
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 154 (2019) 130–136

1877-0509 © 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the 8th International Congress of Information and Communication Technology,
ICICT 2019.
10.1016/j.procs.2019.06.020

10.1016/j.procs.2019.06.020

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the 8th International Congress of Information and Communication Technology,
ICICT 2019.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science00 (2018) 000–000

 www.elsevier.com/locate/procedia

2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 8th International Congress
of Information and Communication Technology

8th International Congress of Information and Communication Technology, ICICT 2019

Research on the Innovation of Protecting Intangible Cultural
Heritage in the "Internet Plus" Era

Ying Li a*, Peng Duan b
Suzhou University Shandong Business Institute

Abstract

This article combines the most fierce concept "Internet Plus" in modern era , From the perspective of "Internet Plus", it discusses
the protection mode, tries to explore the key points for the new model to construct “Internet + intangible cultural heritage
protection”, provides reasonable practical guidance, and finally creates innovative ideas and methods for the protection of
intangible cultural heritage. Simultaneously it makes academic contributions to the innovation and inheritance of Chinese
intangible cultural heritage.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of organizing committee of the 8th International Congress of Information and Communication
Technology (ICICT-2019).

Keywords: "Internet+", intangible cultural heritage, innovative model;

* aAbout the author: Li Ying (1985), female, Han nationality, Yantai, Shandong, Ph.D. student of Suzhou University, lecturer of information art

department of Shandong Business Institute, research direction: design science;
bDuan Peng (1983-), male, Han nationality, Yantai, Shandong, a lecturer at the Innovation and Entrepreneurship Center of Shandong Business

Institute, research direction: computer application technology;
Fund Project: Shandong University Humanities and Social Sciences Research Project “Investigation on the Visualization of Qilu Classic Folk

Art” (J16WH12); Shandong Provincial Social Science Planning Research Project “Qilu Folk Art Narrative Research Based on Information
Interaction Design” (18DWYJ01);Jiangsu Province Academic Degree College Graduate innovation projects "Design Art Research of Su Zuo
Latticed windows " (KYZZ16_0073)

Detailed address: Shandong Business Institute, Jinhai Road, High-tech Zone, Yantai, Shandong, China,zip code: 264670, contact number:
15954549212, E-mail: 280117550@qq.com

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science00 (2018) 000–000

 www.elsevier.com/locate/procedia

2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 8th International Congress of Information and Communication
Technology

9th International Congress of Information and Communication Technology (ICICT-2019)

MinFinder: A New Approach in Sorting Algorithm
Md. Shohel Ranaa,d , Md Altab Hossinb, S M Hasan Mahmudc,d,*, Hosney Jahane, A. K.

M. Zaidi Satterf, Touhid Bhuiyand
aSchool of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States

bDepartment of Management Science & Engineering, University of Electronic Science and Technology of China, 61173,China
cDepartment of Computer Science and Engineering, University of Electronic Science and Technology of China, 61173,China

dDepartment of Software Engineering, Daffodil International University, Dhaka, 1207, Bangladesh
eSchool of Computer Science, Sichuan University, 610065, China

fDepartment of Computer Science and Engineering, Daffodil International University, Dhaka, 1207, Bangladesh

Abstract

Sorting a set of unsorted items is a task that happens in computer programming while a computer program has to
follow a sequence of precise directions to accomplish that task. In order to find things quickly by making extreme
values easy to see, sorting algorithm refers to specifying a technique to arrange the data in a particular order or
format where maximum of communal orders is in arithmetic or lexicographical order. A lot of sorting algorithms
has already been developed and these algorithms have enhanced the performance in the factors including time and
space complexity, stability, correctness, definiteness, finiteness, effectiveness, etc. A new approach has been
proposed in this paper in sorting algorithm called MinFinder to overcome some of the downsides and performs
better compared to some conventional algorithms in terms of stability, computational time, complexity analysis.
© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Congress of Information and Communication
Technology (ICICT-2019).

Keywords: Sorting; MinFinder; Time and Space Complexity; Correctness; Definiteness; Finiteness; Effectiveness; Inplace; Stability; Loop
Invariant;

1. Introduction

A technique that is used for rearranging a set of unordered items into a finite sequence or order, like alphabetical,
lowest-to-highest value or longest-to-shortest distance is called sorting algorithm. In sorting algorithms, unordered

* Corresponding author. Tel.: +86-13086692052

E-mail address: hasan.swe@daffodilvarsity.edu.bd

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science00 (2018) 000–000

 www.elsevier.com/locate/procedia

2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 8th International Congress of Information and Communication
Technology

9th International Congress of Information and Communication Technology (ICICT-2019)

MinFinder: A New Approach in Sorting Algorithm
Md. Shohel Ranaa,d , Md Altab Hossinb, S M Hasan Mahmudc,d,*, Hosney Jahane, A. K.

M. Zaidi Satterf, Touhid Bhuiyand
aSchool of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States

bDepartment of Management Science & Engineering, University of Electronic Science and Technology of China, 61173,China
cDepartment of Computer Science and Engineering, University of Electronic Science and Technology of China, 61173,China

dDepartment of Software Engineering, Daffodil International University, Dhaka, 1207, Bangladesh
eSchool of Computer Science, Sichuan University, 610065, China

fDepartment of Computer Science and Engineering, Daffodil International University, Dhaka, 1207, Bangladesh

Abstract

Sorting a set of unsorted items is a task that happens in computer programming while a computer program has to
follow a sequence of precise directions to accomplish that task. In order to find things quickly by making extreme
values easy to see, sorting algorithm refers to specifying a technique to arrange the data in a particular order or
format where maximum of communal orders is in arithmetic or lexicographical order. A lot of sorting algorithms
has already been developed and these algorithms have enhanced the performance in the factors including time and
space complexity, stability, correctness, definiteness, finiteness, effectiveness, etc. A new approach has been
proposed in this paper in sorting algorithm called MinFinder to overcome some of the downsides and performs
better compared to some conventional algorithms in terms of stability, computational time, complexity analysis.
© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Congress of Information and Communication
Technology (ICICT-2019).

