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a b s t r a c t 

By exploiting rich personal information, Internet of Things can provide users with various customized 

experience and services, improving entertainment, convenience and quality for users’ life. However, un- 

avoidably, these users suffer from serious risk of privacy leakage in the presence of untrusted service 

provider and malicious adversary. Game theory is treated as one of the most promising methodologies to 

investigate participants’ incentive, response, and behaviors and has been widely applied to design privacy 

preserving schemes. Nevertheless, the complex interactions among users, service provider, and adversary 

are not fully investigated in the existing work. What’s more, users’ social connection and interaction are 

ignored. In this paper, such complex interactions are modeled as a three-party game for the problem of 

private data trading in IoT with considering user’s social interaction in online social network. Particularly, 

data trading between service provider and adversary is formulated to be a Nash bargaining game, for 

which Nash bargaining solutions are analyzed via both theoretical analysis and numerical experiments. 

Our analysis can clearly illustrate data trading strategies between service provider and adversary and 

offer guidance for designing privacy protection scheme in IoT. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Internet of Things (IoT) has achieved rapid development and

promoted many emerging applications in recent years. With ubiq-

uitous IoT devices, about 2.5 quintillion bytes of data are produced

in every day [1] . According to estimation of Ahmed et al. [2] , there

will be 50 billion IoT devices in 2020. When people use IoT ser-

vices, a lot of sensitive and personal information is uploaded to

the service providers, such as personal profiles, sensors data of mo-

bile terminal, and photos [3] . However, usually, users are not aware

of how the service provider use their data and who could access

their data clearly. Untrusted service providers may sell user’s data

to third-party adversaries for extra profit without user’s permis-

sion. In 2018, Facebook admitted that an App related to Cambridge

Analytica to harvest personal data of up to 87 million Facebook

users without their consent [4] . And some OSNs, including twit-

ter, Myspace and LiveJournal, also share user’s personally identifi-

able information to third parties [5] . Moreover, the study of Enck

et al. [6] found that 15 out of 30 popular network services sent

user’s information to remote advertisement or analytics servers. In
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he presence of untrusted service providers and adversaries, IoT users

re suffering from severe risk of privacy leakage. 

As a new kind of IoT, social IoT (SIoT) has become popular [7,8] ,

here the owners of IoT devices are also connected via online so-

ial network (OSN). That is, SIoT can be treated as the integration

f IoT and OSN. In 2017, there are 2.46 billion social network users

round the world, and it is estimated that the number of users

ill increase to 3.02 billion in 2021 [9] . Since OSNs contain not

nly various private data but also user’s social connection, even a

mall amount of private data could be used to infer some sensitive

nformation; for example, Facebook Likes can be used to automati-

ally and accurately predict highly sensitive personal attributes, in-

luding personality traits, intelligence, happiness, use of addictive

ubstances, parental separation, age, and gender [10] . Moreover, by

ombining the information in OSN and other sources, adversary

ould acquire crucial personal data. Prior work [11] found that in-

ividual’s social security numbers could be predicted by the data

rom OSN and other open sources. In other words, privacy leakage

n IoT can expand its security hazards through online social networks .

Meanwhile, at the age of information, users are increasingly

oncerned about privacy leakage and likely to react to privacy leak-

ge once they realize it. Better understanding users’ response to pri-

acy leakage, their strategies against privacy leakage, and data selling

trategies between service provider and adversary can provide help-
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ul guidelines to design privacy protection mechanism in IoT . A num-

er of schemes have been proposed for private data trading based

n game theory. In most of the existing work, only two-party

ame models are studied [12–16] , which can not simultaneously

odel the complex interactions among users, service provider, and

dversary. In [17,18] , three-party models are formulated to study

ore complicated application scenarios. But, these proposed three-

arty models do not consider user’s social connection and inter-

ction, their impacts on user’s decision making. Since users are

trong connected rather than isolated, users’ response and behav-

ors would be affected by their social connection and interaction,

hich should be taken into account for improving user’s strategy

election. In addition, the potential threat from adversary’s attack

s ignored, and the data selling strategies between service provider

nd adversary are simply assumed. 

In this paper, we propose a three-party game framework with

ncorporating user’s social connection and interaction, to tackle the

ollowing challenges: 

• Model complex interactions among users, service provider, and

adversary in online social network for the problem of data trad-

ing with consideration of privacy leakage. 

• Analyze users’ response and behaviors when sensing privacy

leakage and their impacts on service provider. 

• Investigate data trading strategies between service provider and

adversary and their received profits. 

Our study starts from the proposed game model with taking

nto account the three parties’ different concerns: (1) Users de-

ide whether participate in the OSN or not based on their utility

hanges due to privacy leakage; (2) service provider operates on-

ine social network, collects personal data from users while think-

ng of whether and how to sell user’s data for extra profit; and

3) adversary selects a proper strategy to obtain user’s private

ata, i.e., purchasing data or attacking OSN server. Next, we utilize

gent-based model (ABM) to study the network evolution when

rivacy leakage occurs. Based on our game model, data trading be-

ween service provider and adversary is formulated as Nash bar-

aining problem. Finally, to investigate Nash bargaining solution,

igorous theoretical analysis and comprehensive numerical exper-

ments are well conducted. The major contributions of this paper

re addressed below. 

• To the best of our knowledge, this is the first work to study the

problem of private data trading by incorporating online social

network into a three-party game. 

• Network evolution is simulated via agent-based model; espe-

cially, ABM is used for studying data privacy at the first time. 

• Sufficient theoretical proofs and experiment results are pre-

sented to analyze Nash bargaining solution for data trading. 

The remainder of this paper is organized as follows:

ection 2 reviews the related literature. Section 3 introduces

reliminaries of our work. The proposed game model and formu-

ation are presented in Section 4 . Section 5 describes a simulation

or users’ response and behaviors based on ABM. In Section 6 , the

ethod of calculating Nash bargaining solution and the analysis of

ash bargaining results are proposed. Finally, Section 7 concludes

his paper. 

. Related work 

.1. Game theory for private data trading 

Game theory has been successfully applied to protect data pri-

acy from multiple perspectives. Most of the existing work focuses

n two-party game [12,13,15,19,20] , and only a few studies three-

arty game [17,18] . In this subsection, we mainly summarize the
ost related work in the field of three-party game for data privacy

rotection. 

