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This paper proposes a Branch-and-Cut algorithm for network operators and providers to propose a full 

coverage hole in the context of Cloud Radio Access Networks (C-RAN). In this context, and to optimize the 

network coverage when reducing interferences, network operators need new algorithms that enable to 

consolidate and re-optimize the antennas radii. This paper provides an NP-Hardness complexity proof of 

the full coverage hole problem and proposes a deep Branch-and-Cut algorithm based on the description 

of new cutting planes to accelerate the convergence time even for large problem sizes. Simulation results 

and comparison to the state of the art highlight the efficiency and the usefulness of our approach. 
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. Introduction and motivation 

With the growth of traffic demands in mobile networks,

elecommunications Service Providers (TSPs) are investigating new

pproaches to increase the density of existing cells by deploy-

ng new antennas to enlarge the network spectrum. Nevertheless,

his comes with important drawbacks such increasing interferences

ausing serious degradations of the provided networks’ quality of

ervice. Hence, proposing efficient solutions of interferences man-

gement is a key challenge to meet and maintain a full network

overage with minimum interferences. 

.1. Background and definitions 

With the era of programmable networks, TSPs are motivated by

eploying more antennas to provide new network services with

nhanced network coverage and connectivity. Indeed, this is fea-

ible when embracing Cloud Radio Access Networks (C-RAN) tech-

ology described in the sequel (see Fig. 1 ). 

In this context, C-RAN is seen as a key enabler for the next

eneration mobile networks to handle the diverse service require-

ents. The main functionality of C-RAN (depicted in Fig. 1 ) con-

ists in decoupling the BaseBand processing Unit (BBU) from the

emote Radio Head (RRH) to increase network coverage and re-
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e la Vauve, 91120 Palaiseau, France. 
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uce both the network CAPEX (CAPital EXpenses) and OPEX (OP-

rating EXpenses). Moreover, in C-RAN, network operators or ser-

ice providers will propose more services to end users and this re-

uires guaranteeing the network connectivity leveraging new ap-

roaches to reduce network holes (see Fig. 2 ) and to fulfill end-

sers requirements jointly. Thus, network operators have to inves-

igate new approaches to rapidly reach a good tradeoff between in-

erference elimination/reduction and coverage hole detection when

mbracing C-RAN technology. 

This work focuses on optimizing the full network coverage in C-

AN by reducing the number of coverage holes and minimizing the

nter-cell interferences. Indeed, to cope with this problem, numer-

us schemes have been proposed in different networks (e.g. sen-

or networks, . . . ) using different approaches. Traditionally, and to

uarantee the global coverage of a network, geometrical methods

an be used under some conditions and constraints (see [1,2] for

nstance). These methods are based on the generalization of graphs

o more generic combinatorial objects known as simplicial com-

lexes and are made up of vertices, edges, triangles, tetrahedra and

heir n −dimensional counterparts. We define by k −simplex an un-

rdered subset of k + 1 vertices. Thus, a 2 −simplex is a triangle.

n addition, and for sake of clarity, we note the existence of two

pproaches noted by C ̆ech complex and Rips complex which are

ased on the verification of intersection between cells, to detect

oles and connectivity problems (the detailed description of these

omplexes is not in the scope of this work, but more information

an be found in [3] ). These approaches are using time consuming

ethods to characterize the number of 0 −dimensional holes (i.e.

 −dimensional holes with k = 0 ) (noted by β0 ) that represents the

https://doi.org/10.1016/j.comnet.2018.12.015
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Fig. 1. C-RAN Architecture and Components. 

Fig. 2. Coverage Network Examples. 
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number of connected components in a network. Moreover, we note

by β1 the number of holes in the plane. β0 and β1 are called Betti

numbers and they indicate if all cells are connected in one compo-

nent with no holes (see Fig. 2 ). 

Other methods based on the triangulation of a graph are al-

ready proposed in the literature. The objective of these methods

is to construct a 2 −simplex (triangles) to ensure the full cover-

age of a network according to the definition of Rips complex (see

[4] for instance). Our proposal is close to these approaches, and

we describe in the following, the Delaunay triangulation (see [5,6] )

to construct 2 −simplexes when supposing that antennas have the

same coverage radius. 
Before providing the Delaunay triangulation definition, it is

orth noting that in our approach, the coverage area of each an-

enna is modeled by circles with variable coverage radius. Nev-

rtheless, in real life, cells have random shape of coverage area

hich depends on geographic, environmental and network param-

ters (base station location, transmission power, terrain and artifi-

ial structures properties, . . . ). In the literatur e and for sake of rep-

esentation and analytical simplicity, approximate approaches are

ften adopted to design and model the cells’ coverage area in cel-

ular networks. In particular, [7–9] used hexagons to model the

ells coverage area with no overlap between cells. This approxi-

ation is frequently employed in planning and analysing of wire-
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Fig. 3. System Model: Graph construction based on antennas positions and inter- 

ferences. 
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ess networks due to its flexibility and convenience. However, since

he hexagons are only an idealization of the irregular cell shape,

 simpler approach, called circular-cell approximation, is used to

odel the cell coverage area by circles (see [10–12] for exam-

le). The circular-cell approximation is reasonable and very used

n the modeling of cellular networks due to its low computational

omplexity. Hence, some references (see [13,14] ) are using this ap-

roach to address the network coverage problem, and the authors

roposed methods and algorithms that do not converge in accept-

ble times and do not provide good solutions. Our optimization is

sing circles to represent antennas coverage areas, and we propose

n exact formulation that always provide optimal solutions in neg-

igible times. 

efinition 1.1. A triangulation for a set S of points in a plane is a

elaunay triangulation if no point in S is inside the circumcircle

f any triangle. 

