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Abstract 

The growing Internet of Things (IoT) provides significant resources to be integrated with critical infrastructures to enable cyber-
physical systems. More specifically, the deployment of smart meters for electricity usage monitoring in the smart grid can 
provide granular and detailed information from which power load forecasting can be carried out. However, the accurate 
prediction of long-term power usage remains a challenging issue. In light of many recent advances, deep learning has the 
potential to significantly improve the ability to assess data and make predictions, and is already rapidly changing the world we 
live in. As such, in this paper, we consider the use of deep learning, via Recursive Neural Network (RNN) and Long Short-Term 
Memory layers, for the long-term prediction of localized power consumption. In particular, we consider the optimization of both 
data feature sets and neural network models, developing three model-feature combinations to maximize prediction accuracy and 
minimize error. Through detailed experimental evaluation, our results demonstrate the ability to achieve highly accurate 
predictions over periods as large as 21 days through the integration of correlated features.  
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1. Introduction 

The Internet of Things (IoT) envisions the massive deployment of smart computing sensors and actuators 
throughout our physical world that are broadly connected and reachable through the Internet [1]. Enabled by the 
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decreasing costs and increasing power of computation and electronic storage, IoT systems are already being 
deployed worldwide, especially for consumer use. In addition, IoT enables intelligent critical infrastructure systems, 
such as smart cities, smart grid, smart transportation, etc. that can be leveraged for efficiency and fairness in resource 
management on industrial scales [2, 3]. 

In the context of the smart home and smart grid, the ability to absorb and analyze massive amounts of big data 
provide for unprecedented levels of command and control for electrical load distribution, industrially and by 
individual users alike, supporting a new level of situation awareness. Moreover, emerging tools for machine learning 
have been used to achieve increasingly accurate predictions on continuous time-series data in a variety of 
applications. As the state-of-the-art to achieve highly accurate data analysis, deep learning applies significant 
coalitions of computing neurons to approximate dataset distributions. What’s more, deep learning has been applied 
to abstract problems and exceeded even human capabilities, and has been used to extract meaningful and hidden 
information from massive datasets [4, 5]. 

In this paper, we apply deep learning, via Recursive Neural Network (RNN) and Long Short-Term Memory 
layers, to address the problem of electrical load forecasting in the smart grid. Using a dataset comprised of real-
world smart meter readings, local temperature information, and weekday/weekend identification, we construct 
several deep learning models for comparison and evaluation. Moreover, our designed models each implement a 
different subset of the entire dataset for comparison of accuracies based on feature set complexity. 

To be specific, the key contributions of this paper are summarized as follows. First, we develop an approach to 
optimize deep learning for smart meter power consumption forecasting via feature selection and model design and 
consider three primary groups of distinct feature and model combinations. Second, we conduct a detailed 
experimental analysis of our developed groups, comparing the error and accuracy. Our experimental results 
demonstrate significantly accurate long-term prediction (as much as 21 days).  

The remainder of this paper is as follows. In Section 2, we detail our approach toward smart meter power 
forecasting via deep learning. In Section 3, we provide an evaluation comparing several methods for power 
forecasting of smart meter data. Finally, in Section 4, we provide some concluding remarks. 

2. Our Approach 

In this section, we introduce our approach to forecasting smart meter power consumption.  
The power consumption data we are utilizing was published by the Bristol City Council, of Bristol, England on 

March 13, 2014 [6]. The data details nearly a year’s worth of measurements taken at half-hour intervals starting at 
00:30 and ending at 24:00 for each day provided. Moreover, to expand the dataset and apply additional and relevant 
features, historical temperature data were collected [7]. The collected temperature data spans the same time and 
dates of the matching power consumption data and pertains to the same location in Bristol, England.  

The data applied to machine learning models are quite significant, and determine the outcome of the prediction 
results in terms of accuracy, recall, precision, etc. In more detail, we are interested in predicting the bi-hourly power 
usage over a period of several days (11 to 21). Applying only the usage data (in    ), we have only a small volume 
of data to predict from. In contrast, by increasing the number of correlated features, we can increase the complexity 
of our dataset and potentially increase our prediction accuracy. 

