks. This task is challenging as 
an IoT device with restricted resources usually has difficulty 
accurately estimating the current network and attack state 
in time. For example, the authentication performance of the 
scheme in [8] is sensitive to the test threshold in the hypothesis 
test, which depends on both the radio propagation model and 
the spoofing model. Such information is unavailable for most 
outdoor sensors, leading to a high false alarm or misdetection 
rate in the spoofing detection.

ML techniques including supervised learning, unsuper-
vised learning, and RL have been widely applied to improve 
network security as summarized in Table 1, such as authenti-
cation, access control, antijamming offloading, and malware 
detection [8]–[22].

 ■ Supervised learning techniques such as support vector 
machines (SVMs), naive Bayes, K-nearest neighbor 
(K-NN), neural networks (NNs), deep NNs (DNNs), and 
random forest can be used to label the network traffic or 
app traces of IoT devices to build the classification or 
regression model [9]. For example, IoT devices can use 
SVMs to detect network intrusion [9] and spoofing attacks 
[12], apply K-NNs in network intrusion [13] and malware 

[14] detection, and utilize NNs to detect network intrusion 
[15] and DoS attacks [16]. Naive Bayes can be applied by 
IoT devices in intrusion detection [9], and random forest 
classifier can be used to detect malware[14]. IoT devices 
with sufficient computation and memory resources can uti-
lize DNNs to detect spoofing attacks [23].

 ■ Unsupervised learning does not require labeled data in the 
supervised learning and investigates the similarity between 
the unlabeled data to cluster them into different groups [9]. 
For example, IoT devices can use multivariate correlation 
analysis to detect DoS attacks [17] and apply the infinite 
Gaussian mixture model (IGMM) in the physical (PHY)-
layer authentication with privacy protection [18].

 ■ RL techniques such as Q-learning, Dyna-Q, postdecision 
state (PDS) [24], and deep Q-network (DQN) [25] enable 
an IoT device to choose security protocols as well as key 
parameters against various attacks via trial and error [8]. 
For example, Q-learning as a model-free RL technique has 
been used to improve the performance of authentication 
[8], antijamming offloading [10], [19], [20], and malware 
detection [11], [21]. IoT devices can apply Dyna-Q in 
authentication and malware detection [11], use PDS to 
detect malware [11], and DQN in antijamming transmis-
sions [22]. 

IoT attack model
Consisting of things, services, and networks, IoT systems are 
vulnerable to network, physical, and software attacks as well 
as privacy leakage. As shown in Figure 1, we focus on the IoT 
security threats as follows:

 ■ DoS attackers: The attackers flood the target server with 
superfluous requests to prevent IoT devices from obtaining 
services [4]. One of the most dangerous types of a DoS 
attack is when DDoS attackers use thousands of Internet 
protocol addresses to request IoT services, making it diffi-
cult for the server to distinguish the legitimate IoT devices 
from attackers. Distributed IoT devices with lightweight 
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Figure 1. An illustration of the threat model in the IoT.
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security protocols are especially vulnerable to DDoS 
attacks [5].

 ■ Jamming: Attackers send fake signals to interrupt the 
ongoing radio transmissions of IoT devices and further 
deplete the bandwidth, energy, central processing units 
(CPUs), and memory resources of IoT devices or sensors 
during their failed communication attempts [22].

 ■ Spoofing: A spoofing node impersonates a legal IoT device 
with its identity such as the medium access control (MAC) 
address and RFID tag to gain illegal access to the IoT sys-
tem and can further launch attacks such as DoS and man-
in-the-middle attacks [8].

 ■ Man-in-the-middle attack: A man-in-the-middle attacker 
sends jamming and spoofing signals with the goal of secret-
ly monitoring, eavesdropping, and altering the private com-
munication between IoT devices [4].

 ■ Software attacks: Mobile malware such as Trojans, worms, 
and viruses can result in privacy leakage, economic loss, 
power depletion, and network performance degradation of 
IoT systems [11].

 ■ Privacy leakage: IoT systems have to protect user privacy 
during data caching and exchange. Some caching owners 
are curious about the data content 
stored on their devices and analyze 
and sell such IoT privacy informa-
tion. Wearable devices that collect 
user’s personal information such as 
location and health information have 
witnessed an increased risk of per-
sonal privacy leakage [26].

