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A B S T R A C T

Free and forced vibration and static analysis of corrugated-core sandwich plates are investigated in this study by
employing the classic finite strip method. The 3D corrugated-core plate is converted to a 2D orthotropic con-
tinuum model by considering some equivalent elastic constants. Various boundary conditions and different
features of these plates are explored and the geometric and mechanical factors influencing their responses, such
as displacements, rotations, moments and shear forces, are evaluated. Because of the significant effect of the
shear stiffness on the behavior of corrugated-core sandwich plates, the first order shear deformation theory
(FSDT) is used to analyze the plate. Due to the comparatively low shear to flexural stiffness ratio of these plates
compared to ordinary plates, the convergence of the results is relatively slow. Therefore, a fast numerical
technique such as finite strip method which yields effective reduction of calculation cost is employed. A MATLAB
program is developed to obtain the results and the validity of the proposed method is evaluated by comparing
the results with those presented by previous researches.

1. Introduction

Corrugated-core sandwich plate (CSP) is a three-layered composite
structure that consists of two main parts: a corrugated sheet (called the
core plate) in the middle of the sandwich plate which has a sinus or
trapezoidal cross section composed of high-strength or soft material,
and two rectangular flat thin sheets that are connected to the top and
bottom of the core, called the face plates. These plates are generally
made up of high-strength materials such as steel or carbon fiber.
Corrugated sandwich plates can be widely used in construction in-

dustries because of their simple handling and manufacturing compared
with other types of composite plates. Some of the advantages of CSPs
are as follows:

• By increasing the gap between the two face plates and placing the
core between them, the section moment of inertia and the load ca-
pacity of the structure also increase.
• The weight of CSP decreases due to the presence of empty spaces in
the core. These spaces also provide the possibility of passing the
facilities.
• The ability to absorb and deplete energy increases by using different
materials in cores.
• Carrying and installing CSPs is easier than ordinary plates.

• The ability to isolate heat and sound in such plates is reachable by
embedding insulating materials as core plate or in the middle of
empty spaces of the plate. It is notable that corrugated core sand-
wich plates are periodic structures, which are capable of developing
the wave stop bands (or band gaps) that acts like a directional fre-
quency filter which restricts the free propagation of elastic/acoustic
waves [1–4]. This effect can reduce the noise or vibration to some
extent.

Considering performance and economical aspects, the above men-
tioned features make the CSPs an ideal choice for using as slabs or shear
walls in structures. The most important obstacle against the widespread
usage of these plates in structures is the difficulty and the expenses of
welding of the joining plates. If an appropriate connection between the
constituent plates is not provided, the core and face plates cannot op-
erate as a single integrated unit and this may cause serious damages to
the structure. The difference between the cross section of the core in
two orthogonal directions (x and y) results in different flexural and
shear behavior in these two directions, which generally makes the
skeleton of the entire plate similar to the orthotropic ones.
The first theoretical works on structural sandwich constructions

were published by Gough et al. [5] and Williams et al. [6]. The ap-
plicable theories of flat sandwich plates with small deformations were
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proposed by Libove and Batdorf [7]. Based on the dual behavior of
these plates in their orthogonal directions, Hubka and Libove [8] pro-
posed some elastic constants for reducing 3D sandwich plate to a two-
dimensional orthotropic equivalent continuum. This detailed paper laid
the foundation for further researches in this field. Their method has
proper precision and gives close results to experimental tests. In this
approach, the governing equations of the CSPs are obtained by simu-
lating them with continuous orthotropic structures. Caillerie et al. [9]
and Bourgeois et al. [10] examined periodic plates by studying one cell
of the entire plate and presented their homogenization methods. By
changing the core shape, one can achieve different properties. Fung
et al. [11,12] investigated the C-core and Z-core sandwich plates and
derived elastic constants for modeling these kinds of sandwich plates.
He et al. [13] presented a semi-analytical method for bending analysis
of corrugated-core, honeycomb-core and X-core sandwich panels. They
determined the maximum deflection of these plates by employing
Fourier series and the Galerkin approach along with the finite element
analysis. In their paper, the discrete geometric nature of the core is
taken into account by considering the core plates as beams and the
sandwich panel as composite structure consists of plates and beams
with proper displacement compatibility. Lok et al. [14] proposed elastic
constants for a truss-core sandwich plate and presented a closed form
solution along with the 3D finite element modeling. These plates are
very much alike the corrugated-core sandwich plates. The main dif-
ference in their sections is the absence of horizontal part in the section
of truss-core sandwich plate which separates the elements of the core
plate. Liang et al. [15] presented an optimal design for corrugated
plates exposed to blast loads. Chang et al. [16] analyzed corrugate
sandwich plates using the first order shear deformation theory for the
equivalent orthotropic thick plate. Using Navier’s method, they pre-
sented an elasto-plastic analysis of CSPs with different geometric
parameters. Buannic et al. [17] and Biancolini [18] investigated the
bending behavior of CSP using homogenization and finite element
methods. Isaksson et al. [19] mathematically divided the corrugated
panel into a number of thin layers each of which possesses a unique
effective elastic modulus. The layers are then assembled in order to
analyze the corrugated panels as a plate with equivalent mechanical
properties. To reduce the anisotropic performance of the structure,
Seong et al. [20] introduced a kind of bi-directional corrugated plate
which showed quasi-isotropic behaviors in bending. Different methods
have been proposed by researchers for modeling the CSPs or calculating
the elastic constants. Bartolozzi et al. [21] proposed a general analytical
method for obtaining the equivalent constants for various corrugation
geometries. Also, Boorle et al. [22] studied the influence of some geo-
metric parameters on the bending and displacement of a truss-core
plate with all simply supported boundary conditions. The vibration of a
simply supported truss-core sandwich plate was investigated by Lok
et al. using a double series solution to obtain closed form results [23].
Free vibration analysis of corrugated-core sandwich plates was done by
Peng et al. [24] using a meshfree Galerkin method based on the first
order shear deformation theory. The corrugated-core sandwich plates
have a low weight to strength ratio due to their hollow structure. Be-
cause of the broad application of these plates in building and ship
structures and different industrial tools, choosing the optimal geometric
characteristics for them is an important issue. Also, the dynamic be-
havior of CSPs is a sensitive matter due to their empty spaces which
reduce the total density of the plate and eventually affect the dynamic
response of the CSP.
Numerous numerical methods are developed over the years for

static and dynamic analysis of plates, through which the finite element
and finite strip methods are the most powerful ones. The finite strip
method employs fewer degrees of freedom rather than FEM and pro-
vides more efficient formulations for plate analysis under different
loads and boundary conditions. Moreover, the speed of the method
when using a large number of harmonic terms and elements is a sen-
sible advantage. As it will be discussed later in the paper, employing

higher terms of harmonic series in CSPs is inevitable to achieve the
desired convergence.
In this paper, free and forced vibration and static analysis of cor-

rugated-core sandwich plates subjected to static and dynamic out of
plane loadings are investigated by developing the finite strip method
based on first order shear deformation theory. The effect of several
geometric and mechanical parameters on maximum displacements of
the corrugated-core sandwich plates is presented in order to approach
an efficient design. Also, the convergence of the results, displacements
curves, bending moment, transverse shear and rotation diagrams, FRF1

graphs along with the free vibration diagrams of CSPs with various
geometric factors and different boundary conditions are parametrically
studied. To the best knowledge of the authors, the finite strip method is
employed for the first time to analyze the CSPs, including a compre-
hensive study on diverse boundary conditions in static and dynamic
problems. The FRF diagrams of CSPs, which are not considered else-
where, are also presented in this paper.