In [6] , and to guarantee a full coverage hole in a network, a new

echanism is provided and consists in identifying a necessary and

ufficient condition for the full coverage hole of a triangle that has

o other nodes inside its circumcircle. The time complexity of this

ethod is close to O ( bn ) where n is the total number of nodes and

 represents the number of adjacent nodes in the vinicity of each

ode. Nevertheless, this proposal is based on a simple mathemati-

al formula that do not address all of the possible scenarios. 

Similarly to the Delaunay triangulation, and from a given graph

 , we extract a subgraph G � composed by adjacent triangles. The

et of nodes of the graph G are the antennas and the edges are

onstructed as follows: 

• There is an edge e ij in the graph G if and only if the Eq.

(1) holds. 

r i + r j ≥ d i j (1) 

where r i and r j are the radii of antennas i and j respectively, and

d ij is the Euclidean distance between i (with the coordinates ( x i ,

y i )) and j (with the coordinates ( x j , y j )) and provided by: 

d i j = 

√ 

(x j − x i ) 2 + (y j − y i ) 2 (2) 

Let δij be the overlapping (interferences) caused by two anten-

as i and j . 

i j = r i + r j − d i j (3)

This overlapping is causing interferences that should be reduced

r totally eliminated when considering full network coverage and

onnectivity. Fig. 3 is illustrating our system model. 

The triangulation method used to construct a new graph G �

ith adjacent triangles can be assimilated to a well known prob-

em noted by the Minimum Weight Triangulation (MWT) problem

see [15] for more details). Our full coverage hole problem is simi-

ar to this former when considering connectivity constraints. More

etails and definitions can be found in Section 2 . 

.2. Objectives and contributions 

Our contribution consists in proposing a Branch-and-Cut algo-

ithm to solve efficiently the global coverage hole problem in the

ontext of C-RAN. Thus, we propose a mathematical description

odeling the problem according to the Delaunay representation

hich considers that each tuple of three antennas constituting a

riangle allows a complete coverage of the area around the three

ntennas. Our mathematical model describes the convex hull of

he discussed problem and allows to reach optimal solutions even

or large problem instances. This description is enlarged and spec-

fied by adding new valid inequalities and cutting planes to bet-

er precise the polytope containing the optimal solution. Thus, the

ain contributions of our paper are summarized in the sequel: 
• Minimize the number of coverage holes in our cellular network.

• Reduce or eliminate the interferences by adjusting the coverage

radius of antennas without creating a coverage hole. 

• Rapid (polynomial time) detection of coverage holes. 

For the best of our knowledge, this contribution based on poly-

edral approaches optimization is new and has never been ad-

ressed in the literature to cope with the full coverage hole prob-

em in C-RAN. 

.3. Paper’s organisation 

The rest of this paper is organized as follows: Section 2 is

edicated to the definition of the MWT problem and its correla-

ion with related works addressing the full coverage hole problem

hen proposing heuristic approaches that do not attend optimal

olutions. In Section 3 , we describe the problem statement and dis-

uss network topologies that will be used and then propose a com-

lexity study of our problem. In Section 4 , we provide a Branch-

nd-Cut approach describing the convex hull of the full coverage

ole problem and will reinforce this formulation by proposing new

amilies of valid inequalities to accelerate the convergence time to

he optimum. Numerical results and performance assessment can

e found in Section 5 . We conclude this paper in Section 6 . 

. Related work 

Before addressing and summarizing relevant and closest related

orks compared to our considered problem, it is important to

ighlight some papers in the context of Cloud Radio Access Net-

orks when addressing multi-dimensional resource optimization

ssues. To better get a grasp of resource optimization problems

n the context of C-RAN, authors of [16] proposed a Cloud-Based

adio over Optical Fiber Network (noted by C-RoFN) architecture
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with multi-stratum resources optimization using Software Defined

Networks paradigm. In this architecture, optical spectrum and BBU

processing resources are optimized jointly to maximize radio cov-

erage when meeting quality of service. 

A deep study on multi-dimensional resources integration for

service provisioning in cloud radio over fiber networks is provided

in [17] . Indeed, the authors of this reference proposed a global op-

timization when considering together radio frequency, optical net-

work and processing resources leading to maximize radio cover-

age. A mathematical modeling is then provided and an experimen-

tal test bed is used to confirm the efficiency and the feasibility of

proposed C-RoFN architecture. 