Adl et al. [17] modeled data trading among data providers, a

ata collector, and a data user within a sequential game framework

nd used the method of backward induction to explore the game

quilibrium, in which the underlying assumption is that there is

nly single-round interaction between the data user and the data

ollector. Wang et al. [18] formulated the decision-making process

f the three parties, including mobile phone users, context-aware

pplication, and malicious adversary. They respectively used exten-

ive form game and repeated game to analyze two typical sce-

arios, i.e., single-round interaction and multi-round interactions

mong three parties. 

However, in the above game models, social connection among

articipants (e.g., data providers and mobile phone users) and its

mpacts are not considered. As a matter of fact, individuals’ deci-

ion making is also affected by their social connection with others,

uch their friends. In this paper, user’s social connection in the OSN

s taken into account for a more practical game model. Besides, the

bove models do not consider adversary could perform attack for

rivate data. Indeed, individuals’ privacy may be leaked via data

esale from the service provider and/or attack launched by the ad-

ersary. That is, individuals face joint threat from the service provider

nd the adversary, which is studied in this paper. 

.2. Online social network for individual interaction 

Individuals could share their information through online so-

ial network (OSN), which in return, affects each other’s decision

nd behavior. To better understand individuals’ interaction and its

mpacts, agent-based model has been applied to investigate on-

ine social network from different aspects. In [21,22] , calculation

odels were proposed to study knowledge sharing behaviors in e-

ommerce based ABM. Madey et al. [23] used agent-based model

o understand the topology and evolution of SourceForge which

s a collaborative social network composed of open source soft-

are developers. Walter et al. [24] studied how individuals use

heir trust relationships to filter the information in online social

etwork. The major superiority of ABM over other modeling tech-

iques can be summarized as follows: (i) Many analytic models

sually need strong assumptions to be adapted to mathematical

ools, but ABM does not need such assumptions. (ii) ABM simulate

eal-world systems in a natural way so that individuals’ behaviors

ould be more clearly defined. 

In this paper, we apply ABM to analyze individuals’ OSN adop-

ion strategies, individuals’ response to privacy leakage in OSN and its

nfluence on data trading. 

. Preliminary 

.1. System model 

As illustrated in Fig. 1 , the data trade system consists of users,

 service provider, and an adversary. The users interact with each

ther via an OSN. With respect to any user, more friends and/or

ore involved users in OSN indicate that it becomes more easily

or this user to connect with friends, expand her connections, and

nd enjoyment through interactions within OSN, which brings a

igher utility to this user. To receive the requested services, the

sers connected by the OSN send their IoT data to the service

rovider continually. However, the service provider is not always

rustworthy and may sell the user’s data to the adversary without

he users’ permission for extra profits, which has been confirmed

y prior research [4–6] . More specifically, when selling the user’s

ata, the service provider has the following considerations. On one

and, if she sells too much private data, the users may realize their
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Table 1 

Notation summary. 

Symbol Definiton 

N bef Number of all users in OSN before privacy leakage 

N aft Number of all users in OSN after privacy leakage 

ε Accuracy degree of traded data 

ω Value of one user’s data record to adversary 

b Payment of traded data 

c Cost of attacking OSN server 

d att Adversary’s attack decision variable 

v Value of one user’s data to service provider 

N i Number of i -th user’s friends 

N Number of users in OSN 

U add Additional utility of using OSN 

N start Number of users realizing privacy leakage by themselves 

r i Privacy preference of i -th user 

k User’s sensitivity to privacy leakage 

d i Variable of i -th user to indicate realize privacy leakage or not 

P i ( t ) Probability of i -th user to realize privacy leakage at time t 

l i ( t ) Number of i -th user’s friends who knows privacy leakage at time t − 1 

Fig. 1. An example of data trade system. 
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privacy is leaked and then are likely to leave the OSN, which is in-

dicated by the black user in Fig. 1 . A user’s departure brings utility

reduction to her friends, implying that more users may leave the

OSN one after another and that the service provider eventually suf-

fers benefit loss because of such user churn. On the other hand, if

the service provider sells little private data, the payment received

from the adversary would be very limited. So the service provider

needs to strategically determine the amount of private data sold to

the adversary for profit maximization. Meanwhile, to balance the

tradeoff between the profit from the purchased private data and

the payment paid to the service provider, the adversary bargains

with the server provider for the accuracy and the price of data. If

such data trading benefits both sides, they make a deal; otherwise,

according to the attack cost and the data value, the adversary de-

cides to attack the server or not. 

For a better presentation, a summary of the notations is shown

in Table 1 . In this paper, ε ∈ [0, 1] is used to denote the accuracy

of data sold from the service provider. Particularly, (i) if ε = 0 , no

user’s private data is sold; (ii) if ε = 1 , all users’ private data is

sold; and (iii) a larger ε means more user’s privacy is leaked from

the service provider. Notice that the methods of determining data

accuracy and the adoption of privacy protection techniques at the

service provider side are out of the scope of this paper. 

3.2. Nash bargaining solution 

A bargain problem is the situation where (1) participators have
conflicts of interest to come to an agreement, (2) they possibly
conclude an agreement which benefits both sides, and (3) no par-
ticipator can be compelled to reach an agreement [25] . In the one-
by-one bargaining problem, we assume that each player i has his
own preference, represented by a utility function u i over X ∪ D , in
which X is the set of all the possible outcomes of bargaining and
D is the set of disagreement outcomes. Then the possible pairs of
tility function are as follows: 

 = { (v 1 , v 2 ) | v 1 = u 1 (x ) , v 2 = u 2 (x ) and x ∈ X} and d = (u 1 (D ) , u 2 (D )) .

A pair ( U, d ) is called a bargaining solution , where U ⊂ R 2 and

 ∈ U . According to Nash Jr [26] , if a bargaining outcome simulta-

eously satisfies four properties, including Pareto efficiency, sym-

etry, invariance to affine transformations, and independence of

rrelevant alternatives, such outcome is called Nash bargaining so-

ution that is unique and formally defined in Definition 1 . 

efinition 1. A pair of payoffs ( v 1 , v 2 ) is a Nash bargaining solu-

ion if it solves the following optimization problem: 

max 
(v 1 , v 2 ) 

(v 1 − d 1 )(v 2 − d 2 ) , 

s.t. (v 1 , v 2 ) ∈ U, 

(v 1 , v 2 ) > (d 1 , d 2 ) . (1)

. Game model and formulation 

In this section, the complex interactions among the users, the

ervice provider, and the adversary are formulated as a three-party

ame. 

