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a b s t r a c t 

In Software Defined Networks (SDNs), the global view of the underlying network topology is created and 

maintained at the logically centralized controller. SDN achieves it by decoupling the data plane from the 

control plane. The up-to-date global view at SDN controller enables the applications (running on top of 

it) to innovate through dynamic network programmability. To establish a global view, a controller needs 

to discover a physical topology of the underlying SDN network infrastructure, which is challenging due 

to various reasons such as the lack of SDN protocols standardization and authentication mechanisms, use 

of sub-optimal link discovery protocols (e.g., OFDP and LLDP), dynamic topology due to movement of 

virtualized data centers, switches, and multi-tenant cloud networks, and lack of integration of security 

schemes for the topology discovery. 

In this paper, we propose a SDN Link Discovery Protocol (SLDP) for efficient discovery and extraction 

of topology information in SDN networks. The design of SLDP is motivated from the need of a secure, 

lightweight, and efficient link discovery protocol in SDN. SLDP aims to prevent, detect, and mitigate vari- 

ous security threats such as poison, replay, and flooding attacks, which are due to lack of source authen- 

tication, lack of packet integrity checks, and reuse of static packets. SLDP creates and maintains the global 

network topology at SDN controller by using smaller size and lower number of SLDP packets during the 

topology discovery process. Thus, it significantly minimizes the topology discovery overhead in the net- 

work. We implemented SLDP on Mininet emulator, and the results show the effectiveness and correctness 

of SLDP concerning topology discovery time, CPU computational time, and bandwidth overheads, when 

compared with the traditional OpenFlow Link Discovery Protocol (OFDP). Additionally, SLDP successfully 

prevent, detect, and mitigate various attacks (e.g., poison, replay, and flooding) in different SDN scenarios. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

For any data center, the essential requirements are robustness

and manageability. Software Defined Network (SDN) offers pro-

grammability, flexibility, and openness to ensure these require-

ments [1,2] . Due to the separation of data plane and control plane,

the SDN controller exhibits a global view of the underlying net-

work topology, which enables it to make the optimal decisions for

various applications that runs on top of the controller. For instance,

applications such as load-balancing and shortest pathfinder, uses

the global view to function efficiently. The view construction and

maintenance require the discovery of underlying network topology,
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hich consists of switches and links. The existing SDN controllers

se OpenFlow Discovery Protocol (OFDP) with Link Layer Discov-

ry Protocol (LLDP) packets for link discovery, which is prone to

arious security threats. 

In SDN, the global view is generated by performing the switch

iscovery, the link discovery, and sometimes the host discovery.

nce an OpenFlow-enabled switch connects to the network, it per-

orms a TCP three-way handshake with a pre-stored remote socket

esiding at the SDN controller. After successful handshaking, both

egotiate on the OpenFlow version. Subsequently, the switch is

sked for its capabilities and ports status. These steps help con-

roller to discover the switch with available ports. To perform var-

ous topology-aware activity, link discovery is mandatory. Most of

he SDN controllers use OpenFlow Link Discovery Protocol (OFDP)

nd Link Layer Discovery Protocol (LLDP) for the discovery pro-

ess. An LLDP packet is generated at the controller, and sent to a
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witch with the forwarding instruction [3,4] . When a switch re-

eives such a packet, it consults with flow entry and forward the

LDP packet to the controller. The controller puts source informa-

ion in the LLDP packet, and it also receives destination informa-

ion on successful reception of the same packet. This information

s used to create a unidirectional link. The same process is repeated

n the discovery of each unidirectional link. To discover the hosts

n topology, the controller uses traffic from hosts. Such host dis-

overy is controller dependent. 

.1. Motivation and contributions 

Each controller implements a variant of OFDP with variation in

ase LLDP packet. The main focus of the controller is link discov-

ry between the Openflow switches (OF-switches). Few controllers

lso provide some security extensions and the latency informa-

ion for each link. Major security threats are LLDP Replay, LLDP

oison, and LLDP flooding, which are caused due to the lack of

ource authentication, lack of integrity check, and reuse of static

ackets. Some SDN controllers suggest the inclusion of a hash

eld in LLDP packets to perform the integrity check. In particu-

ar, the POX [5] , RYU [6] , and ONOS [7] controllers does not pro-

ide any security, while the OpenDayLight [8] , Floodlight [9] , and

PEVAN [10] introduce hash in LLDP packet to prevent the attack.

he state-of-the-art also proposes few security solutions such as

uthors in [11] suggest that instead of sending LLDP packet to ev-

ry port on a switch, send a template to switch with an instruc-

ion to generate separate LLDP packet to each port because it re-

uces controller-to-switch traffic at the cost of slight switch over-

ead, SPHINX [12] proposes the use of static binding to prevent the

ttack, Topoguard [13] and [14] proposes to introduce key-based

ash in LLDP packet for making it more secure. ESLD [15] proposes

 secure, efficient topology discovery protocol, in which lower

umber of LLDP packets are generated with MD5 based authen-

icator. Few switch agent-based distributed discovery protocols are

lso proposed in [16–18] . However, these security solutions are not

ble to address all the LLDP based threats. More precisely, the de-

ection of LLDP attacks is partially addressed and the prevention is

ntirely missing in the state-of-the-art. The LLDP packets are tra-

itionally used with the objective to advertise identity, capability,

nd neighbors information to a neighbor, and the same is adopted

n SDN. Thus, it forces to use the large size LLDP packet with a

on-optimal use of packet space. SLDP shows that the packet size

eduction can be done without affecting the desired functionality.

n current practices, LLDP packet is generated and sent to each

witch port, and some of these ports are attached to end hosts.

ence, the packets for these ports are of no use as it is shown

ith SLDP’s link discovery mechanism. 

In this paper, we propose SLDP, which is a novel link discov-

ry protocol for SDN networks. SLDP contains three levels of secu-

ity. Additionally, it is lightweight because of its new link discovery

acket structure, and it is more efficient as less number of SLDP

ackets are generated and transmitted. We present the design of

LDP which includes an SLDP packet structure, system architecture,

nd event sequence. Traditional LLDP packet has some of type-

ength-values (TLVs) for no use in SDN like time to live (TTL) and

ndTLV. Few TLVs which are useful takes some extra bits like field

ype, sub-type, and length. SLDP introduces fixed length positional

acket structure. For security, SLDP uses token based prevention

pproach to prevent poison, replay, and flooding attacks. Even for

ow probable attacks, some more levels are introduced like poison

etection with mitigation, and flood detection with mitigation. Ini-

ially the controller sends SLDP packet to each port of a switch,

ut in the later iterations some of the ports are declared as non-

ligible. This helps the controller to generate and send less num-

er of SLDP packets. SLDP is implemented on Mininet [19] environ-
ent with RYU controller. The time taken in link discovery packets

reation and verification is far less then RYU’s original OFDP im-

lementation. The topology discovery performed is quick in SLDP

s compare to OFDP. This is achieved because lightweight packets

re sent only to the required ports. Lower number of and size of

ackets reflects in lower CPU and bandwidth resource utilization.

n particular, this paper has the following major contributions: 

• We propose a secure, lightweight, and efficient link discovery

protocol (SLDP) for SDN networks. We present the design of

the major components of SLDP, which includes a new packet

format, system architecture, flow entry structure, and event se-

quence. To ensure the security against various attacks, SLDP

uses a token-based technique that generates random source

MAC addresses for SLDP packets, and it uses the randomness

to create a flow entry for the SLDP packets. 
• We fully implemented SLDP on Mininet emulator with RYU

controller. The performance analysis done on different SDN sce-

narios shows the effectiveness of SLDP regarding prevention

and detection of various attacks (e.g., replay, flooding, and poi-

son attacks), computational overhead, topology discovery time,

and bandwidth consumption. We also compare SLDP with OFDP

protocol to show the effectiveness of SLDP over the state-of-

the-art. 

.2. Organization 

The rest of the paper is organized as follow. In Section II, we

resent overview of traditional link discovery protocol of SDN, and

he related work which includes the state-of-the-art research ef-

orts on secure and efficient link discovery protocols in SDN net-

orks. Additionally, Section II also includes a discussion on the at-

ack vector and manifestation of attacks related to link discovery in

DN. In Section III, we present details of our proposal (i.e., SLDP)

hich includes the motivation for the design of SLDP, its desired

haracteristics, system architecture, and security analysis for vari-

us LLDP-based attacks. The evaluation setup details and the per-

ormance evaluation of SDLP protocol on various SDN topologies is

resented in Section IV. Finally, we conclude our paper with future

esearch directions in Section V. 