As mentioned before, our problem is close to the MWT prob-

lem which consists in finding in a graph G a set of edges of min-

imum total weight that triangulates the total nodes of G . More-

over, the MWT problem is NP-Hard (see [18] for instance) as we

can easily deduce a linear reduction from another NP-Complete

problem noted by PLANAR-1-IN-3-SAT (see [19] ). Nevertheless, and

under certain conditions, the MWT problem has some polynomial

variants. In fact, in [20] , the authors discussed a polynomial case

where the set of points to be triangulated are on a constant num-

ber of nested convex hulls. Thus, it is important to describe the to-

tal convex hull of the MWT problem to characterize all of the pos-

sible solutions. For this, authors in [21] proposed a Branch-and-Cut

description of the MWT problem using efficient facets and valid

inequalities. This Branch-and-Cut formulation is finally an Integer

Linear Programm (ILP) that converges rapidly to optimal solutions

only for small and medium instances of the problem. For scala-

bility issues, there are many works proposing approximation algo-

rithms to cope with large MWT problem sizes (see [22] , for exam-

ple). 

Many works tackled the coverage hole problem for different

communication networks. Authors in [6] proposed a mathematical

model based on Delaunay triangulation to detect coverage holes in

Wireless Sensor Network (WSN) and found the shortest paths for

node movement to heal the holes. The proposed algorithm requires

that cells will be identical with the same coverage radius. In C-

RAN, cells’ radii should be different depending on density of users.

In [23] and [24] , the authors used a probability method to detect

the coverage holes and calculated the smallest size of cells which

allows full coverage of the considered network. They also suppose

that all cells have the same coverage radius which is not realis-

tic. The authors in [25] proposed an ILP model that maximizes the

coverage in WSN. The main limitation is that they discretize the

area to be covered into several cells, and each cell is discretized

into several points. In [26] , the authors proposed a heuristic al-

gorithm to turn off the minimal number of cells without gener-

ating coverage holes. They used the simplicial complex which is

introduced in [27] and [28] as a representation of coverage topol-

ogy. In this algorithm, at every time a cell is turned-off, we need

to compute the Betti numbers to ensure that the network cov-

erage is maintained. Moreover, turning off cells can not optimize

neither network coverage nor overlapping region. In [4] , the au-

thors proposed a homology based algorithm to minimize the to-

tal consumed power for wireless networks. They used a heuristic

approach noted by Simulated Annealing (SA) to find sub-optimal

solutions instead of investigating rapid and efficient approaches to

attend optimal solutions. The SA algorithm considers all of the cells

and adjusts their coverage radii cell by cell. This approach requires

to construct the 
� 

C 

ech complex and compute their Betti numbers

every time the coverage radius of cells has been modified. The au-

thors of this paper do not consider the problem of locating the

coverage holes, they only addressed the energy saving problem

in wireless networks. In our paper, we propose an optimization

model considering multiple objectives as described in Section 1 . 

l

. Problem statement 

Before investigating a new mathematical formulation of the

lobal coverage hole problem under interference constraints, we

tart our analysis by describing, in the following, the network

odel considered in our optimization and a deep analysis of the

roblem’s complexity. 

.1. Network topology 

We consider a cellular network deployed in a large area repre-

ented by a set of antennas denoted by A . Each antenna i is de-

ned by its position on the plane and its coverage radius r i which

aries in the range 
[
r min 

i 
; r max 

i 

]
, where i = 1 , . . . , |A| . We repre-

ent our network using an undirected graph denoted by G = (A , E )

here A and E are the sets of available nodes and edges, respec-

ively. We also associate to each antenna i an initial value of its

overage radius, noted by r init 
i 

. There is an edge ( i, j ) between two

ntennas i and j if condition (1) is met. 

The lower part of Fig. 3 shows the undirected graph obtained

rom the network topology in the upper part of the same Figure. 

.2. Problem complexity 

In the following, we discuss the full coverage hole problem’s

omplexity before investigating a Branch-and-Cut solution based

n the description of the convex hull of our problem. Thus, we

ropose the following theorem. 

heorem 3.1. For an instance of the optimal full coverage hole prob-

em defined above, deciding whether a solution with no violations ex-

st is NP-Complete. 

roof. To prove this theorem, we will proceed according to the fol-

owing steps: It is important to recall that to cope efficiently with

ur problem, we investigated a polyhedral approach describing a

et of valid inequalities to attend optimal solutions using a Branch-

nd-Cut strategy. This polyhedral approach will lead to find an op-

imal minimum weight triangulation when eliminating totally net-

ork interferences represented by the set of edges intersections.

his family of valid inequalities is illustrating the main difference

etween the full coverage hole problem we are addressing in our

ork and the MWT problem. For sake of clarity, and for a given

nstance of a weighted graph G = (A , E ) , let ϕ 

∗
mwt be the optimal

alue of the MWT problem, and ψ 

∗
hole _ cov the optimum found when

olving the full coverage hole problem. As our problem is more

onstrained compared to the MWT problem, then we deduce that

 

∗
mwt ≤ ψ 

∗
hole _ cov . This implies that, the relaxation of the constraints

hich consists in eliminating existing interferences (edges inter-

ections) will hold to retrieve an instance of the MWT problem.

ndeed, the optimal solution of the minimum weight triangulation

roblem is a feasible (not necessarily optimal) solution in the full

overage hole problem instance. 