.1. User model 

It is shown that an individual intends to use an OSN once it

ontains a significant number of participators [27] . If such a num-

er is too small or too large, the impact of one user’s participation

nd departure on the other remaining participators’ utilities is very

imited and even can be ignored. Accordingly, each user’s benefit

oming from the number of users in the OSN can be estimated via

he following Sigmoid function. 

f 1 (N) = (1 + e −α1 (N−β1 ) ) −1 , (2)

here α1 determines the steepness of the function and β1 is the

-coordinate of the symmetric point of the function. 

The number of a user’s friends in an OSN is another impor-

ant factor affecting people’s decision to adopt the OSN, because

he main purpose of most people to join an OSN is communicating

ith friends easily [28] . For each user, the benefit brought by the

umber of her friends has a marginal decreasing effect; that is, as

he number of her friends in the OSN increases, the benefit of a

ew friend’s participation decreases. Formally, each user i ’s benefit

rom her friends in the OSN can be computed as follows: 

f 2 (N i ) = 

2 

1 + e −α2 N i 
− 1 , (3)
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n which α2 represents the steepness of the function. 

In addition, people’s desire of using an OSN is also influenced

y additional services from the OSN [29] . Many OSNs provide ad-

itional services that are not related to the social function, such as

uerying stock price service and news feeds. However, OSNs also

onsume user’s resources; for instance, APPs cost electric energy

nd storage space of mobile phones. Suppose that in OSNs, each

ser can obtain a utility, denoted by U add , consisting of the bene-

t generated from additional services and the cost of using these

dditional services. 

With respect to privacy leakage from the OSN, the users can be

lassified into two types: (1) The users who know their privacy is

eaked; and (2) the users who don’t know that. Formally, a binary

ariable d i is used to imply the type of a user. More specifically,

f i -th user realizes her privacy leakage, d i = 1 ; otherwise, d i = 0 .

ince the preference for preserving data privacy varies in person,

e denote r i ∈ [0, 1] as privacy preference degree of i -th user to

ndicate the weight of privacy in i -th user’s utility function, which

ill be investigated in the next section. In conclusion, i -th user’s

tility function is formulated as: 

 i (N, N i , ε) = θ1 f 1 (N) + θ2 f 2 (N i ) + U add − θ3 d i r i ε, (4)

here θ1 , θ2 and θ3 are the weight parameters. If U i ( N, N i , ε) ≥ 0,

 -th user continues to stay in the OSN; otherwise, she leaves the

SN. 

.2. Service provider model 

A service provider is an entity who provides OSN service to

sers while collecting users’ personal data. In reality, a service

rovider is not always trusted and may sell users’ data to a third

arty (i.e., the adversary) for extra profits. The service provider’s

rofit includes the benefit from operating the OSN and the in-

ome from selling private data. The income of data sales can be

ncreased if (i) the number of users in the OSN is larger; and/or

ii) the accuracy degree of traded data is higher. However, as the

ccuracy degree of traded data increases, the number of users in

he OSN may be reduced, because it becomes more easily for more

sers to learn privacy leakage. Thus, to maximize the received util-

ty, the service provider should balance the trade-off between the

ncome of data sales and the benefit loss of user churn. As afore-

entioned, the adversary may either purchase user’s data from the

ervice provider or launch attacks to retrieve user’s data. Corre-

pondingly, the service provider faces two possible scenarios. 

Scenario 1: Adversary purchases data. Let v denote the aver-

ge value of users to the service provider and N aft ( ε) be the num-

er of users in the OSN after the service provider sells their data

ith an accuracy degree ε. In this scenario, the service provider’s

enefit from users is vN aft ( ɛ ) and the income from data trading is

 . Accordingly, her utility can be computed as 

 s 1 (b, ε) = v N a f t (ε) + b. (5)

Scenario 2: Adversary launches attack. Suppose that the ad-

ersary can obtain all the accurate data when launching attack to-

ards the OSN, which indicates the privacy leakage in the worst

ase. In this scenario, the number of users in the OSN after privacy

eakage is N aft (1), and the service provider’s utility is calculated as

ollows. 

 s 2 (b, ε) = v N a f t (1) . (6)

By combining the above two scenarios, the service provider’s

xpected utility is obtained from Eq. (7) . 

 s (d att , b, ε) = (1 − d att )(b + v N a f t (ε)) + d att v N a f t (1) , (7)

n which d att ∈ {0, 1} represents the adversary’s decision variable. If

he adversary decides to attack the OSN, d att = 1 ; otherwise, d att =
 . 
.3. Adversary model 

An adversary is an entity interested in obtaining personal infor-

ation for his purposes, such as analyzing people’s behavior pat-

ern and pushing individual advertisement. The adversary can ob-

ain the OSN user’s data by either purchasing it from the service

rovider or attacking the OSN. When trading data with the ser-

ice provider, the adversary would like to get accurate data with

ess money. But, a higher data accuracy degree usually means a

arger payment. Therefore, to receive the maximum utility, the ad-

ersary tries to bargain with the service provider regarding data

ccuracy degree as well as the data price. Meanwhile, the adver-

ary possesses capability attack the OSN server for all the accurate

ata. If the attack cost is smaller than the data value, the adversary

ould launch attacks once the bargaining breaks down; otherwise,

he adversary does not perform any attack. According to the adver-

ary’s strategies, there are two scenarios. 

Scenario 1: Adversary purchases data. The adversary pur-

hases user’ data from the service provider. In this paper, we as-

ume that the service provider just need to consider whether sell

ll users’ data or not, and the service provider’s decision on the

mount of data for sales will be studied in our future work. Let

 denote the monetary value of each accurate data record to the

dversary, and the total value of accurate data is ωN bef . Moreover,

ith considering the accuracy degree, ε, of data sold from the ser-

ice provider, the data value is expressed to be ωεN bef . Thus, the

dversary’s received utility is computed as 

 a 1 (b, ε) = ωεN be f − b, (8)

here b is the data price paid from the adversary to the service

rovider. 

Scenario 2: Adversary launches attack. The adversary attacks

he OSN server for users’ data. Because the adversary can get all

he fully accurate data, her profit is ωN bef and can obtain the fol-

owing utility. 

 a 2 (b, ε) = ωN be f − c, (9)

n which c represents the attack cost. 