. Background and related work 

In a traditional network, each networking device has its local

iew to take various decisions such as related to packets forward-

ng, and to perform flow or access control. One of the key promises

f SDN is to use a global view to take effective decisions. The

lobal view is a view of the physical arrangement of network com-

onents which includes switches, hosts, and links that are admin-

strated by controller(s). Global view helps the controller to make

he suitable or optimal decision. Applications such as load balanc-

ng, shortest pathfinder, end to end delay guarantor, best path se-

ector, to name a few, need the global view to make an optimized

ecisions [20] . If the exact topology is not known, it’s hard for the

ontroller to make effective decisions. A global view discovery con-

ists of link discovery, which we address in this article. Other dis-

overies in SDN are switch discovery and host discovery, which are

art of the topology as it is shown in Fig. 1 . There are various

inks in topology, but link discovery only identify links between

wo OpenFlow switches (OF-Switches). 

.1. Existing implementations 

link discovery is a process to identify links between OF-

witches. There are certain possible cases in which non-OF-

witches separates two OpenFlow enabled switches. The controller
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Fig. 1. Global view construction in SDN. 
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does not control a non-OpenFlow switch, hence, we assume that

it works as per specifications. However, a link discovery process

must identify the links. In SDN, so far the link discovery is per-

formed with a non-standard OpenFlow Discovery Protocol (OFDP)

with Link Layer Discovery Protocol (LLDP) packets. Each controller,

e.g., POX [5] , RYU [6] , FloodLight [9] , OpenDayLight [8] , ONOS [7] ,

and HPEVAN [10] implement their own OFDP variant. However, all

of these are using either LLDP packets or alike Broadcast Domain

Discovery Protocol (BDDP) packets. As shown in Fig. 3 , LLDP/BDDP

packets are initiated by the controller, pass through switches, and

confirms a link between switches. 

Before understanding link discovery in SDN environment, let’s

look at LLDP packet format which is depicted in Fig. 2 . The LLDP

packet is a collection of different set of Time-Length-Value (TLV)s.

Different controllers maintain a different set of TLVs. The Chassis,

Port, and TTL TLVs are generally used to store source data path id

( dpid ), source port number, and packet expiry time. It is Because

LLDP [21] is originally used in traditional networks, and SDN is just

using the similar packet format. Thus, each combination of TLVs

serve different purposes. In next section, we will show that few of

TLVs are not required for the topology discovery process. 

As per Fig. 3 , LLDP packets are generated for each port on each

OF-switch (step 1). PACKET_OUT packet with LLDP packet as a

payload is generated. After reaching at the switch, payload LLDP

packet is transferred on a specified output port (step 3). If such

a LLDP packet is received at the switch, its forwarding table is

consulted for further action. After consultation, a PACKET_IN mes-

sage is generated with received LLDP as payload (step 4). In step 5,

the controller receives PACKET_IN message with event information

or destination dpid and destination port. Because the LLDP packet

holding source dpid and source port, the controller has complete

source to destination information on which the LLDP packet is

traveled. This information helps to create a unidirectional link be-

tween source and destination. The process will be completed for

each unidirectional link to provide a complete set of unidirectional

links. 

Each controller uses its own variant of OFDP and LLDP pack-

ets. In each implementation of OFDP, a received LLDP packet is

validated against some parameters such as destination MAC, con-

tents of Chassis Id, and setting of certain fields. Here the validation

means whether the received LLDP packet is genuine or not. Differ-

ent LLDP packets have a different set of TLVs, and each TLV serves

a specific purpose. In POX controller, a System Description TLV is

available along with mandatory TLVs holding ‘dpid:3’ like string.

Upon receiving LLDP packet, the parsing algorithm uses destina-

tion MAC address, number of TLVs, and TLV sequence for valida-
ion. After successful validation, each OFDP implementation extract

ource information. The source information is extracted from Port

nd System Description TLV. The RYU controller uses only manda-

ory fields in LLDP packet. The Chassis Id and Port TLVs are used

s validation and source information extraction. The OpenDayLight

ontroller also uses few TLVs to ensure security along with manda-

ory TLVs. 

In OpenDayLight LLDP parsing algorithm, System Name TLV is

hecked against not nullness to ensure packets validity. After val-

dation, a hash is extracted and matched with stored hash to

nsure packet’s integrity. FloodLight controller also uses security

LV with a time-stamp TLV to calculate link latency. Port TLV

ength is used to ensure validness of LLDP packet. The stored

ash is matched against a received hash to ensure integrity. A re-

eived time-stamp is subtracted from current time-stamp to cal-

ulate latency. ONOS controller using two separate TLV along with

andatory TLVs. In the first and second TLV ‘ONOS Discovery’ and

of:0 0 0 0 0 0 0 0 0 0 0 0 0 0 03’ is stored respectively. The later one is the

pid of an OF-switch. Source information is extracted from Chassis

nd Port TLVs in parsing algorithm. The HPEVAN controller uses a

LV to store hash value in it. The destination MAC address is used

o verify LLDP packet. Once parsing algorithm finds that received

ash is same as a stored hash, the source information is extracted

rom System Description and Port TLVs to create a unidirectional

ink. For a detailed analysis of each implementation of OFDP, the

tructure of each LLDP packet, and hash calculation please refer to

ur recent work [22] . The summary of conditional TLV and source

f information extractor is represented in Table 1 . 

.2. Related work 

Apart from present deployment of OFDP and LLDP packet in

he various controllers, the research community is also putting

ard effort s to make efficient and secure link discovery. Authors

n [20] proposes ForCES based link discovery which provides addi-

ional computational capabilities to run LLDP at the switch level.

he controller queries periodically to gather the topology informa-

ion. Authors in [16] propose a switch agent based topology discov-

ry mechanism. Initially, the controller generates and send a mul-

icast message, called TDP-Request. Upon receiving, the switches

hange from Standby to either Father nodes or Active node. Each

ode collect neighbor information but only Father nodes send the

nformation asynchronously to the controller. SPHINX [12] utilizes

n abstraction of flow graphs, which is produced by PACKET_IN

nd FEATURES_REPLY messages. Same flow graphs are employed

o validate all the network updates. Authors in [17] proposes SDN-

DP, a distributed resource discovery protocol. More than one con-

rollers manages various switches, hence the proposed protocol

orks in two phases, one for the controllers announce and an-

ther for joining the switches. For each event, packets are moved

n various network entities to form the topology. SHTD [18] is a

ayer two topology discovery with autonomic fault recovery pro-

ocol. Topology discovery is performed with controller sending a

opoRequest message. The propagation of this multicast message

ith nodes in four roles, i.e., non-discovered, leaf, v-leaf or core

nd each port in four states, i.e., standby, parent, child or pruned

iscover the topology. Autonomic fault recovery is performed with

he help of managed components and autonomic manager. The au-

onomic manager detects the port status to make the update for

anaged components. 

Authors in [11] suggest a unique variant of topology discovery

n which LLDP packets are only generated as one for each switch

nstead of each port on each switch. It is quite simple but reduces

he number of LLDP packet from the controller to switch drasti-

ally. TopoGuard [13] classifies packet integrity check failure and

ource authentication failure as possible reasons for LLDP packet
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Fig. 2. LLDP/BDDP packet format. 

Table 1 

Summary table for different controllers. 

Controller(Ver.) Conditional Tlvs Information Source 

TlvCnt CTlv PTlv TTlv SDTlv Dpid Port 

POX(0.2.0) 
√ √ √ √ 

CTlv PTlv 

RYU(4.12) 
√ √ 

CTlv PTlv 

OpenDayLight(3.0.7) 
√ 

CTlv PTlv 

FloodLight(1.2) 
√ 

Uk 1 Tlv PTlv 

ONOS(1.9.0) 
√ 

CTlv PTlv 

HPEVAN(2.7.18) 
√ 

Uk 1 Tlv PTlv 

Fig. 3. LLDP/BDDP movement for link discovery. 
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Fig. 4. Topology for attack vector. 
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ased threats. The author also suggests that the controller have to

top sending LLDP packets to any host. To prove LLDP packet in-

egrity and authentication of origin, an HMAC TLV is appended to

he LLDP packet. OFDP_HMAC [14] introduces dynamic HMAC au-

hentication to ensure both integrity and authentication. The calcu-

ated HMAC is attached to each LLDP packet. The dynamic key for

MAC is used to prevent LLDP Poison/Replay attacks. ESLD [15] is

 secure, efficient topology discovery, which works in stages that

ncludes port classification, LLDP packets sending, and link detec-

ion. Our proposed approach uses host information to identify de-

ired ports, hence lower number of packets are generated and sent.

LDP packets are generated for identified port with key based MD5

s the authenticator to each packet to prevent replay and poison

ttacks. All links are discovered with LLDP packet propagation. 

