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Abstract: Nonlinear hysteretic systems are common in many engineering problems. The maximum 14 
response estimation of a nonlinear hysteretic system under stochastic excitations is an important 15 
task for designing and maintaining such systems. Although a nonlinear time history analysis is the 16 
most rigorous method to accurately estimate the responses in many situations, high computational 17 
costs and modelling time hamper adoption of the approach in a routine engineering practice. Thus, 18 
in an engineering practice, various simplified regression equations are introduced to replace a non-19 
linear time history analysis, but the accuracy of the estimated responses is limited. This paper pro-20 
poses a deep neural network trained by the results of nonlinear time history analyses as an alternative 21 
of such simplified regression equations. To this end, the convolutional neural network (CNN) which 22 
is usually applied to abstract features from visual imagery is introduced to analyze the information 23 
of the hysteretic behavior of the system, then, merged with neural networks representing a stochastic 24 
random excitation to predict the responses of a nonlinear hysteretic system. For verification, the 25 
proposed deep neural network is applied to the earthquake engineering field to predict the structural 26 
responses under earthquake excitations. The results confirm that the proposed deep neural network 27 
provides a superior performance compared to the simplified regression equations which are devel-28 
oped based on a limited dataset. Moreover, to give an insight of the proposed deep neural network, 29 
the extracted features from the deep neural network are investigated with various numerical exam-30 
ples. The method is expected to enable engineers to effectively predict the response of a hysteretic 31 
system without performing nonlinear time history analyses, and provide a new prospect in the en-32 
gineering fields. The supporting source code and data are available for download at (the URL that 33 
will become available once the paper is accepted). 34 
 35 
Keywords: deep learning, convolutional neural network, hysteretic behavior, stochastic excitation, 36 
nonlinear time history analysis, single degree of freedom system (SDOF) 37 
 38 
 39 
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Assessment of nonlinear hysteretic systems under stochastic excitations is one of the essential topics 42 
in many engineering fields such as mechanical, robotics and civil. In such systems, the output values 43 
depend not only on the instantaneous input at the given time but also on its past history between an 44 
input and an output (i.e. path-dependent system). A shape memory alloy (SMA) is a typical example 45 
of a smart material having hysteretic behaviors, which is widely used in industrial fields vibration 46 
attenuation (Aizawa et al., 1998) and SMA-based microactuators (Ma et al., 2000; Shin and Garman, 47 
2001). A wire cable vibration isolator which has found many applications in industrial machinery 48 
due to its dry friction damping performance is another example of a nonlinear hysteretic system. As 49 
the inherent interfacial damping is exerted by sliding or rubbing, the deformation and the force 50 
relationship of the wire cable isolator is a nonlinear hysteretic (Chungui et al., 2009). In civil engi-51 
neering, the structural member is a typical element that shows a nonlinear hysteretic behavior under 52 
stochastic excitations. It is, therefore, important for predicting the responses of the system in order 53 
to improve the design of the system and make the system reliable during the operation. 54 

When a nonlinear hysteretic system is subjected to a relatively low-intensity stochastic excita-55 
tion and thus the maximum normalized force is smaller than the yield force, the system exhibits 56 
vibration in the linear elastic range. The response estimation of the system under such small external 57 
forces is simple and obvious so that a time history analysis is not required. On the other hand, a 58 
relatively large-intensity stochastic excitation tends to make a hysteretic system behave nonlinearly 59 
during an excitation, which makes it difficult to accurately predict the responses. A time history 60 
analysis using both refined numerical models and recorded stochastic excitations is considered as 61 
the most accurate way to estimate the responses of the system. This approach solves the dynamic 62 
equilibrium equation at every time step using a numerical integration scheme, then the correspond-63 
ing responses of the nonlinear hysteretic system can be numerically estimated. It is, however, noted 64 
that the nonlinear time history analysis involves exceedingly high computational efforts, which 65 
makes the approach impractical in most routine engineering processes. In addition, due to the ran-66 
domness of external vibrations and the uncertainties in the hysteretic behavior of a system, adopting 67 
a highly precise yet computationally inefficient method cannot be fully justified.  68 
 Some researchers have investigated artificial neural network (ANN) as an alternative to time-69 
consuming analysis procedures (Adeli, 2001; Adeli and Panakkat, 2009; Berényi et al., 2003; Chun-70 
gui et al., 2009; Dibi and Hafiane, 2007; Tan et al., 2012; Xie et al., 2013; Xiu and Liu, 2009). Since 71 
the most of such ANNs are trained for a specific type of a system or a corresponding hysteretic 72 
behavior, the applicability of a trained neural network to other hysteretic systems is limited. Fur-73 
thermore, a relatively small number of hidden layers cannot fully identify the intricate relationships 74 
between the output (responses of a nonlinear hysteretic system) and the input information (charac-75 
teristics of the system and stochastic excitations). 76 