2. Theory

The required relations for modeling the corrugated-core sandwich
plate as well as the finite strip formulation based on first order shear
deformation theory are presented in this section.

2.1. Equivalent elastic constants

Consider a corrugated-core sandwich plate in a Cartesian coordinate
and its equivalent orthotropic plate as shown in Fig. 1a and b, respec-
tively. The bending stiffness along the x-axis, called the strong direc-
tion, represented by Dx is obtained as follows:

= +D E I E Ix f f c c (1)

in which, Ef and Ec are the elastic moduli of the face plates and core
plate, respectively. Also, If and Ic are the moments of inertia of the cross
section for the face plate and core plate, respectively. These moments of
inertia are defined as:

= +I Pt h
Pt
3f f

f2
3

(2)

= + +I f t h t h f t
2 6sin( ) 6c
c c c c c

2 3 3

(3)

The parameters of Eqs. (2) and (3) which are schematically shown
in Fig. 2a are defined as follows:

P: the half-width of each unit (one corrugation)
tf : face plate thickness
tc: core plate thickness
f: the length of horizontal part of the core plate including the arced
parts (crown)
: the corrugation (or inclination) angle

hc: the depth of the corrugation, equals to the distance from center
to center of the horizontal parts of core plate (web height).
h: the depth of the plate, equals to the distance from center to center
of the face plates.

The bending stiffness along the y-axis, called the weak direction,
represented by Dy is also calculated from Eq. (4):

= ( )D
E I

1 1
y

f f

f
E I
D

2 f f

x (4)

in which the f is the Poisson’s ratio of the face plates.

1 Frequency Response Function
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The twisting stiffness, Dxy, is also obtained as follows:

=D G I2xy f f (5)

in whichGf is the shear modulus of the face plates. Note that in order to
use If and Ic in Eqs. (1), (4), and (5), they must be considered for one
unit of the length and therefore they have to be divided by 2P.
The transverse shear stiffness in the planes perpendicular to the

corrugation axis, Dqy, is given by Eq. (6):

=D Sh E t
h1qy

c

c

c

c
2

3

(6)

where c is the Poisson’s ratio of the core plate. Moreover, S is a non-
dimensional parameter which could be calculated based on the rela-
tions presented in the Appendix (see also Fig. 2b).
The transverse shear stiffness in the planes parallel to the corruga-

tion axis, Dqx , is given by:

=D G It h
P Qds

qx
c c

L
0 (7)

in whichGc is the shear modulus of the core plate. I is the total moment
of inertia and Q is the static moment about the neutral axis of 2P width
of the cross section parallel to y-z plane. Also, L is the length of one
corrugation leg and the integral is calculated on one leg of the corru-
gation.
In most cases the contribution of the core for carrying the bending

moment is negligible, so it could be assumed that the entire bending
moment is tolerated by the face plates. The assumption which states
that the normal stresses induced by bending, solely apply on the face
plates results in a constant shear flow in the section. Therefore, the
values of I, Q, and consequently Dqx are approximately calculated as
follows:

I Pt hf
2 (8a)

Qds Pt hL
L

f0 (8b)

= =D G It h
P Qds

G Pt h t h
P Pt hL

G t h
PL

( )
( )qx

c c
L

c f c

f

c c

0

2 2

(8c)

The shear stiffness constants presented by Libove and Hubka [8]
directly connects the shear stresses to the rotations caused by them.
Hence, the shear correction factor in FSDT is not required in the cal-
culations. In fact, their method does not consider the shear stress

x y

z

)b()a(

b 
a 

Fig. 1. An overview of converting a CSP to equivalent orthotropic plate: (a) corrugated-core sandwich plate and (b) Equivalent orthotropic plate.

(b)(a)

2P

tc

f

θ

h hc

tf

ds 

Fig. 2. The view of one unit of corrugated-core sandwich plate in y-z plane.

Fig. 3. An overview of dividing a plate with length a and width b into finite
strips.

Table 1
Boundary conditions at plate edges.

= =x x b0 or = =y y a0 or

B.Cs x y w Mx x y w My

Simple (S) – 0 0 0 0 – 0 0
Clamped (C) 0 0 0 – 0 0 0 –
Free (F) – – – 0 – – – 0
Guided (G) 0 0 – – 0 0 – –
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distribution as a constant stress but the shear strain distribution is
considered linear just like the FSDT. It is also possible to define
equivalent flexural and shear moduli for the hypothetical orthotropic
plate by equating the equations presented in Ref. [8] with the re-
lationships used to calculate the elastic constants of an ordinary plate.
Using equations presented in this section, the CSP is converted to an
equivalent orthotropic plate.

2.2. Displacement field

The Reissner-Mindlin [25,26] plate theory, also known as the first
order shear deformation theory, states that each section of the plate
remains straight but not necessarily orthogonal to the middle plane
after deformation. This assumption makes it possible to use C0 con-
tinuous elements, thus there is no need to satisfy the first derivative of
variables in boundary conditions. In fact, since the FSDT takes the shear
deformations of the plate into account, the total rotation in a section
will be the sum of bending and shear rotations and can be considered as
an independent variable.
The displacement field associated with this theory consists of two

in-plane components, u, v and one out of plane component, w. The total
rotations about the y and x axis are represented by x y( , )x and x y( , )y ,
respectively and the vertical out of plane displacement is shown by
w x y( , )0 . Therefore, the displacement field is expressed as:

= +u x y z u x y z x y( , , ) ( , ) ( , )x0 (9a)

= +v x y z v x y z x y( , , ) ( , ) ( , )y0 (9b)

=w x y z w x y( , , ) ( , )0 (9c)

in which x y( , )x and x y( , )y are defined as:

=x y w
x

( , )x x
0

(10a)

=x y w
y

( , )y y
0

(10b)

where x and y are shear rotations and w x/0 and w y/0 are
bending rotations.

Table 2
Convergence study of maximum deflection (mm) for different inclination angles and different number of harmonic terms (m).

m B.Cs/Angle

SSSS CCCC

50° 70° 90° 50° 70° 90°

1 0.0033425 0.0058327 0.0076371 0.0016140 0.0031115 0.0037829
3 0.0032553 0.0053573 0.0066929 0.0015386 0.0025656 0.0028004
5 0.0032702 0.0054752 0.0069808 0.0016240 0.0028411 0.0032635
7 0.0032653 0.0054302 0.0068564 0.0016086 0.0027123 0.0030057
9 0.0032675 0.0054517 0.0069204 0.0016366 0.0028062 0.0031725
11 0.0032663 0.0054399 0.0068836 0.0016300 0.0027506 0.0030594
13 0.0032670 0.0054471 0.0069065 0.0016438 0.0027972 0.0031428
15 0.0032666 0.0054424 0.0068914 0.0016402 0.0027665 0.0030804
17 0.0032669 0.0054456 0.0069018 0.0016484 0.0027942 0.0031300
19 0.0032667 0.0054433 0.0068943 0.0016461 0.0027748 0.0030907
21 0.0032668 0.0054450 0.0068999 0.0016516 0.0027931 0.0031233
23 0.0032667 0.0054437 0.0068957 0.0016499 0.0027797 0.0030964
25 0.0032668 0.0054447 0.0068990 0.0016539 0.0027927 0.0031195
27 0.0032667 0.0054439 0.0068964 0.0016527 0.0027829 0.0030999
29 0.0032668 0.0054446 0.0068985 0.0016556 0.0027927 0.0031171
31 0.0032667 0.0054440 0.0068967 0.0016547 0.0027852 0.0031022
33 0.0032668 0.0054445 0.0068982 0.0016569 0.0027927 0.0031156
35 0.0032667 0.0054441 0.0068970 0.0016562 0.0027869 0.0031039
Dqy
Dy

54.8 5.3 1.6 54.8 5.3 1.6

Dqx
Dx

44.1 34.9 28.4 44.1 34.9 28.4

(%) 2.27 6.66 9.69 −2.62 10.43 17.95

Table 3
Maximum deflections of corrugated-core sandwich plate.

