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Abstract

In this paper, the stochastic gradient algorithm for learning fractional-order dynamical systems with noisy input and output is
proposed. The proposed algorithm allows estimating the parameters of fractional dynamic systems if the input and output noises
are color. The proposed algorithm does not require knowledge of the noise distribution laws. The simulation results
demonstrate the high accuracy of the proposed learning algorithm in comparison with the least squares learning algorithm.
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1. Introduction

Fractional calculations are used in mechanics, economics, hydrology, and many other sciences. Therefore, the
development of methods for the identification of fractional order systems is an important problem, the development
of methods for the identification of fractional order systems is an important problem.

In Cois et al., 2000 and Cois et al., 2001 presents methods for the identification of systems based on the method
of least squares. An overview of methods for identifying fractional order systems is proposed in Malti et al., 2006.
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Instrumental variables for fractional systems with correlated noise are presented in Victor et al., 2011 Recursive
identification algorithms for white noise are proposed in Djouambi, 2012. The use of Kalman filter for white noise
in Sierociuk, Dzienlinsk, 2006 and color noise in Sierociuk, Zubinski, 2014, Safarinejadian et al., 2016, Yang et
al., 2018 is considered.

An excellent review of methods for identifying integer-order systems with errors in variables is given in
Séderstrom. 2018.

Today there are a small number of articles on the identification of fractional systems with errors in variables
Chetoui et al., 2012, Chetoui et al., 2013, Ivanov, 2013. In Ivanov, 2017 proposed a generalization of the results
for the case of fractional errors in variables.

2. Fractional Calculus

The fractional derivative is a generalization of the derivative of an integer order. At the same time, unlike
derivative of integer order, there are many non-identical definitions fractional derivatives in Samko et al., 1993,
Kilbas et al., 2006 . These definitions are similar in form, but significantly differing in properties of fractional

differential equations order.
To identify discrete fractional systems, usually use the discrete analogue of the Griinwald-Letnikov derivative
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3. Problem statement

The linear fractional-order system is described by equations with fractional order differences:
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Al. System (1) is asymptotically stable.
A2. The values of the orders of the system 7, 7;, a.,,, B,, are known.

A3. The sequences {&}, {¢;} with E(&)=0, E(¢;)=0 and system parameters o, B satisfy the

assumptions:
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h:(g), h;(g) are autocorrelated functions;
A4, For the sequences {@i}, {Qi}, {zl.}, {xi} the following conditions are satisfied

B(gz )=0, B(&x ) =0,

B(Cz ) =0, B(¢x ) =0,

where E(®) is expectation operator.

AS. For the input sequence {x; } with E(x;) =0 the following conditions is satisfied
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matrix /. is positive definite matrix.

For noisy sequences {z;}, {x;} to recursively estimate the parameter vector

é:(é(‘) B a0 &("))T eR™,
4. Stochastic Gradient Algorithm for Learning a Fractional-Order Dynamical System with Autocorrelated

Error- in-Variables

The error signal is defined

where
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The minimum of the criterion (2) can be found with the help of stochastic approximation:

0(i+1)=0(i)-5V4J (6()), 3)
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where

For the sequence {81-} , the assumptions are defined:

A6. 5,25,,, ».5,=0 and ) .6/ <o, y>1.
i=0 i=0

AT7. i&ié«)@, iéié«)o a.s.

i=0 i=0

Theorem. The sequence of estimates of the coefficients {é(z)} (3) converges to the true value lim é(z) =6 or
i—>0
diverges if the assumptions AI-A7 hold.
Proof. The proof is based on the continuous model method Ivanov et al., 2017.

5. Stochastic Approximation with Averaging

The rate of convergence of the algorithm (3) depends on the choice of the value of the sequence {61-}. The
choice of the optimal sequence {61.} depends on the variance of the generalized error & and the minimum

eigenvalue of the matrix H_ . In practice, these quantities are usually unknown or only estimates of these

quantities are known. The new type of stochastic approximation is proposed a stochastic approximation with
averaging in Polyak, 1990:

0(i+1)=0(i)-2v,7(6(0)). ©)
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Algorithm (4), (5) has an asymptotically optimal rate of convergence for any values of the sequence {51} . In

practical problems of estimation can be accepted /=0.5 Polyak, Judiskiy, 1992. When using the averaging
algorithm, the step size is chosen more than in the algorithm (3). This leads to a jump around the true vector 6 of

the sequence of estimates {é(l )} . Averaging compensates for these jumps, and under general conditions, the rate

of convergence {5 (i )} coincides with the maximum possible. The use of stochastic approximation with averaging

gives good results for solving applied problems in Nazin, Piterskaya, 2002.
6. Simulation Results

The proposed algorithm was compared with the recursive least-squares (RLS) method in a test example.The
fractional noiseless system is defined by the equation
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2 =0.5A%z, | —02AYz, | +A%x, —0.2A"x, (5)
The input and output noises are defined as
& —-028 -038 ,=v, +3v, ,+7v,_,+100, ,, 6)
¢, =054, ,-02¢, , =1, +4r,_ —4r,_, +27,,, @)
where 7,0, are white noises.
The vector of the true coefficients of the system is6 = (0.5 —0.2 1 —O.Z)T :
The input signal x; is defined as

x; =—0.5x;_+¢ —02¢_,-0.75-¢,_,+¢;_,,

where ¢, - is white noise with E(¢;)=0.

Initial values of the parameter vector is 6(0)=(0 0 0 0)".

Number of observations N =2000.
Figures 1-3 gives plots of normalized root-mean-square error (NRMSE) estimation of parameter is defined by

Signal-to-Noise Ratio is defined by

Fig. 1. NRMSE for SNRin= SNRout =0.2: 1-RLS; 2-proposed algorithm.
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Fig. 2. NRMSE for SNRin= SNRout =0.7: 1-RLS; 2-proposed algorithm.
7. Conclusion

In this paper, the stochastic gradient algorithm for learning a fractional-order dynamical system in the presence
of auto-correlated errors in variables is proposed. The simulation results showed that the proposed algorithm works
better compared to the recursive least squares method. Further research should be directed to the development of
algorithms that do not require knowledge of the autocorrelation functions of noises or their estimation in the
learning process.
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