Considering the usage dataset and additional temperature data detailed above, we can apply multiple features that 
have dependencies with power usage. Table I provides an example of the full input feature set. Note that we have 
additionally included the feature of Day Type, which is derived from the Date feature, where a “0” value indicates a 
weekday and a “1” indicates a weekend day. To compare the data at different levels of granularity, we define three 
distinct dataset groups (One for single feature input and two for multi-feature input) on which to train and evaluate 
our deep learning models.  

These groups are defined as follows: (i) Group I:  We select Power Usage as the single feature for training input, 
arranged by date and time. This data can be applied as a single input vector of a learning model. (ii) Group II:  We 
select four input features (Power Usage, Date, Time, and Day Type), which can be considered to be interdependent. 
Unlike Group I, this multi-feature dataset must be applied as a multi-dimensional matrix. (iii) Group III: We utilize 
the same features as Group II, with the addition of the Temperature feature. In this case, we want to evaluate 
whether adding further dependency factors will affect the accuracy. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2019.06.016&domain=pdf
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decreasing costs and increasing power of computation and electronic storage, IoT systems are already being 
deployed worldwide, especially for consumer use. In addition, IoT enables intelligent critical infrastructure systems, 
such as smart cities, smart grid, smart transportation, etc. that can be leveraged for efficiency and fairness in resource 
management on industrial scales [2, 3]. 

In the context of the smart home and smart grid, the ability to absorb and analyze massive amounts of big data 
provide for unprecedented levels of command and control for electrical load distribution, industrially and by 
individual users alike, supporting a new level of situation awareness. Moreover, emerging tools for machine learning 
have been used to achieve increasingly accurate predictions on continuous time-series data in a variety of 
applications. As the state-of-the-art to achieve highly accurate data analysis, deep learning applies significant 
coalitions of computing neurons to approximate dataset distributions. What’s more, deep learning has been applied 
to abstract problems and exceeded even human capabilities, and has been used to extract meaningful and hidden 
information from massive datasets [4, 5]. 

In this paper, we apply deep learning, via Recursive Neural Network (RNN) and Long Short-Term Memory 
layers, to address the problem of electrical load forecasting in the smart grid. Using a dataset comprised of real-
world smart meter readings, local temperature information, and weekday/weekend identification, we construct 
several deep learning models for comparison and evaluation. Moreover, our designed models each implement a 
different subset of the entire dataset for comparison of accuracies based on feature set complexity. 

To be specific, the key contributions of this paper are summarized as follows. First, we develop an approach to 
optimize deep learning for smart meter power consumption forecasting via feature selection and model design and 
consider three primary groups of distinct feature and model combinations. Second, we conduct a detailed 
experimental analysis of our developed groups, comparing the error and accuracy. Our experimental results 
demonstrate significantly accurate long-term prediction (as much as 21 days).  

The remainder of this paper is as follows. In Section 2, we detail our approach toward smart meter power 
forecasting via deep learning. In Section 3, we provide an evaluation comparing several methods for power 
forecasting of smart meter data. Finally, in Section 4, we provide some concluding remarks. 

2. Our Approach 

In this section, we introduce our approach to forecasting smart meter power consumption.  
The power consumption data we are utilizing was published by the Bristol City Council, of Bristol, England on 

March 13, 2014 [6]. The data details nearly a year’s worth of measurements taken at half-hour intervals starting at 
00:30 and ending at 24:00 for each day provided. Moreover, to expand the dataset and apply additional and relevant 
features, historical temperature data were collected [7]. The collected temperature data spans the same time and 
dates of the matching power consumption data and pertains to the same location in Bristol, England.  

The data applied to machine learning models are quite significant, and determine the outcome of the prediction 
results in terms of accuracy, recall, precision, etc. In more detail, we are interested in predicting the bi-hourly power 
usage over a period of several days (11 to 21). Applying only the usage data (in    ), we have only a small volume 
of data to predict from. In contrast, by increasing the number of correlated features, we can increase the complexity 
of our dataset and potentially increase our prediction accuracy. 

Considering the usage dataset and additional temperature data detailed above, we can apply multiple features that 
have dependencies with power usage. Table I provides an example of the full input feature set. Note that we have 
additionally included the feature of Day Type, which is derived from the Date feature, where a “0” value indicates a 
weekday and a “1” indicates a weekend day. To compare the data at different levels of granularity, we define three 
distinct dataset groups (One for single feature input and two for multi-feature input) on which to train and evaluate 
our deep learning models.  