To sum up, the adversary’s expected utility is 

 a (d att , b, ε) = d att (ωN be f − c) + (1 − d att )(ωεN be f − b) . (10)

. User’s response to privacy leakage 

Based on the above game model, in this section, we generate an

gent-based Model to simulate the network evolution with con-

idering privacy leakage. Agent-based model could help us to un-

erstand complex and dynamics systems [30] as it describes the

utonomy and interaction of systems and brings micro-level re-

ults to macro-level conclusions. Then, we deeply investigate the

mpacts of network parameters on the number of users in the OSN.

.1. Information diffusion model 

When the adversary attacks the users using their personal in-

ormation, the users may be able to aware of privacy leakage based

n the attack activities [31] . For example, if a user frequently re-

eives advertisements closely related to her private information in

he OSN, she may believe that her personal data is leaked from the

SN. Let N start be the number of users who initially realize privacy

eakage by themselves, and the value of N start can be determined

s follows. 

 start (ε) = 

⌊ 

e kε − 1 

e ψ 

N be f 

⌋ 

, (11)

here k is user’s sensitivity degree about privacy leakage, i.e. how

ensitive a user could be aware of privacy leakage. And e ψ is used



94 K. Li, L. Tian and W. Li et al. / Computer Networks 150 (2019) 90–101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

e  

O

 

f  

t  

B  

b  

T  

t  

W  

G  

N

 

a  

s  

t  

s  

N  

p  

l  

t  

t  

o  

u  

s

 

c  

s  

l  

t

6

 

t  

o

6

 

i  

w  

S  

t  

n  

i  

t  

t  

t  

t  

t

 

t  

p

m  

s  

U  

0  

0  
to normalized the value of e kε −1 

e ψ 
into the range [0, 1]. Moreover,

e kε −1 

e ψ 
represents the probability that a user learns privacy leak-

age by herself with data accuracy degree ε, and this probabil-

ity grows at an exponential rate with the increase of data accu-

racy degree.Then, the information about privacy leakage diffuses

from these initial N start users along the connections within the

OSN based on the weighted cascade model [32] . The information

spreads and the network structure correspondingly changes once

in every unit time slot. 

In the OSN, if i -th user does not know privacy leakage and her

friend, j -th user, knows this in round t − 1 , the probability that i -

th user begins to learn privacy leakage through j -th user in round

t is 1/ N i where N i is the number of i -th user’s friends. In the

weighted cascade model, the probability that different users per-

suade a common friend is independent, and a user only attempts

to persuade her friends in the next round after knowing privacy

leakage. So, the probability that i -th user starts to realize privacy

leakage in the round t is 

P i (t) = 1 −
(

1 − 1 

N i 

)l i (t) 

. (12)

5.2. Simulation setting 

As social network is a type of scale-free network [33] , Barabsi–

Albert (BA) model can be adopted to generate a scale-free network

for our simulations. When using the BA model to generate a scale-

free network containing N = 30 0 0 users, we first randomly connect

M 0 = 10 initial nodes and then add the remaining N − M 0 nodes to

network one by one; especially, the probability of each new node

connecting to the nodes existing in the network is proportional to

the degree of the existing nodes. 

In this paper, we investigate three typical kinds of distribution

of r i . (1) The first one is Beta distribution with shape parameters

(0.149, 0.109), which is considered the closest to the actual survey

results with respect to user’s privacy preference [34] . (2) The sec-

ond one is Gaussian distribution with mean value being 0.5 and

standard deviation being 0.1938. Because r i is in [0, 1], the gen-

erated r i will be discard if r i �∈ [0, 1]. (3) The last one is uniform

distribution over the interval [0, 1]. 

In the simulation experiments, the network parameters are

set as follows. According to the behavioral research [35] , we set

θ1 = 0 . 122 and θ2 = 0 . 5036 . The remaining setting is: θ3 = 1 , α1 =
0 . 0 03 , β1 = 150 0 , α2 = 0 . 6 , λ = 0 . 2 , ψ = 8 , and U add = −0 . 12 

At the beginning of the simulation, all the users are in the OSN.

Then, as time goes by, each user has an opportunity to make deci-

sion (i.e., stay or leave) in each time slot. Thus, each user’s utility

changes correspondingly in each time slot and will leave the OSN

when her received utility is less than 0. 

5.3. Simulation results 

In each scenario, to mitigate the impact of random parameters,

N aft is the average of 100 experiment results. 

Impact of accuracy degree of traded data. To examine the im-

pact of data accuracy on N aft , ε is increased from 0 to 1 with an in-

terval of 0.05, and the remaining parameters are fixed. From Fig. 2 ,

as ε increases from 0 to 1, N aft is gradually reduced from N bef to a

constant value. In particular, when ε is small enough, almost no

user realizes privacy leakage, and thus all the users stay in the

OSN; but, if ε is big enough, almost all the users are able to aware

of privacy leakage and then leave the OSN, which is indicated via

Fig. 2 (b) and (c). 

Impact of user’s sensitivity. The mean values of N aft under dif-

ferent scenarios are presented in Fig. 2 . The results of Fig. 2 in-

dicate that more users decide to leave the OSN when k becomes
igger. This is because with a higher sensitivity degree, it is much

asier for the users to sense privacy leakage and then leave the

SN. 

Impact of distribution of r i . Fig. 2 also shows the impact of dif-

erent distributions of r i . In Fig. 2 (a) where r i follows Beta distribu-

ion, N aft is finally decreased to about 500. When r i is drawn from

eta distribution with shape parameters (0.149, 0.109), the proba-

ility of r i close to 0 or 1 is big and that of r i around 0.5 is small.

his means a lot of users do not care about their data privacy, so

hese user still stay in the OSN even if they realize privacy leakage.

hile, in Fig. 2 (b) and (c) where r i is respectively generated from

aussian distribution and uniform distribution, the mean values of

 aft are reduced to 0, i.e., all the users leave the OSN. 

In this paper, we assume N start users who realize privacy leak-

ge by themselves are the information dissemination sources and

et the values of N start randomly in each round. Under Beta dis-

ribution with shape parameters (0.149, 0.109), most of user’s sen-

itivity degrees are around 0 or 1. Regardless of the selection of

 start , the users whose r i is close to 0 stay in the OSN with a high

robability, but the users whose r i is close to 1 are highly likely to

eave the OSN. While under Gaussian distribution and uniform dis-

ribution, most of user’s sensitivity degrees, r i , are around 0.5, so

he user’s departure is severely affected by the selection of N start . In

ther words, Gaussian distribution and uniform distribution make

ser’s departure decision more random than Beta distribution, re-

ulting in a large standard deviation in N aft as shown in Fig. 3 . 