Recently, deep neural networks, a variant of ANN which stacks multiple hidden layers, have 77 
shown unprecedented performance in terms of predicting the intricate relationship between input 78 
and output variables in diverse fields including business, medical, and engineering (LeCun et al., 79 
2015; Schmidhuber, 2015). In particular, the development of a deep convolutional neural network 80 
(CNN) achieved practical successes, especially in face recognition (Lawrence et al., 1997), image 81 
classification (Krizhevsky et al., 2012) and speech recognition (Sainath et al., 2015). Since the CNN 82 
shows a clear advantage in dealing with the data having strong spatial correlation by using multiple 83 
overlapping filters, we employ a CNN to extract features of a nonlinear hysteretic system from its 84 
hysteresis loops. The features extracted from hysteretic information are, then, merged with those 85 
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representing a stochastic excitation information to form a deep ANN that can predict the responses 86 
of a system. Thereby, trained deep neural networks can cover comprehensive information including 87 
both the external time-series vibration and the characteristics of a nonlinear hysteretic system. 88 

This paper first presents the overview of the process to predict responses of a nonlinear hyster-89 
etic system under stochastic random excitations. A new architecture of the neural network is pro-90 
posed for which a hysteresis loop of the single degree of freedom (SDOF) system and the intensity 91 
features of stochastic excitations are employed as inputs. Next, we demonstrate the applicability and 92 
efficiency of the proposed method by applying the earthquake engineering field to predict the seis-93 
mic demand. To this end, the nonlinear seismic responses database is developed, then using the 94 
dataset the proposed network is trained. The extracted features of hysteretic behaviors and stochastic 95 
excitations are investigated thoroughly to give a further insight of the trained neural network. Fi-96 
nally, a summary and concluding remarks are provided to promote further researches on the pro-97 
posed framework. 98 
 99 
2. Prediction of responses of a nonlinear hysteretic system under stochastic excitations 100 
 101 
A nonlinear hysteretic system excited by random vibration forces produces stochastic responses. In 102 
order to simulate such seismic responses of a system, a sound analytical model and recorded exci-103 
tations are needed. However, most of the routine engineering problems utilize the idealized SDOF 104 
system rather than complicated numerical models to reduce the computational cost and modeling 105 
efforts. This section, therefore, describes the overall procedure of a nonlinear time history analysis 106 
using an SDOF system, then provides the general framework to replace such time-consuming 107 
method by using a deep learning method. 108 
 109 
2.1 Time history analysis of a nonlinear hysteretic system 110 
The governing differential equation of an SDOF system subjected to an excitation	𝐹(𝑡) is written 111 
as: 112 

𝑚�̈� + 𝑐�̇� + 𝑓- = 𝐹(𝑡) (1) 

where 𝑚 is the mass, 𝑐  is the damping coefficient, 𝑓-  represents the restoring force function 113 
which may depend on the history of the responses, and 𝑢, �̇� and �̈� respectively denote the dis-114 
placement, velocity and acceleration of the mass relative to the ground. Equation (1) can be rear-115 
ranged after dividing both sides by the mass 𝑚:  116 

�̈� + 2𝜉𝜔�̇� + 𝐹- = 𝐹(𝑡)/𝑚 (2) 

where 𝜉 represents the damping ratio (typically 5% is used in practice), 𝜔 is the circular natural 117 
frequency of the nonlinear hysteretic system, and 𝐹- denotes the normalized restoring force, i.e. 118 
𝑓-/𝑚. Given that 𝜔 depends on the relationship between 𝑢 and 𝐹-, 𝐹- is the only term in the 119 
equation that affects the responses of a nonlinear hysteretic system subjected to the specific external 120 
force 𝐹(𝑡). Figure 1 provides three different hysteretic models which are widely used in the engi-121 
neering fields: linear elastic, bilinear kinematic hardening, and bilinear stiffness degrading systems. 122 
In fact, the hysteretic behavior of a real system can be much more complicated. The three hysteretic 123 
behaviors in Figures 1(a), (b) and (c) are respectively denoted as HM1, HM2, and HM3 in this paper. 124 
Using the implicit or explicit numerical integration method, a full-time history of responses (i.e. 𝑢, 125 
�̇� and �̈�) can be obtained. 126 
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 127 