.3. Attack vector 

The LLDP packets are generated for each port on each switch.

hese packets are reached to target switch, the switch forwards

hem to the controller with the help of a dedicated flow entry or

efault miss entry. The major threats for the link discovery are Re-

lay, Poison, and Flooding [23] attacks. Let’s investigate these at-

acks with the help of Fig. 4 , which consists of three OpenFlow

witches, switches S 1 and S 2 have three hosts attached to each of

hem. The two hosts are malicious, e.g., either a person with mali-

ious intentions is operating them or malicious application are in-

talled on them. The switches S 1 and S 2 are connected with S 3,

nd the dash line between S 1 and S 2 represents a fake link. 

Replay Attack (RA): Due to LLDP packet propagation to each

ort on a switch, the attached hosts also receive LLDP packets.
owever, if one of the attached host send a received LLDP packet

rom some other host that is attached to another switch, than the

eceiving switch and the controller has no way to identify the

ource of that LLDP packet. For instance, if a malicious host at

witch S 1 receives LLDP and share it with malicious host attached

o S 2, then the host at S 2 send the LLDP packet on local port to

 2, , and again the S 2 sends the received LLDP packet to S 1 with

ts malicious host. Finally, S 1 and S 2 will send these packets to the

ontroller, and the controller confirms that S 1 and S 2 have a direct

ink. 

Poison Attack (PA): The attacker creates fake LLDP packets and

ent it to the attached switch. The switch is unable to differen-

iate genuine and fake packets, thus the packets are sent to the

ontroller. The controller also has no way to find the source of the

acket and it cannot evaluate the integrity of the packet. In this

ay, a generated false link creates topology poison. For instance in

ig. 4 , if an attacker at S 1 creates an LLDP packet containing infor-

ation like Chassis id is 2 and port is 3, then the switch would

orward it to the controller. The controller makes a unidirectional

ink between S 2 to S 1. 

Flooding Attack (FA): When a controller receives a fake crafted

LDP packet, it computes logic. Hence when an attacker sends a

ood of LLDP packets, e.g., 50,0 0 0 packets per second, the resource

onsumption at controller increases rapidly, and it negatively ef-

ects the benign packets service rate. Additionally, these large num-

er of fake LLDP packets waste switch to controller bandwidth and

ontroller CPU cycles. 
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Table 2 

Different controllers with attack vector. 

Controller(Ver.) Vulnerability LLDP Attack Attack 

LP LF LR Type 

POX(0.2.0) [5] No hash 
√ √ √ 

RC 

RYU(4.12) [6] No hash 
√ √ √ 

RC 

OpenDayLight(3.0.7) [8] Static hash 
√ √ 

LC 

FloodLight(1.2) [9] Static hash 
√ √ 

LC 

ONOS(1.9.0) [7] No hash 
√ √ √ 

RC 

HPEVAN(2.7.18) [10] Static hash 
√ √ √ 

RC 
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The possible cause of these attacks are failing to check source

authentication of the received packet, and failing to verify the in-

tegrity of packet, static content and constant flow entry. For in-

stance, if a is controller unable to identify the source of LLDP pack-

ets, and the LLDP packet holds static content then the controller

is prone to replay attack. If the controller is unable to identify a

source of LLDP packets, fail to check the integrity of LLDP packet,

and the LLDP packet have static content, then poison attack may

happen. If the switch has a constant flow entry to pass LLDP pack-

ets to the controller then flooding attack may happen [22] . 

2.4. Manifestation of attacks 

Effects of described attacks are ranging from a fabricated link

to controller fingerprinting, which leads to wastage of network re-

sources. 

Fabricated Link: Replay and poison attacks create fabricated

links. Any such fabricated link poison the topology, which effects

topology aware applications, e.g., load balancer. 

Controller Fingerprinting: If a controller generates and sent LLDP

packets to each port, the host also receives these LLDP packet. Each

controller have different LLDP packets [22] which make the easy

guess for controller identification. 

Resource Wastage: In flooding attack, the controller receives

large number of LLDP packets, and the processing of these pack-

ets waste controller CPU cycles. These packets traverse from switch

to the controller over TCP/TSL layer, hence it causes bandwidth

wastage. When OF-switch is configured with TSL to ensure secu-

rity, a large amount of computation has to be done to encrypt the

fake LLDP packets, this further increases the resource consumption

at switches and controller due to encryption/decryption process. 

3. The SLDP protocol 

In the previous sections, we have discussed various security

vulnerabilities in existing controllers. In this section, first we pro-

vide motivations for a new design of a link discovery protocol. In

particular, we propose a SDN Link Discovery Protocol (SLDP). The

design of SLDP consists of SLDP packet format, system architecture,

and event sequence. We also defines SLDP characteristics along

with SLDP packet structure in this section. 

SLDP discovers a unidirectional link between two OpenFlow en-

abled forwarding elements, which may also be separated by a non-

OpenFlow switch. The protocol is a lightweight, efficient, and se-

cure solution for discovering links in SDN physical topology. The

discovered links along with the switch information is used to cre-

ate a global view at the controller. 

3.1. SLDP Design motivations 

A link discovery protocol can be considered good if it discovers

link as quickly as possible, and it is secure against known threats

while consuming less bandwidth and CPU cycles. Below, we pro-

vide adequate evidence that motivates us to design a new link dis-

covery protocol in SDN. 

Security: A secure link discovery in SDN ensures accurate topol-

ogy discovery, minimum bandwidth and minimum CPU resource

wastage. With the current security extensions, no optimal uses of

bandwidth and CPU is acheived. In the previous section, the article

defines security threats and their effects. The security threats are

possible due to the controller’s inability to perform source authen-

tication, packet integrity check, and static packet creation. 

Table 2 illustrates security strength of controllers against LLDP

Poison (LP), LLDP Replay (LR), LLDP flooding (LF) attacks. RC (Row

Craft) and LC (Library Craft) are two classes of attacks which are

used to perform the security attacks on topology in SDN. In RC,
he attacker uses LLDP packet information and parsing algorithm to

erform the attack, while in LC the attacker uses a library of the

ontroller to perform the attack. Few controllers (e.g., FloodLight,

penDayLight, and HPEVAN) attach a hash to the LLDP packets. To

erform the attack on these controllers, the library information is

eeded, which may have the information about the hash genera-

ion algorithm (or a secure static key) that is required for the suc-

essful attack. To understand more about how attacks can happen

n different controllers, please refer to [22] . 

POX, RYU, and ONOS has no security content in their gener-

ted LLDP packets, hence these controllers are prone to attacks.

he OpenDayLight controller generates an MD5 hash of a string,

.e., ‘openflow:1:2’, which an attacker can also create if she knows

he MD5 library and a secret key. Both the information can be

chieved, if an attacker performs reverses engineering to the con-

roller code. Hence, having static hash key won’t help to protect

rom such attacks. In Floodlight controller, local machine interfaces

re required to calculate the hash, hence the attacker is not able

o compute the same hash on the local machine. But once the

ash is calculated, it is kept same for further LLDP packets. The

ttacker has an opportunity to put the same hash in fake crafted

LDP packets. In case of HPEVAN, same mistake is repeated for all

he packets, and same hash is used. Hence, an attacker can copy

nd use the same fake LLDP packets. A point to note in OpenDay-

ight is that hashes for each switch port are separate, but in case

f FloodLight and HPEVAN hash for each LLDP packet is same. In

 nutshell, most of the industry and academic grade controller are

nsecure, specifically against the LLDP-based threats. 

The research community is also trying to secure the link dis-

overy process. Table 3 provides the summary of such effort s. To-

oGuard [13] identifies source authentication and integrity check

ailures as possible reasons for the described threats. Their pro-

osed approach only considers LLDP based poison attack but not

he remaining attacks. SPHINX [12] detects the poison attack with

tatic mapping of ports with hosts. OFDP_HMAC [14] identifies cor-

ect reasons, but still, packets are broadcast to each port. LLDP

ooding is not detected or prevented. All approaches are detec-

ion and mitigation based, hence leaves scope to look for some

reventive measures which can also reduces resource consump-

ion during the attacks. In conclusion, some security improvements

re possible. For instance, ESLD [15] only generates LLDP packet for

on-host ports on each switch. But the approach is based on host

raffic, and an attacker can forge its behavior. Also key-based hash

s sent to each packet, which is time-consuming. 