Impact of weight of privacy leakage cost. In this scenario, to

heck the influence of θ3 , the value of k is fixed at 6, and the re-

ults are presented in Fig. 4 . With a larger θ3 , the cost of privacy

eakage is higher, the corresponding user utility is lower, and thus

he users are more likely to leave the OSN. 

. Game analysis based on Nash bargaining 

In this section, we investigate the bargaining interaction be-

ween the service provider and the adversary and their bargaining

utcomes. 

.1. Theoretical analysis of Nash bargaining problem 

Recall that the Nash bargaining result can be obtained by solv-

ng the optimization problem Eq. (1) . Specifically, the adversary

ould take action according to the following two scenarios. (1)

cenario A: High attack cost. The adversary’s attack cost is more

han the value of all the accurate data, i.e., c ≥ωN bef . In this sce-

ario, the adversary will not attack the OSN server if the bargain-

ng fails. (2) Scenario B: Low attack cost. The attack cost is less

han the value of all the accurate data; that is, c < ωN bef . Therefore,

he adversary will attack the OSN server if the bargaining fails. In

his subsection, the Nash bargaining problem of data trading be-

ween the service provider and the adversary are solved according

o the above two scenarios. 

Scenario A : The adversary will not attack the OSN server af-

er the bargaining breaks down. Consequently, the Nash bargaining

roblem can be formulated via Eq. (13a) . 

ax 
(b,ε) 

(U a (0 , b, ε) − U a (0 , 0 , 0))(U s (0 , b, ε) − U s (0 , 0 , 0)) , (13a)

.t U a (0 , b, ε) ≥ U a (0 , 0 , 0) , (13b)

 s (0 , b, ε) ≥ U s (0 , 0 , 0) , (13c)

 ≤ b ≤ c, (13d)

 ≤ ε ≤ 1 . (13e)



K. Li, L. Tian and W. Li et al. / Computer Networks 150 (2019) 90–101 95 

Fig. 2. Relationship between ε and mean value of N aft with different k . 

Fig. 3. Standard deviation of N aft with different k . 

Fig. 4. Relationship between ε and mean value of N aft with different θ3 . 
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By respectively substituting Eqs. (10) and (7) for U a and U s , Eq.

13a) can be equivalently rewritten as 

ax 
(b,ε) 

(ωεN be f − b)(b + v (N a f t (ε) − N be f )) , (14a) 

.t ωεN be f − b ≥ 0 , (14b) 

 + v (N a f t (ε) − N be f ) ≥ 0 , (14c) 

 ≤ b ≤ c, (14d) 

 ≤ ε ≤ 1 . (14e) 

In this scenario, because c ≥ωN bef and 0 ≤ ε ≤ 1, we have

 ≥ωεN bef . Therefore, b ≤ c if b satisfies Eq. (14b) . In addition,

 bef ≥ N aft ( ε), thus v (N be f − N a f t (ε)) ≥ 0 ; that is, b ≥ 0 if b satisfies

q. (14c) . As a result, we can further simplified the optimization

roblem Eq. (14) as Eq. (15b) by removing constraint Eq. (14d) . 

ax 
(b,ε) 

f (b, ε) = (ωεN be f − b)(b + v (N a f t (ε) − N be f )) , (15a) 
.t. ωεN be f − b ≥ 0 , (15b) 

 + v (N a f t (ε) − N be f ) ≥ 0 , (15c) 

 ≤ ε ≤ 1 . (15d) 

heorem 1. If v > 0, ω > 0, c ≥ωN bef , N aft ( ε) is a non-increasing

unction and its maximum value is N bef in [0, 1], we can ob-

ain ε∗ by solving optimization problem Eq. (16b) and compute b ∗ =
1 
2 (ωε ∗N be f + v (N be f − N a f t (ε 

∗))) for Eq. (15b) , where ( b ∗, ε∗) repre-

ents an optimal solution to Eq. (15b) . 

ax 
ε 

1 

4 

(ωεN be f − v (N be f − N a f t (ε))) 2 , (16a) 

 a f t (ε) ≥ N be f −
ωεN be f 

v 
, (16b) 

 ≤ ε ≤ 1 . (16c) 
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Fig. 5. Feasible region of ε∗ in Nash bargaining problem. 
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Proof. According to Eq. (15c) and (15d) , ε in any feasible solution

of Eq. (16b) must satisfy ωεN be f ≥ v (N be f − N a f t (ε)) , i.e., 

N a f t (ε) ≥ N be f −
ωεN be f 

v 
. (17)

Let us consider a constant ε0 . Then, the quadratic function

f ( b , ε0 ) in Eq. (15b) can be maximized if Eq. (18) holds. 

b = 

1 

2 

(ωε 0 N be f + v (N be f − N a f t (ε 0 )) . (18)

Obviously, b in Eq. (18) satisfies the constraints of Eq. (15b) . Via

substituting Eq. (18) for b in f ( b , ε0 ) ,we obtain 

f (ε 0 ) = 

1 

4 

(ωε 0 N be f − v (N be f − N a f t (ε 0 ))) 
2 . (19)

Since f (ε 0 ) = max 
b 

f (b, ε 0 ) , for a general case, we have

max 
ε 

f (ε) = max 
ε 

max 
b 

f (b, ε) = max 
(b,ε) 

f (b, ε) . That is, max 
ε 

f (ε) and

max 
(b,ε) 

f (b, ε) can achieve the same maximum value with same ε∗ if

the constraints of the two objective functions are equivalent. More-

over, by combining Eqs. (15b) , (17) and (16b) is obtained, and the

constraints of Eqs. (15b) and those of (16b) are equivalent. 