 128 
Figure 1. Hysteretic loops of a system: (a) linear (HM1), (b) bilinear kinematic hardening (HM2), and (c) bilinear 129 
stiffness degrading system (HM3). The linear system is parametrized by the slope of the hysteretic model which is 130 
called stiffness. The stiffness can readily be calculated from the circular frequency 𝜔3 and the mass 𝑚. The bilinear 131 
hysteretic systems consist of piecewise linear and continuous relationships, characterized by the circular frequency 132 
𝜔3, the normalized yield force 𝐹4, and the post-yield stiffness ratio 𝛼. The difference between HM2 and HM3 is 133 
that the stiffness of the HM3 tends to degrade as damages are accumulated. 134 
 135 
2.2 Deep learning-based response prediction of a nonlinear hysteretic system 136 
From the engineering perspective, the maximum responses of a nonlinear hysteretic system are the 137 
most important outputs during stochastic excitations because the maximum responses are typically 138 
used for design or assessment of the hysteretic system. Thus, the goal of the proposed method is to 139 
predict the maximum responses of nonlinear hysteretic systems. This section describes the input 140 
parameters that are employed in the deep neural network and its architecture to predict the responses 141 
of a system. 142 
 143 
2.2.1 Input data description 144 
Two different information is needed to estimate the responses of a nonlinear hysteretic system sub-145 
jected to a stochastic excitation: a nonlinear hysteretic system and a stochastic excitation. The for-146 
mer is represented as a hysteretic loop, i.e. the relationship between the imposed displacement and 147 
the restoring force. The hysteretic behavior can be obtained by performing a quasi-static cyclic 148 
analysis (i.e. push and pull the nonlinear hysteretic system) of an SDOF system using a predefined 149 
displacement step, which captures characteristics of a nonlinear hysteretic system. The example of 150 
a hysteretic behavior used as an input is illustrated in Figure 2. Most of the existing methods directly 151 
employ the parameters from simplified mathematical models of a nonlinear hysteretic system such 152 
as stiffness and yield strength. However, in the proposed method, the hysteretic behavior (i.e. the 153 
displacement and the force vectors in Figure 2) is employed as an input parameter to CNN which is 154 
often used to extract complicated natural data to lower-level features. Thereby, CNN would auto-155 
matically extract the useful information for estimating the responses of the nonlinear hysteretic sys-156 
tem during training the neural network. On the other hand, the latter is represented by a set of useful 157 
features that can illustrate its intensities or characteristics. Since the goal is to estimate the maximum 158 
displacement rather than entire responses, it is more efficient to use the intensity measures that are 159 
highly correlated with the output value. Moreover, the features of a stochastic excitation are grouped 160 
along with their characteristics, then applied as inputs (e.g. group 1: frequency contents, group 2: 161 
peak values of a stochastic excitation, and group 3: source information of a stochastic excitation). 162 
 163 
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 164 
Figure 2. The procedure of generating a hysteretic behavior of a nonlinear hysteretic system for an input of the deep 165 
neural network when the system having period 0.05, yield strength 0.05g, and post-yield stiffness 0.1 is selected. 166 
Using the predefined displacement steps, the corresponding force can be estimated. The displacement and the esti-167 
mated force are visualized in the right-hand side of the figure as a scatter plot. 168 
 169 
2.2.2 Architecture of the deep neural network 170 
Motivated by the natural phenomena of a dynamic excitation to a nonlinear hysteretic system, a new 171 
deep neural network architecture in Figure 3 is proposed by incorporating two different information. 172 
As mentioned in Section 2.2.1, the features of a nonlinear hysteretic system are extracted from CNN 173 
and depicted as an orange box in Figure 3. On the other hand, for the features related to a random 174 
excitation, each of the feature group is first processed by ANN (green boxes in Figure 3), then 175 
merged with the extracted hysteretic information (orange box in Figure 3) and again processed by 176 
ANN, i.e. extracted hysteretic information is added to each of the feature group when the data is 177 
processed by ANN. This is to reflect the fact that each stochastic excitation information produces 178 
distinct features for a given hysteretic behavior. Finally, each processed feature of a random excita-179 
tion along with a hysteretic system (dark blue boxes in Figure 3) is merged with extracted hysteretic 180 
units (orange box in Figure 3) again to form a single ANN that can predict responses. 181 
 182 

 183 
Figure 3. Schematic diagram of the proposed deep neural network. 184 

 185 
3. Proposed deep neural network and its application to the earthquake engineering field 186 
 187 
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To validate the proposed method, we develop a deep neural network to accurately estimate the seis-188 
mic responses of a nonlinear structural system. In this example, stochastic excitations are earthquake 189 
ground motions, and a nonlinear hysteretic system is a structural system such as a building. Alt-190 
hough a three-dimensional structural model with detailed structural properties is desirable, an ide-191 
alized structural model, such as an equivalent SDOF system, is also often used, especially when the 192 
structure is being analyzed in the design phase (Ibarra et al., 2005; Ruiz-García and Miranda, 2003; 193 
Tothong and Cornell, 2006; Vamvatsikos and Cornell, 2006). For earthquake ground motions, three 194 
different types of information are employed, i.e. source information of excitations as earthquake 195 
characteristics, stochastic force information as peak values of ground motion time histories, and 196 
frequency contents of excitations as a response spectrum, which have been demonstrated to correlate 197 
well with the responses of a nonlinear structural system (ASCE 41-13, 2013; ATC 40, 1997; FEMA 198 
440, 2005; Power et al., 2006; Riddell, 2007). The features selected to represent earthquake char-199 
acteristics are magnitude (𝑀), epicentral distance from the site of the structure (𝑅), and the soil 200 
class of the site which has five different class (BSSC, 2004). For the peak values of ground motion 201 
time history, the maximum value of each recorded acceleration (peak ground acceleration; PGA), 202 
velocity (peak ground velocity; PGV) and displacement (peak ground displacement; PGD). Lastly, 203 
5%-damped spectral accelerations in the period range of 0.005s to 10s (total 110 steps; Sa(T)), i.e. a 204 
response spectrum is used for frequency contents. 205 