(deg)
hc
tc

tc
tf

P
hc

w (mm)

Ref. [16] Present study

60 10 0.6 1 0.095 0.0947
1 1.2 0.191 0.1910
1.25 1.4 0.280 0.2795

70 20 0.6 1 0.640 0.6388
1 1.2 1.312 1.3114
1.25 1.4 1.948 1.9476

Table 4
Bending moments at the center of the of corrugated-core sandwich plate.

θ (deg) tc
tf

P
hc

Ref. [16] Present study

( )Mx
kN·m

m ( )My
kN·m

m ( )Mx
kN·m

m ( )My
kN·m

m

60 0.6 1 1.91 5.16 1.907 5.158
1 1.2 2.01 5.14 2.011 5.135
1.25 1.4 2.12 5.10 2.129 5.096

70 0.6 1 2.05 5.07 2.051 5.067
1 1.2 2.19 5.04 2.199 5.039
1.25 1.4 2.35 4.99 2.365 4.982

Table 5
Natural frequencies of isotropic plate for five different modes (t/b=0.1).

a/b Reference Mode number

1 2 3 4 5

1 Present study 1.9317 4.6083 4.6089 7.0718 8.6158
Ref. [31] 1.9317 4.6084 4.6084 7.0716 8.6162

2.5 Present study 1.1364 1.5936 2.3396 3.3533 3.8829
Ref. [31] 1.1364 1.5936 2.3397 3.3533 3.8826
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2.3. Finite strip method

The finite strip method is based on a mathematical approximation of
the exact solution of the problem. The method was first proposed by
Cheung [27] for analyzing simple structures. Over the years, through
the development of more advanced forms of the finite strip method, it
became a powerful and fast tool for investigating more complex
structures [28,29]. However, the domain of the problems covered by
FSM is more limited than FEM. In this method, the plate is divided into
a number of strips in transverse direction. By applying the FSDT to this
method, each strip has three nodal lines and every nodal line has three
unknown coefficients (Fig. 3). The displacement field of the plate is
estimated by two kinds of functions:

a. Continuous harmonic series that satisfy the transverse boundary
conditions of the plate

b. Polynomial interpolation functions in transverse direction

Since the problem has C0-continuity in this study, the Lagrange
shape functions are used to interpolate in-plane and out of plane dis-
placements in the transverse direction. From now on, as shown in
Fig. 3, the width of plate is assumed to be along the transverse direction
(x-axis) which is divided into strips while the length is the dimension
along the harmonic shape functions (along y-axis in Fig. 3). Therefore,
each variable can be estimated as:

= = + +
= =

= = =

= =

x y C Y C C C Y
C Y N

( , ) ( )
[ ][ ] [ ][ ]

x n
r

i i xi n n
r

x x x n

n
r

x n n
r

n x

1 1
3

1 1 1 2 2 3 3

1 1 (11a)

= = + +

= =
= = =

= =

x y C U C C C U

C U M

( , ) ( )

[ ][ ] [ ][ ]
y n

r
i i yi n n

r
y y y n

n
r

y n n
r

n y

1 1
3

1 1 1 2 2 3 3

1 1

(11b)

= = + +
= =

= = =

= =

w x y C w Y C w C w C w Y
C w Y N w

( , ) ( )
[ ][ ] [ ][ ]

n
r

i i i n n
r

n

n
r

n n
r

n

1 1
3

1 1 1 2 2 3 3

1 1 (11c)

in which

= =
= =

N N N N C Y C Y C Y
M M M M C U C U C U

[ ] [ , , ] [ , , ]
[ ] [ , , ] [ , , ]

n n n n n n n

n n n n n n n

1 2 3 1 2 3

1 2 3 1 2 3 (12)

where C1 to C3 are Lagrange shape functions and can be written as:

= +C x x
b

x
b

( ) 2 3 1
s s

1
2

2 (13a)

=C x x
b

x
b

( ) 4 4
s s

2
2

2 (13b)

Table 6
Effect of Rc on the equivalent elastic constants and the maximum displacement of the corrugated-core sandwich plate.

Rc/hc w (mm) Dx (N⋅m) Dy (N⋅m) Dxy (N⋅m) Dqx (N/m) Dqy (N/m)

0 0.1675 1.918× 107 1.528× 107 1.152× 107 7.303× 108 2.107× 108

0.03 0.1672 1.918× 107 1.528× 107 1.152× 107 7.333× 108 2.130× 108

0.06 0.1668 1.918× 107 1.528× 107 1.152× 107 7.364× 108 2.162× 108

0.09 0.1664 1.918× 107 1.528× 107 1.152× 107 7.394× 108 2.204× 108

0.12 0.1659 1.918× 107 1.528× 107 1.152× 107 7.425× 108 2.255× 108

0.15 0.1653 1.918× 107 1.528× 107 1.152× 107 7.456× 108 2.315× 108

0.18 0.1647 1.918× 107 1.528× 107 1.152× 107 7.487× 108 2.383× 108

Table 7
Effect of P on the equivalent elastic constants and maximum displacement of the corrugated-core sandwich plate.

P/hc w (mm) Dx (N⋅m) Dy (N⋅m) Dxy (N⋅m) Dqx (N/m) Dqy (N/m)

1 0.1649 1.918×107 1.528× 107 5.760×106 7.477× 108 2.359× 108

1.2 0.1916 1.934×107 1.529× 107 5.760×106 5.515× 108 1.055× 108

1.4 0.2299 1.946×107 1.529× 107 5.760×106 4.240× 108 5.856× 107

1.6 0.2786 1.955×107 1.530× 107 5.760×106 3.363× 108 3.717× 107

1.8 0.3368 1.962×107 1.530× 107 5.760×106 2.734× 108 2.571× 107

2 0.4032 1.968×107 1.531× 107 5.760×106 2.267× 108 1.887× 107

Table 8
Effect of the inclination angle on the equivalent elastic constants and maximum displacement of the corrugated-core sandwich plate.

θ (deg) w (mm) Dx (N⋅m) Dy (N⋅m) Dxy (N⋅m) Dqx (N/m) Dqy (N/m)

50 0.1493 1.808× 107 1.521× 107 1.152× 107 7.967× 108 8.329× 108

55 0.1535 1.865× 107 1.525× 107 1.152× 107 7.716× 108 4.956× 108

60 0.1649 1.918× 107 1.528× 107 1.152× 107 7.477× 108 2.359× 108

65 0.1824 1.966× 107 1.530× 107 1.152× 107 7.247× 108 1.302× 108

70 0.2053 2.013× 107 1.533× 107 1.152× 107 7.027× 108 8.184× 107

75 0.2331 2.058× 107 1.535× 107 1.152× 107 6.814× 108 5.629× 107

80 0.2651 2.102× 107 1.537× 107 1.152× 107 6.608× 108 4.121× 107

85 0.3010 2.146× 107 1.539× 107 1.152× 107 6.408× 108 3.156× 107

90 0.3406 2.191× 107 1.542× 107 1.152× 107 6.213× 108 2.498× 107

Table 9
Comparison between the cross section area of CSP and ordinary plate with the
same maximum deflection.