Lightweight: Currently, link discovery in SDN is performed with

ontroller specific OpenFlow Discovery Protocol (OFDP) implemen-

ation and LLDP packets. In traditional networks, LLDP packet is

esigned to be a vendor-neutral link layer protocol for LANs. LLDP

s used to advertise network elements’ identity, capabilities, and

eighbors. Different fields in LLDP packet are Chassis ID, Port ID,

ime To Live, Port description, System name, System description,

ystem capabilities, Custom TLV, and End of LLDPDU. First three

nd last one are compulsory, and the rest are optional. Each net-

orking device is supposed to run an LLDP agent. The LLDP agent
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Table 3 

Comparison of different research proposals for security. 

Approach Authentication Integrity LLDP broadcast Poison Flood Replay 

TopoGuard [13] y y y 

SPHINX [12] y y 

OFDP_HMAC [14] y y y y y 

ESLD [15] y y y 

Table 4 

Length in Bytes for different LLDP packets. 

Deployments Size of link discovery frames(bytes) 

POX(0.2.0) 41 

RYU(4.12) 40 

OpenDayLight(3.0.7) 85 

FloodLight(1.2) 75 

ONOS(1.9.0) 66 

HPEVAN(2.7.18) 67 

Target 14 + 8 + 4 = 26 
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Table 5 

Number of Switches,Links,Ports and Hosts. 

Topology Switch Link Port Host eligible ports 

tree,4,4 85 340 424 256 168 

tree,7,2 127 254 380 128 252 

fat tree 80 384 705 64 641 
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athers remote device information and advertise local information

o remote devices. The collected data is stored in management in-

ormation database (MIB) and it can be queried with the Simple

etwork Management Protocol (SNMP). 

Currently, SDN community is using a borrowed packet format

o perform link discovery. LLDP packet structure has some features

hich can not fit anywhere in the picture with SDN’s topology dis-

overy phase. Firstly, we need chassis id and port id for source

nformation. TTL field in LLDP protocol is used to instruct remote

LDP agent for validness of the information. But in SDN, no LLDP

gent is installed in any of the forwarding elements. Hence, the

TL field is not required. For validness of link in SDN, the controller

end periodic packets. In SDN, no forwarding element is interested

n name or capabilities of neighbour elements. It is because the

ontroller takes care of this information and receives it in first few

ackets of communication with forwarding elements. Also, the end

f LLDP packet is not needed if we can provide a fix length packet

or discovery. 

In TLV structure, the LLDP have to insert various types and sub-

ypes along with the length. If we need fixed length chassis id

dpid) and port id, then no need to put all type and subtype val-

es. The OpenFlow specification specifies the length of dpid and

ort id as eight and four bytes respectively. Because type, subtype,

nd length field also consuming length, it’s good to remove this

tructure if it is not required for the topology discovery process. 

Table 4 gives length taken by each LLDP frame generated by dif-

erent SDN controllers. We can see that if we only need 26 bytes

hen why to go for 40 bytes in RYU and 85 bytes in the Open-

ayLight controller. A reader may argue that controller might be

toring some hash value in it. Yes, we agree but not ready to rec-

mmend it because we can see in Table 2 that all controllers are

ulnerable then what is the use of storing the hash. Secondly, com-

utation of hash is costly process. It will be more worse, if the

ontroller has to calculate a different hash for each LLDP packet. 

Efficient: The link discovery process works as follow, the con-

roller generates LLDP packets and send them to all switches. The

eceiving switch forwards these packets to the instructed ports. If

ny switch receives a LLDP packet from its neighbor switch, it for-

ards the packet to the controller. The controller parses the re-

eived LLDP packet and creates a link. In present deployments,

LDP packets are generated for each port on each switch. If some

f the ports are attached to hosts, LLDP packets for those ports are

f no use. If the controller has to generate less number of LLDP

acket, fewer resources will be consumed at the controller. Same
rrangement will also prevent a malicious host to perform con-

roller fingerprinting. 

Table 5 shows statistics about the number of switches, number

f hosts, number of ports, and number of links in few SDN topolo-

ies. For the structure of topologies, please consider Section IV. In

ree,4,4 topology, the controller has to generate 424 LLDP packets

o discover 340 links. In the same topology 256 host are there,

hich means 256 generated LLDP packets are of no use. The last

olumn in the table specifies non-eligible ports for LLDP packet. In

articular, a controller can reduce resource consumption by reduc-

ng the number of LLDP packets. 

In this section, we demonstrated with various examples that a

ightweight, efficient, and secure link discovery is still needed to

chieve optimal results with lesser resources in SDN. 

.2. Desired characteristics 

SLDP aims to discover links in more secure, efficient, and

ightweight way. More precisely, SLDP will work correctly if hold-

ng following characteristics: 

Definition 1 (Correctness): 

• SLDP must discover the link between two OpenFlow enabled

switches. 
• SLDP must discover the link between two OpenFlow enabled

switches separated with a non-OpenFlow switch. 
• SLDP must provide latency for each discovered link. 
• SLDP should secure against replay, poison, and flooding attacks.

(Secure) 
• SLDP packet size must be kept to minimum. (Lightweight) 
• SLDP must perform link discovery with less number of packets.

(Efficient) 

If the discovery process is secure, the controller will work as

ntended, hence, better controller resource utilization. If the link

iscovery is done with lightweight packets (i.e., lower packet size

nd less number of packets to discover the topology), then the dis-

overy process uses less bandwidth and light traffic on network in-

erfaces. If discovery process is efficient, system requires less band-

idth and CPU resources to generate the discovery packets. In par-

icular, the SDLP’s theoretical and practical analysis gives confi-

ence towards its correctness. We theoretically examine some of

he stated correctness one by one. Security-related correctness is

nalyzed with test cases that we will discuss in the later section.

urthermore, the experimental setup and evidence are demon-

trated in Section V. 

SLDP must discover the link between two OF-switches. For in-

tance, all unidirectional links in a topology belongs to a set L

 { l 12 , l 21 , l 23 , l 32 . . . .l mn , l nm 

} , and SLDP’s discovered links belong

o set D = { d , d , d , d . . . .d mn , d nm 

} . The following condition
12 21 23 32 
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DMAC SMAC Etype Dpid Port

6 Byte 6 Byte 2 Byte 8 Byte 4 Byte

DMAC SMAC Etype

Fig. 5. SLDP packet format. 
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Fig. 6. SLDP System Architecture. 
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must be followed ∀ x [ x ∈ L ⇔ x ∈ D ], i.e., all elements which be-

long to L must also belong to D . SLDP packets generated at the

controller are sent to a switch with OpenFlow TCP/TLS channel

with forwarding instructions. The switch obeys instruction and a

linked switch receives SLDP packet. The receiving switch consults

flow table to forward it to the controller. SLDP use the random-

ized information to create both flow entry and SLDP packet. Here

one possible problem is to be considered which is called race
condition . If an SLDP packet reaches to the second switch be-

fore flow entry packet, it must be dropped. To prevent the race

condition, SLDP uses Barrier message [24] . The barrier message en-

sures the order of flow entry installation and SLDP packet sent in-

structions. It confirms clarification of a single doubt while SLDP

discovers the link. 

SLDP must discover the link between two OF-switches that are

separated with a non-OpenFlow switch. Layer two or three switch

forwards layer two broadcasts. SLDP Ethernet frame uses broadcast

destination address. Hence, once a broadcast packet is received by

layer two or three device, it must be forwarded to all of its ports.

An OF-switch is connected to one of its port so it will receive

the packet. Packets are received over non-OpenFlow switches also,

however the remaining process for link discovery stays the same. 

SLDP must provide latency for each discovered link. In SLDP,

whenever a packet is sent for discovery, the time stamp is noted.

After traversing two switches, the same packet comes to the con-

troller. Upon receiving, SLDP records the second time stamp. The

latency is calculated with both these time stamps. SLDP ensures

that the discovery packet size stays to minimum. As Table 4 and

Fig. 5 suggests, SLDP takes the minimum bits for a link discovery

packet. SLDP uses 26 bytes, while others discovery protocols are

taking in a range from 40 bytes to 85 bytes. 

SLDP must perform link discovery with less number of pack-

ets. As Table 5 suggests, eligible ports are less than the number

of total ports irrespective of the topologies. SLDP find out non-

eligible ports after few iterations and remove it form eligible port

list. For instance, a controller’s OFDP implementation is generating

‘o’ bytes link discovery packet. SLDP implementation for the same

controller is taking ‘s’ bytes. If p 1 , p 2 , p 3 . . . p n are ports of switches

in a topology, and h 1 , h 2 , h 3 .h m 

are the hosts attached to switches

on some of the ports. Here ‘n’ and ‘m’ are the numbers of ports

and hosts attached to switches respectively. Hence, the total profit

in terms of bytes can be represented as Eq. 1 as per the iteration,

i.e., every five seconds. {
n ∑ 

i =1 

p i −
m ∑ 

i =1 

h i 

}{
o − s 

}
(1)

3.3. SLDP Packet format 

SLDP is designed to identify links between two OF-switches,

which may be separated with a non-OpenFlow switch. For each

discovered link, the latency is also provided. SLDP is secure against

replay, poison, and flooding attacks. Lightweight and efficient link

discovery is desirable. For all these features, SLDP uses a simple yet

effective frame format, which can be seen in Fig. 5 . 