In addition, in 2006, W. Mulzer and G. Rote (see [18] ) have

roven the NP-Hardness of the MWT problem. Thus, by using the

revious linear reduction from our problem to the MWT problem,

e conclude that the full coverage hole problem is also NP-Hard.

his implies that the decision formulation concerning the existence

f no violation solutions of the full coverage hole problem is NP-

omplete. �

Our problem is then NP-Complete, and we need rapid ap-

roaches to attend optimal solutions in acceptable times. Our pro-

osal is based on the construction of a complete description of the

onvex hull of the incidence vectors characterizing the optimal so-

ution of the full coverage hole problem. 
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Fig. 4. Each solid line edge ( i, j ) is necessary in the final graph/solution. 

Fig. 5. Example of edge intersection (interference). 
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. A new efficient optimization algorithm 

To solve the full coverage hole problem, we propose a Branch-

nd-Cut algorithm based on the description of the convex hull of

he problem’s incidence vectors. This description consists in vari-

us families of valid inequalities leading to attend the optimal so-

ution in acceptable times. 

.1. Mathematical formulation 

Before introducing our mathematical formulation, we start by

roviding the variables and parameters that will be used in the

equel. 

• We consider our initial graph G = (A , E ) representing the net-

work topology as illustrated by the lower part of Fig. 3 . A is

the set of antennas and E is the set of edges between antennas.

Each antenna i has a coverage radius r i initially instantiated to

r init 
i 

. According to formula (1) , we populate the graph G (see

lower part of Fig. 3 from the upper part of the same Figure). 

• Each antenna i ∈ A can operate with its own coverage radius r i 
which varies in the range 

[
r min 

i 
; r max 

i 

]
. 

• Let x ij be a binary variable indicating if the edge ( i, j ) is consid-

ered in the final solution ( x i j = 1 ), or not ( x i j = 0 ). 

• Let N (i ) be the set of neighborhood nodes/antennas of i . A

node j is a neighbor of i only if the condition (1) used with

the maximum radii values, is verified. 

• Let I(i, j) be the set of all edges ( i, j ) that don’t intersect with

any other edge ( l, k ). 

The objective of the full coverage hole problem is to detect

apidly holes in the network and reduce considerably interferences

epresented by the overlapping regions measured mathematically

y formula (3) . These objectives will be reached by optimizing the

adii values of the network antennas. This is equivalent to select

n the final solution, only couple of antennas with a minimum Eu-

lidean distance guaranteeing the graph connectivity and the net-

ork coverage which allows to intuitively reduce the interferences.

his objective is given by: 

in � = 

∑ 

i ∈A 

∑ 

j∈N (i ) 

d i j × x i j (4) 

The global or full coverage hole problem has to comply with a

umber of constraints which will be summarized and mathemati-

ally expressed in the following. 

Constraints (5) guarantees that each node i has at least two

eighbors in the graph (we recall that the objective is to obtain

 triangulation meeting connectivity and reduced interferences). 
∑ 

j∈N (i ) 

x i j ≥ 2 , ∀ i ∈ A (5) 

Constraints (6) impose that if an edge ( i, j ) do not have any

ntersection in the initial graph (see solid line edges in Fig. 4 ), then

 i j = 1 in the final graph (the solution graph). These constraints are

athematically provided by: 

 i j = 1 , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ (i, j) ∈ I(i, j) (6) 

In order to avoid any intersection in the final graph between

ny two edges ( i, j ) and ( k, l ) (see Fig. 5 in which i, j, k, l can be

epresented by v 1 , v 6 , v 4 , v 5 respectively), we propose the follow-

ng nonlinear inequality: 

 i j × x il ≤ x jl + 

∑ 

k ∈N (i ) 

x ik , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) (7)

Constraints (7) are nonlinear as we used the product of two de-

ision variables. We replace them (constraints (7) ) by new family

f linear inequalities when introducing a new binary variable z ijl ,
uch that z i jl = x i j × x il , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) . Thus,

e obtain the constraints in (8), (9) and (10) . 

 i jl ≤ x i j (8) 

 i jl ≤ x il (9) 

 i jl ≥ x i j + x il − 1 (10)

By summing (8) and (9) , we obtain: 

 i jl ≤
1 

2 

(
x i j + x il 

)

We finally have three new valid inequalities for the full cover-

ge hole problem, and they are provided by: 

 i jl ≤ x jl + 

∑ 

k ∈N (i ) 

x ik , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) (11)

 i jl ≤
1 

2 

(x i j + x il ) , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) (12)

 i jl ≥ x i j + x il − 1 , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) (13)

Our mathematical model is hence characterized by the follow-

ng Integer Linear Programming: 

in � = 

∑ 

i ∈A 

∑ 

j∈N (i ) 

d i j × x i j 

.T . : ∑ 

j∈N (i ) 

x i j ≥ 2 , ∀ i ∈ A 

 i j = 1 , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ (i, j) ∈ I(i, j) 

 i jl ≤ x jl + 

∑ 

k ∈N (i ) 

x ik , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) 

 i jl ≤
1 

2 

(x i j + x il ) , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) 

 i jl ≥ x i j + x il − 1 , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) 

 i j , z i jl ∈ { 0 , 1 } , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) ; (14) 
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Fig. 6. Example of a chordless cycle ( v 2 , v 3 , v 5 , v 8 , v 2 ) of size 4. 