To train the neural network, we generated a dataset of nonlinear time history analysis results. 206 
It was found that the extracted features from the CNN were overfitted when the structural model 207 
was randomly selected along with the earthquake ground motion. To address this issue, the same set 208 
of structural models is applied to each ground motion when training the network. This section first 209 
shows the detailed architecture of deep neural network based on Figure 3. After training the network, 210 
the performance of the trained neural network is investigated by comparing with existing methods 211 
in terms of the accuracy. Note that the work reported in this paper was performed using Tensorflow 212 
(Abadi et al., 2016) and the Compute Canada’s GPU cluster. 213 
 214 
3.1 Detailed architecture of the deep neural network 215 
A detailed diagram of the proposed deep neural network design is provided in Figure 4. All convo-216 
lutional and neural network layers are followed by a rectified linear operator (ReLU; Nair and 217 
Hinton, 2010) except for the first part of the convolutional layers for which a tangent hyperbolic 218 
operator (Tanh) is used as the activation function. In addition, the batch normalization (Ioffe and 219 
Szegedy, 2015) is adopted for all layers after the ReLU operator is applied. Since the initial stiffness 220 
of the hysteresis shows large variability (the ratio of the largest to the smallest stiffness that we cover 221 
in this study is about 40,000), the Tanh activation function is used for normalizing parameters de-222 
scribing the hysteretic behaviors. It was observed that, if the ReLU is adopted rather than Tanh at 223 
the first convolutional part, the hysteretic features extracted from CNN was overfitted, especially 224 
for those having a large initial stiffness. 225 

Four types of filter sizes (2, 4, 8, and 16) are employed to capture the features having different 226 
scales. This is helpful, particularly when extracting features from the hysteretic behaviors because 227 
the input hysteretic behavior can have different scales (e.g. number of cycles). Moreover, 2 × 1 228 
max pooling is applied to reduce the dimension of layers in the convolutional phases. The first fully 229 
connected layer (FC) that concatenates the output of the four convolutional layers containing 64 230 
neurons is followed by the second FC with the 48-dimensional output. This architecture is motivated 231 
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by autoencoder (Li et al., 2013; Socher et al., 2013) which forces the layer to engage features having 232 
different scales by reducing the neurons. Finally, the output of the network is a single unit (gray box 233 
in Figure 4) which is fed to a linear activation function to estimate the continuous variable, i.e. 234 
responses of a nonlinear hysteretic system. 235 
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 236 
Figure 4. Detailed diagram of the proposed deep neural network architecture 237 
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3.2 Datasets 238 
To train the neural network, we constructed a database of nonlinear structural responses by perform-239 
ing a large number of nonlinear time history analyses using OpenSees (Mazzoni et al., 2006). The 240 
database contains responses of three different hysteretic models (HM1, HM2, and HM3 in Figure 241 
1) subjected to 1,499 ground motions (GMs) obtained from the NGA database (Power et al. 2006). 242 
To cover every practical range of structural characteristics, 90 steps of structural period from 0.05 243 
sec to 10 sec, 30 steps of yield strength from 0.05 g to 1.5 g, and 10 steps of post-yield stiffness 244 
ratio from 0 to 0.5 were selected. The upper and lower limits of these values were determined based 245 
on the capacity curves in HAZUS-MH 2.1 (FEMA 2012) which can describe force-deformation 246 
relationships of a wide range of building structures and the intermediate values are uniformly dis-247 
tributed between the upper and lower limits. Therefore, the total number of hysteretic behaviors 248 
considered in this study is 54,090 (90 for HM1 and 90 × 30 × 10 = 27,000 for each bilinear sys-249 
tem). For earthquake ground motion data, based on the authors’ experience, even the entire set of 250 
GMs (1,499) is insufficient to generalize the ground motion information due to the nature of a ran-251 
dom excitation We randomly split the 1,499 GMs into a train set of size 1,199 (80%) and a test set 252 
of size 300 (20%) in order to check the over-fitting of the proposed deep learning model by moni-253 
toring the loss on the test set.  254 

To achieve the improved accuracy with the relatively small number of training time, the dataset 255 
is processed before being employed as the input and the output of the proposed network. Since it is 256 
widely reported that some of the inputs and the output dataset follow the lognormal distribution 257 
(Ellingwood, 2001), the natural logarithm is applied to several input parameters, i.e., response spec-258 
trum, PGA, PGV, and PGD, as well as the output, i.e., structural responses, to resolve the skewness. 259 
Moreover, in order to allow the network to better generalize the structural hysteretic behaviors, the 260 
data augmentation technique (Krizhevsky et al., 2012) is applied by shifting and flipping the hyste-261 
resis. After training the proposed network using the transient displacement as the output which is 262 
the most important features when designing and assessing structures, a comprehensive investigation 263 
is carried out to validate our model. Since any type of structural responses can be used as an output 264 
for our model, the trained results using other structural responses, such as the maximum acceleration 265 
and the maximum velocity, are also presented in Section 4.3. 266 
 267 
3.3 Initialization 268 
It is widely known that the performance of a neural network is highly affected by the initialization 269 
of weights (Glorot and Bengio, 2010; He et al., 2015; Lecun et al., 1998). In this study, it was found 270 
that using randomly initialized weights, the convolutional part of the network cannot extract the 271 
features properly, which, in turn, made the performance of the network much worse than those of 272 
existing simple regression methods (ATC 40 1997, FEMA 440 2005). To address such an issue, a 273 
pre-training is carried out with a small number of samples of the hysteretic behaviors based on the 274 
study by Wagner et al. (2013). Only HM1 and HM2 with zero post-yield stiffness (i.e. elasto-per-275 
fectly plastic) are selected with randomly selected 894 GMs for pre-training (the number of data set 276 
is 2,790×894=2,494,260). The Adam optimizer (Kingma and Ba, 2014; Reddi et al., 2018) is used 277 
as the optimization algorithm to reduce the mean squared error (MSE) of the output with 512 batch 278 
sizes and 54 epochs of training. 279 
 280 
3.4 Training 281 
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Although a total of 54,090 hysteretic behaviors should be trained for the neural network, we sparsely 282 
select the hysteretic behaviors to increase the efficiency of the training. This is based on the premise 283 
that the neural network has an ability to estimate the intermediate variables of distinct input values 284 
through interpolation. Therefore, 15 steps of yield strength and 7 steps of post-yield stiffness ratio 285 
are considered rather than 30 and 10 steps of the original dataset, respectively (total 18,990 structural 286 
models). When sparsely selecting the structural models, relatively smaller yield strengths are se-287 
lected more often than bigger ones to incorporate enough number of cases in which the structural 288 
system behaves nonlinearly during an earthquake excitation. That is, hysteretic behaviors of the 289 
dataset used for training are prone to behave nonlinearly during earthquake excitation when com-290 
pared with the dataset that is not used for training. This is because it was found that the nonlinear 291 
cases are more difficult to estimate (i.e. bigger MSE) than the linear cases. Moreover, we randomly 292 
select 280 GMs among 1,199 GMs which leads to total 5,317,200 datasets for each epoch of training 293 
to overcome the limitation of the computational resources. Like the Initialization part, the Adam 294 
optimizer (Kingma and Ba, 2014; Reddi et al., 2018) is used as the optimization algorithm to reduce 295 
the MSE of the output with 512 batch sizes and 300 epochs of training. 296 
 297 
3.5 Prediction accuracy 298 
3.5.1 Training results 299 
To check whether the trained neural network is overfitted or not, the MSE and the mean absolute 300 
error (MAE) are calculated for both train and test dataset. Note that, in this paper, the MSE and 301 
MAE are calculated for the natural logarithms of the structural responses and the results are shown 302 
in Table 1. 303 