To understand SLDP working methodology, understanding of

the SLDP packet structure is mandatory. Two partitions are shown

in Fig. 5 , first is Ethernet header and second is SLDP payload. SLDP
tilizes both partition to work correctly. In Ethernet header desti-

ation, a broadcast address is used. In source address field, a ran-

om MAC address is used. In EType a custom type is introduced.

he dpid and port are the source information of the link. In a nut-

hell following information is used in SLDP. 

DMAC → ff:ff:ff:ff:ff:ff

SMAC → Random MAC address 

EType → 0xabcd 

dpid → Source dpid 

port → Source port 

A reader may argue that how security and latency will be pro-

ided in SLDP with such a basic packet structure. For detail of se-

urity and latency, we will discuss these in the next section. 

.4. SLDP System architecture 

SLDP system architecture explains about basic function blocks,

hich are designated for dedicated work. In Fig. 6 , system archi-

ecture for SLDP is illustrated. Link discovery is a periodic activity,

n each cycle, few operations needs to be performed, i.e., random

AC address generation, flow entry installation, SLDP packet gen-

ration and transmission. Randomness generator block will provide

andom MAC address, which is used in SLDP packets and flow en-

ries. Randomness ensures all restrictions, which are applicable to

 MAC address. A flow entry installer module installs flow entries

n each OF-switches. Packet generator takes random source MAC

nd creates SLDP packet. Once flow entry is installed, the SLDP

acket with the same randomness is allowed to pass to the con-

roller. The packet sender node sends an SLDP packet to source

witch. The Unique selling proposition (USP) of this approach is

n eligible port identifier, which identifies eligibility for each iter-

tion. Initially, all ports are considered eligible, but after each it-

ration, the list is updated. In SLDP whenever a switch awakes, its

very port is added in the ePorts or eligible port list. Therefore, in

he next cycle the SLDP packets are generated for each eligible port

ncluding the latecomers of the previous cycle, and the rest of the

rocess for these latecomer ports remains the same. 

An OF-switch receives an SLDP packet with instructions to for-

ard it on a particular port. On the other end of the tunnel, when

 OF-switch receives the SLDP packet and it consults the flow en-

ry table. Due to flow entry installer, there will a flow entry, which

orwards the packet to the controller. The packet receiver receives
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Algorithm 3 Detect Poison and Replay attacks. 

Require: ePorts, ulink, linkSet, sldpPkt, sldpPktSet 

1: procedure PRDetect 

2: On each received sldpPkt 

3: if sldpPkt ∈ sldpPktSet then 

4: dpId, portId ← Extract ( sldpP kt) 

5: generateAlert (dpId, portId) 

6: end if 

7: 

8: On each teport seconds 

9: if rev (ulink) / ∈ linkSet then 

10: srcPort, dstPort ← Extract ( ulink ) 

11: portId ← Extract ( dst Port ) 

12: updateEports (ePorts, REMOVE, portId) 

13: end if 

14: end procedure 

Algorithm 4 Detect Flooding attacks. 

Require: ePorts, sldpPkt, maxPorts 

1: procedure floodDetect 

2: On each received sldpPkt 

3: dpId, portId ← Extract ( sldpP kt) 

4: if countFor (dpId, portId) > maxPorts then 

5: updateEports (ePorts, REMOVE, portId) 

6: end if 

7: end procedure 
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he packet and validates it for SLDP packet. SLDP packet comes in

rapped in PACKET_IN packet. The header contains destination in-

ormation for the link. Both source and destination information are

sed to form the link. Each packet is sent on a time stamp and re-

eives on another time stamp such information is used to calculate

atency in link latency calculator. If receiving packet alerts Poison,

eplay, and Flood detector, the eligible port list will be updated. 

Flow Entry Structure: In each SLDP packet cycle, a new flow

ntry with provided randomness is installed in each participating

witch. Here an example of that flow entry is shown. 

In the above example, source MAC address is randomly gener-

ted, while destination MAC address is set as a layer two broadcast

ddress. Ethernet type is fixed to 0xabcd and action is set to the

ontroller, i.e., matching packet will move to the controller. Each

ime a port is declared as non-eligible, SLDP removes it from eli-

ible port list. Algorithm 1 gives the abstract idea of maintaining

he eligible port list. The updateEports procedure requires three ar-

uments. One for eligible port list, i.e., ePorts , and other two for

he operation selected, i.e., opCode and portId for a targeted port

o addition or removal. Possible operations are addition (ADD) and

emoval (REMOVE). 

lgorithm 1 Update eligible port list. 

equire: ePorts, opCode, portId 

1: procedure updateEports 

2: if opCode = ADD then 

3: ePorts = ePorts + portId 

4: else if opCode = REMOVE then 

5: ePorts = ePorts - portId 

6: else 

7: return 

8: end if 

9: end procedure 

If a port is not receiving an SLDP packet for a long time or a

acket is not reached back to the controller which is designated

or a port, then the port is removed from the eligible port list.

lgorithm 2 illustrates that such ports are removed after tflow time

eriod. 

lgorithm 2 Calculate port eligibility. 

equire: ePorts, port 

1: procedure portEligible 

2: On each tflow seconds 

3: portId, portTstamp ← Extract ( port) 

4: if portTstamp + teport ≤ now then 

5: updateEports (ePorts, REMOVE, portId) 

6: else 

7: return 

8: end if 

9: end procedure 

To detect Poison and Replay attack, Algorithm 3 is used. First

art of the algorithm suggests the case where an attacker is sitting
n a non-OpenFlow switch and sends fake SLDP packet to switch.

ecause of packet broadcast destination address, this packet trav-

ls for two directions to the controller. At the controller, if a packet

i.e., sldpPkt ) is already available to SLDP packet set (i.e. sldpPktSet ),

hen an alarm is generated. In later part of the algorithm if a uni-

irectional link (i.e., ulink ) is not accompanying with the reverse

irection within the report time, then the destination for that link

s suspected, hence it will be removed from the eligible list (i.e.,

Ports ). 

Algorithm 4 is used to detect the flooding attack. If at any

witch port (i.e., portId), the number of SLDP packets are received

ore than the maximum number of ports on available switch (i.e.,

axPort), it generates suspicion. SLDP generates packet periodi-

ally, one for each port on each switch (not always), hence if any

ort receiving more than maxPort is eligible for removal. 

In SLDP, the following are the periodic tasks: flow entry instal-

ation, packet generation, sent, reception, and link discovery. The

acket generation is restricted with flow entry installation. Lets

uppose T f is a time interval for flow entry installation. After T f ,

 new set of flow entries are installed, thus new randomness is in-

erted in flow entries. Let l 1 , l 2 , l 3 .l n are the latencies or round-trip-

ime in delivering the SLDP packets back to the controller, i.e., the

ime between the SLDP packet generation by the controller and the

ame SLDP packet received by the controller. Here, l i is the latency

or i th link discovery in topology, therefore, T f > Max { l 1 , l 2 , l 3 .l n }
ill ensure that the SLDP packets are delivered back to controller

n time. If not, i.e., few SLDP packets not route back to controller

ue to latency in the network, then the controller falsely calculates

hat few links does not exist in the constructed global topology. If

 f is kept sufficiently large, then the SLDP will become more vul-

erable to described attacks. It is because the attacker gets more

ime to craft a packet with the desired randomness. Test case #1 in

ection III-E gives a probability analysis of being attacked while T f 
s five seconds. Advancing T f will increase the probability of being
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C0 generates link S1 to S2
C0 updates eligible port list S2 sends SLDP packet to S1 

S1 sends SLDP packet to S2 

C0 sends FLOW_MOD to S1

Controller C0 Switch S1 Switch S2

C0 starts serving 

S1 starts serving 

S2 starts serving 

C0 generates RSMAC

C0 sends PACKET_OUT(SLDP) to S1 ports 
S1 install SLDP flow entry

C0 sends FLOW_MOD to S2

S2 install SLDP flow entry

C0 sends PACKET_OUT(SLDP) to S2 ports

S2 sends PACKET_IN(SLDP) to C0

S1 sends PACKET_IN(SLDP) to C0

C0 generates link S2 to S1
C0 updates eligible port list

C0 sends FLOW_MOD to S1

C0 generates RSMAC

C0 sends PACKET_OUT(SLDP) to S1
eligible ports 

S1 install SLDP flow entry

C0 sends FLOW_MOD to S2

S2 install SLDP flow entry

C0 sends PACKET_OUT(SLDP) to S2 eligible ports

Fig. 7. Event sequence in SLDP. 
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attacked. Also, Fig. 18 suggests that the computational overhead for

link discovery in SLDP is almost constant, i.e., ≈ 1 second, irre-

spective of the examined topologies. We chooses the time interval

( T f ) to 5 seconds, which is based on the available literature [4,15] ,

different im plementations, and observations. Our observations in-

dicate that for any communication, the controller processes sym-

metric and asymmetric massages, which are very low as compared

to the entire packets. Therefore, there was not identified any sig-

nificant difference in the controller overhead with the varying time

interval. 