h (m)c w (mm) A (cm )2

CSP Ordinary plate

0.1 0.225 86 229
0.12 0.165 88 254
0.14 0.124 90 282
0.16 0.095 92 306
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=C x x
b

x
b

( ) 2
s s

3
2

2 (13c)

in which bs is the width of each strip. Also =Y Y y( )n n is the shape
function along the longitudinal direction corresponding to nth mode
and Un is the first derivative of Yn. The function Yn are assumed sin n y

a
and sin sinn y

a
y

a for simply supported and clamped edges, respectively.
The composition of the variables for nth mode for formulating the
computer program is as follows:

=x y N N N( , ) [ 0 0 0 0 0 0][ ]x n n n x1 2 3 (14a)

=x y M M M( , ) [0 0 0 0 0 0][ ]y n n n y1 2 3 (14b)

=w x y N N N w( , ) [0 0 0 0 0 0 ][ ]n n n1 2 3 (14c)

Unknown vectors [ ]x , [ ]y and w[ ] for each strip are written as:

=[ ] [ 0 0 0 0 0 0]x x x x
T

1 2 3 (15a)

=[ ] [0 0 0 0 0 0]y y y y
T

1 2 3 (15b)

=w w w w[ ] [0 0 0 0 0 0 ]T1 2 3 (15c)

2.3.1. Static analysis
The strain energy, U, for an elastic strip can be calculated as:

=U dxdyB DB1
2

a b T T
0 0

s

(16)

in which, B and D are strain and property matrices, respectively and is
the displacement vector.
Also, the potential energy, V, due to the external lateral load,

P x y( , )z , can be written as:

=V P x y dxdyN ( , )
a b

z
T T

0 0

s

(17)

in which N denotes the shape function vector which consists of all terms
of series expansion.
The total potential energy of the plate, , is defined as:

= +V U (18)

The principle of the minimum potential energy requires that:

= =dxdy P x y dxdyB DB N 0( , )
a b T a b T

z0 0 0 0

s s

(19)

According to Eq. (19), one can define the stiffness matrix and load
vector for each strip corresponding mth and nth modes.

= P x y dxdyF N ( , )n
a b

n
T

z0 0

s

(21)

= dxdyK B DBmn
a b

m
T

n0 0

s

(20)

The strain matrix for mth mode, Bm
T , is written as:

Table 10
Maximum deflection of CSPs for different web thicknesses and inclination angles ( =t 1 cmf ).

θ (deg) tc (mm) w (mm) Dx (N⋅m) Dy (N⋅m) Dxy (N⋅m) Dqx (N/m) Dqy (N/m)

50 6 0.1658 1.585× 107 1.414× 107 1.076× 107 4.467× 108 4.112× 108

8 0.1562 1.696× 107 1.467× 107 1.114× 107 6.163× 108 6.304× 108

10 0.1493 1.808× 107 1.521× 107 1.152× 107 7.967× 108 8.329× 108

12 0.1435 1.920× 107 1.575× 107 1.191× 107 9.882× 108 1.020× 109

14 0.1383 2.033× 107 1.630× 107 1.230× 107 1.191× 109 1.201× 109

16 0.1335 2.147× 107 1.686× 107 1.270× 107 1.405× 109 1.380× 109

18 0.1291 2.262× 107 1.743× 107 1.311× 107 1.632× 109 1.560× 109

20 0.1249 2.377× 107 1.800× 107 1.352× 107 1.870× 109 1.744× 109

60 6 0.2374 1.651× 107 1.419× 107 1.076× 107 4.192× 108 6.027× 107

8 0.1875 1.784× 107 1.473× 107 1.114× 107 5.784× 108 1.295× 108

10 0.1649 1.918× 107 1.528× 107 1.152× 107 7.477× 108 2.359× 108

12 0.1518 2.052× 107 1.583× 107 1.191× 107 9.274× 108 3.852× 108

14 0.1430 2.187× 107 1.639× 107 1.230× 107 1.118× 109 5.773× 108

16 0.1362 2.323× 107 1.695× 107 1.270× 107 1.319× 109 8.067× 108

18 0.1307 2.460× 107 1.752× 107 1.311× 107 1.531× 109 1.065× 109

20 0.1258 2.597× 107 1.810× 107 1.352× 107 1.755× 109 1.343× 109

70 6 0.4130 1.709× 107 1.423× 107 1.076× 107 3.940× 108 1.884× 107

8 0.2658 1.860× 107 1.478× 107 1.114× 107 5.436× 108 4.278× 107

10 0.2053 2.013× 107 1.533× 107 1.152× 107 7.027× 108 8.184× 107

12 0.1749 2.166× 107 1.589× 107 1.191× 107 8.715× 108 1.407× 108

14 0.1570 2.320× 107 1.645× 107 1.230× 107 1.050× 109 2.237× 108

16 0.1453 2.475× 107 1.702× 107 1.270× 107 1.240× 109 3.340× 108

18 0.1367 2.631× 107 1.760× 107 1.311× 107 1.439× 109 4.736× 108

20 0.1300 2.788× 107 1.818× 107 1.352× 107 1.649× 109 6.431× 108

80 6 0.6643 1.762× 107 1.426× 107 1.076× 107 3.705× 108 8.955× 106

8 0.3812 1.932× 107 1.481× 107 1.114× 107 5.112× 108 2.103× 107

10 0.2651 2.102× 107 1.537× 107 1.152× 107 6.608× 108 4.121× 107

12 0.2089 2.273× 107 1.594× 107 1.191× 107 8.197× 108 7.214× 107

14 0.1779 2.445× 107 1.651× 107 1.230× 107 9.879× 108 1.165× 108

16 0.1589 2.618× 107 1.708× 107 1.270× 107 1.166× 109 1.769× 108

18 0.1460 2.792× 107 1.766× 107 1.311× 107 1.353× 109 2.557× 108

20 0.1366 2.966× 107 1.825× 107 1.352× 107 1.551× 109 3.549× 108

90 6 0.9522 1.815× 107 1.429× 107 1.076× 107 3.484× 108 5.222× 106

8 0.5237 2.003× 107 1.485× 107 1.114× 107 4.806× 108 1.255× 107

10 0.3406 2.191× 107 1.542× 107 1.152× 107 6.213× 108 2.498× 107

12 0.2524 2.380× 107 1.598× 107 1.191× 107 7.707× 108 4.417× 107

14 0.2048 2.570× 107 1.655× 107 1.230× 107 9.288× 108 7.184× 107

16 0.1764 2.760× 107 1.713× 107 1.270× 107 1.096× 109 1.098× 108

18 0.1580 2.952× 107 1.771× 107 1.311× 107 1.272× 109 1.597× 108

20 0.1451 3.144× 107 1.830× 107 1.352× 107 1.458× 109 2.233× 108
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Table 11
Maximum deflection of CSPs for different face thicknesses and inclination angles ( =t 1 cmc ).