The MSE and MAE of training results show that using the trained deep neural network, one 304 
can predict the structural responses that are fairly close to those by a nonlinear time history analysis. 305 
Although the MSE and MAE of the test dataset may be significantly higher than those of the train 306 
datasets, the discrepancy between the train and test sets is not critical, in that the ratio of the pre-307 
dicted value to the correct value for training and test data set in the original scale (i.e. not applying 308 
the natural logarithm) are around 𝑒@.@B ≈ 1.05 and 𝑒@.E3 ≈ 1.13, respectively. This also indicates 309 
that 1,199 ground motions may not be enough for properly training the proposed network in terms 310 
of a random earthquake ground motion information. The authors believe that if more ground mo-311 
tions are used for training, the better results can be obtained for test datasets. 312 
 313 

Table 1. The comparison of MSE and MAE between train set and test set 314 

GM Set Mean squared error Mean absolute error 
Train (1,199 GM) 0.0044 0.0485 

Test (300 GM) 0.0253 0.1202 
 315 
 Since the hysteretic behavior is sparsely selected during the training process, the MSE is com-316 
puted for both trained and non-trained hysteretic models in order to demonstrate the trained net-317 
work’s ability to interpolate over the hysteretic behaviors. 200 GMs are randomly selected from the 318 
entire set of the ground motions to obtain the results shown in Table 2. The hysteretic curves of the 319 
structural system are generated uniformly, but we intentionally select the systems that are prone to 320 
exhibit responses in nonlinear range when training the proposed neural network. Given that the 321 
trained deep neural network predicts the linear cases with less MSE than nonlinear cases, the MSE 322 
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of the nontrained case in Table 2 is less than that of trained cases even though the hysteretic behav-323 
iors are not used for training. Moreover, the results confirm that the trained neural network has the 324 
ability to interpolate regarding hysteretic behaviors. Therefore, it is expected that the trained neural 325 
network will be able to predict structural responses even if the specific hysteretic behaviors were 326 
not used in training.  327 
 328 

Table 2. The comparison of the MSE between trained and non-trained hysteretic behaviors 329 

Hysteretic behaviors Mean squared error 
Trained 0.0090 

Non-trained 0.0077 
 330 
3.5.2 Comparison with existing methods of seismic response prediction 331 
To demonstrate the superior accuracy of the proposed method, the prediction results are compared 332 
with those by the three methods: (1) R-mu-T relationship developed by Nassar and Krawinkler 333 
(1991), (2) capacity spectrum method (FEMA 440 2005), and (3) the coefficient method (ASCE 41-334 
13 2013). Such methods have been developed using regression equations with a rather small number 335 
of earthquake events to estimate the transient displacement without performing dynamic analysis. 336 
The elasto-perfectly plastic systems with randomly selected 200 GMs are provided as inputs for the 337 
methods. Among 558,000 cases (= 2,790 × 200) of the entire dataset, the cases showing nonline-338 
arity during excitation (8.03% of the dataset, i.e. 44,842 cases) are investigated. To demonstrate the 339 
improvement visually, the differences between the natural logarithms of the transient displacements 340 
by nonlinear dynamic analyses and those by the three methods above and the deep neural network 341 
are shown in Figure 5. The comprehensive comparison results are presented in Table 3 in terms of 342 
the MSE. The results demonstrate that even though the structures handled in this example show a 343 
simple hysteresis, the existing methods cannot predict the transient displacement properly compared 344 
to our deep learning model. In other words, the proposed method can predict the nonlinear responses 345 
with the smaller size of the uncertain error compared to the existing methods. 346 
 347 