Event sequence in SLDP: Fig. 7 illustrates events sequence to

understand SLDP in more detail. Here, three vertical time lines

are shown for each participating entity, i.e., the controller C 0 and

two switches S 1 and S 2. Initially, the controller C 0 starts serv-

ing after the switch S 1 starts serving. C 0 updates the eligible port

list with information it received from S 1 i.e., ports. Later switch

S 2 starts and C 0 updates the eligible port list again. Hence, each

participating entity is ready to participate. C 0 generates random

source MAC address, which is used in flow entries and SLDP pack-

ets. C 0 sends flow entry in OpenFlow message FLOW_MOD to S 1

and S 2 with generated randomness. After both S 1 and S 2 receives

FLOW_MOD from C 0, both installs SLDP flow entry. Only after in-

stallation of flow entries, C 0 generates and sends SLDP packet in

n  
ACKET_OUT for the eligible port list for S 1 and S 2. S 1 receives

LDP frame in PACKET_OUT from C 0 and unwraps SLDP frame from

he received packet. S 1 sends SLDP frame to the designated port.

 2 receives SLDP frame and use installed SLDP flow entry to gen-

rate PACKET_IN. The controller C 0 receives PACKET_IN from S 2

nd extracts eventDpId and eventPort information from PACKET_IN

eader. The dpId and portId information is stored in SLDP packet.

 0 creates a link with source and destination information. Here

ource information is content of SLDP packet, i.e., dpId and por-

Id. Destination information is eventDpId and eventPort informa-

ion. Later C 0 updates the eligible port list and makes it ready for

ext iterations. The same process is repeated when S 2 sends SLDP

rame to S 1. Link discovery is a periodic process, i.e., entire process

s repeated after a fixed time interval. The highlighted area in the

vent sequence diagram shows the repetitively executed instruc-

ions. 

.5. Test case analysis 

In this section, we show the assurance of the correctness of

LDP with few test cases. SLDP promises to provide lightweight,

fficient, and secure link discovery protocol. SLDP works with less

umber of bits in a packet and less number of packets for dis-
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Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation
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Fig. 8. Attacker host starts work after switch 
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overy process. The protocol provides a probable security at three

ifferent levels, which are as follows. 

As the name suggests, best defense strategy is poison, replay,

nd flood prevention. A controller creates an environment in which

o such attack will happen. Second best line of defense is poi-

on, replay, flood detection and mitigation. While detection is per-

ormed, still the system resources, i.e., CPU and bandwidth are

asted. To fix further, attack mitigation helps. SLDP removes few

orts from the eligible port list to prevent further attacks. The last

ine of defense is flooding detection and mitigation. In some cases,

LDP can prevent all, while in others, SLDP detect and mitigate the

ttacks. We ensure and prove that at least SLDP detects flooding

nd mitigates for future incidents. 

Now we explain the SLDP working by using few test case sce-

arios. In each test case, a controller is attached with two or three

witches. Switch to host are attached as shown in Figs. 8 to 12 .

ome of the host are infected with the malicious application or

ontrolled with a person with malicious intention. A sidebar in

ach test case figures is showing the strength of the security de-

ense in that test case. 

Test case # 1 In this test case, an attacker host exists which

s attached to an OF-switch as shown it is shown in Fig. 8 . If the

alicious host starts serving after the switches, and try to perform

eplay, poison, and flooding attack. The SLDP prevents the network

rom all the stated attacks. In case of SLDP, no SLDP packet comes

o any of attached hosts, hence protects against the reply attack.

oison on another hand uses crafted packet, but SLDP working

uggests a packet can only moves to the controller if it has exact

andomness as flow entry does. If the host is unable to pass one

acket to the controller then performing the flooding is too hard. 

Attacker generated packets for replay or poisoning will only

each to the controller if the packets have the same randomness

s the flow entries. In each cycle, SLDP generates a new ran-

om number, which is used in both flow entry and link discov-

ry packets. For instance, random MAC address is denoted as a

et M = { m 1 , m 2 , m 3 . . . m n } , and the packet generated by an at-

acker is denoted by a set A = { a 1 , a 2 , a 3 . . . a x } . Then the desired

ondition for successful prevention is 
| A | 
| M| = 0 . Let’s examine the

hances that a fake packet have the same randomness. 

MAC address is 48 bits long, hence |M| = 2 48 ≈ 2.81 ∗10 14 . Size

f SLDP packet is 26 bytes. Total number of such packets on 10

Bps in one second is equal to (10 ∗10 9 )/26 ≈ 3.85 ∗10 8 . If the flow

ntry remains constant for five seconds, then in the same time pe-
iod the number of total packets are | A | ≈ 1.92 ∗10 9 . Now 

| A | 
| M| =

 . 0 0 0 0 0683214 ≈ 0 confirms that even in theory the full speed

ackets are generated, which makes the probability of a success-

ul attack nearly to zero. If one fake packet is hard to reach the

ontroller, then the flooding attack is hard to believe. 

Test case # 2 As shown in Fig. 9 , an attacker attached to an

F-switch starts working before the switch starts. In this case, be-

ause the SLDP chose the entire port list as an eligible port list

n the beginning, the malicious host will also receive the SLDP

acket. As the host has the packet or the randomness stored in

 packet, it can perform attacks. Even though attacker successfully

akes a unidirectional link, it will still be unable to make a re-

erse link. The attacker only sits on one end of the fake link; to

ake it in reverse direction, attacker’s control is required on other

ide of the fake link. The above information helps the SLDP to de-

ect such attacks. To mitigate attacks, the SLDP removes packet re-

eiving switch port from the eligible port list. 

Test case # 3 

The Fig. 10 shows two attacker hosts attached to different OF-

witches. Now both the switch receives SLDP packets, extracts the

andomness and craft the fake SLDP packets with the same ran-

omness. Both hosts can create the fake bidirectional link at the

ontroller (shown with dash lines). In this case, the detection of

eplay and poison is not possible, however the SLDP will be able

o detect and mitigate the flood attacks. 

Test case # 4 As shown in Fig. 11 , a non-OpenFlow switch sep-

rates a link between two OF-switches. An attacker or host can be

ttached to an OF-switch, but it will not receive any randomness

nformation to perform an attack. Hence, SLDP prevents poison, re-

lay, and flood attacks. 

Test case # 5 Fig. 12 represents an attacker host attached to a

on-OpenFlow enabled switch. The attacker always gets random-

ess information due to the broadcast destination MAC address.

f the attacker craft an SLDP with the spoofed randomness, the

LDP packet reaches via both S 1 and S 2 switches. Hence, SLDP

etects poison, replay and flood attacks. However, because a non-

penFlow enabled switch can not be controlled by the controller,

itigation is not possible. 

. Simulation results and discussions 

To prove any given proposal’s correctness, theoretical and prac-

ical analysis is necessary. In this section, we focus on the exper-

mental evidence for correctness of SLDP. Typologies and experi-

ental environment are discussed to justify the experiments. All

he experiments are performed on Mininet [19] network emula-

or. To perform experiments three different topologies are used as

hown in Figs. 13 , 14 and 15 . Table 4 is shows the relative statis-
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Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Fig. 9. Attacker host starts work before switch 

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Switch: S3

Fig. 10. Two attacker hosts starts work before switch 

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Switch: S3

Fig. 11. A non-OpenFlow switch separates link of two OpenFlow switches. 

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Switch: S3

Fig. 12. Attacker host starts work before switch. 
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Fig. 13. Topology 1: ‘tree,4,4’. 

S11

S21 S22
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H

Fig. 14. Topology 2: ‘tree,7,2’. 
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Fig. 15. Topology 3: ‘fat tree’ . 

Table 6 

Number of Switches,Links,Ports and Hosts. 

Topology Switch Link Port Host 

tree,4,4 85 340 424 256 

tree,7,2 127 254 380 128 

fat tree 80 384 705 64 

t  

t  

l  

4  

e  

b  

b  

M  

c

Table 7 

Experimental environment for SLDP. 