Keywords: Sorting; MinFinder; Time and Space Complexity; Correctness; Definiteness; Finiteness; Effectiveness; Inplace; Stability; Loop
Invariant;

1. Introduction

A technique that is used for rearranging a set of unordered items into a finite sequence or order, like alphabetical,
lowest-to-highest value or longest-to-shortest distance is called sorting algorithm. In sorting algorithms, unordered

* Corresponding author. Tel.: +86-13086692052

E-mail address: hasan.swe@daffodilvarsity.edu.bd

2 Md. Shohel Rana/ Procedia Computer Science00 (2018) 000–000

items are given as input and deliver ordered arrays or lists as output by performing precise actions on those items.
The most used application of sorting algorithms includes forming or displaying items by their price on different e-
commerce websites (e.g. amazon, eBay, etc.), defining the order of sites by alphanumeric order on a search engine
results page [1]. The importance of sorting is to search data can be improved while data is kept in a sorted way.
There are two types of sorting: (i) internal sorting where the number of items is small enough to fits into the main
memory, and (ii) external sorting where the number of items is so large that some of them reside on external storage
during the sort. In this paper, we consider several internal sorting algorithms (e.g. Bucket sort, Bubble sort, Insertion
sort, Selection sort, Heap sort, Merge sort) [2] in conjunction with some of the optimized algorithms (e.g. Parallel
Shell sort, Parallel Quicksort, Parallel and Multithreading Merge sort, etc.) [3]-[7].

In this paper, we propose a new approach for sorting a list of items in simple way (highest-to-lowest value)
without using conventional swapping concept that would consume memory. We also try to reduce the computational
time that uses only one looping control structure ‘for loop’ in conjunction with branching control structure ‘goto’
that causes the logic to jump to a specific place in the program to reuse. This proposed sorting algorithm will try to
overcome some basic drawbacks of conventional sorting algorithms.

The paper is systematized as follows: section 2 gives an overview of sorting algorithms; section 3 describes
related work; section 4 presents our proposed technique, including pseudo-code, flowchart, steps of procedure,
programming language implementation; section 5 presents comparison analysis including performance metrics, tools
and technology used; and section 6 gives conclusions and future work.

2. Overview of Sorting Algorithms

In order to sort any unsorted items in a particular order, computer researchers make sorting algorithms, no matter
what the original order was, and no matter how long the list is. Searching turn into easier when items are sorted, but
sorting takes a long time and can be tedious.

2.1. Types of Sorting Algorithms

Following are some of the types of sorting algorithms while developing a new algorithm for sorting task [8].
 In-place Sorting: The program does not require any extra space for comparison. (e.g. bubble sort)
 Not-in-place Sorting: Needs extra space more than or equal to the elements to sort. (e.g. merge sort)
 Stable Sorting: Does not alternate the sequence of similar item in which they appear after sorting the items.
 Not Stable Sorting: Alternates the sequence of similar item in which they appear after sorting the items.
 Adaptive Sorting: Takes advantage of already 'sorted' items, which means don’t try to re-order them into

sorted form while the items has already sorted.
 Non-Adaptive Sorting: Try to force every single item to be re-ordered by confirming their sortedness.

Some terms are generally devised while discussing sorting techniques:
 Increasing order: A sequence of values where every next element is greater than the previous. (e.g. 1, 2, 4,

5, 7, 9).
 Decreasing order: A sequence of values where every next element is smaller or less than the previous. (e.g.

9, 7, 5, 4, 2, 1).
 Non-increasing order: Occurs when the list of items contains duplicate values. A sequence of values where

every next element is less than or equal to but not greater than any previous element. (e.g. 9, 7, 5, 2, 2, 1).
 Non-decreasing order: Also occurs when the list of items contains duplicate values. A sequence of values

where every next element is greater than or equal to but not less than the previous one. (e.g. 1, 2, 2, 5, 7, 9).

2.2. Properties of Sorting Algorithms

Sorting is a process that can be implemented through several algorithms where any of these algorithms contains
the following criteria [9].

 Input: The algorithm must have input values from a definite set.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2019.06.020&domain=pdf

	 Md. Shohel Rana et al. / Procedia Computer Science 154 (2019) 130–136� 131

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science00 (2018) 000–000

 www.elsevier.com/locate/procedia

2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 8th International Congress
of Information and Communication Technology

8th International Congress of Information and Communication Technology, ICICT 2019

Research on the Innovation of Protecting Intangible Cultural
Heritage in the "Internet Plus" Era

Ying Li a*, Peng Duan b
Suzhou University Shandong Business Institute

Abstract

This article combines the most fierce concept "Internet Plus" in modern era , From the perspective of "Internet Plus", it discusses
the protection mode, tries to explore the key points for the new model to construct “Internet + intangible cultural heritage
protection”, provides reasonable practical guidance, and finally creates innovative ideas and methods for the protection of
intangible cultural heritage. Simultaneously it makes academic contributions to the innovation and inheritance of Chinese
intangible cultural heritage.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of organizing committee of the 8th International Congress of Information and Communication
Technology (ICICT-2019).

Keywords: "Internet+", intangible cultural heritage, innovative model;

* aAbout the author: Li Ying (1985), female, Han nationality, Yantai, Shandong, Ph.D. student of Suzhou University, lecturer of information art

department of Shandong Business Institute, research direction: design science;
bDuan Peng (1983-), male, Han nationality, Yantai, Shandong, a lecturer at the Innovation and Entrepreneurship Center of Shandong Business

Institute, research direction: computer application technology;
Fund Project: Shandong University Humanities and Social Sciences Research Project “Investigation on the Visualization of Qilu Classic Folk

Art” (J16WH12); Shandong Provincial Social Science Planning Research Project “Qilu Folk Art Narrative Research Based on Information
Interaction Design” (18DWYJ01);Jiangsu Province Academic Degree College Graduate innovation projects "Design Art Research of Su Zuo
Latticed windows " (KYZZ16_0073)

Detailed address: Shandong Business Institute, Jinhai Road, High-tech Zone, Yantai, Shandong, China,zip code: 264670, contact number:
15954549212, E-mail: 280117550@qq.com

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science00 (2018) 000–000

 www.elsevier.com/locate/procedia

2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 8th International Congress of Information and Communication
Technology

9th International Congress of Information and Communication Technology (ICICT-2019)

MinFinder: A New Approach in Sorting Algorithm
Md. Shohel Ranaa,d , Md Altab Hossinb, S M Hasan Mahmudc,d,*, Hosney Jahane, A. K.