Therefore, Eqs. (15a) and (16a) have the same maximum value

at ( b ∗, ε∗) with b ∗ = 

1 
2 (ωε ∗N be f + v (N be f − N a f t (ε 

∗))) . �

With Theorem 1 , we can obtain a Nash bargaining solution ( b ∗,

ε∗) in an efficient manner. Furthermore, from Eq. (16c) , we have

ωεN be f − v (N be f − N a f t (ε)) > 0 and thus get Eq. (20a) for compu-

tation simplicity. 

max 
ε 

ωεN be f − v (N be f − N a f t (ε)) , (20a)

N a f t (ε) ≥ N be f −
ωεN be f 

v 
, (20b)

0 ≤ ε ≤ 1 . (20c)

The expressions of N aft ( ε) might be various in different sce-

narios, such as first order piecewise functions and second order

piecewise functions. Thus, to compute ε∗ effectively, we propose

a method to solve Eq. (20a) in the following. By setting ωεN be f −
v (N be f − N a f t (ε)) = A, we can calculate the explicit expression of

N aft ( ε) from Eq. (20a) , i.e., 

N a f t (ε) = −ωεN be f 

v 
+ 

A + ωN be f 

v 
. (21)

Next, Fig. 5 (a) is used to illustrate our method, where the

black solid curve represents the function N aft ( ε) and the slope-

intercept form of line l 1 is y 1 = −ωN be f 

v x 1 + N be f . The solution of

Eq. (20a) can be identified based on the intersection point(s) of
 aft ( ε) and l 1 . According to Eq. (20c) and (20b) , for any feasible

olution ε, its x-coordinate is within [0, 1] and the corresponding

alue of N aft ( ε) is above line l 1 . As shown in Fig. 5 (a), the feasi-

le regions of ε are marked on x-axis. To find an optimal solution
∗, we parallel move line l 1 up along y-axis until the y-intercept

f l 1 is maximum while keeping the set of intersection points of

 aft ( ε) and l 1 non-empty. When such movement stops (see line l 2 
n Fig. 5 (a)), the x-coordinate of each intersection point of N aft ( ε)

nd l 1 is an optimal solution to Eq. (16b) . 

Scenario B : The adversary chooses to attack the OSN server if

he bargaining breaks down, in which the corresponding Nash bar-

aining problem is formally expressed in Eq. (22a) . 

ax 
(b,ε) 

(U a (0 , b, ε) − U a (1 , b, ε))(U s (0 , b, ε) − U s (1 , b, ε)) , (22a)

.t. U a (0 , b, ε) − U a (1 , b, ε) ≥ 0 , (22b)

 s (0 , b, ε) − U s (1 , b, ε) ≥ 0 , (22c)

 ≤ b ≤ c, (22d)

 ≤ ε ≤ 1 . (22e)

Then, Eq. (22a) can be rewritten to be Eq. (23a) by replacing

qs. (10) and (7) with U a and U s , respectively. 

ax 
(b,ε) 

((ε − 1) ωN be f − b + c)(b + v (N a f t (ε) − N a f t (1))) , (23a)

.t. (ε − 1) ωN be f − b + c ≥ 0 , (23b)

 + v (N a f t (ε) − N a f t (1)) ≥ 0 , (23c)

 ≤ b ≤ c, (23d)

 ≤ ε ≤ 1 . (23e)

As 0 ≤ ε ≤ 1, we obtain c + (ε − 1) ωN be f ≤ c. In addition, N aft ( ε)

s a non-increasing function and 0 ≤ ε ≤ 1, so we have v (N a f t (1) −
 a f t (ε)) ≤ 0 , and Eq. (23a) can be equivalently simplified as 

ax 
(b,ε) 

h (b, ε) = ((ε − 1) ωN be f − b + c)(b + v (N a f t (ε) − N a f t (1)))

(24a)

.t. 0 ≤ b ≤ c + (ε − 1) ωN be f , (24b)
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Fig. 6. Fitting results of N aft ( ε). 
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 ≤ ε ≤ 1 . (24c) 

heorem 2. If v > 0, ω > 0, 0 < c ≤ωN bef , N aft ( ε) is a non-increasing

unction and its maximum value is N bef in [0, 1], we can obtain ε∗

y solving optimization problem Eq. (25a) and calculate b ∗ = 

1 
2 ((ε 

∗ −
) N be f ω + c + v (N a f t (1) − N a f t (ε 

∗)) for Eq. (24a) , in which ( b ∗, ε∗) is

n optimal solution to Eq. (24a) . 

ax 
ε 

1 

4 

((ε − 1) ωN be f + c − v (N a f t (1) − N a f t (ε))) 2 , (25a) 

.t. N a f t (ε) ≥ N a f t (1) − c + (ε − 1) ωN be f 

v 
, (25b) 

 a f t (ε) ≤ N a f t (1) + 

c + (ε − 1) ωN be f 

v 
, (25c) 

 − c 

ωN be f 

≤ ε ≤ 1 . (25d) 

roof. From Eq. (24b) , ε in any feasible solution of Eq. (24a) must

eet 

 ≥ 1 − c 

ωN be f 

. (26) 

Then, by fixing ε at a constant value ε 0 , h ( b , ε 0 ) becomes a

uadratic function of b . According to constraint Eq. (24b) , we ob-

ain the values of b to maximize h ( b , ε0 ), which is computed in

q. (27) . 

 = 

⎧ ⎨ 

⎩ 

ˆ b , if ˆ b ∈ [0 , c + (ε 0 − 1) ωN be f ] ;
c + (ε 0 − 1) ωN be f , if ˆ b > c + (ε 0 − 1) ωN be f ;
0 , if ˆ b < 0 ;

(27) 

here ˆ b = 

1 
2 ((ε 0 − 1) ωN be f + c + v (N a f t (1) − N a f t (ε 0 ))) . 

Notice that when b = 0 and b = c + (ε 0 − 1) ωN be f , the corre-

ponding values of h ( b , ε0 ) are non-positive. But, there exist a

easible solution ( c 2 , 1) such that h ( c 2 , 1) = 

c 2 

4 > 0 . Thus, for any

0 ∈ [0, 1], (0, ε0 ) and (c + (ε 0 − 1) ωN be f , ε 0 ) are not optimal so-

utions. Therefore, we just need to consider the case when 

ˆ b ∈
0 , c + (ε 0 − 1) ωN be f ] . Accordingly, for ε0 , we have the following

equirement. 

 a f t (1) − c + (ε 0 − 1) ωN be f 

v 
≤ N a f t (ε 0 ) ≤ N a f t (1) + 

c + (ε 0 − 1) ωN be f 

v 
(28) 

By substituting ˆ b for b in h ( b , ε0 ), we get: 

 (ε 0 ) = 

1 

4 

((ε 0 − 1) ωN be f + c − v (N a f t (1) − N a f t (ε 0 ))) 
2 . (29)

Because h (ε 0 ) = max 
b 

h (b, ε 0 ) , for a general case, we have

ax 
ε 

h (ε) = max 
ε 

max 
b 

h (b, ε) = max 
(b,ε) 

h (b, ε ) . That is, max 
ε 

h (ε ) and
ax 
(b,ε) 

h (b, ε) can achieve the same maximum value with same ε∗ if

he constraints of the two objective functions are equivalent. From

qs. (24a) , (26) , and (28) , we obtain Eq. (25a) , in which the con-

traints of Eq. (25a) and those of Eq. (24a) are equivalent. 