 348 
Figure 5. The differences between the natural logarithms of the transient responses by nonlinear time history anal-349 
yses and those by (a) R-µ-T relationship by Nassar and Krawinkler (1991), (b) capacity spectrum method (FEMA 350 
440 2005), (c) the coefficient method (ASCE 41-13 2013), and (d) proposed deep neural network  351 
 352 

Table 3. The comparison of the MSE between proposed and existing methods 353 

Methods Mean squared error 
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R-µ-T 0.9857 
Capacity spectrum method 0.3526 

Coefficient method 0.6110 
Deep neural network 0.0407 

 354 
4. Validation of trained deep neural network 355 
 356 
After training the neural network to estimate the structural responses, an investigation has been 357 
made to give a further insight of the proposed network. To validate the feature extraction of a non-358 
linear hysteretic system part of the trained neural network, the extracted features from the CNN are 359 
analyzed thoroughly by introducing the other hysteretic models which are not used in training. 360 
Moreover, the analysis of the intermediate features in CNN is also carried out to demonstrate the 361 
role of different filter sizes used during training. For the feature extraction of a stochastic excitation 362 
part, we train the neural network using the sub-samples of the feature groups of the stochastic exci-363 
tation, i.e. total 6 different combinations of the input parameters and the corresponding neural net-364 
works are produced. It is numerically verified that the proposed method has superior performance 365 
in terms of its applicability and effectiveness. 366 
 367 
4.1 Validation of feature extraction in a nonlinear hysteretic system part 368 
4.1.1 Investigation of extracted features from CNN 369 
Despite the great success of deep neural network, there exist concerns and criticisms that the method 370 
provides black boxes (Alain and Bengio, 2016; Shwartz-Ziv and Tishby, 2017). In order to under-371 
stand the input parameters passed through the CNN in the developed deep neural network, extracted 372 
features from CNN are plotted and investigated based on the knowledge of the dynamics. First of 373 
all, the output of the final FC which was obtained right after application of the ReLU activation 374 
function, i.e. 64 vectors (orange box in Figure 3), is plotted in Figure 6 (i.e. 64 lines). Herein, hys-375 
teretic models of HM1 (90 hysteretic behaviors) are imposed as the input of the trained neural net-376 
work. We plot the extracted values of the hysteretic behaviors whose natural frequency (period) is 377 
big (short) to small (long) as left to right. As shown in Figure 6, each element of the 64 units is 378 
activated along with the different natural frequency of a nonlinear hysteretic system (bell shape plot 379 
at specific structural systems), which resembles the modal analysis finding the various periods at 380 
which the system naturally resonates. It is expected that since the extracted features represent the 381 
frequency contents of a nonlinear hysteretic system, merging with the frequency contents infor-382 
mation of a stochastic excitation may yield the proper estimation of system’s responses, which will 383 
be investigated in Section 4.2.  384 
 385 
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 386 
Figure 6. Extracted features from CNN when HM1 is used as an input. x-axis represents each of hysteretic behavior 387 
and y-axis represents the values obtained from the CNN. To find the pattern clearly, the values of the same element 388 
in the 64 units are connected each other. 389 
 390 

To give further insight, the extracted features from CNN are compared along with the hysteretic 391 
types. The experiment is based on the assumption that if different hysteretic models share some 392 
features such as the same initial stiffness (𝜔3 in Figure 1 for HM1, HM2, and HM3), it is expected 393 
that some of the extracted features from CNN of different hysteretic models may also be equivalent 394 
to each other and show meaningful trends. 395 

Figure 7 shows the extracted features from CNN when all hysteretic models of HM1 (90 hys-396 
teretic behaviors) and zero post-yield stiffness (i.e. 𝛼 = 0) cases of HM2 (2,700 hysteretic behav-397 
iors) and HM3 (2,700 hysteretic behaviors) are used as inputs of CNN. The figure is plotted as 398 
follows: When one of the behaviors of HM1 is applied as an input of CNN, the 64 × 1 vectors can 399 
be obtained as an extracted feature vector. Then, we plot each element of the vector in separate 400 
boxes. After the extracted features of every hysteretic behavior of HM1 are mapped out in Figure 401 
7(a), we obtain the 64 separate boxes whose number of indices along the x-axis is 90. Using the 402 
same procedure, Figure 7(b) and (c) represents the output vector when HM2 and HM3 are imposed 403 
as the input of CNN, respectively. In addition, the extracted features of the hysteretic behaviors are 404 
plotted as the following order from left to right for each box: From hysteretic behaviors whose 405 
period is short to long, and the yield strength of each period is small to large, especially for HM2 406 
and HM3, sequentially. In order to reduce the repeated plots in Figure 7, we only illustrate 5 indices 407 
among 64 whose values can represent the distinct information. 408 
 As shown in Figure 7, It is observed that the overall shapes of the corresponding box of first, 409 
second, and third rows of extracted features from CNN are similar except the relatively short period 410 
range (the 34th boxes) and smaller yield strength (the plots fluctuates along with yield strength) in 411 
which the structure is prone to behave nonlinearly during vibration. Since bilinear models need 412 
additional information (i.e. nonlinearity of the hysteretic system) compared to a linear model, the 413 
22nd index captures such information as shown in only extracted features of HM2 and HM3 fluctu-414 
ate. Based on this investigation, it is concluded that the extracted features from CNN may give some 415 
physical meanings of hysteresis even though it is hard to interpret as widely used mathematical 416 
parameters such as initial stiffness and yield strength. 417 
 418 