θ (deg) tf (mm) w (mm) Dx (N⋅m) Dy (N⋅m) Dxy (N⋅m) Dqx (N/m) Dqy (N/m)

50 6 0.2615 1.150×107 8.605× 106 6.459× 106 7.445× 108 8.304× 108

8 0.1912 1.468×107 1.181× 107 8.911× 106 7.704× 108 8.330× 108

10 0.1493 1.808×107 1.521× 107 1.152× 107 7.967× 108 8.329× 108

12 0.1215 2.167×107 1.882× 107 1.429× 107 8.235× 108 8.378× 108

14 0.1018 2.549×107 2.264× 107 1.722× 107 8.507× 108 8.500× 108

16 0.0871 2.952×107 2.667× 107 2.032× 107 8.784× 108 8.687× 108

18 0.0757 3.377×107 3.093× 107 2.359× 107 9.065× 108 8.925× 108

20 0.0666 3.825×107 3.541× 107 2.704× 107 9.350× 108 9.199× 108

60 6 0.2825 1.260×107 8.656× 106 6.459× 106 6.987× 108 1.892× 108

8 0.2092 1.578×107 1.187× 107 8.911× 106 7.229× 108 2.122× 108

10 0.1649 1.918×107 1.528× 107 1.152× 107 7.477× 108 2.359× 108

12 0.1353 2.277×107 1.889× 107 1.429× 107 7.728× 108 2.580× 108

14 0.1143 2.659×107 2.271× 107 1.722× 107 7.983× 108 2.772× 108

16 0.0986 3.062×107 2.675× 107 2.032× 107 8.243× 108 2.934× 108

18 0.0866 3.487×107 3.101× 107 2.359× 107 8.507× 108 3.073× 108

20 0.0771 3.935×107 3.549× 107 2.704× 107 8.775× 108 3.196× 108

70 6 0.3301 1.355×107 8.694× 106 6.459× 106 6.566× 108 6.842× 107

8 0.2532 1.674×107 1.191× 107 8.911× 106 6.794× 108 7.489× 107

10 0.2053 2.013×107 1.533× 107 1.152× 107 7.027× 108 8.184× 107

12 0.1727 2.373×107 1.895× 107 1.429× 107 7.263× 108 8.871× 107

14 0.1491 2.754×107 2.277× 107 1.722× 107 7.503× 108 9.507× 107

16 0.1315 3.157×107 2.681× 107 2.032× 107 7.747× 108 1.008× 108

18 0.1177 3.582×107 3.107× 107 2.359× 107 7.995× 108 1.059× 108

20 0.1067 4.030×107 3.556× 107 2.704× 107 8.247× 108 1.106× 108

80 6 0.3961 1.444×107 8.725× 106 6.459× 106 6.175× 108 3.604× 107

8 0.3159 1.763×107 1.195× 107 8.911× 106 6.390× 108 3.856× 107

10 0.2651 2.102×107 1.537× 107 1.152× 107 6.608× 108 4.121× 107

12 0.2296 2.462×107 1.899× 107 1.429× 107 6.830× 108 4.384× 107

14 0.2035 2.843×107 2.282× 107 1.722× 107 7.056× 108 4.631× 107

16 0.1834 3.246×107 2.687× 107 2.032× 107 7.286× 108 4.861× 107

18 0.1675 3.671×107 3.113× 107 2.359× 107 7.519× 108 5.074× 107

20 0.1545 4.120×107 3.562× 107 2.704× 107 7.756× 108 5.275× 107

90 6 0.4770 1.533×107 8.753× 106 6.459× 106 5.806× 108 2.258× 107

8 0.3941 1.852×107 1.199× 107 8.911× 106 6.008× 108 2.377× 107

10 0.3406 2.191×107 1.542× 107 1.152× 107 6.213× 108 2.498× 107

12 0.3024 2.551×107 1.904× 107 1.429× 107 6.422× 108 2.617× 107

14 0.2736 2.932×107 2.287× 107 1.722× 107 6.634× 108 2.732× 107

16 0.2509 3.335×107 2.692× 107 2.032× 107 6.850× 108 2.842× 107

18 0.2323 3.760×107 3.119× 107 2.359× 107 7.069× 108 2.948× 107

20 0.2168 4.209×107 3.568× 107 2.704× 107 7.292× 108 3.051× 107

Table 12
Maximum deflections (mm) of the CSPs for different mechanical properties of face and core plates.

Case 1 2 3 4

Ef (GPa) 208 208 70 70

Ec(GPa) 208 70 208 70

a/b θ (deg) θ (deg) θ (deg) θ (deg)

60 90 60 90 60 90 60 90

0.5 0.0014 0.0042 0.0031 0.0086 0.0022 0.0060 0.0041 0.0124
1 0.0041 0.0069 0.0074 0.0125 0.0079 0.0105 0.0122 0.0204
1.5 0.0061 0.0076 0.0100 0.0134 0.0119 0.0119 0.0180 0.0225
2 0.0071 0.0077 0.0112 0.0134 0.0138 0.0123 0.0210 0.0228
2.5 0.0076 0.0076 0.0118 0.0132 0.0146 0.0124 0.0225 0.0227
3 0.0078 0.0076 0.0120 0.0130 0.0149 0.0124 0.0231 0.0226
3.5 0.0079 0.0076 0.0121 0.0129 0.0150 0.0124 0.0234 0.0225
4 0.0079 0.0075 0.0122 0.0128 0.0150 0.0124 0.0236 0.0224
4.5 0.0079 0.0075 0.0122 0.0127 0.0150 0.0124 0.0236 0.0223
5 0.0079 0.0075 0.0122 0.0127 0.0150 0.0123 0.0236 0.0223
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and

= N N NN [ 0 0 0 0 0 0]n n n n1 2 3 (24)

Also the property matrix, D, can be found in Eq. (25):

=
D

D
D

D

0 0 0

0 0 0

0 0 0.5 0 0
0 0 0 0
0 0 0 0

D D

D D

xy
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x y

y
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(25)

The Poisson’s ratio associated with bending along x-direction, x , is
equal to face plates Poisson’s ratio, f , while it is equal to D D/x y x along
y-direction.

The total stiffness matrix, Kt , and loading vector, Ft, of the plate is
achieved after assembling stiffness matrices and load vectors corre-
sponding to different modes, taking the boundary conditions into ac-
count. The equilibrium equation can be finally formed as:

=K F 0t
st

t (26)

Displacement vector of the plate can be achieved by Eq. (27)

= K F( )st
t t1 (27)

The bending moments and shear forces in a CSP are now obtained as
follows:

= +M D
x y1xx

x

x y

x
y

y

(28a)

= +M
D

y x1yy
y

x y

y
x

x

(28b)

= +M D
x y

0.5xy xy
y x

(28c)

= +Q D w
xxz qx x

0

(28d)

= +Q D w
yyz qy y

0

(28e)

Fig. 4. Maximum transverse deflection of SSSS CSPs for different inclination angles, (a) Constant width, and (b) Constant length.
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2.3.2. Vibration analysis
The total energy of a vibrating plate without damping is the sum of

kinetic, strain, and potential energies:

= + +T U V (29)

In the case of free vibration, the term V will vanish. The kinetic
energy, T, in the Mindlin theory is expressed by Eq. (30):

= + +T h
t t

h w
t

dxdy
24 2A

x y3 2 2 2

(30)

in which is the density of the plate and ,x y and w are the functions
of coordinates and time. By a similar process to static analysis, the mass
submatrix, Mmn for a single strip is obtained by Eq. (31):

= dxdyM B PBmn
a b

vm
T

vn0 0

s

(31)

in which

=B B B B[ ]vm vm vm vm1 2 3 (32)

and

= =
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The density matrix, P, is defined as:

=

h

P
0 0

0 0
0 0

h

h

t

12

12

t

t

3

3

(34)

ht in Eq. (34) is the total height of the plate. Since the structure of
the corrugated-core sandwich plates is hollow, the density of the con-
stitutive material of the plate is different from the overall density of the
structure. Therefore, it is necessary to define an equivalent density for
analyzing the 2D orthotropic plate. By forming the total stiffness matrix
(Kt) and total mass matrix (Mt) and solving an eigenvalue problem, the
natural frequencies of the plate is obtained.

=K M 0| |t
n

t2 (35)

When the plate is vibrating under dynamic loadings, P x y t( , , )1 , the
displacement vector is calculated by Duhamel’s integral. If the load
function is separated to static and dynamic parts, e. g.,

=P x y t P x y f t( , , ) ( , ) ( )1 0 1 , the displacements can be calculated from:

= f t t t dt( ) sin( ( ))st n
t

n0 1 1 1 (36)

in which the static displacement vector, st , is defined in Eq. (27).