M. Zaidi Satterf, Touhid Bhuiyand
aSchool of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States

bDepartment of Management Science & Engineering, University of Electronic Science and Technology of China, 61173,China
cDepartment of Computer Science and Engineering, University of Electronic Science and Technology of China, 61173,China

dDepartment of Software Engineering, Daffodil International University, Dhaka, 1207, Bangladesh
eSchool of Computer Science, Sichuan University, 610065, China

fDepartment of Computer Science and Engineering, Daffodil International University, Dhaka, 1207, Bangladesh

Abstract

Sorting a set of unsorted items is a task that happens in computer programming while a computer program has to
follow a sequence of precise directions to accomplish that task. In order to find things quickly by making extreme
values easy to see, sorting algorithm refers to specifying a technique to arrange the data in a particular order or
format where maximum of communal orders is in arithmetic or lexicographical order. A lot of sorting algorithms
has already been developed and these algorithms have enhanced the performance in the factors including time and
space complexity, stability, correctness, definiteness, finiteness, effectiveness, etc. A new approach has been
proposed in this paper in sorting algorithm called MinFinder to overcome some of the downsides and performs
better compared to some conventional algorithms in terms of stability, computational time, complexity analysis.
© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Congress of Information and Communication
Technology (ICICT-2019).

Keywords: Sorting; MinFinder; Time and Space Complexity; Correctness; Definiteness; Finiteness; Effectiveness; Inplace; Stability; Loop
Invariant;

1. Introduction

A technique that is used for rearranging a set of unordered items into a finite sequence or order, like alphabetical,
lowest-to-highest value or longest-to-shortest distance is called sorting algorithm. In sorting algorithms, unordered

* Corresponding author. Tel.: +86-13086692052

E-mail address: hasan.swe@daffodilvarsity.edu.bd

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science00 (2018) 000–000

 www.elsevier.com/locate/procedia

2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of the 8th International Congress of Information and Communication
Technology

9th International Congress of Information and Communication Technology (ICICT-2019)

MinFinder: A New Approach in Sorting Algorithm
Md. Shohel Ranaa,d , Md Altab Hossinb, S M Hasan Mahmudc,d,*, Hosney Jahane, A. K.

M. Zaidi Satterf, Touhid Bhuiyand
aSchool of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States

bDepartment of Management Science & Engineering, University of Electronic Science and Technology of China, 61173,China
cDepartment of Computer Science and Engineering, University of Electronic Science and Technology of China, 61173,China

dDepartment of Software Engineering, Daffodil International University, Dhaka, 1207, Bangladesh
eSchool of Computer Science, Sichuan University, 610065, China

fDepartment of Computer Science and Engineering, Daffodil International University, Dhaka, 1207, Bangladesh

Abstract

Sorting a set of unsorted items is a task that happens in computer programming while a computer program has to
follow a sequence of precise directions to accomplish that task. In order to find things quickly by making extreme
values easy to see, sorting algorithm refers to specifying a technique to arrange the data in a particular order or
format where maximum of communal orders is in arithmetic or lexicographical order. A lot of sorting algorithms
has already been developed and these algorithms have enhanced the performance in the factors including time and
space complexity, stability, correctness, definiteness, finiteness, effectiveness, etc. A new approach has been
proposed in this paper in sorting algorithm called MinFinder to overcome some of the downsides and performs
better compared to some conventional algorithms in terms of stability, computational time, complexity analysis.
© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Congress of Information and Communication
Technology (ICICT-2019).

Keywords: Sorting; MinFinder; Time and Space Complexity; Correctness; Definiteness; Finiteness; Effectiveness; Inplace; Stability; Loop
Invariant;

1. Introduction

A technique that is used for rearranging a set of unordered items into a finite sequence or order, like alphabetical,
lowest-to-highest value or longest-to-shortest distance is called sorting algorithm. In sorting algorithms, unordered

* Corresponding author. Tel.: +86-13086692052

E-mail address: hasan.swe@daffodilvarsity.edu.bd

2 Md. Shohel Rana/ Procedia Computer Science00 (2018) 000–000

items are given as input and deliver ordered arrays or lists as output by performing precise actions on those items.
The most used application of sorting algorithms includes forming or displaying items by their price on different e-
commerce websites (e.g. amazon, eBay, etc.), defining the order of sites by alphanumeric order on a search engine
results page [1]. The importance of sorting is to search data can be improved while data is kept in a sorted way.
There are two types of sorting: (i) internal sorting where the number of items is small enough to fits into the main
memory, and (ii) external sorting where the number of items is so large that some of them reside on external storage
during the sort. In this paper, we consider several internal sorting algorithms (e.g. Bucket sort, Bubble sort, Insertion
sort, Selection sort, Heap sort, Merge sort) [2] in conjunction with some of the optimized algorithms (e.g. Parallel
Shell sort, Parallel Quicksort, Parallel and Multithreading Merge sort, etc.) [3]-[7].

In this paper, we propose a new approach for sorting a list of items in simple way (highest-to-lowest value)
without using conventional swapping concept that would consume memory. We also try to reduce the computational
time that uses only one looping control structure ‘for loop’ in conjunction with branching control structure ‘goto’
that causes the logic to jump to a specific place in the program to reuse. This proposed sorting algorithm will try to
overcome some basic drawbacks of conventional sorting algorithms.

The paper is systematized as follows: section 2 gives an overview of sorting algorithms; section 3 describes
related work; section 4 presents our proposed technique, including pseudo-code, flowchart, steps of procedure,
programming language implementation; section 5 presents comparison analysis including performance metrics, tools
and technology used; and section 6 gives conclusions and future work.