Datum Index 
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 419 

Figure 7. The plot of extracted features from CNN, i.e. the output of the final FC layer when (a) linear elastic (HM1), 420 
(b) elasto-perfectly plastic (HM2 with 𝛼 = 0), and (c) elasto-perfectly plastic with stiffness degradation (HM3 with 421 
𝛼 = 0) are used as inputs. In words, Figure 6 is the combination of Figure 7(a). 422 
 423 
 Another way to investigate the extracted features from CNN is to compare the distance between 424 
the extracted features of trained hysteresis and that of a new hysteresis such as Bouc-Wen model 425 
(Baber and Noori, 1985; Song and Der Kiureghian, 2006; Wen, 1976). The main premise is that, if 426 
the CNN is properly trained, the force-displacement relationship of a new hysteretic behavior, which 427 
was not used for training of the CNN, should be well described by the CNN whose extracted features 428 
has the smallest distance (i.e. Euclidian 𝑙2-norm) from that of the new hysteresis of concern. Figure 429 
8 shows two cases from Bouc-Wen hysteresis model (black solid line) and the corresponding equiv-430 
alent hysteretic behavior (red dashed line). This result also clearly confirms that the CNN can 431 
properly extract important features of hysteresis behaviors. 432 
 433 

 434 
Figure 8. The hysteretic behavior generated from Bouc-Wen model (black solid line) and the equivalent hysteretic 435 
behaviors (red dashed line). We compute the Euclidian distance between extracted features of the equivalent hyste-436 
resis of all hysteresis in the database (54090 cases) and that of Bouc-wen model. Then, finds the hysteretic behavior 437 
having the smallest distance and denotes such hysteresis as the equivalent hysteretic behaviors. The equivalent hys-438 
teretic behaviors of this example are as follows: (a) bilinear model with period 0.11 sec, yield strength 0.8g and post-439 
yield stiffness ratio 0.25, and (b) bilinear with stiffness degradation model with period 0.10 sec, yield strength 0.75g, 440 
and post-yield stiffness ratio 0.3. 441 



 

15 
 

 442 
4.1.2 Influence of different filter sizes in CNN 443 
Since four types of filter sizes, i.e. 2 × 2, 4 × 2, 8 × 2 and 16 × 2, are used to train the proposed 444 
neural network as shown in Figure 4, a parametric study is carried out to investigate the sensitivity 445 
with respect to filter size of CNN. The intermediate features of hysteretic behaviors which are ex-446 
tracted from the different filter sizes (i.e. the layers having 16 units before concatenating each other) 447 
are plotted in Figure 9 when hysteretic models of HM1 are employed as an input. Similarly to Figure 448 
6, x-axis represents each hysteretic behavior and y-axis represents the values obtained from the 449 
different filter sizes. While the 2 × 2 filter captures the overall characteristics of the hysteretic be-450 
haviors, other filters capture specific frequency contents of the system. For example, most of the 451 
extracted features from 8 × 2 filters depicted in Figure 9(c) are activated when the hysteretic be-452 
haviors having large period are imposed as an input. Although some values are activated (e.g. pur-453 
ple, blue, and green lines in Figure 9(c)) when the hysteretic behaviors having a small period is 454 
used, they give almost the same values even the input of hysteretic behaviors are changed. In words, 455 
the CNN part of the proposed network first extracts the different kinds of frequency contents along 456 
with the filter size (four different vectors) as shown in Figure 9, then combines the information to 457 
produce the overall frequency contents of a nonlinear hysteretic system in the final layer (one vector) 458 
as shown in Figure 6.  459 
 460 

 461 

Figure 9. Intermediate features in CNN when HM1 is used as an input along with the filter size in CNN: (a) 2 × 2, 462 
(b) 4 × 2, (c) 8 × 2, and (d) 16 × 2 is used in CNN 463 
 464 
4.2 Deep neural network trained with different features of a stochastic excitation 465 
Three different categorized features of a stochastic excitation are used for training in the previous 466 
section: source information of excitations (SE), peak values of excitation force (PE) and frequency 467 
contents (FC). To investigate the relationship between input features and the output in terms of 468 
accuracy, the neural network is trained using 6 different types of input parameters (i.e. subsamples 469 
of three categorized features). According to the fundamentals in Structural Dynamics and discussed 470 
earlier in the Section 4.1.1, the frequency contents are closely related with the responses of a non-471 
linear hysteretic system than any other features. Thus, it is expected that the neural network trained 472 
with a response spectrum (i.e. FC) shows a superior performance. The same training environments 473 
that are used in Section 3 are applied to 6 different neural networks, and the MSE and MAE for the 474 
test dataset are shown in Table 4.  475 
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 476 
Table 4. The comparison of the MSE and the MAE of the deep neural networks which are trained with different 477 
stochastic excitation information 478 