Learning-based authentication
Traditional authentication schemes are 
not always applicable to IoT devices with 
limited computation, battery, and memory 
resources to detect identity-based attacks 
such as spoofing and Sybil attacks. PHY-
layer authentication techniques that 
exploit the spatial decorrelation of the 
PHY-layer features of radio channels and 
transmitters such as the received signal 
strength indicators (RSSIs), received sig-
nal strength (RSS), channel impulse re-
sponses (CIRs) of the radio channels, 
channel state information (CSI), and the 
MAC address can provide lightweight se-
curity protection for IoT devices without 
leaking user privacy information [8].

PHY-layer authentication methods 
such as [8] build hypothesis tests to com-
pare the PHY-layer feature of the message 
under test with the record of the claimed 
transmitter. Their authentication accu-
racy depends on the test threshold in the 
hypothesis test. However, it is challenging 
for an IoT device to choose an appropriate 

test threshold of the authentication due to the radio environment 
and the unknown spoofing model. The IoT device estimates the 
false alarm and misdetection rate of the spoofing detection at 
the last time slot, and the state of the learning consists of the 
false alarm and misdetection rate. The future state observed by 
the IoT device is independent of the previous states and actions 
if the current state and test threshold are known. Therefore, the 
test threshold selection in the IoT authentication in the repeated 
game against spoofing attacks can be viewed as a Markov deci-
sion process (MDP) with finite states.

The Q-learning-based authentication as proposed in [8] 
depends on the RSSI of the signals under test and enables an IoT 
device to achieve the optimal test threshold and improve the util-
ity and the authentication accuracy. For example, the Q-learn-
ing-based authentication reduces the average authentication 
error rate by 64.3%, to less than 5%, and increases the utility 
by 14.7% compared with the PHY-authentication with a fixed 
threshold in an experiment performed in a .12 9 5 3 m3# #  lab 
with 12 transmitters [8].

Supervised learning techniques such as distributed Frank-
Wolfe (dFW) and incremental aggregated gradient (IAG) can 
also be applied in IoT systems to improve spoofing resistance. 

Table 1. ML-based IoT security methods.

Attacks Security Techniques ML Techniques Performance 

DoS Secure IoT offloading NN [16] Detection accuracy

Access control Multivariate correlation 
analysis [17]

Root mean error 

Q-learning [21] 

Jamming Secure IoT offloading Q-learning [19], [20] Energy consumption SINR

DQN [22]  

Spoofing Authentication Q-learning [8] Average error rate

Dyna-Q [8] Detection accuracy

SVM [12] Classification accuracy

DNN [23] False alarm rate

dFW [27] Missdetection rate 

Incremental aggregated 
gradient [27] 

Intrusion Access control SVM [9] Classification accuracy

Naive Bayes [9] False alarm rate

K-NNs [13] Detection rate

NN [15] Root mean error 

Malware Malware detection 
Access control

Q/Dyna-Q/PDS [11] Classification accuracy

Random forest [14] False positive rate

K-NNs [14] True positive rate

Detection accuracy

Detection latency 

Eavesdropping Authentication Q-learning [10] Proximity passing rate

 Nonparametric  
Bayesian [18] 

Secrecy data rate 
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The authentication scheme in [27] exploits the RSSIs received 
by multiple landmarks and uses logistic regression to avoid 
being restricted to a known radio channel model. By apply-
ing the dFW and IAG algorithms to estimate the parameters 
of the logistic regression model, this authentication scheme 
saves communication overhead and improves spoofing detec-
tion accuracy. As shown in Figure 2, the average error rates of 
the dFW-based authentication and the IAG-based scheme are 
6% and less than ,10 4-  respectively, in the simulation with six 
landmarks, each equipped with six antennas. The dFW-based 
authentication reduces the communication overhead by 37.4%, 
while the IAG reduces the computation overhead by 71.3% 
compared with the Frank-Wolfe-based scheme in this case [27].