2. Overview of Sorting Algorithms

In order to sort any unsorted items in a particular order, computer researchers make sorting algorithms, no matter
what the original order was, and no matter how long the list is. Searching turn into easier when items are sorted, but
sorting takes a long time and can be tedious.

2.1. Types of Sorting Algorithms

Following are some of the types of sorting algorithms while developing a new algorithm for sorting task [8].
 In-place Sorting: The program does not require any extra space for comparison. (e.g. bubble sort)
 Not-in-place Sorting: Needs extra space more than or equal to the elements to sort. (e.g. merge sort)
 Stable Sorting: Does not alternate the sequence of similar item in which they appear after sorting the items.
 Not Stable Sorting: Alternates the sequence of similar item in which they appear after sorting the items.
 Adaptive Sorting: Takes advantage of already 'sorted' items, which means don’t try to re-order them into

sorted form while the items has already sorted.
 Non-Adaptive Sorting: Try to force every single item to be re-ordered by confirming their sortedness.

Some terms are generally devised while discussing sorting techniques:
 Increasing order: A sequence of values where every next element is greater than the previous. (e.g. 1, 2, 4,

5, 7, 9).
 Decreasing order: A sequence of values where every next element is smaller or less than the previous. (e.g.

9, 7, 5, 4, 2, 1).
 Non-increasing order: Occurs when the list of items contains duplicate values. A sequence of values where

every next element is less than or equal to but not greater than any previous element. (e.g. 9, 7, 5, 2, 2, 1).
 Non-decreasing order: Also occurs when the list of items contains duplicate values. A sequence of values

where every next element is greater than or equal to but not less than the previous one. (e.g. 1, 2, 2, 5, 7, 9).

2.2. Properties of Sorting Algorithms

Sorting is a process that can be implemented through several algorithms where any of these algorithms contains
the following criteria [9].

 Input: The algorithm must have input values from a definite set.

132	 Md. Shohel Rana et al. / Procedia Computer Science 154 (2019) 130–136 Author name / Procedia Computer Science00 (2018) 000–000 3

 Output: The algorithm produces output values that are defined as the solution to the problem using input set.
 Definiteness: The steps to sort the unordered items is used in sorting algorithm must be defined precisely.
 Correctness: The algorithm must yield the correct output values for every finite set of inputs.
 Finiteness: The algorithm must yield the desired output after a predetermined numeral step.
 Effectiveness: The algorithm should accomplish each step exactly using a finite amount of time.
 Generality: It should have the applicability for all sorting related problems, not just for a specific set.

2.3. Standards for Selecting Sorting Algorithm

In order to select a sorting algorithm, consider the standards described in Table 1 that leads to take initial decision
while performing sorting task [10].

Table 1. Standards for sorting algorithm
Criteria Sorting algorithm

when less elements Insertion Sort
When elements are mostly in sorted form Insertion Sort
While considering worst-case scenarios Heap Sort
While considering average-case scenarios Quick Sort
When elements are from a dense universe Bucket Sort
While writing code as simple as possible Insertion Sort

3. Related Study

A study is essential in order to develop or make any sorting algorithm, because not all algorithm works efficiently
for the same problem.

Darpan Shah and Kuntesh Jani [11] proposed an improved sorting technique Dual-Sort Extraction Technique
(DSET) enhances the performance and efficiency of the algorithm that performs two-level sorting where in the first
level, the largest number is moved at the end of the dataset and in the second level, the smallest number is moved at
the start of the dataset. This procedure continues until the remaining unsorted dataset come into sorted form.

Smita Paira, et al. [12] proposed an iterative approach with two different concepts that lead to consume less space
in the stack and achieved better performance for large data compared to the recursive Divide and Conquer sorting
algorithms having a worst-case time complexity of O(n).

Khaled Thabit and Afnan Bawazir [13] proposed a sorting algorithm Min-Max Bidirectional Parallel Selection
Sort (MMBPSS) by using dynamic programming in order to reduce sorting time by increasing the amount of space
and to eliminate unnecessary iterations and also advised another new algorithm Min-Max Bidirectional Parallel
Dynamic Selection Sort (MMBPDSS) that can place two elements: minimum and maximum from two directions
using Dynamic Selection Sort algorithm in each round in parallel reducing the number of loop required for sorting
and saving almost 50% of computational time than classical selection sort.

Abdullah Sheneamer, et al. [14] proposed two techniques of sorting algorithm for natural number by using the
array indexing procedure and inserting that number into the proper index of the array without performing any
element comparisons and swapping where the first technique improves ArrayIndexed Sorting Algorithm by adding
negative numbers and the second technique that refers to Two Arrays-Indexed Sorting Algorithm for Natural
Numbers (TAISN). For large array size with same length of digits of input data, these two techniques achieved
better performance than the existing sorting algorithms of the O(n2).

Aayush Agarwal, et al. [15] proposed a new approach by finding the minimum and maximum element from the
array and place one the first and last position of the array respectively. Then they obtain new array by incrementing
the array index from the first position and decrementing from the last position.

P. Sumathi and V. V. Karthikeyan [16] proposed a new approach that faster than selection sort, Double Ended
Selection Sort Algorithm (DESSA). The DESSA inserts an array of elements and sort these items in the same array
(in-place) by finding maximum and minimum items and exchanges them with the last and first items respectively
with decreasing the size of the array by two for next call.

4 Md. Shohel Rana/ Procedia Computer Science00 (2018) 000–000

4. MinFinder Sorting Algorithm

The proposed MinFinder sorting algorithm mainly finds the element whose value is smallest from the list or array
and place it to the first position of the list or array by shifting elements one position to the right from the first
position to the position of smallest element found. Then find the second smallest element and place to the second
position using the same technique. This technique continues until all the unsorted elements place in the proper
position of the array (see figure 1). The MinFinder sorting algorithm actually follow the in-place sorting mechanism
where it sorts the elements within the same array without using extra memory or space and also the MinFinder
algorithm is a stable sorting because it keeps elements with equal keys in the same relative order in the output as
they appeared in the input. Figure 2 describes the flowchart of MinFinder.