Input MSE MAE 
SE 0.9597 0.7459 
PE 0.1574 0.3070 
FC 0.0496 0.1644 

SE & PE 0.1341 0.2803 
PE & FC 0.0400 0.1604 
FC & SE 0.0522 0.1715 

 479 
 As expected, the neural networks that are trained with frequency contents show better perfor-480 
mance than other trained networks. In particular, even the predicted responses of the neural network 481 
trained only with FC are more accurate than the one trained with the other two excitation infor-482 
mation. In addition, all MSE and MAE values of Table 5 are bigger than those in Table 1. Since the 483 
SE, PE and, FC stand for different characteristics of a stochastic excitation, the deep neural network 484 
can properly find the relationship between the input and the output with enough information. How-485 
ever, it is not always good to use all features as inputs of the deep neural network. The MSE and 486 
MAE of the neural network trained with FC & SE are bigger than those by the network trained only 487 
with FC, which means the deep neural network recognizes that SE does not significantly influence 488 
the maximum responses. Therefore, a comprehensive understanding of a problem is needed even 489 
using non-overlapping features as inputs of the network. Using the deep neural network, one can 490 
identify input parameters making a significant influence on the output value, but a thorough inves-491 
tigation is needed to capture the loss of information quantitatively, which will be carried out in the 492 
future studies. 493 
 494 
4.3 Prediction of other structural responses by neural network 495 
In earthquake engineering, the transient acceleration and the transient velocity are also important 496 
responses to predict because they are closely related with the base shear capacity and the perfor-497 
mance of non-structural components. To reduce the computational time for training, a transfer learn-498 
ing method (Pan and Yang, 2010; Yosinski et al., 2014) is employed to train each response using the 499 
neural network trained to predict the transient displacements. The parameters of the trained neural 500 
network are fixed except those after the final merged layers. This is because the layers before the 501 
final merged layers extract the features from both earthquake information and structural infor-502 
mation, which should not be different even if the different structural responses are predicted. The 503 
training is carried out in the same environments that are used for the transient displacement. The 504 
MSE and the MAE are computed for the natural logarithms of the predicted transient acceleration 505 
(Table 5) and transient velocity (Table 6), after 30 epochs of training. Moreover, Figure 10 and Table 506 
7 show the errors in the transient acceleration and the transient velocity employing the input dataset 507 
used in Section 3.5.2. The errors are almost the same as those of the prediction of the transient 508 
displacement, which confirms that the proposed neural network can provide highly accurate predic-509 
tions regardless of the responses type. 510 
 511 

Table 5. MSE and MAE of transient acceleration for train sets and test set 512 
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GM Set Mean squared error Mean absolute error 
Train (1,199 GM) 0.0131 0.0903 

Test (300 GM) 0.0267 0.1243 
 513 

Table 6. MSE and MAE of transient velocity for train sets and test set  514 

GM Set Mean squared error Mean absolute error 
Train (1,199 GM) 0.0278 0.1319 

Test (300 GM) 0.0433 0.1624 
 515 

 516 
Figure 10. The errors for the natural logarithms of the predicted responses: (a) acceleration and (b) velocity when 517 
applying the dataset used in Section 3.5.2. 518 
 519 
Table 7. The MSE of dataset for the elasto-perfectly plastic system of HM2 and HM3 subjected to 200 GMs used in 520 
Section 3.5.2. 521 

GM Set Mean squared error 
Transient acceleration 0.0101 

Transient velocity 0. 0273 
 522 
5. Conclusions and future research 523 
 524 
To facilitate efficient prediction of the responses of nonlinear hysteretic systems without compro-525 
mising accuracy, this study proposes a new deep-learning-based model for the responses of single 526 
degree of freedom system by introducing a convolutional neural network. The displacement-force 527 
relationship (i.e. hysteresis) of a nonlinear system and the intensity features of a stochastic excitation 528 
are imposed as an input to estimate the maximum responses of the system which are the most im-529 
portant values in the engineering fields. The proposed architecture of the deep neural network is 530 
applied to the earthquake engineering problem to demonstrate its applicability and effectiveness. To 531 
train the proposed network, the database of nonlinear structural responses is constructed through a 532 
large number of nonlinear dynamic analyses. A small set of data is applied to initialize the weight 533 
of the network and a proper training scheme is used to compensate the limitation of computational 534 
resources. The accuracy of the proposed method is superior to that of the three existing simple 535 
methods that are widely used in practice. It is expected that a variety of applications in the earth-536 
quake engineering field can be developed using the proposed method such as efficient and accurate 537 
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regional seismic loss estimation. The numerical investigations demonstrate that the proposed 538 
method successfully extracts hysteretic behaviors to the lower-level features and is not overfitted to 539 
a certain data set. Furthermore, one can find the most important feature set of stochastic excitations 540 
by comparing the accuracy of neural networks training with different input feature set. Currently, a 541 
further study is underway to extend the proposed framework to multi degree of freedom systems 542 
using the complete quadratic combination with the results of modal analysis of a nonlinear hysteretic 543 
system (Chopra and Goel, 2002). Moreover, the proposed framework is being further developed for 544 
uncertainty quantification by introducing Bayesian neural network (Kendall and Gal, 2017) to deal 545 
with the propagation of the input randomness to the responses. Although this paper focuses on the 546 
maximum responses of a nonlinear hysteretic system, the authors believe that a full-time history of 547 
responses can be obtained by incorporating a recurrent neural network to the proposed framework. 548 
 549 
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