Fig. 7. Example of two connected components (triangulations) creating holes in the 

final graph. 
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To address larger problem instances and to better describe the

convex hull of the full coverage hole problem, we need to investi-

gate new valid inequalities and facets allowing to accelerate con-

vergence time and to find optimal solutions jointly. Thus, we pro-

pose to investigate new families of inequalities that are valid for

our problem. 

4.2. Chordless cycles inequalities 

Solving the mathematical formulation provided in (14) allows to

obtain optimal solutions for the full coverage hole problem. Never-

theless, and for some initial graph instances, the described convex

hull in (14) is missing some solutions that do not contain holes.

Thus, to integrate holes detection in our mathematical formulation,

we investigate a new facet or valid inequality based on holes de-

tection that should be added to our optimization. These inequali-

ties are based on detecting Chordless Cycles , that will be defined in

the following. 

Definition 4.1. [29] Let G be an undirected graph and let

v 0 , v 1 , . . . , v k −1 be a sequence of k distinct vertices such that there

is an edge between v i and v (i +1) mod k (∀ i = 0 , . . . , k − 1) , and no

other edge between any two of these vertices. Then, this sequence

is a chordless cycle on k vertices. A hole may be a chordless cycle

on four or more vertices. 

According to the previous definition, we would like to optimally

solve the full coverage hole problem when detecting all the exist-

ing holes in the initial graph. For this, we propose the following

result. 

Theorem 4.1. For any initial graph G, and for each chordless cycle C

in G, such that | C | ≥ 4, the following inequality (15) is valid for the

global coverage hole problem: 

x (E(C)) ≤ 3 (15)

Proof. Let G be an undirected graph and v 0 , v 1 , . . . , v k −1 (with

k ≥ 4) the set of vertices making a chordless cycle (i.e. a hole) noted

by C . Our objective is to detect chordless cycles (holes) and then

eliminate them using our optimization. Using the absurd reason-

ing, we suppose that x (E(C)) = 

∑ k −2 
i =0 x v i , v i +1 

≥ 4 which means that

our optimization should keep at least 4 edges in C leading to ob-

tain one of the two following cases: 

1. A solution with a chordless cycle noted by { v 0 , v 1 , . . . , v k −1 , v 0 }
which represents a hole 

2. A solution with at least two intersecting edges that represent

an interference in the final solution 

The case 1 is not feasible as our optimization is focusing on

eliminating all the existing holes. The second case 2 cannot hold

thanks to constraints (7) eliminating intersections and interfer-

ences efficiently. 

To better understand the proof, we propose a simple and clear

example based on the graph of Fig. 6 that contains a chordless cy-

cle C = { v 2 , v 3 , v 5 , v 8 , v 2 } of size 4. We can easily remark that ( v 2 ,

v 3 ), ( v 3 , v 5 ) and ( v 5 , v 8 ) do not intersect with any other edge in the

graph. So, by applying constraints (6) , we obtain a solution with

x v 2 v 3 = 1 , x v 3 v 5 = 1 and x v 5 v 8 = 1 . Hence, we discuss two cases on

the status of the edge ( v 2 , v 8 ) of the chordless cycle C : 

• x v 2 v 8 = 1 : In order to eliminate intersections in the final

graph/solution, the edges ( v 1 , v 3 ), ( v 1 , v 5 ), ( v 3 , v 7 ) and ( v 5 , v 7 )

will be removed ( x v 1 v 3 = 0 , x v 1 v 5 = 0 , x v 3 v 7 = 0 and x v 5 v 7 = 0 )

using constraints (7) . This means that our final solution has a

coverage hole, and this is not desirable. 

• x v 2 v 8 = 0 : There is no coverage hole in the final graph/solution

(full coverage) while totally eliminating network interfer-
ences. In this case x v 2 v 3 + x v 3 v 5 + x v 5 v 8 + x v 8 v 2 ≤ 3 , leading to

x ( E ( C )) ≤ 3. �

eparation of chordless cycles inequalities (15) 

Thanks to inequalities (15) , we guarantee the non existence of

oles in our final and optimal solution. This is due to the genera-

ion and implication of (15) in the mathematical model (14) . Nev-

rtheless, as the number of chordless cycles can be exponential,

hen we cannot explore all of the existing chordless cycles as this

an be time consuming for our optimization. 