Thus, Eqs. (25a) and (24a) have the same maximum value at

 b ∗, ε∗) where b ∗ = 

1 
2 (ωε ∗N be f + v (N be f − N a f t (ε 

∗))) . �

Theorem 2 indicates that the Nash bargaining problem

q. (24a) can be solved via a simplified problem Eq. (25a) . The ap-

roach for solving Eq. (25a) is similar to that for solving Eq. (16b) ,

hich is addressed as follows. Since ε satisfies Eq. (25d) , (ε −
) ωN be f + c − v (N a f t (1) − N a f t (ε)) > 0 and Eq. (30a) is obtained

or computation simplicity. 

ax 
ε 

(ε − 1) ωN be f + c − v (N a f t (1) − N a f t (ε)) , (30a) 

.t. N a f t (ε) ≤ N a f t (1) + 

c + (ε − 1) ωN be f 

v 
, (30b) 

 a f t (ε) ≥ N a f t (1) − c + (ε − 1) ωN be f 

v 
, (30c) 

 − c 

ωN be f 

≤ ε ≤ 1 . (30d) 

Let (ε − 1) ωN be f + c − v (N a f t (1) − N a f t (ε)) = B . Then. we have

 a f t (ε) = −ωεN be f 

v 
+ N a f t (1) + 

B + ωN be f − c 

v 
. (31)

An illustrative example is presented in Fig. 5 (b), where the

lack solid curve is the function N aft ( ε). The slope-intercept form of

ach line is: (1) l 1 : x = 1 − c 
ωN be f 

; (2) l 2 : y 2 = −ωN be f 

v x 2 + N a f t (1) −
c 
v + 

ωN be f 

v (i.e., it runs through the point (1 , N a f t (1) − c 
v ) ); and

3) l 3 : y 3 = 

ωN be f 

v x 3 + N a f t (1) + 

c 
v −

ωN be f 

v (i.e., it runs through the

oint (1 , N a f t (1) + 

c 
v ) ). According to Eq. (25a) , for any feasible so-

ution ε, its x-coordinate is within [1 − c 
ωN be f 

, 1] and the corre-

ponding value of N aft ( ε) is above line l 2 but below line l 3 , which

s indicated by in Fig. 5 (b). 

Then, to find an optimal solution ε∗, we parallel move line l 2 up

long y-axis until the y-intercept of l 2 is maximum while keeping

he set of intersection points of N aft ( ε) and l 2 non-empty. When

uch movement stops (see line l 4 in Fig. 5 (b)), the x-coordinate of

ach intersection point of N aft ( ε) and l 2 is an optimal solution to

q. (25a) . 

.2. Numerical analysis of game results 

The results of N aft in Section 5.3 can be fitted using a piecewise

unction that consists of linear and quadratic functions as shown in

ig. 6 , where the setting of network parameters is the same as that
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Fig. 7. Impacts of θ3 and r i on Nash bargaining solution in Scenario A. 

Fig. 8. Impact of θ3 and r i on Nash bargaining solution in Scenario B, where blue curved surface is the case when θ3 = 0 . 4 and the yellow one is the case when θ3 = 1 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Section 5.3 and the fitted results are presented in Appendix A. In

this subsection, we calculate ε∗ by substituting the fitted equations

for N aft ( ε) in Eqs. (16b) and (25a) . 

First, we study the relationship between ω/ v and ε∗ under Sce-

nario A, report the results in Fig. 7 , and detail our observations as

follows. 

1. When ω/ v changes from 0 to 1, ε∗ is always positive. This in-

dicates that user’s data is successfully sold from the service

provider to the adversary, i.e., such malicious data sales can

benefit both the service provider and the adversary. 
2. As ω/ v increases from 0 to 1, ε∗ is increased. A larger ω/ v

means that user’s data has a higher value and brings more prof-

its to the adversary, leading to a higher data price b . Thus, more

accurate data is traded to benefit both the service provider and

the adversary. 

3. There exists a certain value, e.g., 1.02 in Fig. 7 (a) and (b). On

one hand, when ω/ v is smaller than such certain value, the ac-

curacy degree of traded data with θ3 = 0 . 4 is higher than that

of traded data with θ3 = 1 . Note that θ3 is the weight of privacy

leakage cost at the user side. With a small ω/ v , selling user’s

data to the adversary yields a small profit (i.e., b may be small)
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Fig. 9. Impacts of b and ε to data trading benefit. 
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to the service provider but a relatively large cost to the users.

Thus, to avoid big decrease in the number of users, the service

provider would sell less accurate data if θ3 is larger, which is

consistent with the results of Fig. 6 . 

On the other hand, when ω/ v is bigger than such certain value,

the accuracy degree of traded data with θ3 = 0 . 4 is lower than

that of traded data with θ3 = 1 . With a big ω/ v , for the ser-

vice provider, the payment received from data sales is higher

enough to compensate the profit loss brought by user churn.

Moreover, when ε and θ3 increase, Fig. 6 shows that the de-

crease rate of the number of users is reduced, which means

the decrease of the number of users is small even if the ser-

vice provider sells more accurate data. Thus the growth rate

of received payment becomes higher than the growth rate of

profit loss. As a result, if θ3 is bigger, the service provider can

earn more by selling more accurate data. This phenomenon in-

dicates that in some situations the users’ attention to privacy is

not beneficial to their privacy protection, and the panic leaving

OSN after privacy leaked may lead to more serious leakage of

user’s privacy. 

Second, we focus on the impacts of ω/ v and c / v on ε∗ under

cenario B and show the experiment results in Fig. 8 with the fol-

owing analysis. 