Fig. 1. Working procedure of MinFinder Algorithm Fig. 2. Flowchart of MinFinder Algorithm

4.1. Procedure

The steps of working procedure of MinFinder Algorithm can be described as follows:
 Step 1: Initialize the variables A[n], L = A.length() – 1, NextIterPoint = 0, PositionOfMinValue = 0;
 Step 2: Assign a branching control statement Finder: for jumping to that specific place from anywhere and

select the current element of the array as minimum value that is defined by MinValue;
 Step 3: Perform iteration until array index is smaller than or equal to the length of array, starting from the

position of the current MinValue;

	 Md. Shohel Rana et al. / Procedia Computer Science 154 (2019) 130–136� 133 Author name / Procedia Computer Science00 (2018) 000–000 3

 Output: The algorithm produces output values that are defined as the solution to the problem using input set.
 Definiteness: The steps to sort the unordered items is used in sorting algorithm must be defined precisely.
 Correctness: The algorithm must yield the correct output values for every finite set of inputs.
 Finiteness: The algorithm must yield the desired output after a predetermined numeral step.
 Effectiveness: The algorithm should accomplish each step exactly using a finite amount of time.
 Generality: It should have the applicability for all sorting related problems, not just for a specific set.

2.3. Standards for Selecting Sorting Algorithm

In order to select a sorting algorithm, consider the standards described in Table 1 that leads to take initial decision
while performing sorting task [10].

Table 1. Standards for sorting algorithm
Criteria Sorting algorithm

when less elements Insertion Sort
When elements are mostly in sorted form Insertion Sort
While considering worst-case scenarios Heap Sort
While considering average-case scenarios Quick Sort
When elements are from a dense universe Bucket Sort
While writing code as simple as possible Insertion Sort

3. Related Study

A study is essential in order to develop or make any sorting algorithm, because not all algorithm works efficiently
for the same problem.

Darpan Shah and Kuntesh Jani [11] proposed an improved sorting technique Dual-Sort Extraction Technique
(DSET) enhances the performance and efficiency of the algorithm that performs two-level sorting where in the first
level, the largest number is moved at the end of the dataset and in the second level, the smallest number is moved at
the start of the dataset. This procedure continues until the remaining unsorted dataset come into sorted form.

Smita Paira, et al. [12] proposed an iterative approach with two different concepts that lead to consume less space
in the stack and achieved better performance for large data compared to the recursive Divide and Conquer sorting
algorithms having a worst-case time complexity of O(n).

Khaled Thabit and Afnan Bawazir [13] proposed a sorting algorithm Min-Max Bidirectional Parallel Selection
Sort (MMBPSS) by using dynamic programming in order to reduce sorting time by increasing the amount of space
and to eliminate unnecessary iterations and also advised another new algorithm Min-Max Bidirectional Parallel
Dynamic Selection Sort (MMBPDSS) that can place two elements: minimum and maximum from two directions
using Dynamic Selection Sort algorithm in each round in parallel reducing the number of loop required for sorting
and saving almost 50% of computational time than classical selection sort.

Abdullah Sheneamer, et al. [14] proposed two techniques of sorting algorithm for natural number by using the
array indexing procedure and inserting that number into the proper index of the array without performing any
element comparisons and swapping where the first technique improves ArrayIndexed Sorting Algorithm by adding
negative numbers and the second technique that refers to Two Arrays-Indexed Sorting Algorithm for Natural
Numbers (TAISN). For large array size with same length of digits of input data, these two techniques achieved
better performance than the existing sorting algorithms of the O(n2).

Aayush Agarwal, et al. [15] proposed a new approach by finding the minimum and maximum element from the
array and place one the first and last position of the array respectively. Then they obtain new array by incrementing
the array index from the first position and decrementing from the last position.

P. Sumathi and V. V. Karthikeyan [16] proposed a new approach that faster than selection sort, Double Ended
Selection Sort Algorithm (DESSA). The DESSA inserts an array of elements and sort these items in the same array
(in-place) by finding maximum and minimum items and exchanges them with the last and first items respectively
with decreasing the size of the array by two for next call.

4 Md. Shohel Rana/ Procedia Computer Science00 (2018) 000–000

4. MinFinder Sorting Algorithm

The proposed MinFinder sorting algorithm mainly finds the element whose value is smallest from the list or array
and place it to the first position of the list or array by shifting elements one position to the right from the first
position to the position of smallest element found. Then find the second smallest element and place to the second
position using the same technique. This technique continues until all the unsorted elements place in the proper
position of the array (see figure 1). The MinFinder sorting algorithm actually follow the in-place sorting mechanism
where it sorts the elements within the same array without using extra memory or space and also the MinFinder
algorithm is a stable sorting because it keeps elements with equal keys in the same relative order in the output as
they appeared in the input. Figure 2 describes the flowchart of MinFinder.

Fig. 1. Working procedure of MinFinder Algorithm Fig. 2. Flowchart of MinFinder Algorithm

4.1. Procedure

The steps of working procedure of MinFinder Algorithm can be described as follows:
 Step 1: Initialize the variables A[n], L = A.length() – 1, NextIterPoint = 0, PositionOfMinValue = 0;
 Step 2: Assign a branching control statement Finder: for jumping to that specific place from anywhere and

select the current element of the array as minimum value that is defined by MinValue;
 Step 3: Perform iteration until array index is smaller than or equal to the length of array, starting from the

position of the current MinValue;

134	 Md. Shohel Rana et al. / Procedia Computer Science 154 (2019) 130–136 Author name / Procedia Computer Science00 (2018) 000–000 5

 Step 4: Check each element of the array using the selected MinValue whether the MinValue is greater or
smaller to the current element. If the MinValue is greater than the current indexed element, then update
MinValue with the current element and also update the position of MinValue to compare the rest of the array
elements. minValue = A[i]; positionOfMinValue = i; Then check whether the current index is the last index
of the array. If the current index is not the last element, jump to Step 2.

 Step 5: Check the current index is the last index of the array which make sure that the selected MinValue is
compared with all the elements of the array. If true then shift array element one position to right from the
first element to the position of the smallest element and the selected smallest value assign to the first position
of the array. A[k] = A[k - 1] where k = positionOfMinValue to IterationPoint.