The separation of inequalities (15) consists in finding chordless

ycles C ∗ violating constraints (15) . This is a well known NP-Hard

roblem (see [19] ). Thus, we only explore finding few number of

hordless cycles using a heuristic approach (see [29] , for instance)

hat converges in acceptable times when providing sufficient num-

er of violated chordless cycles constraints. We add these facets

o our final optimization to eliminate possible holes in the final

raph. 

.3. Connectivity inequalities 

In addition to the constraints eliminating holes described above,

he new mathematical formulation (14) + (15) can lead to find op-

imal triangulations in a non connected graph (see Fig. 7 repre-

enting a triangulation of two connected components). Moreover

nd by definition, two connected components in the final graph are

reating a hole. Thus, we investigate new valid inequalities (facets)

o obtain a unique optimal triangulation without holes. This con-

ists to guarantee the connectivity of the final graph. We introduce

he following constraints that will be integrated to our mathemat-

cal formulation. 

heorem 4.2. For any initial graph G = (A , E ) , and for each subset

 ⊆ A , the following inequality (16) is valid to guarantee the network
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Algorithm 1 Full Coverage Hole Algorithm: Branch and Cut ap- 

proach. 

Input: A real telecommunications network (cells with antennas) 

with given interferences and coverage holes 

Output: A full coverage network (no holes) with no interference 

• Graph transformation of the real network G : each antenna is a 

node 

• There is an edge between two nodes (antennas) i and j if r i + 

r j ≥ d i j 

• An interference is represented by an intersection of two edges 

• Run the Branch and Cut optimization model (17) 

• The optimized/obtained network has no holes and no interfer- 

ence 

Table 1 

Simulation settings and parameters. 

Parameters Values 

Density of Antennas λ∈ [0.1; 1] 

Space Dimensions 5 × 5; 10 × 10;... 

Poisson Parameter 
 = λ × space _ dimensions 

Number of Antennas Poisson Distribution 

P(
) 

Antenna Coordinates Uniform Distribution 

U(0 , space _ dimensions ) 

Min Coverage Radius r min = 0 . 1 km 

Max Coverage Radius r max = 1 km 
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maximum radius value of 0.4 km for each antenna. 
onnectivity for the global coverage hole problem: 

 (δ(S)) ≥ 1 (16) 

here δ( S ) represents the set of edges with exactly one extremity (or

nd-point) in S and the other one in the complement set of S (i.e. S ). 

roof. Let a and b two nodes or antennas in the final graph that

ontains at least two connected triangulations components. For in-

tance, we can imagine that a = v 3 and b = v 8 as illustrated in

ig. 7 . Then, it is clear that the maximum flow or the minimum

ut between a and b in the graph of Fig. 7 is zero, as they are

eparated into two connected components. The objective in our

roblem is to construct one triangulation with a minimum weight

hen guaranteeing the connectivity. Thus, we impose a and b to

e in the same component. To do this, we simply have to impose

hat the maximum flow or the minimum cut between this couple

f nodes should be greater than 1 (the value 1 is selected to guar-

ntee that there exists at least one edge between a and b ). Recall

hat the considered weights in this graph are the actual solution

 e , e ∈ E of the full coverage hole problem. By applying connectivity

onstraints (16) we guarantee that all separated couples of nodes

ill be jointly on the same and unique connected component. �

eparation of connectivity inequalities (16) 

The separation problem of (16) consists in finding the optimal

et of nodes (antennas) S ∗ that violates these constraints. Thus, we

nvestigate all of the possible couple of nodes a and b that are not

n the same connected component in the final graph. Next to that,

e identify a minimum cut (set of edges) separating a and b , and

hen impose that the value of this minimum cut (using the weights

 ) will not exceed 1. Exploring all of the possible sets S violating

16) is NP-Hard as there is an exponential number of possibilities.

hus, we propose to explore only few number of sets that can be

ound polynomially when solving the minimum cut or maximum

ow problem using a well known algorithm such Ford-Fulkerson

30] . In fact, few generations of (16) may be sufficient to guarantee

he connectivity of the final graph. To summarize, and by consid-

ring all of the described constraints leading to find optimal solu-

ions for the full coverage hole problem, our mathematical formu-

ation is then provided by: 

in � = 

∑ 

i ∈A 

∑ 

j∈N (i ) 

d i j × x i j 

.T . : ∑ 

j∈N (i ) 

x i j ≥ 2 , ∀ i ∈ A 

 i j = 1 , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ (i, j) ∈ I(i, j) 

 i jl ≤ x jl + 

∑ 

k ∈N (i ) 

x ik , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) 

 i jl ≤
1 

2 

(x i j + x il ) , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) 

 i jl ≥ x i j + x il − 1 , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) 

 (E(C)) ≤ 3 , ∀ C ⊆ A , | C| ≥ 4 , C is a chordless cycle 

 (δ(S)) ≥ 1 , ∀ S ⊆ A 

 i j , z i jl ∈ { 0 , 1 } , ∀ i ∈ A , ∀ j ∈ N (i ) , ∀ l ∈ N (i ) ∩ N ( j) ; (17) 

Finally, and to cope with the full coverage hole problem, we use

he complete mathematical formulation provided by (17) to pro-

ose the Algorithm 1 . 