Unsupervised learning techniques such as IGMM can 
be applied in proximity-based authentication to authenti-
cate the IoT devices in the proximity without leaking the 
localization information of the devices. For instance, the 
authentication scheme as proposed in [18] uses IGMM, a 
nonparametric Bayesian method to avoid the “overfitting” 
problem and, thus, adjust the model complexity, to evalu-
ate the RSSIs and the packet arrival time intervals of the 
ambient radio signals to detect spoofers outside the prox-
imity range. This scheme reduces the detection error rate 
by 20% to 5%, compared with the Euclidean distance-based 
authentication [18] in the spoofing detection experiments in 
an indoor environment.

As shown in Figure 3, this scheme requests the IoT device 
under test to send the ambient signals’ features such as the 
RSSIs, MAC addresses, and packet arrival time interval of the 
ambient signals received during a specific time duration. The 
IoT device extracts and sends the ambient signals’ features to 
the legal receiver. Upon receiving such authentication messag-
es, the receiver applies IGMM to compare the reported signal 
features with those of the ambient signals observed in the prox-
imity-based test. The receiver provides the IoT device passing 
the authentication with access to the IoT resources.

Finally, deep-learning techniques such as DNNs can 
be applied for IoT devices with sufficient computation and 
memory resources to further improve the authentication accu-
racy. The DNN-based user authentication as presented in [23] 
extracts the CSI features of the Wi-Fi signals and applies 
DNNs to detect spoofing attackers. The spoofing detection 
accuracy of this scheme is about 95%, and the user identifica-
tion accuracy is 92.34% [23].

Learning-based access control
It is challenging to design access control for IoT systems in 
heterogeneous networks with multiple types of nodes and 
multisource data [9]. ML techniques such as SVMs, K-NNs, 
and NNs have been used for intrusion detection [15]. For 
instance, the DoS attack detection as proposed in [17] uses 
multivariate correlation analysis to extract the geometrical 
correlations between network traffic features. This scheme 
increases the detection accuracy by 3.05% to 95.2% compared 
with the triangle-area-based nearest-neighbors approach using 
the KDD Cup 99 data set [17].
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IoT devices such as outdoor sensors usually have strict 
resource and computation constraints, yielding challenges 
for anomaly intrusion detection techniques and thus degrad-
ing the intrusion detection performance for IoT systems. 
ML techniques help build lightweight access control proto-
cols to save energy and extend the lifetime of IoT systems. 
For example, the outlier detection scheme as developed in 
[13] applies K-NNs to address the problem of unsupervised 
outlier detection in WSNs and offers flexibility to define 
outliers with reduced energy consumption. This scheme 
can save the maximum energy by 61.4% compared with the 
centralized scheme with similar average energy consump-
tion [13].

The multilayer perceptron (MLP)-based access control as 
presented in [16] utilizes the NN with two neurons in the hid-
den layer to train the connection weights of the MLP and com-
pute the suspicion factor that indicates whether an IoT device 
is the victim of DoS attacks. This scheme utilizes backpropa-
gation (BP) that applies the forward computation and error 
BP and particle swarm optimization (PSO) as an evolutionary 
computation technique that utilizes particles with adjustable 
velocities to update the connection weights of the MLP. The 
IoT device under test shuts down the MAC- and PHY-layer 
functions to save energy and extend the network life if the out-
put of the MLP exceeds a threshold.

Supervised learning techniques such as SVMs are used to 
detect multiple types of attacks for Internet traffic [28] and the 
smart grid [12]. For instance, a lightweight attack-detection mech-
anism as proposed in [28] uses an SVM-based hierarchical struc-

ture to detect traffic flooding attacks. In the attack experiment, the 
data set collector system gathered Simple Network Management 
Protocol (SNMP) management information base data from the 
victim system using SNMP query messages. Experiment results 
show that this scheme can achieve an attack detection rate over 
99.40% and classification accuracy over 99.53% [28].

Secure IoT offloading with learning
IoT offloading has to address the attacks launched from the 
PHY- or MAC- layer attacks, such as jamming, rogue edge 
devices, rogue IoT devices, eavesdropping, man-in-the-middle 
attacks, and smart attacks [29]. As the future state observed 
by an IoT device is independent of the previous states and 
actions for a given state and offloading strategy in the current 
time slot, the mobile offloading strategy chosen by the IoT 
device in the repeated game with jammers and interference 
sources can be viewed as an MDP with finite states [10]. RL 
techniques can be used to optimize the offloading policy in 
dynamic radio environments.