 Step 6: Update the next iteration point and position of min value and jump to Step 2 to repeat those steps
until all the items sorted in the array.

4.2. Pseudo-Code for MinFinder

MinFinder(A):

1. L = A.length – 1, NextIterPoint = 0,
PositionOfMinValue = 0

2. Finder:
3. minValue = A[PositionOfMinValue]
4. For i = PositionOfMinValue + 1 To L
5. If minValue > A[i]
6. minValue = A[i]
7. PositionOfMinValue = i
8. If i != L
9. Go to Step 2

10. If i = L
11. For j = PositionOfMinValue to

NextIterPoint
12. A[j] = A[j-1]
13. A[NextIterPoint] = minValue
14. NextIterPoint++
15. PositionOfMinValue =

NextIterPoint
16. Go to Step 2
17. Print(A)

Table 2. Complexity Analysis

Complexity
Name

Description Best Avg. Worst

Ω(1)

Θ(1)

O(1)

Constant

This is the best. Always takes the
same amount of time, regardless
of how much data there is.

Ω(log
n)

Θ(log
n)

O(log
n)

logarithmic

Pretty great. Halve the amount
of data with each iteration. If
you have 100 items, it takes
about 7 steps to find the answer.

Ω(n)

Θ(n)

O(n)

Linear

Good performance. If the data
contains 100 items, this does 100
units of work.

Ω(n
log
n)

Θ(n
log
n)

O(n
log n)

Linearithmic

Decent performance. This is
slightly worse than linear but not
too bad.

Ω(n2)

Θ(n2)

O(n2)

Quadratic

Kind a slow. If the data contains
100 items, this does 1002 =
10,000 units of work.

Ω(n3)

Θ(n3)

O(n3)

Cubic

Poor performance. If the data
contains 100 items, this does
1003 = 1,000,000 units of work.

Ω(2n)

Θ(2n)

О(2n)

Exponential

Very poor performance. Adding
just one bit to the input doubles
the running time.

Ω(n!)

Θ(n!)

O(n!)

Factorial

Intolerably slow. It literally
takes a million years to do
anything.

5. Results and Analysis

In order to sort any unsorted items in a particular order, computer researchers make sorting algorithms, no matter
what the original order was, and no matter how long the list is. Searching turn into easier when items are sorted, but
sorting takes a long time and can be tedious. Table 2 describes the performance based on the order of complexity
[17]. This section shows some comparison study using several metrics includes time and space complexity, loop
invariant, computational time, etc.

5.1. Time and Space Complexity

Let the number of elements in the array be n. In order to sort the first smallest element, the for loop iterates (n-1)
times. For second smallest element, the for loop iterates (n-2) times, and so on for every case including Best,

6 Md. Shohel Rana/ Procedia Computer Science00 (2018) 000–000

Average and Worst. Hence, the overall time complexity is O(n2) and the space complexity is O(1) because it takes
constant time for every cases.

= (n-1) + (n-2) + (n-3) +………………………+1 = n(n+1)/2 - n = n(n-1)/2 = O(n2)

5.2. Loop Invariant

Loop Invariant is the statement about an algorithm that remains true or valid. Three things need to show about
loop invariant for correctness of an algorithm [18]. In this section we try to define the loop invariant for showing or
proving the correctness of the MinFinder algorithm.

 Invariant: The algorithm maintains the loop invariant that at the start of each for loop, A[0, …, i-1] contains
the elements originally in the A[0, …, i-1] but is in sorted order.

 Initialization: Before the first iteration of the for loop i = PositionOfMinValue, the invariant trivially holds
A[0] that is a sorted array.

 Maintenance: During the i-th loop iteration it finds smallest value and its corresponding position (e.g.
MinValue = A[i] = A[PositionOfMinValue]) by comparing with rest of the elements. Then the inner for loop
is used to shift A[i-1], A[i-2], …, A[IterationPoint] from the position IterationPoint to the position
PositionOfMinValue. Then the MinValue is placed in the position IterationPoint so that A[IterationPoint] ≤
A[IterationPoint+1] ≤ … ≤ A[i-2]. Thus A[0, …, i-1] sorted + A[i]  A[0, …, i] sorted.

 Termination: The loop terminates when IterationPoint is the last index of the array means no element is left
to sort, then the invariant gives a useful information that, A[0, …, n-1] contains of elements originally in A[0,
…, n-1], but in sorted order.

5.3. Performance Results

This section describes the comparison among several sorting algorithms with our proposed MinFinder algorithm
in terms of Time and Space complexity, stable and inplace sorting, execution time shown in Table 3.

Table 3. Performance based on Time and Space Complexity, execution time, stability and inplace sorting

Sorting
Algorithm

Time Complexity Space
Complexity

(Worst)

Execution Time based on Input
Size (in milliseconds)

Stable?

Inplace?

Best Average Worst 500 1000 5000 10000

MinFinder Ω(n2) Θ(n2) O(n2) О(1) 0.204 0.738 16.846 66.472 Yes Yes

Bubble Ω(n) Θ(n2) O(n2) O(1) 0.215 0.507 17.485 67.425 Yes Yes

Bucket Ω(n) Θ(n) O(n2) O(n) 0.096 0.208 0.583 1.088 Yes No

Selection Ω(n2) Θ(n2) O(n2) O(1) 0.468 1.858 45.605 180.123 No Yes

Heap Ω(n log n) Θ(n log n) O(n log n) O(1) 0.036 0.067 0.437 1.02 No Yes

Merge Ω(n log n) Θ(n log n) O(n log n) O(n) 0.108 0.273 1.223 2.354 Yes No

Quick Ω(n) Θ(n log n) O(n2) O(n) 0.028 0.078 0.385 0.949 No Yes

Radix Ω(nk) Θ(nk) O(nk) O(n+k) 0.031 0.061 0.3153 0.614 Yes No

Insertion Ω(n) Θ(n2) О(n2) О(n) 0.113 0.466 11.569 45.689 Yes Yes

Odd-Even Ω(n log n) Θ(n2) O(n2) O(1) 0.217 0.844 17.489 85.035 Yes Yes

Shell Ω(n log n) Θ(n (log n)2) O(n (log n)2) O(1) 0.035 0.076 0.510 1.122 No Yes

Tree Ω(n log n) Θ(n log n) O(n2) O(n) 0.102 0.193 0.977 2.168 Yes Yes

	 Md. Shohel Rana et al. / Procedia Computer Science 154 (2019) 130–136� 135 Author name / Procedia Computer Science00 (2018) 000–000 5

 Step 4: Check each element of the array using the selected MinValue whether the MinValue is greater or
smaller to the current element. If the MinValue is greater than the current indexed element, then update
MinValue with the current element and also update the position of MinValue to compare the rest of the array
elements. minValue = A[i]; positionOfMinValue = i; Then check whether the current index is the last index
of the array. If the current index is not the last element, jump to Step 2.