. Numerical results 

The performance evaluation of our algorithm, coded in Java, is

onducted using an Intel Core CPU at 2.40 GHz with 8 GB RAM.

ach initial network represented by a graph comprises a random
umber of antennas following a Poisson process with a parame-

er 
 = λ × space _ dimensions, where λ is varying in the range [0.1;

], and space _ dimensions are generated according to two essential

paces (5 × 5 and 10 × 10). Each antenna, represented by a vertex of

his graph, has a radius value initialized to r max = 1 km . The sim-

lation considers the generation of 100 feasible instances for each

un. For sake of clarity, we summarize the simulation settings and

arameters in Table 1 . 

For our simulation and experiments, we will use the optimiza-

ion solver [31] to solve the exact mathematical model (17) , and

e also compare and benchmark our algorithm to other existing

pproaches. 

.1. Performance metrics and analysis 

The algorithm performance assessment is based on the follow-

ng metrics: 

• Convergence time : is the time needed by the proposed exact

algorithm to find an optimal solution. 

• Interference elimination rate : is the rate of eliminated inter-

ferences such that, and with no loss of generality, we consider

an interference as an intersection of two edges in the final

graph (the triangulation graph). 

• Coverage hole : is the network coverage in terms of existing

holes in the final solution. Hence, zero holes leads to a full cov-

erage hole. 

To assess performance of the proposed approach of the full cov-

rage hole problem using the described metrics, we considered a

eal trace and random instances described as follows: 

1. Random instances : Networks with an average number of an-

tennas ranging in [7; 100] interval, and an average number of

edges in the [18; 456] interval according to the formula (1) . 

2. Real trace : We used a real trace from a coverage cell 4G-LTE

of the network operator Orange, in a small area in Paris [32] .

This topology is in an area containing 26 4G-LTE antennas with

their given geographical positions (coordinates), 94 edges and a
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Table 2 

Exact algorithm performance: convergence time to the optimum. 

Space Density #Antennas #Edges # (15) # (16) Convergence Time (s) 

5 × 5 0.3 7.5 18.81 1 1 0.016 

0.5 12.5 34.63 1.13 1 0.0677 

0.8 20 70.21 5.79 3.45 9.43 

1.0 25 105.4 11.92 10.25 34.31 

10 × 10 0.3 30 96.16 6.08 5.81 4.28 

0.5 50 186.21 17.79 12.64 64.47 

0.8 80 298.24 32.64 5.71 67.13 

1.0 100 456.35 63 14.59 139.4 

Table 3 

Performance comparison : ILP Vs Rips approach. 

Space Density #Antennas #Edges Convergence Time (s) Interference elimination (%) 

ILP RIPS ILP RIPS 

5 × 5 0.3 7.5 18.81 0.016 0.67 100 88.89 

0.5 12.5 34.63 0.0677 2.51 100 96.42 

0.8 20 70.21 9.43 12.36 100 97.91 

1.0 25 105.4 34.31 34.76 100 98.01 

10 × 10 0.3 30 96.16 4.28 11.83 100 96.15 

0.5 50 186.21 64.47 57.38 100 95.61 

0.8 80 298.24 67.13 63.91 100 94.96 

1.0 100 456.35 139.4 74.9 100 97.97 
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5.2. Algorithm’s performance evaluation and comparison to the state 

of the art 

Our performance evaluation starts by assessing the execution

time needed by the Branch-and-Cut algorithm to find the optimal

solution to the full coverage hole problem. 

In Table 2 , the average convergence time to the optimum re-

mains bellow 35 s and 140 s in the worst case for the scenario

with average networks size of 100 antennas. The Branch-and-Cut

algorithm scales reasonably well with problem size (number of an-

tennas and edges) and this is due to the efficiency of the added

cutting planes provided by formulas (15) and (16) guaranteeing an

optimal result with β0 = 1 and β1 = 0 (a covered network with-

out holes and with a unique connected component). Moreover, this

average execution time depends on the average number of added

constraints (15) and (16) to our global optimization. As illustrated

in Table 2 , running and adding these constraints is requiring neg-

ligible times thanks to the heuristics approaches deployed to sep-

arate them in polynomial time, as mentioned in Section 4 . 

In the following, we assess the convergence time and interfer-

ence elimination rate of our algorithm and benchmark them with

the solution provided by RIPS complex, a well known method to

cope with the network coverage hole problem. As our approach is

based on an exact mathematical formulation leading to always at-

tend the optimum, then RIPS approach can be considered as an

upper bound to our algorithm. 

For small graphs or networks (at most 25 antennas in Table 3 ),

the Branch-and-Cut algorithm has negligible average convergence

time compared to the necessary convergence time required by

RIPS method. The worst case for these graphs concerns the sce-

nario with 25 antennas in which the ILP necessitates 34.31 s (to

converge to the optimal solution ) compared to 34.76 s for RIPS

method to converge to a feasible solution . 