Resource Configuration 

Test-bed Mininet(emulation) 

Victim/Attacker OS UBUNTU 16.04 LTS (64 bit ) ∗

Victim configuration 4CPUs and 4 GB 

Attacker configuration 4CPUs and 4 GB 

Controller RYU 

Attack traffic 150,0 0 0 Packet/Sec 

Software switch OpenVSwitch(2.5.0) 

Network 1 Gbps 
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ics, i.e. number of switches, links, hosts and ports. We consider

he topologies that has 80, 85 and 127 switches, which is fairly

arge to justify our experiments. In the Table 6 , the links in section

 are between switch to switch and switch to host. In link discov-

ry process only switch to switch links are considered, which can

e obtained from the number of hosts subtracted from the num-

er of links in the table. ‘tree,4,4’ and ‘tree,7,2’ are topologies from

ininet environment. ‘fat tree’ is tree topologies to simulate a data

enter arrangement of switches. 
In Fig. 13 , five layers of switches are used. Except for root and

eaf switches, each switch is connected to five switches. For exam-

le, S35 − S39 represents four connected switches in layer three.

 4 and S 5 are switches in layer four and five respectively. Hosts

onnected to layer five switches are represented with symbol H . 

In Fig. 14 , switches are connected with three switches except

or root and leaf switches. The eight layers of switches(total 127

witches and 254 links) forms a tree topology. 

As in Fig. 15 , the fat tree topology is shown and alike topolo-

ies are used typically in a data center. Here the switches are ar-

anged in a three-layer arrangement, namely core, aggregate, and

dge. Core switches are connected to alternate aggregate switches

or redundancy. The aggregate switches are also connected to more

han one edge switches. In our experiments, we choose two hosts

er edge switch. 

Table 7 gives the details of an execution environment for valida-

ion of SLDP, which includes operating system and test-bed details.

he SLDP implementation is tested in the Mininet [19] . 

Generating results in own established environment is always

uestionable. In this article, author hooks ‘print’ statement over

everal desired code locations to generate the results. Even this

print’ statement is performing I/O causes CPU resources. The re-

ults can be viewed in relative term rather than absolute. For com-

arison, other implementations are considered which varies from

wo implementations of the same controller, i.e., RYU-OFDP, RYU-

LDP or various controllers, e.g., POX, RYU, and ONOS. RYU-OFDP is

FDP implementation in RYU, while RYU-SLDP is SLDP implemen-

ation in RYU controller. 

The controller selection in any experimental setup is dependent

n aspects such as programming language, documentation, and

ontroller updations. Most controllers are written in either JAVA or

ython. For instance, the POX and RYU controllers are written in

ython while OpenDayLight, Floodlight, ONOS, and HPE-VAN are

ritten in JAVA. Few controllers are developed for academic pur-

ose, i.e., POX, Floodlight, and RYU, while others are industry grade

ontrollers, i.e., OpenDayLight, ONOS, HPEVAN. For our experimen-

al setup we use RYU because it is being developed as open source

sing python and it is a well-documented controller. 

SLDP is a lightweight link discovery protocol. The number of

its required in SLDP is least among other implementation. As

ig. 16 shows, the SLDP requires 26 byte long Ethernet frame to

ccomplish link discovery along with efficiency and security. SLDP

emove some unnecessary fields and restructure the packet to re-

uce its size. SLDP uses position based data separation to save

ome additional space. In each link discovery, few discovery pack-

ts are generated and sent over OpenFlow channel to switch. The

raditional implementation of link discovery generates LLDP/BDDP

ackets for each port on each switch. Edge switches are connected

o host, which infers no need to generate packet reaching to end

ost. The SLDP approach also helps to prevent the controller fin-

erprinting. In SLDP, few non-eligible ports are identified and SLDP

acket is sent to each port except ineligibles. Fewer generation of

LDP packet also consumes lesser CPU and bandwidth resources.
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Fig. 16. Link discovery packet length among all controllers. 
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Fig. 17 gives the idea of number of discovery packet required with

or without the solution in different topologies. RYU-SLDP always

require lesser packet irrespective of topology. 

CPU resources are required for sending and parsing link discov-

ery packets. Fig. 18 shows resource consumption in RYU-OFDP and

RYU-SLDP with three topologies. It is clearly identified that SLDP is

doing so well because of its lightweight and an efficient number of

the packet. As shown in Table 4 , the number of ports in topology

tree,7,2 is lower than other topologies (i.e., tree,4,4 and fat tree). In

OFDP number of ports is equal to the number of LLDP packets for

any cycle. Hence, in the tree,7,2 topology, less number of packets

are being sent and parsed during the link discovery. The same is

reflected in Fig. 18 , which shows the lowest overhead for OFDP. 

Fig. 19 demonstrates, the time taken in link discovery packet

construction. As lighter packet takes lesser time to be constructed.

In this figure, there is a clear difference between RYU-SLDP and

RYU-OFDP. RYU-SLDP is taking lesser time to construct. 

Upon receiving any link discovery packet, it is verified and

parsed. Fig. 20 shows that RYU-SLDP is parsed in smaller time than

RYU-OFDP. SLDP use lighter and simple packet which is parsed on

a less complex algorithm. 

Most of the link discovery implementations in SDN are creat-

ing static LLDP or BDDP packets. Later these packets are sent pe-

riodically. This kind of propagation has a vulnerability that can be

exploited by adversaries [22] . SLDP uses a new packet for each it-
ration for a fixed port. Fig. 21 shows event sequence for discovery

acket construction and verification. RYU-OFDP create packet once

nd later use them, while RYU-SLDP generates and verifies SLDP

acket alternatively. 

Topology discovery time is a time taken by the controller to

uild entire topology. It is measured as the time taken from first

LDP or SLDP packet generation to complete topology discovery.

ig. 22 illustrates RYU-SLDP is performing much better then RYU-

FDP irrespective of the topology. The reason behind it is small

acket size and the efficient way of processing them. 

One of the key to success for SLDP is the calculation of eligible

orts. SLDP only sends SLDP packet to eligible ports. Initially, all

orts are eligible ports but later some ports are declared as non-

ligible. Fig. 23 demonstrates eligible ports over time for SLDP with

hree topologies. 

SLDP packets are generated and sent periodically, it also include

nstallation of flow entry, which allows SLDP packet to reach back

o the controller. In traditional implementation of link discovery,

 unique flow entry is installed once and it remains forever. It is

ecause link discovery packets are created once in OFDP, an thus

he strategy works. With the SLDP, it is not the case, and it is con-

idered as initial overhead for RYU-OFDP only. Fig. 24 shows the

nitial overhead, which is the sum of the initially generated LLDP

ackets and flow entry installation which is done once for RYU-

FDP implementations. However, in RYU-SLDP, the same is a pe-
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Fig. 21. Link discovery packet construction and verification sequence. 
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iodic task. Hence, the initial overburden is limited to RYU-OFDP

mplementations only. Additionally, Fig. 18 shows the overhead in

ink discovery for both RYU-OFDP and RYU-SLDP. RYU-OFDP have

nitial overhead apart from overhead to link discovery. 

SLDP demonstrate link detection ability with lighter weight

acket. Result demonstrates that the low number of discovery

ackets are generated, which results a lower time for SLDP packet

onstruction and verification. 

. Conclusion and future work 

Link discovery in SDN is crucial for topology-aware applica-

ions. In this paper, first we present the motivations i.e. security,

ightweight, and efficient, for the design of a new link discovery

rotocol in SDN. Poison, replay, and flooding attacks are the major

argeted threats. Our proposal i.e., SLDP, which provide a design

f discovery packets which are lightweight. Additionally, SLDP ar-

hitecture is discussed and event sequence is also described, SLDP
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uses token based prevention with the lightweight and lower num-

ber of packet to provide security during link discovery. Latency for

each link is also calculated using different time stamps. In Mininet

environment, proposed protocol is designed and analyzed for cor-

rectness and effectiveness. Resource penalty for overall computa-

tion is far less than the original implementation. Link discovery

packet construction and verification time are also low. We are also

planning to release the assumption of a bug-free switch and con-

troller. Distributed link discovery is challenging, and it can also be

investigated in future as well. 

Acknowledgement 

The work is partially supported by DEiTY Government of India

project, ISEA-II in the Department of Computer Science and Engi-

neering at Malaviya National Institute of Technology, Jaipur. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.comnet.2018.12.014 . 

References 

[1] D. Kreutz , et al. , Software-defined networking: a comprehensive survey, Proc.

IEEE 103 (1) (2015) 14–76 . 