These groups are defined as follows: (i) Group I:  We select Power Usage as the single feature for training input, 
arranged by date and time. This data can be applied as a single input vector of a learning model. (ii) Group II:  We 
select four input features (Power Usage, Date, Time, and Day Type), which can be considered to be interdependent. 
Unlike Group I, this multi-feature dataset must be applied as a multi-dimensional matrix. (iii) Group III: We utilize 
the same features as Group II, with the addition of the Temperature feature. In this case, we want to evaluate 
whether adding further dependency factors will affect the accuracy. 
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In applying deep learning to our problem, the proper network structures must be selected. In our case, we are 
conducting supervised learning to achieve accurate prediction [8]. In addition, we thus consider our problem as a 
regression problem to predict continuous, rather than discreet, output. 

In our scenario, we want to predict the power usage over several days. For the single feature dataset (Group I), the 
data structure is a vector, and thus we consider the application of a dense fully-connected network with a dense input 
layer. In contrast, the multi-feature input required for Groups II and III necessitates input in the form of a multi-
dimensional matrix. In this case, we select Long Short-Term Memory (LSTM) as the input layer and apply a 
Recursive Neural Network (RNN) structure to handle the matrices of time-series data. 

Table 1. Dataset Example of Selected Features 

ID Date Day Type Time Temperature Usage 

1 3/10/2013 1 00:30 34 24.2 

2 3/10/2013 1 01:00 34 26 

3 

4 

5 

6 

… 

3/10/2013 

3/10/2013 

3/10/2013 

3/10/2013 

… 

1 

1 

1 

1 

… 

01:30 

02:00 

02:30 

03:00 

… 

34 

34 

34 

34 

… 

30.8 

31.8 

31.5 

30.4 

… 

 

3. Evaluation 

In this section, we detail the evaluation of our designed Deep Learning-based prediction models. First, we provide 
an overview of our methodology, detailing the testing environment, model parameter tuning, and evaluation metrics. 
We then present and analyze the detailed power usage forecast results. 

3.1. Methodology 

 We now briefly introduce the key components of our testbed. We developed deep learning models in Python 
utilizing the TensorFlow machine learning back-end and Keras front-end API. The TensorFlow library also supports 
supervised learning, unsupervised learning, reinforcement learning, etc. In this case, we are interested in supervised 
learning, as noted above in Section III-B, using regression analysis. The testbed structure is shown in Figure 1.  

 

 

Figure 1. The Structure of our testbed 

In addition, Keras is a high-level python library that serves as a high-level API to support different machine 
learning libraries. Through Keras, developers can easily build complex neural networks transferable between 
machine learning back-ends and simplify the coding process.  

In this experiment, we have implemented deep recursive neural networks with dense (fully-connected) hidden 
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layers, and the initial input layers distinguish the groups (dense vs. LSTM). In fully-connected layers, each neuron is 
directly connected with the all the neurons in the previous layer [9]. In addition, each neuron applies an activation 
function on the data that it receives. The weight values of the activation function are randomly initiated and then 
updated through each back-propagation step as determined by the optimizer used for gradient descent. In our neural 
networks, we have selected ReLU (Rectified Linear Unit) as the activation function, which is an implementation of 
the rectifier function. Compared with the traditional Sigmoid activation function, the ReLU function simply sets the 
threshold to zero, and the computational overhead is reduced significantly. Moreover, research has shown that ReLU 
improves the learning performance [4, 8, 10]. 

Based on our three input datasets, we identify different neural network parameters, the most critical being the 
number of epochs and the batch size. The number of epochs defines the iteration time for each set of input, and 
increasing the number of epochs typically increases the accuracy of the result. However, the computation time will 
also increase [11]. Moreover, the impact on accuracy is not linear. From a preliminary evaluation, we note that the 
multi-feature input networks experience much faster convergence than the single feature input. Thus, we set the 
number of epochs of the single feature input model (Group I) as 3,000 and multi-feature input models (Group II and 
III) as 100. Concerning the batch size, this is defined as the size or volume of data that is input into the model at one 
time. Large batch sizes will cost more in terms of memory usage but can improve calculation speed. After 
preliminary evaluation, we set the batch size as 100 for all three groups.  