For larger graphs (between 50 and 100 antennas in Table 3 ) our

algorithm is consuming little more time compared to the conver-

gence time of RIPS method, as we spent time to reach the opti-

mum in the contrary of RIPS method looking only for a feasible

solution, and not necessary optimal ones. This is confirmed by the

interference elimination rates provided in Table 3 . 

The interference elimination rate metric is reported in

Table 3 and confirms that the Branch-and-Cut algorithm performs
etter than RIPS approach even for large networks. In fact, our

pproach is eliminating totally the interferences for all the con-

idered scenarios compared to RIPS algorithm that proposes final

olutions with remaining interferences and holes. Thus, our pro-

osed approach guarantees the optimality of the found solution

n terms of interference elimination and full coverage hole jointly.

IPS method is providing weak network coverage hole and partial

nterference elimination (98.01% as the best result when consider-

ng small graphs). Hence, by considering jointly the expected con-

ergence time, the total interference elimination and the full net-

ork coverage hole solutions, the Branch-and-Cut approach can be

sed online by network providers offering connectivity and mobile

ervices to end-users. 

In other words, constraints (7) are dedicated to eliminating in-

ersections and they are violated when two edges in the new

raph, have a common point of intersection in the graph represen-

ation. Constraints (7) are stronger when combined with the other

alid inequalities described in the mathematical model (17) which

nds an optimal graph with only adjacent triangles (a full cov-

red zone according to the Delaunay definition). Thus, the joint

ptimization leads to eliminate totally these intersections (inter-

erences) as the used Branch and Cut approach is guaranteeing the

ptimality (zero interference and no holes). 

.3. Algorithm’s performance evaluation for real traces and scalability

The performance assessment would not be complete without

ddressing the scalability for very large problem instances, and

lso by applying our algorithm to a real network or graph as

hown in Fig. 8 . This network is in a small area in Paris, contain-

ng 26 antennas, 94 edges and an interference rate equivalent to

0.85%. Note that in our work, and with no loss of generality, an

nterference is the intersection of two edges in the graphic repre-

entation of the network. In this experimentation, we would like

o apply our Branch-and-Cut algorithm on the map of Fig. 8 when

ssessing the three metrics cited above (i.e. Coverage hole, Inter-

erence elimination, and Convergence time). 

Fig. 9 reveals for the topology in Fig. 8 of reasonable size, the

btained covered network when applying our Branch-and-Cut al-

orithm which has the advantage of exploring the entire network

pace at once during optimization. The obtained triangulation in
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Fig. 8. An Orange 4G-LTE Cell Map: Before Branch & Cut Optimization . 

Fig. 9. An Orange 4G-LTE Cell Map: After Branch & Cut Optimization . 
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ig. 9 is optimal and with no holes leading to a network with a

ull coverage hole. Our exact algorithm has totally eliminated the

xisting interferences and reached the optimal solution in less than

 sec (or exactly in 0.006 s). This real network instance is in fact

easy” to solve using our Branch-and-Cut approach. 

To discuss the scalability analysis of our approach, we propose

 network instance of 10 0 0 antennas generated as described in

ection 5.1 . We apply our mathematical formulation provided by

17) and the obtained convergence time is close to 116.88 s for

n optimal solution with no holes (full coverage) and no interfer-

nces. Note that the selected network/graph instance do not con-

ain chordless cycles and the obtained result is a connected graph

i.e. without many connected components). This allows to avoid

enerating chordless cycles inequalities (15) and connectivity con-
 t  
traints (16) which can be time consuming when added to our op-

imization. Indeed, the generation of these cutting planes can be

ime consuming even if their used separation algorithms are con-

erging in polynomial time, as we can observe it in the previous

imulations in Table 2 . This explains the necessary convergence

ime (for a network of 10 0 0 antennas) which is less than the nec-

ssary time for a network with 100 antennas in which 63 chord-

ess cycles constraints and 15 connectivity constraints are used to

ttend the optimum (see Table 2 ). 

. Conclusion 

This paper proposes a Branch-and-Cut algorithm dealing with

he full coverage hole problem in the C-RAN context. The proposed
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algorithm can scale even for large problem instances thanks to the

new cutting planes added to our optimization. The performance

evaluation is conducted using simulations and a real network map

to confront our algorithm to different infrastructures and network

topologies. The results of these evaluations reveal the efficiency of

our approach that performs consistently well across all evaluations

and metrics. This confirms the reliability of our algorithm and the

quality of the found solutions. 

In the future, we will address two new issues described as fol-

lows: 

1. We considered in our model circular antenna coverage area.

However, in real life, antennas do not have regular shapes and

their coverage area depends on geographic, environmental and

network parameters. We aim to extend our model by taking

into account the irregularity of antenna coverage area to bet-

ter evaluate the performance of our approach when considering

real life constraints. 

2. We evaluated the performance of our algorithms using various

experimentations, and then, we identified some network vari-

ants (cliques with at most four edges) that can be solved op-

timally in negligible times when the integrity constraints are

relaxed. Hence, we will investigate new valid inequalities to

characterize polynomial time variants of the coverage network

problem. 
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