3. Boundary conditions

Since the elements of the plate in FSDT have C0-continuity, the
chosen displacement field should satisfy the boundary conditions of

Fig. 5. Rotation at the edges of SSSS CSPs for different inclination angles and aspect ratios, (a) x and (b) y.
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zero order. As stated, the transverse boundary conditions of the plate
are satisfied by using continuous harmonic functions. In general, dif-
ferent boundary conditions in the longitudinal or transverse direction at
y=0 or y= a and x=0 or x= b should be satisfied as shown in
Table 1.

4. Numerical results

In most cases of this study, both of face and core plates are assumed
to be made of structural steel. The typical structural elastic modulus can
be considered between 200 and 220 GPa. In this study, the modulus of
elasticity of steel is assumed to be 208 GPa. The elastic modulus of
aluminum in one of the examples is supposed to be 70 GPa. The pois-
son’s ratio for both core and face plates in all of the cases is assumed to

Fig. 6. Maximum transverse deflection of CSPs versus aspect ratio for different inclination angles and (a) FSFS, (b) CSCS, and (c) GSGS boundary conditions.
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be 0.3 and the steel density is 7800 kg/m3. Material properties can be
found in [16,30]. In the matter of boundary conditions, the first letter
corresponds to the left edge of the plate. The next letters are assigned in
a counter-clockwise manner. In all sections, the plate is under uni-
formly distributed loading of 10 kN/m2. Wherever the geometric
parameters are not mentioned specifically, they are taken as follows:

= = = = = =t t h P R1 cm , 10 cm , 1.7 cm , 60c f c c

Several codes are developed in MATLAB environment for static and
dynamic analyzing of corrugated-core sandwich plates. Since the mass
and stiffness matrices usually have large dimensions due to the em-
ploying numerous harmonic series and strips, the Gaussian quadrature
rules are used as a numerical method of integration. Many numerical
examples and results are provided using these codes.

4.1. Convergence study

In order to reach the proper convergence of the proposed method,
the number of strips and terms of harmonic series should be considered.
In an ordinary plate in which shear to flexural stiffness ratios have
relatively large values, the number of strips and harmonic series mostly
depend on the aspect ratio, thickness to dimensions ratio, and the
boundary conditions. But, due to the hollow structure of the corru-
gated-core sandwich plates, the shear to flexural stiffness ratio is rela-
tively small compared with the ordinary plates. The effect of relatively
low shear stiffness is similar to the effect of increasing the height of an

ordinary plate in which the shear deformations and the number of re-
quired harmonic terms increase. Therefore, the convergence process in
analyzing of CSPs depends on the geometry of the plate cross section as
well. Every parameter which decreases the shear stiffnesses, Dqx and
Dqy, will slow down the speed of convergence.
Static analysis of a square, 1 m length CSP is now considered to

evaluate the convergence of the proposed method. Three inclination
angles and different number of harmonic series are assumed and
maximum deflections of the plate are presented in Table 2. The para-
meter α in Table 2 is the percentage of difference between the first and
the last answers. It is observed that bigger inclination angle which
provides less shear stiffness, requires more harmonic terms for con-
vergence. Also, it is evident that the convergence rate of SSSS boundary
conditions is faster than CCCC boundary conditions. In this paper, the
number of harmonic terms and strips are chosen so that the difference
between two successive answers does not exceed 1%.

4.2. Verification

To validate the proposed method, the values of maximum deflec-
tions along with the bending moments at the center of the CSPs are
presented in Tables 3 and 4, respectively. The results are then compared
to those of Ref. [16], in which a SSSS CSP with a=2.1m, b=6m, and
hc=0.1m is studied using the Navier’s method. It can be seen that the
results are in good agreement with those presented in Ref. [16]. To
obtain the results of Tables 2 and 3, the required elastic constants are

Fig. 7. Maximum transverse deflection of CSPs versus aspect ratio for different inclination angles and (a) FCFC (b) CCCC boundary conditions.
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assumed exactly equal to what is supposed in [16]. However, the
constants used in our study are calculated more exactly.
As for the vibration analysis, a non-dimensional frequency factor, ,

defined in Eq. (37) is calculated for orthotropic plate.

= b h
D

(1 )n t x y

x

2

2 (37)

in which, n is the minimum natural frequency of the plate and other
parameters are already defined. For isotropic plates, we have

=D Eh /12x t
3 and = =x y .

The non-dimensional frequency factor is calculated for isotropic
plates using the proposed finite strip method. The results are presented
in Table 5 as well as those reported in Ref. [31]. It could be observed
from Table 5 that the FSM results are in good agreement with those of
Ref. [31].

4.3. Static analysis

In this section, a comprehensive parametric study on the static
analysis of CSPs with different geometric parameters and boundary
conditions is presented in three subsections.

4.3.1. Effect of geometric and mechanical parameters
The effect of geometric and mechanical parameters in the cross

section of CSPs with SSSS boundary conditions on the equivalent con-
stants and maximum deflection of the plate is investigated in this sec-
tion. The plate is under uniformly distributed loading and all calcula-
tions are done for a=2.1m and b=6m, except in sections d and f.

Maximum deflections of CSP are calculated and the results are pre-
sented in Tables 6 to 12 which are being described in the following:

4.3.1.1. Effect of “Rc”. This parameter affects the length of corrugation
leg (L) and the dimensionless coefficient, S introduced in Section 2.1. As
it is observed in Table 6, the change in the length of the core’s arc at the
joint of horizontal and inclined parts of the web, has a very slight and
negligible effect on the flexural constants. However, by increasing Rc in
the section, the shear elastic constants slightly increase and therefore
the displacements are reduced.

4.3.1.2. Effect of “P”. In spite of the slight increase in Dx and Dy due to
the increase of the horizontal part of the core plate, increasing the ratio
of P h/ c leads to decrease of the shear stiffness constants, especially Dqy ,
and consequently increasing the deformation of the CSP. Meanwhile, by
increasing the distance between the elements of the core parts (legs and
crowns) and the relative reduction of used materials in a certain length,
the overall stiffness of the plate decreases, and consequently, the out of
plane displacements are increased. The equivalent elastic constants
along with the corresponding displacement at the center of the CSP
with hc=0.1m and different values of P h/ c are presented in Table 7.

4.3.1.3. Effect of “ ”. Besides the thickness and dimensions of the
plates, the most effective parameter in the function of a corrugated
sandwich plate is the inclination angle of the core plate. This angle
affects the geometry of the plate and consequently influences the
equivalent constants. Although the changes in the angle of inclination
partly influence the flexural stiffnesses, the shear stiffness constant, Dqy ,

Fig. 8. Bending moment Mx in the middle of all edges simply supported CSPs along the transverse direction: (a) Constant width, and (b) Constant length.
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is greatly affected by the variation of this parameter. The significant
reduction of Dqy due to increasing the angle of inclination will result in
a considerable increase in the out of plane displacements. The values of
the equivalent elastic constants along with the corresponding
displacement at the center of the plate are presented in Table 8.

4.3.1.4. Effect of “hc”. Table 9 presents the maximum deflections of
square CSPs with different web heights, hc. The length of the plate is
equal to 3m, and P=12.5 cm. Also, the cross sectional area of one unit
of the CSP is compared to the area of an ordinary plate with the width
of 2P for a constant central deflection. The results clearly demonstrate
the economic efficiency of corrugated sandwich plates.