Q-learning, as a model-free RL technique, is convenient to 
implement with low computation complexity. For example, IoT 
devices can utilize the Q-learning-based offloading as proposed 
in [10] to choose their offloading data rates against jamming 
and spoofing attacks. As illustrated in Figure 4, the IoT device 
observes the task importance, the received jamming power, the 
radio channel bandwidth, and the channel gain to formulate its 
current state, which is the basis to choose the offloading policy 
according to the Q-function. The Q-function is the expected 
discounted long-term reward for each action-state pair and 
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Figure 3. An illustration of ML-based authentication in IoT systems.
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represents the knowledge obtained from the previous antijam-
ming offloading. The Q-values are updated via the iterative 
Bellman equation in each time slot according to the current 
offloading policy, the network state, and the utility received by 
the IoT device against jamming.

The IoT device evaluates the signal-to-interference-plus-noise 
ratio (SINR) of the received signals, secrecy capacity, offload-
ing latency, and energy consumption of the offloading process 
and estimates the utility in this time slot. The IoT device applies 
the e-greedy algorithm in the offloading policy selection, in 
which the offloading policy with the max Q-value is selected 
with a high probability and the other policies are chosen with 
a small probability. Therefore, the IoT device makes a tradeoff 
between the exploration (i.e., to avoid being trapped in the local 
optimal strategy) and the exploitation (i.e., to improve the long-
term reward). This scheme reduces the spoofing rate by 50% and 
decreases the jamming rate by 8% compared with a benchmark 
strategy as presented in [10].

According to the Q-learning-based antijamming transmis-
sion as proposed in [19], an IoT device can apply Q-learning 
to choose the radio channel to access the cloud or edge device 
without being aware of the jamming and interference model 
in IoT systems. As shown in Figure 4, the IoT device observes 
the center frequency and radio bandwidth of each channel to 
formulate the state and chooses the optimal offloading chan-
nel based on the current state and Q-function. Upon receiving 
the computation report, the IoT device evaluates the utility 
and updates the Q values. Simulation results in [19] show 
that this scheme increases the average cumulative reward by 
53.8% compared with the benchmark random channel selec-
tion strategy.

Q-learning also helps IoT devices achieve the optimal 
subband from the radio spectrum band to resist jamming 
and interference from other radio devices. As shown in Fig-
ure 4, the IoT device observes the spectrum occupancy to 
formulate the state and selects the spectrum band accord-
ingly. In an experiment against a sweeping jammer and in 
the presence of two wideband autonomous cognitive radios 

with ten subbands, this scheme increases the jamming cost 
by 44.3% compared with the benchmark subband selection 
strategy in [20].

The DQN-based antijamming transmission as developed 
in [22] accelerates the learning speed for IoT devices with 
sufficient computation and memory resources to choose the 
radio frequency channel. This scheme applies the convolu-
tional NN (CNN) to compress the state space for large-scale 
networks with a large number of IoT devices and jamming 
policies in a dynamic IoT system and thus increase the SINR 
of the received signals. More specifically, the CNN consists 
of two convolutional layers and two fully connected layers. 
The weights of the CNN are updated based on the stochastic 
gradient descent algorithm according to the previous expe-
rience in the memory pool. The output of the CNN is used 
for estimating the values of the Q-function for each antijam-
ming transmission policy. This scheme increases the SINR of 
the received signals by 8.3% and saves 66.7% of the learning 
time compared with the Q-learning scheme in the offloading 
against jamming attacks [22].

Learning-based IoT malware detection
IoT devices can apply supervised learning techniques to eval-
uate the runtime behaviors of the apps in malware detection. 
In the malware detection scheme as developed in [14], an IoT 
device uses K-NNs and random forest classifiers to build the 
malware-detection model. As illustrated in Figure 5, the IoT 
device filters the TCP packets and selects the features among 
various network features including the frame number and 
length, labels them, and stores these features in the database. 
The K-NN-based malware detection assigns the network traf-
fic to the class with the largest number of objects among its 
K-NNs. The random forest classifier builds the decision trees 
with the labeled network traffic to distinguish malware. 
According to the experiments in [14], the true positive rates 
of the K-NN-based malware detection and random forest-
based scheme with the MalGenome data set are 99.7% and 
99.9%, respectively.
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IoT devices can offload app traces to the security servers 
at the cloud or edge devices to detect malware with a larger 
malware database, faster computation speed, larger memories, 
and more powerful security services. The optimal proportion 
of the app traces to offload depends on the radio channel state 
to each edge device and the number of the generated app trac-
es. RL techniques can be applied for an IoT device to achieve 
the optimal offloading policy in a dynamic malware-detection 
game without being aware of the malware and app-generation 
models [11].