To evaluate our deep learning models, we use two primary metrics, Mean Absolute Error (MAE) and Mean 
Squared Error (MSE) [12]. These are loss functions that measure the accuracies of our prediction and are the two 
most common metrics to evaluate continuous variables. The formulas for MAE and MSE are given as:  

MAE =              
               MSE =             

  
     

where    is the     sample value,     is the     prediction, and   is the total number of predictions. More 
specifically, the MSE loss function demonstrates a greater change due to large prediction, as the square compounds 
the observed effect in comparison with MAE. In addition, we further evaluate the predictions through observation of 
the predicted fit with the true result. 

3.2. Evaluation results 

We now detail the results of our designed evaluation. In our experiments, we divided the total dataset into training 
and testing subsets to carry out supervised learning. In this case, the ratio of the training set to test set is 70% to 30%. 
After completing the training process, we predict the next 11 days and 21 days of power usage separately. 

In Figures 2 through 7, we can see the prediction results for each of the three dataset/model combinations (Groups 
I through III) for both 11 days and 21 days. Specifically, in each figure, we show the actual usage in blue and the 
predicted values in orange. Note that the x-axis represents Time, with each calculated prediction being 30 minutes 
apart, and the y-axis displays Power Usage (   ). 

Table 2. MAE and MSE Scores for Each Group. 

Group 

MAE (   ) MSE (    ) 

Training 
Testing 

Training 
Testing 

11 Days 21 Days 11 Days  21 Days 

I 7.2923 8.4615 13.5279 71.6415 84.6825 91.5792 

II 3.8553 4.3513 5.1388 41.3352 53.9723 62.4797 

III 2.1338 2.3997 2.5113 14.8872 16.3652 16.3991 

 
In Group I, the only feature that we have selected as input is Power Usage. After training our dense network 

model, we can see from Figures 2 and 3, for 11-day and 21-day predictions respectively for Group I, that the model 
is clearly under-fitting, and is not nearly accurate enough. Moreover, as we can see in Table II, Group I was the 
poorest performer with the highest training and test error. Specifically, the Group I Training MAE and MSE are 
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In applying deep learning to our problem, the proper network structures must be selected. In our case, we are 
conducting supervised learning to achieve accurate prediction [8]. In addition, we thus consider our problem as a 
regression problem to predict continuous, rather than discreet, output. 

In our scenario, we want to predict the power usage over several days. For the single feature dataset (Group I), the 
data structure is a vector, and thus we consider the application of a dense fully-connected network with a dense input 
layer. In contrast, the multi-feature input required for Groups II and III necessitates input in the form of a multi-
dimensional matrix. In this case, we select Long Short-Term Memory (LSTM) as the input layer and apply a 
Recursive Neural Network (RNN) structure to handle the matrices of time-series data. 

Table 1. Dataset Example of Selected Features 

ID Date Day Type Time Temperature Usage 

1 3/10/2013 1 00:30 34 24.2 

2 3/10/2013 1 01:00 34 26 

3 

4 

5 

6 

… 

3/10/2013 

3/10/2013 

3/10/2013 

3/10/2013 

… 

1 

1 

1 

1 

… 

01:30 

02:00 

02:30 

03:00 

… 

34 

34 

34 

34 

… 

30.8 

31.8 

31.5 

30.4 

… 

 

3. Evaluation 

In this section, we detail the evaluation of our designed Deep Learning-based prediction models. First, we provide 
an overview of our methodology, detailing the testing environment, model parameter tuning, and evaluation metrics. 
We then present and analyze the detailed power usage forecast results. 

3.1. Methodology 

 We now briefly introduce the key components of our testbed. We developed deep learning models in Python 
utilizing the TensorFlow machine learning back-end and Keras front-end API. The TensorFlow library also supports 
supervised learning, unsupervised learning, reinforcement learning, etc. In this case, we are interested in supervised 
learning, as noted above in Section III-B, using regression analysis. The testbed structure is shown in Figure 1.  