 Step 5: Check the current index is the last index of the array which make sure that the selected MinValue is
compared with all the elements of the array. If true then shift array element one position to right from the
first element to the position of the smallest element and the selected smallest value assign to the first position
of the array. A[k] = A[k - 1] where k = positionOfMinValue to IterationPoint.

 Step 6: Update the next iteration point and position of min value and jump to Step 2 to repeat those steps
until all the items sorted in the array.

4.2. Pseudo-Code for MinFinder

MinFinder(A):

1. L = A.length – 1, NextIterPoint = 0,
PositionOfMinValue = 0

2. Finder:
3. minValue = A[PositionOfMinValue]
4. For i = PositionOfMinValue + 1 To L
5. If minValue > A[i]
6. minValue = A[i]
7. PositionOfMinValue = i
8. If i != L
9. Go to Step 2

10. If i = L
11. For j = PositionOfMinValue to

NextIterPoint
12. A[j] = A[j-1]
13. A[NextIterPoint] = minValue
14. NextIterPoint++
15. PositionOfMinValue =

NextIterPoint
16. Go to Step 2
17. Print(A)

Table 2. Complexity Analysis

Complexity
Name

Description Best Avg. Worst

Ω(1)

Θ(1)

O(1)

Constant

This is the best. Always takes the
same amount of time, regardless
of how much data there is.

Ω(log
n)

Θ(log
n)

O(log
n)

logarithmic

Pretty great. Halve the amount
of data with each iteration. If
you have 100 items, it takes
about 7 steps to find the answer.

Ω(n)

Θ(n)

O(n)

Linear

Good performance. If the data
contains 100 items, this does 100
units of work.

Ω(n
log
n)

Θ(n
log
n)

O(n
log n)

Linearithmic

Decent performance. This is
slightly worse than linear but not
too bad.

Ω(n2)

Θ(n2)

O(n2)

Quadratic

Kind a slow. If the data contains
100 items, this does 1002 =
10,000 units of work.

Ω(n3)

Θ(n3)

O(n3)

Cubic

Poor performance. If the data
contains 100 items, this does
1003 = 1,000,000 units of work.

Ω(2n)

Θ(2n)

О(2n)

Exponential

Very poor performance. Adding
just one bit to the input doubles
the running time.

Ω(n!)

Θ(n!)

O(n!)

Factorial

Intolerably slow. It literally
takes a million years to do
anything.

5. Results and Analysis

In order to sort any unsorted items in a particular order, computer researchers make sorting algorithms, no matter
what the original order was, and no matter how long the list is. Searching turn into easier when items are sorted, but
sorting takes a long time and can be tedious. Table 2 describes the performance based on the order of complexity
[17]. This section shows some comparison study using several metrics includes time and space complexity, loop
invariant, computational time, etc.

5.1. Time and Space Complexity

Let the number of elements in the array be n. In order to sort the first smallest element, the for loop iterates (n-1)
times. For second smallest element, the for loop iterates (n-2) times, and so on for every case including Best,

6 Md. Shohel Rana/ Procedia Computer Science00 (2018) 000–000

Average and Worst. Hence, the overall time complexity is O(n2) and the space complexity is O(1) because it takes
constant time for every cases.

= (n-1) + (n-2) + (n-3) +………………………+1 = n(n+1)/2 - n = n(n-1)/2 = O(n2)

5.2. Loop Invariant

Loop Invariant is the statement about an algorithm that remains true or valid. Three things need to show about
loop invariant for correctness of an algorithm [18]. In this section we try to define the loop invariant for showing or
proving the correctness of the MinFinder algorithm.

 Invariant: The algorithm maintains the loop invariant that at the start of each for loop, A[0, …, i-1] contains
the elements originally in the A[0, …, i-1] but is in sorted order.

 Initialization: Before the first iteration of the for loop i = PositionOfMinValue, the invariant trivially holds
A[0] that is a sorted array.

 Maintenance: During the i-th loop iteration it finds smallest value and its corresponding position (e.g.
MinValue = A[i] = A[PositionOfMinValue]) by comparing with rest of the elements. Then the inner for loop
is used to shift A[i-1], A[i-2], …, A[IterationPoint] from the position IterationPoint to the position
PositionOfMinValue. Then the MinValue is placed in the position IterationPoint so that A[IterationPoint] ≤
A[IterationPoint+1] ≤ … ≤ A[i-2]. Thus A[0, …, i-1] sorted + A[i]  A[0, …, i] sorted.

 Termination: The loop terminates when IterationPoint is the last index of the array means no element is left
to sort, then the invariant gives a useful information that, A[0, …, n-1] contains of elements originally in A[0,
…, n-1], but in sorted order.

5.3. Performance Results

This section describes the comparison among several sorting algorithms with our proposed MinFinder algorithm
in terms of Time and Space complexity, stable and inplace sorting, execution time shown in Table 3.

Table 3. Performance based on Time and Space Complexity, execution time, stability and inplace sorting

Sorting
Algorithm

Time Complexity Space
Complexity

(Worst)

Execution Time based on Input
Size (in milliseconds)

Stable?

Inplace?