In a malware-detection scheme as developed in [11], an IoT 
device can apply Q-learning to achieve the optimal offloading 
rate without knowing the trace generation and radio bandwidth 
model of the neighboring IoT devices. As shown in Figure 6, 
the IoT device divides real-time app traces into a number of 
portions and observes the user density and radio channel band-
width to formulate the current state. The IoT device estimates 
the detection accuracy gain, detection latency, and energy con-
sumption to evaluate the utility received in this time slot. This 
scheme improves the detection accuracy by 40%, reduces the 
detection latency by 15%, and increases the utility of the mobile 
devices by 47% compared with the benchmark offloading 
strategy in [11] in a network consisting of 100 mobile devices.

The Dyna-Q-based malware detection scheme as presented 
in [11] exploits the Dyna architecture to learn from hypotheti-
cal experience and finds the optimal offloading strategy. This 
scheme utilizes both the real defense and virtual experiences 
generated by the Dyna architecture to improve the learning 

performance. For instance, this scheme reduces the detection 
latency by 30% and increases the accuracy by 18% compared 
with the detection with Q-learning [11].

To address the false virtual experiences of Dyna-Q, espe-
cially at the beginning of the learning process, the PDS-based 
malware detection scheme as developed in [11] utilizes the 
known radio channel model to accelerate the learning speed. 
This scheme applies the known information regarding the 
network, attack, and channel models to improve the explora-
tion efficiency and utilizes Q-learning to study the remain-
ing unknown state space. This scheme increases the detection 
accuracy by 25% compared with the Dyna-Q-based scheme in 
a network consisting of 200 mobile devices [11].

Conclusions and future work
In this article, we have identified IoT attack models and 
learning-based IoT security techniques, including IoT 
authentication, access control, malware detection, and 
secure offloading, which are shown to be promising protec-
tion for the IoT. Several challenges have to be addressed to 
implement the learning-based security techniques in practi-
cal IoT systems.

 ■ Partial state observation: Existing RL-based security 
schemes assume that each learning agent knows the accu-
rate state and evaluates the immediate reward for each 
action in time. In addition, the agent has to tolerate the 
bad strategies—especially at the beginning of the learning 
process. However, IoT devices usually have difficulty 
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estimating the network and attack state accurately and have 
to avoid the security disaster due to a bad policy at the begin-
ning of the learning process. A potential solution is transfer 
learning [30], which explores existing defense experiences 
with data mining to reduce random exploration, accelerates 
the learning speed, and decreases the risks of choosing bad 
defense policies at the beginning of the learning process. In 
addition, backup security mechanisms have to be provided 
to protect IoT systems from the exploration stage in the 
learning process.

 ■ Computation and communication overhead: Many exist-
ing ML-based security schemes have intensive computa-
tion and communication costs and require a large number 
of training data and a complicated feature-extraction pro-
cess [9]. Therefore, new ML techniques with low compu-
tation and communication overhead such as dFW have to 
be investigated to enhance security for IoT systems, espe-
cially for the scenarios without cloud-based servers and 
edge computing.

 ■ Backup security solutions: To achieve optimal strategy, the 
RL-based security methods have to explore the “bad” securi-
ty policy that sometimes can cause network disaster for IoT 
systems at the beginning learning stage. The intrusion detec-
tion schemes based on unsupervised learning techniques 
sometimes have misdetection rates that are nonnegligible for 
IoT systems. Supervised and unsupervised learning some-
times fail to detect the attacks due to oversampling, insuffi-
cient training data, and bad feature extraction. Therefore, 
backup security solutions have to be designed and incorporat-
ed with the ML-based security schemes to provide reliable 
and secure IoT services.
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