 

 

Figure 1. The Structure of our testbed 

In addition, Keras is a high-level python library that serves as a high-level API to support different machine 
learning libraries. Through Keras, developers can easily build complex neural networks transferable between 
machine learning back-ends and simplify the coding process.  

In this experiment, we have implemented deep recursive neural networks with dense (fully-connected) hidden 
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layers, and the initial input layers distinguish the groups (dense vs. LSTM). In fully-connected layers, each neuron is 
directly connected with the all the neurons in the previous layer [9]. In addition, each neuron applies an activation 
function on the data that it receives. The weight values of the activation function are randomly initiated and then 
updated through each back-propagation step as determined by the optimizer used for gradient descent. In our neural 
networks, we have selected ReLU (Rectified Linear Unit) as the activation function, which is an implementation of 
the rectifier function. Compared with the traditional Sigmoid activation function, the ReLU function simply sets the 
threshold to zero, and the computational overhead is reduced significantly. Moreover, research has shown that ReLU 
improves the learning performance [4, 8, 10]. 

Based on our three input datasets, we identify different neural network parameters, the most critical being the 
number of epochs and the batch size. The number of epochs defines the iteration time for each set of input, and 
increasing the number of epochs typically increases the accuracy of the result. However, the computation time will 
also increase [11]. Moreover, the impact on accuracy is not linear. From a preliminary evaluation, we note that the 
multi-feature input networks experience much faster convergence than the single feature input. Thus, we set the 
number of epochs of the single feature input model (Group I) as 3,000 and multi-feature input models (Group II and 
III) as 100. Concerning the batch size, this is defined as the size or volume of data that is input into the model at one 
time. Large batch sizes will cost more in terms of memory usage but can improve calculation speed. After 
preliminary evaluation, we set the batch size as 100 for all three groups.  

To evaluate our deep learning models, we use two primary metrics, Mean Absolute Error (MAE) and Mean 
Squared Error (MSE) [12]. These are loss functions that measure the accuracies of our prediction and are the two 
most common metrics to evaluate continuous variables. The formulas for MAE and MSE are given as:  

MAE =              
               MSE =             

  
     

where    is the     sample value,     is the     prediction, and   is the total number of predictions. More 
specifically, the MSE loss function demonstrates a greater change due to large prediction, as the square compounds 
the observed effect in comparison with MAE. In addition, we further evaluate the predictions through observation of 
the predicted fit with the true result. 

3.2. Evaluation results 

We now detail the results of our designed evaluation. In our experiments, we divided the total dataset into training 
and testing subsets to carry out supervised learning. In this case, the ratio of the training set to test set is 70% to 30%. 
After completing the training process, we predict the next 11 days and 21 days of power usage separately. 

In Figures 2 through 7, we can see the prediction results for each of the three dataset/model combinations (Groups 
I through III) for both 11 days and 21 days. Specifically, in each figure, we show the actual usage in blue and the 
predicted values in orange. Note that the x-axis represents Time, with each calculated prediction being 30 minutes 
apart, and the y-axis displays Power Usage (   ). 

Table 2. MAE and MSE Scores for Each Group. 

Group 

MAE (   ) MSE (    ) 

Training 
Testing 

Training 
Testing 

11 Days 21 Days 11 Days  21 Days 

I 7.2923 8.4615 13.5279 71.6415 84.6825 91.5792 

II 3.8553 4.3513 5.1388 41.3352 53.9723 62.4797 

III 2.1338 2.3997 2.5113 14.8872 16.3652 16.3991 

 
In Group I, the only feature that we have selected as input is Power Usage. After training our dense network 

model, we can see from Figures 2 and 3, for 11-day and 21-day predictions respectively for Group I, that the model 
is clearly under-fitting, and is not nearly accurate enough. Moreover, as we can see in Table II, Group I was the 
poorest performer with the highest training and test error. Specifically, the Group I Training MAE and MSE are 
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7.2923 and 71.6415, respectively, while the 11-day test MAE is 8.4615 and the MSE is 84.6825. Likewise, for the 
21-day forecast, the MAE is 13.5279 and the MSE is 91.5792. In this case, the prediction curve is too soft and does 
not match the fine details in the crest and trough regions. 