4.3.1.5. Effect of “tc” and “tf ”. The effect of thickness of the core and
face plates are studied in this section. The maximum transverse
deflection of CSPs for different web thicknesses ( =t 1 cmf ) and five
inclination angles are presented in Table 10. The effects of the thickness
of face sheets in a CSP with =t 1 cmc are considered in Table 11. It is
observed that changing the face plate thickness has more considerable
reducing effect on the displacements, but in large inclination angles,
like 90°, the increase in core thickness can also be weighty in abating
the deflections. It is reminded that in many cases, increasing the face
plate thickness leads to larger cross section area of the plate and
consequently the higher costs of the CSP.

4.3.1.6. Effect of mechanical properties. The effect of mechanical
properties of the CSPs on the maximum displacement of a plate with
1m width is considered in this section. The core and face sheets are

supposed to be made of steel and aluminum. Four different cases are
considered and the results are presented in Table 12. As expected, the
displacements in Case 1 are less than the other cases, while the Case 4
yields higher values of displacements. It appears that for inclination
angle of 60°, the maximum displacements in Case 3 are higher than
Case 2 (except for a/b=0.5), while for the angle of 90°, Case 2 yields
higher deflections in the plate. The displacements in Cases 2 and 3 for
angle 90°, and in Case 2 for angle 60° are approximately the same for
higher aspect ratios. Therefore, using stronger material in the core (or
face) plate, will not necessarily yields more economic design in
practical purposes.

4.3.2. Maximum deflections and rotations of CSP
The deformation of CSPs is investigated in this section. Different

boundary conditions are considered and the results are presented in
Figs. 4 to 7.

4.3.2.1. SS transverse edges. The diagrams of maximum deflection of
SSSS CSP for different length to width (a/b) and width to length (b/a)
ratios are plotted in Fig. 4 for five corrugation angles. As it is shown in
Fig. 4a, by increasing the length to width ratio the displacements at the
center of the plate converge to approximately equal values. Although
this process can not necessarily be called convergence, it can be
concluded that by increasing the spacing between the supports, and
consequently reducing the stiffness of the middle regions, the role of
other effective parameters such as inclination angle of the web becomes
somehow insignificant. Generally, the smaller angle of inclination
causes the smaller displacement of the plate. However, it can be seen

Fig. 9. Bending moment My in the middle of all edges simply supported CSPs along the transverse direction: (a) Constant width, and (b) Constant length.
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that by exceeding the length to width ratio from a certain value, the
displacement of CSP with smaller angles will be slightly higher than the
larger angles. This issue does not appear in Fig. 4b. In addition, in most
aspect ratios, the displacements in Fig. 4b have higher values than
Fig. 4a. This is mainly due to the difference of properties and stiffnesses
of the CSP in two orthogonal directions. Also just like beams and slabs,
the dimensions of the plate is a significant factor and in this type of
orthotropic plate, increasing the dimensions in each direction will affect
the results differently.
Assume that the higher stiffnesses of the plate are along the trans-

verse direction (x-axis). By increasing the width of the plate, the main
resistance factor in the plate is weakened while the other direction will
not undergo a great reduction in stiffness. Hence, the displacements are
higher in Fig. 4b. By increasing the length of the plate, the larger
stiffnesses along the strong directions are less affected and can still
operate more effectively than the other direction and consequently the
results do not vary too much in higher values of a/b ratios. It seems that
the effects of other parameters, such as bigger flexural stiffness con-
stants for larger inclinations angles, lead to smaller displacements in the
higher lengths of Fig. 4a.
Fig. 5a and 5b show the rotations of CSPs for different values of

lengths and widths. As shown in Fig. 5a, the maximum rotation in
longitudinal boundaries ( x) increase by increasing the inclination
angle. However, the rotations remain approximately constant after
certain values of the width. The constant pattern of the results is also
observed in Fig. 5b for y, but the point in this graph is the different sign
of the rotations in transverse boundaries for angles 80° and 90° rather

than the other three angles which could be attributed to the smaller
shear to flexural stiffness in these conditions. This phenomenon can
affect the sign of the Myin some cases.
In Fig. 6a–c, the diagrams of maximum deflection of CSP for dif-

ferent aspect ratios and inclination angles are plotted for FSFS, CSCS
and GSGS boundary conditions, respectively. As for FSFS case, as the
length of the plate (and consequently the length of the free boundaries)
increases, the freedom of the longitudinal boundaries (along the y-axis)
allows the central out of plane displacements to grow unlimitedly. In
fact, as the length of the plate increases in this arrangement of
boundary conditions, the plate behavior becomes closer to a simply
supported beam.
As shown in Fig. 6b, the displacements at the center of a CSCS CSP,

for high aspect ratios, are approximately 40 percent of the corre-
sponding ones in a CSP with SSSS boundary conditions shown in
Fig. 4a. Moreover, the trend of convergence of displacements begins
from smaller aspect ratios for CSCS, compared with the SSSS case.
The difference between FSFS and GSGS boundary conditions, which

are shown in Fig. 6a and c, respectively, is due to the restriction of
rotations at the longitudinal boundaries of the CSP for GSGS boundary
conditions. Since the effect of transverse displacements on the behavior
of the plate is usually more determinative than nodal rotations, the
overall shape of the displacement curves for GSGS and FSFS boundary
conditions are similar. However, the values of displacements for GSGS
plate will grow with slower slope than FSFS.

4.3.2.2. CC transverse edges. The variation of maximum displacements

Fig. 10. Variations of bending moment in the middle of all edges simply supported CSPs along the transverse direction for different inclination angles: (a) Mx , and (b)
My.
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of CSPs with FCFC and CCCC boundary conditions are demonstrated in
Fig. 7a and 7b. As for the FCFC case in Fig. 7a, the displacements can
increase unlimitedly but with smaller values than FSFS case. For CCCC
boundary conditions in Fig. 7b, all displacements and rotations are
restricted at all four edges, and as a result, the displacements will
become the smallest. The displacements of CCCC CSPs for high aspect
ratios are very close to CSCS case. While for the smaller values of aspect
ratios, the results of CCCC boundary conditions are lower and as the
inclination angles increases, the difference between these two cases
begin to fade, even for small length to width ratios.

4.3.3. Bending moment and shear force diagrams
4.3.3.1. SS transverse edges. Bending moment diagrams in the middle of
the corrugated sandwich plates with the specifications mentioned
before are presented in this section. Because of the orthotropic
behavior of the CSP, the moment variations in x and y directions are
different even in a square plate. The length and width which are not
mentioned specifically in the graphs are equal to 1m.
The bending moment diagrams of SSSS CSPs in the strong direction

for different lengths and widths are illustrated in Fig. 8a and b, re-
spectively. By increasing the length of the plate, the moments in the
strong direction take higher values (Fig. 8a). This growth in the mo-
ments becomes more intangible as the length of the plate increases. It
can be seen that if the width of the plate increases (Fig. 8b), the moment
diagrams will tend to appear in the form of a saddle. The reason is the
spacing of the longitudinal supports which weakens the plate in its
strong direction and hence reduces the support effects on the middle

areas of the plate that are supposed to bend in this direction. This will
make the distant areas from the supports softer and eventually, it causes
the reduction of developed bending moments in x direction in these
regions.
The bending moments of SSSS CSPs in the weak direction are also

shown in Fig. 9a and b for different values of lengths and widths, re-
spectively. As observed, like the previous example, there is the same
correlation between the direction of the moments and dimensions of the
plate. Increasing the length will yield lower bending moments and in-
creasing the width will upraise them.
Moreover, the effect of inclination angle on the bending moment

diagrams is considered in this section. The variations of Mx and My in
the middle line of steel CSPs with a= b=3m, and five different in-
clination angles are illustrated in Fig. 10a and b, respectively. Unlike
Fig. 10a, the bending moment developed in the middle of the plate
(y= a/2) takes smaller values for larger angles as shown in Fig. 10b.
Therefore, considering this fact that the difference in the inclination
angles loses its effect on the amount of displacements by increasing the
length to width ratio (as shown in Fig. 4a), one can consider the re-
duction of the bending moment My as one of the advantages of using
larger angles.
The variation of transverse shear force parallel to y-z plane, Vx , in

the middle (y= a/2) of a CSP is shown in Fig. 11a, while the transverse
shear force diagram parallel to x-z plane, Vy, in the transverse supports
(y=0 or y= a) of a corrugated sandwich plate with variable widths, is
shown in Fig. 11b.
Fig. 12a shows the bending moment diagrams, Mx , in the middle of

Fig. 11. Transverse shear of all edges simply supported CSPs along the transverse direction for different widths and constant length: (a) Vx@ y=a/2, and (b) Vy@
y=0 or y= a.