Best Average Worst 500 1000 5000 10000

MinFinder Ω(n2) Θ(n2) O(n2) О(1) 0.204 0.738 16.846 66.472 Yes Yes

Bubble Ω(n) Θ(n2) O(n2) O(1) 0.215 0.507 17.485 67.425 Yes Yes

Bucket Ω(n) Θ(n) O(n2) O(n) 0.096 0.208 0.583 1.088 Yes No

Selection Ω(n2) Θ(n2) O(n2) O(1) 0.468 1.858 45.605 180.123 No Yes

Heap Ω(n log n) Θ(n log n) O(n log n) O(1) 0.036 0.067 0.437 1.02 No Yes

Merge Ω(n log n) Θ(n log n) O(n log n) O(n) 0.108 0.273 1.223 2.354 Yes No

Quick Ω(n) Θ(n log n) O(n2) O(n) 0.028 0.078 0.385 0.949 No Yes

Radix Ω(nk) Θ(nk) O(nk) O(n+k) 0.031 0.061 0.3153 0.614 Yes No

Insertion Ω(n) Θ(n2) О(n2) О(n) 0.113 0.466 11.569 45.689 Yes Yes

Odd-Even Ω(n log n) Θ(n2) O(n2) O(1) 0.217 0.844 17.489 85.035 Yes Yes

Shell Ω(n log n) Θ(n (log n)2) O(n (log n)2) O(1) 0.035 0.076 0.510 1.122 No Yes

Tree Ω(n log n) Θ(n log n) O(n2) O(n) 0.102 0.193 0.977 2.168 Yes Yes

136	 Md. Shohel Rana et al. / Procedia Computer Science 154 (2019) 130–136 Author name / Procedia Computer Science00 (2018) 000–000 7

6. Conclusion and Future Works

Sorting technique mainly depends on various environments like low time complexity, less memory and
simplicity. Yet, they have certain downsides, some of them lose their efficiency during handling the large data while
others may set supplementary upstairs by considering the cost and memory management. In this paper we propose a
new technique for sorting algorithm MinFinder, that is stable and inplace sorting by reducing the memory
consumption in conjunction with solving the sorting problem without using conventional swapping technique. It has
O(n2) time complexity and O(1) space complexity. According to the computational time and complexity analysis,
we observe that, the MinFinder takes less time than some popular conventional sorting algorithms including
Selection sort, Bubble sort, Odd-Even sort. This is proved by analytical and experimental point of view.

In the future, we will try to improve and optimize our proposed algorithm by finding out the simple ways so that
it can be applicable in various practical and real-life applications. We will also try to outspread our concepts to
devise more algorithms which will be supportive for sorting action as well as software technologies.

References

1. Margaret R. sorting algorithm. last accessed: 2018/10/12, link: https://whatis.techtarget.com/definition/sorting-algorithm.
2. Sorting. last accessed: 2018/10/12 link: https://www.cs.cmu.edu/~adamchik/15-121/lectures/Sorting%20Algorithms/sorting.html.
3. Baddar SA and Mahafzah B. Bitonic sort on a chained-cubic tree interconnection network. Journal of Parallel and Distributed Computing,

2014, pp. 1744-1761.
4. Mahafzah B. Performance assessment of multithreaded quicksort algorithm on simultaneous multithreaded architecture. Journal of

Supercomputing, 66(1), 2013, pp. 339-363.
5. Mokahal F. A Parallel Shell Sort Algorithm for Chained-Cubic Tree Interconnection Network. M.S. Thesis, Department of Computer

Science, The University of Jordan, 2017.
6. Tayeh RA. A Parallel Quicksort Algorithm on Optical Chained-Cubic Tree Interconnection Network. M.S. Thesis, Department of

Computer Science, The University of Jordan, 2017.
7. Nimer A. A Parallel Merge Sort Algorithm for Chained-Cubic Tree Interconnection Network. M.S. Thesis, Department of Computer

Science, The University of Jordan, 2016.
8. Data Structure - Sorting Techniques. last accessed: 2018/10/12, link: https://www.tutorialspoint.com/data-structures-algorithms/sorting-

algorithms.htm.
9. Zaveri M. Algorithms I: Searching and Sorting algorithms. last accessed: 2018/10/12, link: https://codeburst.io/algorithms-i-searching-and-

sorting-algorithms-56497dbaef20.
10. Pollice G, Selkow S and Heineman GT. Algorithms in a Nutshell. O'Reilly Media, Inc, ISBN: 9780596516246, October 2008.
11. Shah D and Jani K. A New Approach Toward Sorting Technique: Dual-Sort Extraction Technique (DSET). In: Mishra D., Nayak M., Joshi

A. (eds) Information and Communication Technology for Sustainable Development. Lecture Notes in Networks and Systems, vol 10.
Springer, Singapore, January 2018, pp. 219-227.

12. Paira S, Agarwal A, Alam S and Chandra S. Doubly Inserted Sort: A Partially Insertion Based Dual Scanned Sorting Algorithm. 2015,
DOI: 10.1007/978-81-322-2550-8_2.

13. Thabit K and Bawazir A. A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing Concepts.
JKAU: Comp. IT, vol. 2, 2013, pp. 27-44, DOI: 10.4197/ Comp. 2-2.

14. Sheneamer A, Alharthi A and Hazazi H. Two Approaches of Natural Numbers Sorting: TAISN and Improved Array-Indexed Algorithms.
International Journal of Computer Applications (0975 - 8887), vol. 121, No. 8, July 2015.

15. Agarwal A, Pardesi V and Agarwal A. A New Approach To Sorting: Min-Max Sorting Algorithm. International Journal of Engineering
Research and Technology (IJERT), ISSN: 2278-0181, vol. 2, issue. 5, May 2013, pp. 445-448.

16. Sumathi P and Karthikeyan VV. A New Approach for Selection Sorting. International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), ISSN: 2278-1323, vol. 2, issue. 10, October 2013, pp. 2720-2724.

17. Yerburgh E. A collection of sorting algorithms written in C. last accessed: 2018/10/14, link: https://github.com/eddyerburgh/c-sorting-
algorithms.

18. Cormen TH, Leiserson CE, Rivest RL and Stein C. Introduction to Algorithms. 3rd Edition, The MIT Press, Cambridge, Massachusetts,
London, England.