In adding more features and implementing the LSTM layers, the Group II model demonstrates much better 
accuracy, nearly halving the MAE and MSE results of the Group I model. Specifically, again as observed in Table II, 
the Training MAE result is 3.8553 and the MSE is 41.3352, in comparison with the Group I Training MAE and MSE 
of 7.2923 and 71.6415, respectively. Likewise, in Figures 4 and 5, the prediction curves achieve a noticeably better 
result. However, we can also observe that the prediction appears less accurate as time increases, with the details 
disappearing at around the seventh or eighth day. Thus, using only Date, Time, Day Type, and Power Usage features, 
accurate forecasting for the far future falls short. 

 
Finally, with the addition of the Temperature feature, we observe that Group III performs the best out of all three 

groups. As we can see in Figures 6 and 7, this model produces the most accurate prediction overall and also appears 
to maintain high accuracy over a long prediction window (21 days). Moreover, aside from having the lowest MAE 
and MSE scores of all groups in all categories, as observed in Table II, Group III’s MAE and MSE scores also 
display the lowest deviation and variance across Training and Testing. For example, the absolute lowest MAE and 
MSE scores overall were 2.1338 and 14.8872, respectively, in Group III Training. The highest scores in Group III 
were MAE and MSE of 2.5113 and 16.3991, respectively. Thus, adding temperature to the dataset further reduced 
MAE and MSE, increased the complexity of the model and added relevant data, and the predicted curve better fits 
the actual data. 
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Furthermore, Figures 8 through 11 show the MAE and MSE trends during the training and testing processes for 

Group III. These help to demonstrate that the LSTM layers and ReLU activation function can accelerate the fitting 
process. Note that the MAE scores for Group III converge around 20 to 30 epochs, as does MSE testing scores, 
while MSE training scores converge around 50-60 epochs, much quicker than what is observed for Group I. This 
indicates that our deep LSTM model is functional and efficient.  

4. Conclusion 

In this paper, we have focused on creating an efficient deep learning model to forecast smart meter power usage 
based on the power consumption history. In particular, we have applied real-world datasets, processing the data into 
three groups, each with different sets of features. Furthermore, we have considered two deep learning models to 
analyze the data, one a fully-connected DNN and the other an LSTM RNN. Via thorough experimental evaluation, 
the multi-feature input dataset trained in the LSTM RNN deep learning model provides the most rapid fitting speed 
and the highest load forecasting accuracy. In addition, we applied the best performing LSTM RNN model to predict 
power usage for other nearby buildings using same training datasets, and the prediction results are highly accurate as 
well, indicating that our proposed model is both adaptable and stable. 
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7.2923 and 71.6415, respectively, while the 11-day test MAE is 8.4615 and the MSE is 84.6825. Likewise, for the 
21-day forecast, the MAE is 13.5279 and the MSE is 91.5792. In this case, the prediction curve is too soft and does 
not match the fine details in the crest and trough regions. 

In adding more features and implementing the LSTM layers, the Group II model demonstrates much better 
accuracy, nearly halving the MAE and MSE results of the Group I model. Specifically, again as observed in Table II, 
the Training MAE result is 3.8553 and the MSE is 41.3352, in comparison with the Group I Training MAE and MSE 
of 7.2923 and 71.6415, respectively. Likewise, in Figures 4 and 5, the prediction curves achieve a noticeably better 
result. However, we can also observe that the prediction appears less accurate as time increases, with the details 
disappearing at around the seventh or eighth day. Thus, using only Date, Time, Day Type, and Power Usage features, 
accurate forecasting for the far future falls short. 
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MSE scores overall were 2.1338 and 14.8872, respectively, in Group III Training. The highest scores in Group III 
were MAE and MSE of 2.5113 and 16.3991, respectively. Thus, adding temperature to the dataset further reduced 
MAE and MSE, increased the complexity of the model and added relevant data, and the predicted curve better fits 
the actual data. 
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Group III. These help to demonstrate that the LSTM layers and ReLU activation function can accelerate the fitting 
process. Note that the MAE scores for Group III converge around 20 to 30 epochs, as does MSE testing scores, 
while MSE training scores converge around 50-60 epochs, much quicker than what is observed for Group I. This 
indicates that our deep LSTM model is functional and efficient.  
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