H. Zamanifar et al. Engineering Structures 183 (2019) 30–51

44



the plate with FSFS boundary conditions. As expected, the bending
moments in free boundaries are zero. To compare the effect of
boundary conditions, the bending moment diagrams for CSCS and GSGS
boundary conditions are also presented in Fig. 12b and 12c.

4.3.3.2. CC transverse edges. The moment diagrams of FCFC and CCCC
boundary conditions are presented in Fig. 13a and b, respectively. As
for the FCFC plate, the finite strip method cannot capture the exact
behavior of the plate in free boundaries. Therefore, the bending
moment at these points is not exactly equal to zero as shown in
Fig. 13a. According to Fig. 13b, it is shown that despite the greater

stiffness of the supports in CCCC CSP, the positive moments in this case
are smaller compared to SSSS and CSCS boundary conditions. The
reasons of this behavior are the smaller displacements of CCCC CSPs,
and also the different distribution of moments in different parts of the
plate. Just like a beam that undergoes a higher positive moment in
simply supports conditions rather than the both-end fixed supports.

4.4. Vibration analysis

After a comprehensive static analysis, the free and forced vibrations
of the corrugated-core sandwich plate are now presented. In this

Fig. 12. Bending moment Mx in the middle of CSPs along the transverse direction for different widths and (a) FSFS, (b) CSCS, and (c) GSGS boundary conditions.
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section, the equivalent density of the orthotropic plate is assumed to be
equal to A Ph/2c tin which the cross section area of each unit of the
plate, Ac, is calculated by Eq. (38) and other parameters are already
defined.

= + + +R t ft d t PtA 4 2 4 4c c c c c f1 (38)

The equivalent method proposed in Ref. [8] does not clearly restrict
the nature of the applied forces to the static ones. Obtaining the
equivalent elastic constants is somehow similar to determining the
stiffness of a frame before dynamic analysis. Therefore, by assuming the
dynamic loading as a chain of quasi-static loadings, the equivalent
elastic constants could be used to approximate the dynamic results. As
long as the constituent elements of the plate are not ruptured by the
effect of dynamic loadings, one can use the elastic constants as an ap-
proximation of the stiffness of the structure.
The variations of versus length to width ratio for five different

inclination angles and different boundary conditions are presented in
Fig. 14a to d. Wherever the overall stiffness of the plate is higher, the
natural frequency will have higher values, hence in smaller inclination
angles, the values of are higher. Also, the natural frequencies are
higher for clamped boundary conditions rather than the other ones with
the same geometric parameters. Obviously, in the FSFS case, the results
will have the lowest values. All of the graphs in Fig. 14 show that the
natural frequencies converge to approximately constant values after
certain lengths.
In the state of forced vibration, the plate is supposed to be under

harmonic uniformly distributed loadingP tsin( )0 . Different loading
frequencies are considered and the ratios of dynamic displacements to

the static ones, w w/dyn st, are computed and the results are presented in
Fig. 15 in the form of FRF diagrams for two types of boundary condi-
tions. The diagrams are illustrated for CSPs with 1m width during one
second of vibration. Ten harmonic modes were employed for these
calculations. It is observed that the plate responses can be far different
from static results due to resonance effect which depends on the natural
frequency of the plate. As the dimensions of the plate are increased, the
natural frequencies become smaller and the resonance takes place at
lower frequencies.
The maximum displacement diagrams of square CSPs with 1m

length and = 1000 rad/sec for different inclination angles and dif-
ferent web heights are plotted in Figs. 16 and 17, respectively. The
variation of overall stiffness of the corrugated sandwich plate (whether
by changing in boundary condition or the geometric parameters) in-
fluences the stiffness matrix, natural frequencies, and even the
equivalent density of the plate in the cases that the geometric para-
meters of the cross section change.

5. Conclusion

In this paper, a systematic static and dynamic analysis of corru-
gated-core sandwich plates was carried out using the classic finite strip
method. The effects of geometric parameters such as dimensions, the
inclination angle of the core plate, the width of each unit, the height of
the web and boundary conditions on the behavior of corrugated sand-
wich plates under static and dynamic loadings were investigated and
the results were presented in the form of figures and tables.
The concluding marks are listed as follows:

Fig. 13. Bending moment Mx in the middle of CSPs along the transverse direction for different widths and (a) FCFC and (b) CCCC boundary conditions.
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1. The increase in the arc of the core plate reduces the displacements.
2. To reduce the displacements, increasing the thickness of the face
plates is generally more effective than increasing the thickness of the
core plate.

3. Increasing the inclination angle, slightly increases the flexural
stiffness, but reduces the shear stiffness, particularly Dqy, which
eventually increases the displacements of the plate.

4. Increasing the width of each unit of the plate causes a slight increase

in flexural stiffnesses and a significant reduction in shear stiffness,
which eventually increases the displacements of the plate without
having much effect on the economic aspects of the design.

5. Due to the high sensitivity of overall behavior of CSP to the core
performance, the use of stronger materials in the face plate does not
necessarily lead to a significant reduction in displacements of the
plate.

6. The sign of nodal rotations y could change in the plates which have

Fig. 14. The non-dimensional frequency factor, , of CSPs versus aspect ratio for different inclination angles and (a) SSSS, (b) FSFS, (c) CSCS, and (d) CCCC boundary
conditions.
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relatively small shear to flexural stiffness values.
7. Due to the orthotropic nature of the CSPs, bending moments are
different in two orthogonal directions. The flexural moment devel-
oped in the plate in different inclination angles are different, and the
trends of variation of Mx and Mywith inclination angles are different
from each other.

8. The displacement values in a plate under dynamic loading depends
-in addition to the load intensity- on the loading frequency and the
ratio of this frequency to the values of natural frequency of the plate.
The free vibration frequency and the equivalent density of the plate
vary with the variation of its geometry and affect the responses.

Fig. 14. (continued)

Fig. 15. Frequency response function diagrams of CSPs for different lengths: (a) SSSS and (b) CCCC boundary conditions.
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Appendix

The non-dimensional parameter, S, in Eq. (6) is calculated as follows:

=
+

+ + + ( )
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Fig. 16. Maximum deflections of CSP under harmonic loading ( = 1000 rad/sec) for different inclination angles: (a) SSSS and (b) CCCC boundary conditions.

Fig. 17. Maximum deflections of SSSS CSPs under harmonic loading ( = 1000 rad/sec) for different web heights.
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in which the Bi coefficients can be obtained as follows:
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In these equations, is the angle between each part of one leg of the core plate (including the horizontal, oblique and arched parts of the core
plate) and the horizontal line. Other geometric parameters in this section are shown in Fig. 2a and b.
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