[2] B.A .A . Nunes , et al. , A survey of software-defined networking: past, present,
and future of programmable networks, IEEE Commun. Surveys Tutorials 16 (3)

(2014) 1617–1634 . 
[3] L. Ochoa Aday , et al. , Current trends of topology discovery in openflow-based

software defined networks, Int. J. Distrib. Sens. Netw. 5 (2) (2015) 1–6 . 
[4] S. Khan , et al. , Topology discovery in software defined networks: threats,

taxonomy, and state-of-the-art, IEEE Commun. Surv. Tutorials 19 (1) (2017)

303–324 . 
[5] PoxURL: https://github.com/noxrepo/pox . 

[6] Ryu, URL: https://osrg.github.io/ryu/ . 
[7] Onos, URL: http://onosproject.org/ . 

[8] Opendaylight, URL: https://www.opendaylight.org/ . 
[9] Floodlight, URL: http://www.projectfloodlight.org 

[10] Hpevan, URL: https://marketplace.saas.hpe.com/sdn/content/sdn-controller- 

free-trial . 
[11] F. Pakzad , et al. , Efficient topology discovery in openflow-based software de-

fined networks, Comput. Commun. 77 (2016) 52–61 . 
[12] M. Dhawan , et al. , Sphinx: Detecting security attacks in software-defined net-

works., NDSS, The Internet Society, 2015 . 
[13] S. Hong , et al. , Poisoning network visibility in software-Defined networks: new

attacks and countermeasures, Proceedings 2015 Network and Distributed Sys-

tem Security Symposium (February) (2015) 8–11 . 
[14] T. Alharbi , M. Portmann , F. Pakzad , The (in)security of topology discovery in

software defined networks, in: 2015 IEEE 40th Conference on Local Computer
Networks (LCN), 2015, pp. 502–505 . 

[15] Z. Xin, Y. Lin, W. Guowei, Esld: an efficient and secure link discovery scheme
for software defined networking, Int. J. Commun. Syst. 31(10) e3552. 

[16] L. Ochoa-Aday , C. Cervello-Pastor , A. Fernandez-Fernandez , Discovering the
network topology: an efficient approach for SDN, ADCAIJ: Adv. Distrib. Com-

put. Artif. Intell. J. 5 (2) (2016) . 

[17] Y. Jimenez , C. Cervello-Pastor , A. Garcia , Dynamic resource discovery protocol
for software defined networks, IEEE Commun. Lett. 19 (5) (2015) 743–746 . 

[18] L. Ochoa-Aday , C. Cervello-Pastor , A. Fernandez-Fernandez , Self-healing topol-
ogy discovery protocol for software-defined networks, IEEE Commun. Lett. 22

(5) (2018) 1070–1073 . 
[19] B. Lantz , B. Heller , N. McKeown , A network in a laptop: Rapid prototyping for

software-defined networks, in: Proceedings of the 9th ACM SIGCOMM Work-

shop on Hot Topics in Networks, in: Hotnets-IX, ACM, New York, NY, USA,
2010, pp. 19:1–19:6 . 

[20] G. Tarnaras , E. Haleplidis , S. Denazis , SDN And forces based optimal network
topology discovery, Proceedings of the 2015 1st IEEE Conference on Network

Softwarization (NetSoft) (2015) 1–6 . 
[21] Link layer discovery protocol and mib, URL: http://www.ieee802.org/1/files/

public/docs2002/lldp-protocol-00.pdf . 

[22] A. Nehra , M. Tripathi , M.S. Gaur , ‘global view’ in sdn: Existing implementation,
vulnerabilities & threats, in: Proceedings of the 10th International Conference

on Security of Information and Networks, in: SIN ’17, ACM, New York, NY, USA,
2017, pp. 303–306 . 

[23] T.H. Nguyen , M. Yoo , Analysis of link discovery service attacks in SDN con-
troller, International Conference on Information Networking (2017) 259–261 . 
[24] Openflow switch specification, URL: https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/ 

openflow-specv1.3.0.pdf . 

Ajay Nehra is a Doctoral research scholar since January
2015 in the Department of Computer Science & Engineer-

ing at Malaviya National Institute of Technology Jaipur, In-

dia. He obtained his M. Tech. Degree in Computer Sci-
ence & Engineering from the Central University of Ra-

jasthan, India in 2012. He earned Bachelor in Engineering
in Computer Engineering from the University of Rajasthan

in 2008. He has been awarded scholarships for both mas-
ters and the doctoral degree from Ministry of Human Re-

source Development, Government of India. His current re-

search area includes Software defined networks, Informa-
tion security and Network security. 

Meenakshi Tripathi is an Associate Professor at Malaviya

National Institute of Technology (MNIT), Jaipur (India).

She obtained her Ph.D. from MNIT in 2015. Her research
areas are Wireless Sensor Networks (WSN), Software De-

fined Networks (SDN) & Internet of Things (IoT). She has
published more than 30 research papers in refereed Inter-

national & National Journals & proceedings of National &
International conferences. She has presented her research

ideas by participating in various conferences within India

& outside India like China, Canada, USA etc. She is work-
ing on various research projects funded by the Depart-

ment of Science and Technology, Ministry of Electronics
and Information Technology, India of worth around Rs. 50

akhs. She is the reviewer for several renowned journals such as International Jour-
al of Communication System (Wiley), Security and Communication Networks (Hin-

awi), Wireless Communications, etc. She has also been part of several International

onferences such as SPACE 2015, ICISS 2016, ICSP 2019 etc. She is an upright mem-
er of institute of Electrical & Electronics Engineers (IEEE) & Association of Comput-

ng Machinery (ACM). She is also the Chairman of Computer Society of India (Jaipur
hapter). 

Prof. Manoj Singh Gaur completed his Master’s degree

in ComputerScience and Engineering from IndianInstitute

of Science Bangalore, Indiaand Ph.D. from University of
South-ampton, UK. Prof. Gaur has been afaculty in De-

partment of Computer Science and Engineering, Malaviya
National Institute of Technology Jaipur, India and cur-

rently Director, IIT Jammu. His research areas include
Networks-on-Chip, Computer and network security, Mul-

timedia streaming in wireless networks. 

Ramesh Babu Battula received the B.Tech. degree in in-

formation technology from Acharya Nagarjuna University,
Guntur, India, the M.Tech. degree in computer science

and engineering from the Indian Institute of Technology
Guwahati, Guwahati, India, and the Ph.D. degree from the

Malaviya National Institute of Technology (MNIT), Jaipur,
India, with a focus on routing in next-generation net-

works, in 2016. He is currently an Assistant Professor with

the Department of Computer Science and Engineering,
MNIT. His current research interests include secure com-

munication, computer security, information security, per-
formance modeling, and next generation (xG) networks.

He is a member of ACM and has authored many scientific
apers in networks and security. 

Chhagan Lal is Postdoc fellow in Department of Mathe-
matics, University of Padua, Italy. He obtained his Bache-

lors in Computer Science and Engineering from MBM En-
gineering College, Jodhpur, India in 2006. He obtained his

Master’s degree in Information Technology with special-
ization in Wireless communication from Indian Institute

of Information Technology, Allahabad in 2009, and PhD

in Computer Science and Engineering from Malaviya Na-
tional Institute of Technology, Jaipur, India in 2014. He

has been awarded Canadian Commonwealth scholarship
in 2012 under Canadian Commonwealth Scholarship Pro-

gram to work in University of Saskatchewan in Saskatoon,
Saskatchewan, Canada. His current research areas include

lockchain Analysis, Security in Wireless networks, Software-defined networking,

nderwater acoustic networks, and context-based security solutions for Internet of
hings (IoT) networks. 

https://doi.org/10.13039/501100002183
https://doi.org/10.1016/j.comnet.2018.12.014
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0004
https://github.com/noxrepo/pox
https://osrg.github.io/ryu/
http://onosproject.org/
https://www.opendaylight.org/
http://www.projectfloodlight.org
https://marketplace.saas.hpe.com/sdn/content/sdn-controller-free-trial
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0013
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0013
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0013
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0013
http://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30791-6/sbref0015
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-specv1.3.0.pdf

	SLDP: A secure and lightweight link discovery protocol for software defined networking
	1 Introduction
	1.1 Motivation and contributions
	1.2 Organization

	2 Background and related work
	2.1 Existing implementations
	2.2 Related work
	2.3 Attack vector
	2.4 Manifestation of attacks

	3 The SLDP protocol
	3.1 SLDP Design motivations
	3.2 Desired characteristics
	3.3 SLDP Packet format
	3.4 SLDP System architecture
	3.5 Test case analysis

	4 Simulation results and discussions
	5 Conclusion and future work
	Acknowledgement
	Supplementary material
	References