1. The accuracy degree of traded data, ε∗, reduces when ω/ v de-

creases and c / v increases. The reason is that less accurate data

is leaked from the OSN if the value of user’s data is smaller

to the adversary and/or the attack cost is higher. This indicates

that we can protect user’s privacy by increasing attack cost at

the adversary side and/or enhancing the value of user’s data at

the service provider side. 

2. As shown in Fig. 8 , even if c / v is enlarged to 80 0 0 and ω/ v ap-

proaches 0, ε∗ is still more than 0, implying that trading user’s

private data can benefit the service provider and the adversary.

3. In Fig. 8 , the curve surface with θ = 1 is above the curve sur-

face with θ = 0 . 4 in some regions but such situation changes in

some other regions, for which the reasons and inspirations are

the same as those for Observation 3 in Fig. 7 . 

Finally, we look into the impacts of data price b and data accu-

acy degree ε on the benefits of data trading. From the definition

f Nash bargain problem, one can see that the value of the objec-

ive function indicates the benefits of the involved players when

argaining successes; that is, in our data trading problem, this im-

lies how data trading benefits the service provider and the adver-

ary. 

In Scenario A, the simulation setting is: ω = 1 . 5 , v = 1 , θ3 = 0 . 4 ,

nd r follows Gaussian distribution. Then, to examine the impacts
i 
f data price and data accuracy, we calculate f ( b , ε) with b vary-

ng in [0,40 0 0] and ε varying in [0, 1] and present the results in

ig. 9 (a). As the red point in Fig. 9 (a) shows, f ( b , ε) is maximized

hen (b, ε) = (1634 . 5 , 0 . 61) , which is consistent with the calcu-

ation result of Eq. (20a) . In particular, for each fixed b, f ( b , ε) is

 convex function of ε, which means there is at least one ε such

hat f ( b , ε) is maximized. 

Similarly, in Scenario B, ω = 0 . 5 , v = 1 , c = 1 , θ3 = 0 . 4 and r i
ollows Gaussian distribution. For all b ∈ [0, 40 0 0] and ε ∈ [0, 1],

he values of h ( b , ε) are obtained and shown in Fig. 9 (b). When

(b, ε) = (2139 . 4 , 0 . 458) , h ( b , ε) achieves its maximum value indi-

ated by the red point in Fig. 9 (b). Particularly, for any fixed b, h ( b ,

) is a convex function of ε, indicating that there exist at least one

such that h ( b , ε) is maximized. 

The relationship between ε and f ( b , ε) (or h ( b , ε)) indicates that

he service provider needs to deal with the trade-off between the

ncome of data sales and the benefit loss of user churn by selecting

n appropriate quality (e.g., accuracy degree) for traded data. 

According to the above analyze of experimental results, we

an obtain some critical findings for protecting user data privacy,

hich are detailed as follows: 

1. User’s personal data is under serious threat and is highly pos-

sible sold by service providers, because trading user’s private

data could always benefit the service provider and the adver-

sary. 

2. If the value of one user’s data to service provider is larger or

the cost of attacking OSN server is higher, user’s personal data

would be protected better. 

3. In some situations, the users’ privacy concern may not be ben-

eficial to their privacy protection, and scare leaving OSNs af-

ter privacy leakage may lead to more serious leakage of user’s

privacy. The Observation 3 in both Scenario A and Scenario B

shows that the service provider sells a little privacy could in-

cur huge customer churn and thus almost gives up the income

from operating the network and mainly earns profit by selling

completely accurate data. 

. Conclusion 

Privacy leakage is a severe threat to users in IoT and its harm

an be expanded through online social networks. This paper for-

ulates the complex interactions among users, service provider

nd adversary as a three-party game to study data privacy protec-

ion with considering user’s social connection and interaction. To

bserve network evolution when privacy is leaked, a simulation is

uilt based on agent-based model. To obtain the Nash bargaining

utcomes of data trading problem, thorough theoretical analysis is
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performed. Moreover, data trading strategy and its impacts are an-

alyzed through intensive numerical experiments. To the best of our

knowledge, this is first time to investigate data privacy via incor-

porating social connection and interaction into three-party game. 
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Appendix A. Expression of fitting function 

(1) Fitting function, N aft ( ε), when θ3 = 0 . 4 and r i follows Beta

distribution: 

N a f t (ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

30 0 0 0 ≤ ε < 0 . 36 

−68211 ε + 27555 . 96 0 . 36 ≤ ε < 0 . 3

5887 . 57 ε 2 − 7105 . 28 ε + 4140 . 83 0 . 37 ≤ ε < 0 . 6

390370 . 71 ε 2 − 519417 . 01 ε + 173584 . 81 0 . 61 ≤ ε < 0 . 6

−839 . 66 ε + 1375 . 4 0 . 67 ≤ ε ≤ 1 

(2) Fitting function, N aft ( ε), when θ3 = 1 and r i follows Beta dis-

tribution: 

N a f t (ε) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

30 0 0 0 ≤ ε < 0 . 14 

227619 . 02 ε 2 − 92445 . 85 ε + 11481 . 09 0 . 14 ≤ ε < 0 . 22 

31090 . 16 ε 2 − 26296 . 55 ε + 6440 . 24 0 . 22 ≤ ε < 0 . 42 

−925 . 95 ε + 1268 . 89 0 . 42 ≤ ε ≤ 1 

(3) Fitting function, N aft ( ε), when θ3 = 0 . 4 and r i follows Gaus-

sian distribution: 

N a f t (ε) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−8 . 92 ε + 30 0 0 0 ≤ ε < 0 . 38 

−9800 . 55 ε 2 − 7474 . 64 ε + 1571 . 44 0 . 38 ≤ ε < 0 . 66 

−51453 ε + 36194 . 57 0 . 66 ≤ ε < 0 . 7 

−487 . 35 ε + 518 . 62 0 . 7 ≤ ε ≤ 1 

(4) Fitting function, N aft ( ε), when θ3 = 1 and r i follows Gaussian

distribution: 

N a f t (ε) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

30 0 0 0 ≤ ε < 0 . 14 

−63315 . 81 ε 2 + 19575 . 63 ε1500 . 4 0 . 14 ≤ ε < 0 . 27 

−108374 ε + 31431 . 08 0 . 27 ≤ ε < 0 . 28 

10107 . 07 ε 2 − 11481 . 41 ε + 3508 . 76 0 . 28 ≤ ε < 0 . 53 

−539 . 43 ε + 548 . 59 0 . 53 ≤ ε ≤ 1 
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